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Experimental Quantum Embedding for Machine Learning

Ilaria Gianani, Ivana Mastroserio, Lorenzo Buffoni, Natalia Bruno, Ludovica Donati,
Valeria Cimini, Marco Barbieri, Francesco S. Cataliotti, and Filippo Caruso*

The classification of big data usually requires a mapping onto new data
clusters which can then be processed by machine learning algorithms by
means of more efficient and feasible linear separators. Recently, Lloyd et al.
have advanced the proposal to embed classical data into quantum ones: these
live in the more complex Hilbert space where they can get split into linearly
separable clusters. Here, these ideas are implemented by engineering two
different experimental platforms, based on quantum optics and ultra-cold
atoms, respectively, where we adapt and numerically optimize the quantum
embedding protocol by deep learning methods, and test it for some trial
classical data. A similar analysis is also performed on the Rigetti
superconducting quantum computer. Therefore, it is found that the quantum
embedding approach successfully works also at the experimental level and, in
particular, we show how different platforms could work in a complementary
fashion to achieve this task. These studies might pave the way for future
investigations on quantum machine learning techniques especially based on
hybrid quantum technologies.

1. Introduction

Since ancient times transferring acquired knowledge has in-
duced mankind to develop solutions by applying established re-
sults in different contexts. This tendency remains valid even for
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today’s most sophisticated technologies. In-
deed, the current need of processing large
amount of data and the availability of su-
percomputers has thus fostered an inno-
vative take on programming: rather than
trying and structuring the database so that
a computer can walk through it, we now
mimic processes of natural intelligence.[1–3]

Algorithms are then able to act as quasi-
conscious agents, thanks to the introduc-
tion of machine learning. These days, its
applications are ubiquitous in everyday
life, ranging from domotic systems, to au-
tonomous cars, to face and voice recogni-
tion, and to medical diagnostics.[4–6] Arti-
ficial neural networks are one of the most
common solutions[7,8] whose exploitation
targets, among the others, deep learning—
the classification of data according to pro-
cesses akin to those occurring in the brain
and reinforcement learning—finding the

optimal strategy for a given task in complex environments.[9]

In classification problems, it is highly desirable that data can
be sorted into distinct categories with tight dividing borders.[3,8]

For this purpose, however, intensive preprocessing is often nec-
essary on the original data for machine learning algorithms to
perform efficiently. In the case of two-class problems, one would
aim at achieving a geometrical representation of the data in order
to establish a dividing hyperplane. All points sitting on either side
of such a plane would be assigned to one class, for example, cats
or dogs, implementing what is known as a linear classifier. How-
ever, it is not granted that the natural structure of the data suits
these needs. Boundary may be obvious in the geometric repre-
sentation, for example, the human-perceived distinction between
cats and dogs, but, when these are applied to the original data, a
complicated, nonlinear classifier results. For instance, scalar data
are represented as points on a line, but the classification system
may require to group disjoint intervals.
Linear classifiers are a preferable option as they are easier to

find, however, they require to address the nontrivial task of em-
bedding the original data in the appropriate space. Such a prepro-
cessing, in turn, should not be too complex and resource inten-
sive, with the risk of thwarting the benefits of an efficient clas-
sification. Quantum mechanics can provide an intriguing solu-
tion: even in the simplest instance, the natural representation
of a quantum bit is the Bloch sphere, rather than the single-
dimensional geometry of classical data. Data are thus naturally
embedded into a much larger Hilbert space, and tight, separate
clusters are formed, which can then be easily (quantum) recog-
nized by a linear classifier.
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A proposal on utilizing quantum computers for embedding
has recently been advanced in ref. [10]. This comes in the frame-
work of an exchange of concepts and methods between machine
learning and quantum information.[11] Indeed, there have been
demonstrations of the benefits of machine learning approaches
to analyze data generated by quantum experiments,[12–19] to im-
prove the performance of quantum sensors,[20,21] to Bayesian pa-
rameter estimations,[22] to the classification of non-Markovian
noise,[23] and to the design of optical experiments.[24,25] Small
gate-model devices and quantum annealers have been used to
perform quantum heuristic optimization[26–30] and to solve clas-
sification problems.[31–34] Such devices have even been used with
good promises in the context of unsupervized and reinforcement
learning.[35–37] These recent applications on noisy intermediate
size quantum (NISQ)[38] devices have depicted machine learning
as a good candidate to harness the power of existing quantum
technologies, albeit noisy and imperfect.
The exact detail on the performance of quantum embedding

will depend on the degree of control on the actual system, thus
on the level of experimental imperfections specific to the solu-
tions adopted. This does affect, foremost, the size of the classical
data set which can realistically be manipulated. In this article, we
present an extensive experimental study of quantum embedding
carried out on multiple platforms. In particular, we investigate
how the protocol can be tailored to ultra-cold atoms, photonics,
and via cloud available NISQ computers. Starting from a single
prescription, we implement three different experiments, high-
lighting requirements and tolerances of each one for this task.
The specific features come into play in a complementary fashion,
hence supporting the promising idea of hybrid quantum tech-
nologies for future quantum machine learning applications.

2. Results

In our investigation we explore the application of quantum em-
bedding in the simple, but illustrative instance of a single-qubit
embedder. This is carried out in two steps: first, we identify the
optimal quantum circuit, based on the classical data to be classi-
fied, using an iterative routine. Here the optimization is carried
out off-line on a classical computer. Second, the circuit is imple-
mented in three different architectures to explore how different
sources of noise and imperfections impact the realization.
Quantum embedding is the representation of classical points

x from a data domain X as a quantum feature state |x⟩. Either
the full embedding, or part of it, can be facilitated by a quantum
feature map, that is, a quantum circuit Φ(x) that depends on the
input. If the circuit has additional parameters 𝜃 that are adapt-
able, Φ(x) = Φ(x, 𝜃), the quantum feature map can be trained
via optimization. If we have classical data points ai from class
A, and bj from class B, we want their quantum embeddings |ai⟩
and |bj⟩ to be as separated as possible in the Hilbert space. The
process is pictorially represented in Figure 1. The approach is
similar in spirit to the classical support vector machines (SVMs)
commonly used inmachine learning to perform classification.[39]

SVMs map complex data (i.e., nonlinearly separable) via a non-
linear kernel into a high dimensional space where the data can be
easily (linearly) classified by an hyperplane. The aim of this learn-
ing procedure is thus to be able, given new data point never seen
during training, to correctly place it in the correct class by means

Figure 1. Pictorial view of the quantum embedding process where classi-
cal data (originally living in a highly complex set) can be embedded into
the larger (Hilbert) space of quantum states that possibly belong to tight,
more distant, and linearly separable clusters. Here we perform several ex-
perimental tests (based on atomic, superconducting, and photonic plat-
forms, respectively) of this quantum embedding, theoretically proposed in
ref. [10], in order to successfully demonstrate it at the experimental level
and also to exploit the complementarity of the exploited platforms that is
really crucial toward practical andmore feasible hybrid quantum technolo-
gies.

of a suitable high dimensional embedding. This need for gener-
alization to new data rules out trivial solution such as mapping
all the points of a class to an extreme of the Bloch sphere, be-
cause these trivial mappings suppose the knowledge of the class,
while the method we want to learn will correctly embed the point
in its class without supplying any further knowledge. From the
mathematical side, the determination of the optimal parameters
𝜃 of the embedding is based on computing the overlaps |⟨ai|bj⟩|2,|⟨ai|ai′⟩|2, |⟨bj|bj′⟩|2 for all members of the two classes, and min-
imizing the so-called cost function C.

C = 1 − 1
2

(∑
i,i′

||⟨ai|ai′⟩||2 +∑
j,j′

|||⟨bj|bj′⟩|||2
)

+
∑
i,j

|||⟨ai|bj⟩|||2 (1)

This amounts to bothmaximizing theHilbert–Schmidt norm be-
tween the two classes andminimizing it within each one. This op-
timization procedure starts from random guesses and then leads
to the optimal embeddings |ai⟩, |bj⟩, hence the associated optimal
quantum circuit is found. In our example, the classical data set
is a collection of ten scalars 𝜙 chosen in the interval [−𝜋,𝜋], ar-
ranged in two classes with five elements each (see Supporting In-
formation for details). The optimal training is achieved by using
the open-source software Pennylane[40] and the quantum circuit
introduced in ref. [10], based on a sequence of rotations on non-
commuting axes. Note that the particular choice of the circuit is
completely arbitrary as long as the operators are non-commuting,
indeed it might be the case that some quantum circuits generate
better embeddings for particular problems by taking advantages
of symmetries in the data set. The qubit is first initialized to an
input-independent state SH|0⟩ = (|0⟩+i|1⟩)∕√2, where H is the
Hadamard gate, and S is the phase gate. The following sequence
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Figure 2. Top panel: Bloch sphere representation of the embedded quantum states that are randomly distributed (before learning) and clustered in
two families (after learning), as provided by (a) theory (i.e., the simulation of the embeddings on a classical computer) and by the experimental results
obtained on the (b) atomic and (d) photonic platforms. The corresponding Gram matrices for the set of ten embedded quantum states (before and
after learning) are shown in the bottom panel. Here, the results achieved with a superconducting platform (c) are also shown. For the superconducting
platform we were not able to extract the Bloch vectors due to the limited controls given by accessing it remotely and the consequent difficulty to perform
a quantum state tomography that was, on the other hand, possible on the other two platforms.

of rotations around the X and Z axes of the Bloch sphere is then
applied

{RX (𝜙), RZ(𝜃1), RX (𝜙), RZ(𝜃2), RX (𝜙), RZ(𝜃3), RX (𝜙)} (2)

in order to construct the quantum state |𝜙⟩. The circuit parame-
ters to be optimized are thus the rotation angles 𝜃 = {𝜃1, 𝜃2, 𝜃3}.
This sequence of operations provides the optimal strategies for
encoding we used in our experiments, with specific adaptations
to the requisites of each architecture.
The performance of the embedding is conveniently captured

by the Gram matrix, containing all the scalar products between
the embedded states. Figure 2 shows how optimization of the pa-
rameters 𝜃 does lead to the presence of two clusters of quantum
states, as clearly illustrated by the Bloch sphere representation.
As the system is trained, we can take advantage of the Gram ma-
trix to control how well it has learned to separate the points in the
Hilbert space. The training is done taking two data points, em-
bedding them into two separate qubits and using a third qubit to
perform a SWAP test between the two embeddings, hence giving
us the overlaps we need to compute the cost function in Equa-
tion (1). The parameters of the embedding circuit are then up-
dated by gradient descent using the automatic differentiation ca-
pabilities of Pennylane. After a few hundreds of gradient descent
steps (i.e., training steps), the cost function reaches a minimum
and the optimal encoding circuit is found[10]—as illustrated in
Figure 2a for the optimally embedded (theoretical) states. This
procedure is completely general, and allows extension to a more
complex data set (see Supporting Information) and to rotations
around different axes. Therefore, the scheme is flexible and can

be manipulated in order to account for the specific needs of dif-
ferent experimental platforms.
The manipulation of atomic internal states is naturally suited

to the above scheme, since qubit operations in (2) are indeed
rotations realized by sequences of control pulses. The first ex-
periment is therefore performed on a Bose–Einstein condensate
(BEC) of ≈105 87Rb atoms, evolving according to an external mi-
crowave driving field. The qubit is identified as the two-level sys-
tem {|0⟩ ≡ |F = 2, mF = 0⟩; |1⟩ ≡ |F = 1, mF = 0⟩} formed by ru-
bidium hyperfine ground states (see Figure B1, Supporting In-
formation). The classical information to be encoded is mapped
in the rotation angles of the Bloch vector of our two-level system,
around the non-commuting axes Sx and Sz of the Bloch sphere.
The Bloch vector, representing the atomic qubit, evolves under

the rotating wave approximation, according to the unitary trans-
formation.

UΩ(Ω, 𝛿, t) = exp

(
− i|Ω⃗|t

2
n⃗Ω ⋅ 𝜎⃗

)
(3)

with |Ω⃗| = √
Ω2 + 𝛿2 being the generalized Rabi frequency and

the Rabi vector direction n⃗Ω ≡ ( Ω|Ω⃗| , 0,− 𝛿|Ω⃗| ) identifying the rota-
tion axis. Here, 𝜎⃗ is the vector of the Pauli matrices, 𝛿 is the de-
tuning of the microwave frequency from the atomic resonance,
while Ω is the Rabi frequency of the pulse. The embedding pa-
rameters, 𝜃 and 𝜙, are related to the experimental frequencies Ω
and 𝛿 and the interaction time t as

𝜃 = 𝛿t

𝜙 = Ωt
(4)
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To realize the embedding of sequence (2) we adapt the embed-
ding procedure to the experimental implementation, for each
of the ten classical inputs 𝜙. Indeed, due to experimental con-
straints that fundamentally limit the interaction time between
the atomic qubit and the microwave field, we are only allowed
to perform a few rotations instead of the seven required by Equa-
tion (2). Taking into account this limitation we numerically com-
pute, for each embedded point, three new angles {𝜑1, 𝜗,𝜑2} that
allow us to effectively perform the same global rotation but using
less operations and thus respecting our constraints. Hence, the
sequence of rotations (2) reduces to the following three unitary
transformations.

{UΩ(Ω, 𝛿, 𝜏1), UΩ(0, 𝛿, T), UΩ(Ω, 𝛿, 𝜏2)} (5)

The total evolution length is determined by the sum of each in-
teraction time duration 𝜏1 + T + 𝜏2. Their values can be found
in Appendix B, Table B1. While Ω and 𝛿 are fixed by the experi-
mental setting, the only free parameter that we optimize for the
embedding is the interaction time t. The total evolution of Equa-
tion (5) is implemented by a quasi-resonant microwave rectan-
gular waveform that couples the two-level system. The rectangu-
lar waveform is composed of a first pulse that realizes the evolu-
tionUΩ(Ω, 𝛿, 𝜏1). It is implemented with the microwave switched
on (Ω ≠ 0) thus letting the qubit to precess with an angular
frequency equal to the generalized Rabi frequency |Ω⃗| around
the axis n⃗Ω about an angle 𝜑1 = Ω𝜏1. A subsequent free evolu-
tion, with the microwave switched off (Ω = 0), lets the system
rotate, according to UΩ(0, 𝛿, T), around the Sz axis of an angle
𝜗 = 𝛿T . Similarly, a final pulse, with the microwave switched on,
drives the evolution UΩ(Ω, 𝛿, 𝜏2) thus allowing the qubit to pre-
cess around n⃗Ω of an angle 𝜑2 = Ω𝜏2. Note that, since the detun-
ing is fixed during the evolution, when the microwave pulse is
on the system rotates around the axis n⃗Ω that forms an angle of
arctan(𝛿∕Ω) with the Sx axis. The non-orthogonality of the two
rotation axes n⃗Ω and Sz is taken into account when computing
the interaction times to realize the sequence of rotations in (5).
To reconstruct the final embedded state after the total evolution,
we perform a state tomography as explained in detail in the Sup-
porting Information. The sources of error and imperfections in
the implementation of the protocol on the atomic experimental
platform come from the limited accuracy and stability of themea-
sured Rabi frequency and detuning used to set the desired rota-
tions. As explained in the Supporting Information, this induces
an error of about 0.1 in the measurement of the components Sx,
Sy, and Sz of the final collective-spin vector S⃗. The experimen-
tal findings in terms of the Bloch vectors and Gram matrix are
reported in Figure 2b where a clear clusterization of the recon-
structed states can be seen. The fidelity between the theoretical
prediction and the experimental result is on average better than
0.99 (see Figure B2, Supporting Information). We can safely con-
clude that the embedding procedure is faithfully working with
the atomic platform.
Different platforms, however, do not necessarily have the same

features and constraints. We evidence this by taking as an ex-
ample the case of the superconducting chip of Rigetti[41] named
Aspen-8. It is composed of a lattice of 30 superconducting qubits
in a ladder-like configuration. The qubits are controllable by the
action of single- and two-qubit gates giving this platform all the

characteristics of an universal quantum computer. We thus use
this platform to deploy again the same embedding in Equation (2)
but on a completely different device with different noise profile
and constraints. Each circuit is sampled 2000 times for each of
the 100 data points necessary to build the Gram matrix, using
Rigetti’s cloud service. As shown in Figure 2c, the Gram matrix
(even if it is sensibly noisier than our other tests) clearly exhibits
the separation boundary between the two classes. The advantage
of this experiment is that it could be performed without the need
of an ad hoc lab; it has been carried out remotely by just reserv-
ing some time on the Rigetti system and programming it.[42] The
entire set of experiments performed on this platform to get these
results has taken a total time of around 5 min to run.
The examples above detail results obtained on platforms with

static material qubits. It is also of interest to perform the quan-
tum embedding with moving qubits, that is, photons. Thus, we
have also investigated quantum embedding in an optical experi-
ment by generating photon pairs at the degenerate wavelength
810 nm via parametric down conversion realizing a heralded
single-photon source; the input state of the photons is set to |H⟩.
A direct application of the sequence (2) would result impractical
and resource consuming. Instead, the embedding is performed
by applying a single unitary

Ũ(𝜙; n⃗) = cos(𝜙∕2)𝜎0 − i sin(𝜙∕2)(n⃗ ⋅ 𝜎⃗) (6)

where n⃗ = (nx, ny, nz) denotes the associated rotation axis (the ac-
tual used values are in the Supporting Information). This repre-
sents the compiled effect of the original sequence, written as a
single operation.
We have then adopted an alternative approach, based on de-

composing the unitary (6) and the SH initialization by means of
a series of three wave plates—a quarter wave plate (Q1), a half
wave plate (H2), and a second quarter wave plate (Q3), whose an-
gles are associated to the parameters 𝜙 and n⃗ as

𝜃Q1 = 1
2

(
− arctan

(
nz
nx

)
− arctan

(
ny tan

(
𝜙

2

)))

𝜃H2 =
1
2

⎛⎜⎜⎝− arcsin
⎛⎜⎜⎝nx

√
n2z
n2x

+ 1 sin
(
𝜙

2

)⎞⎟⎟⎠ − arctan
(
nz
nx

)⎞⎟⎟⎠
𝜃Q3 = 1

2

(
− arctan

(
nz
nx

)
− arctan

(
ny tan

(
𝜙

2

)))
(7)

This is more suited to photon polarization. On the one hand, this
comes at the cost of losing a direct mapping of each term in the
sequence (2) into a physical object. It also introduces the require-
ment of controlling a larger class of operations than rotations on
two specified axes. On the other hand it reduces the number of
required elements, leveraging on the availability of ready-made
hardware components. Verification of the outputs is carried out
by means of quantum state tomography, operated by a further
half wave plate/quarter wave plate sequence and a polarizer.
The reconstructed Gram matrix is reported in Figure 2d. The

two main sources of imperfection are the limited accuracy in
the setting of the wave plate axis (±1◦ for the encoding plates,
±0.25◦ for the tomography plates), and deviations of the imparted
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phase shifts from the target values 𝜋∕2 or 𝜋. Despite these devi-
ations, clustering of the states in two classes is clearly observed.
Once again the fidelity between the experimental results and the
theoretical predictions is on average above 0.96 (see Figure C2,
Supporting Information) accounting for a more than satisfac-
tory agreement.

3. Conclusions

The Gram matrices reveal that all the architectures we have con-
sidered indeed give satisfactory results in realizing the quantum
embedding. To make this observation more quantitative, here
we provide a theoretical bound, based on the observed fideli-
ties, for the number of different classes and/or different points
that can be embedded on a single qubit. Our bound is derived
from geometrical constraints of the embedding on the sphere.
The minimal assumption we can make for the embedding to
be successful is to avoid overlapping between different classes.
These are associated with distinct spherical sectors defined by its
central angle Θ; in our example, the two sectors correspond to
two separate halves of the sphere (Θ = 𝜋). By simple geometrical
arguments, the surface occupied by a single spherical sector is
given by 2𝜋[1 − cos(Θ∕2)]. Since we want the sectors to be non-
overlapping, and the total available surface of our Bloch sphere
is 4𝜋, we can formulate a geometrical constraint considering the
number of classes N as follows.

2𝜋N
[
1 − cos

(Θ
2

)]
≤ 4𝜋 (8)

This equation thus computes the tightness of the embedding
given a number N of classes to embed.
A similar geometric reasoning can also be applied to give an

upper bound, albeit not a tight one, on the dimension of data set
which can effectively be embedded. To do this we will use the
fidelity F between the experimental states and the corresponding
targets. While the ideal state is associated to a unique direction in
the Bloch sphere, accounting for the imperfections of the actual
prepared state leads us to consider a spherical surface 2𝜋(1 − F)
as the actual geometricmeasure of the volume occupied by a state
on the Bloch sphere prepared with fidelity F with respect to the
ideal target state. Thus, the maximum number of points allowed
is

Nmax ≤
4𝜋

2𝜋(1 − F)
(9)

Our experiments demonstrate that a fidelity exceeding 0.9 can be
routinely achieved on all platforms we have explored. This deter-
mines a maximal embedding capacity Nmax ≃ 20 as a conserva-
tive estimate. This reasoning can be obviously generalized to the
2n-dimensional hypersphere in the case of multi-qubit embed-
ding.We also remark that the bounds given in this section are not
tight ones, nevertheless they are useful gauges to make theoret-
ical estimates on the tightness of embedding and the maximum
number of points that can be embedded using a certain platform.
Our experimental investigation demonstrates how quantum

embedding techniques may suit radically different approaches to
qubit encoding and manipulation—by pulses as for cold atom,

by quantum logic circuits as for the Rigetti machine, or by com-
piled operations as for photons. Such a versatility shows promises
for future interconnected systems on hybrid architectures, with
specialized hardware for storage, processing, and distribution of
quantum data. Finally, the potential advantages of representing
classical data on quantum systems include not only the possibil-
ity to simplify a classification problem as experimentally demon-
strated in this work, but also the ability to speed up any process-
ing of the classical data such as, among others, the quantum par-
allelism to search through a database, feature extraction, image
segmentation, and edge detection. Indeed, combining quantum
machine learning and quantum image processing is expected to
allow to potentially solve real-world problems that are very chal-
lenging via classical supercomputers, especially in the case of
large volumes of data in various domains ranging from sociol-
ogy to economy, from geography to biomedicine.

4. Experimental Section
Atomic Platform: Starting from a room temperature gas in ultra-high

vacuum conditions a BEC of 87Rb atomswere produced in 8 s by laser cool-
ing followed by evaporative cooling in a magnetic micro-trap realized with
an atom chip.[43] Quantumdegeneracy was achieved by ramping down the
frequency of a radio-frequency field integrated on the chip. This procedure
yielded a BEC of ≈105 atoms in |F = 2, mF = 2⟩ (see Supporting Informa-
tion), at a critical temperature of 0.5 μ K and a distance of 300 μmbetween
the atomic cloud and the chip surface. After switching off the magnetic
trap, atoms were let to expand for 1 ms to strongly reduce the effects of
atomic collisions. Subsequently, a constant magnetic bias field of 6.179 G
was applied to lift the magnetic degeneracy of the hyperfine states and to
define the quantization axis of the system. The opposite sign of the Landé
factors in the two hyperfine ground levels isolated the |F = 2⟩ → |F = 1⟩
two-level system microwave clock transition chosen as the qubit for the
embedding. To transfer all the atoms in the initial state of the experiment|0⟩ = |F = 2, mF = 0⟩, a frequency modulated radio-frequency pulse de-
signed with an optimal control strategy was applied.[44] An external mi-
crowave antenna at 6.834 GHz was then exploited to drive the clock transi-
tion inducing an average Rabi oscillation frequency of 2𝜋× 38(2) kHz. After
all themanipulations to realize the embedding of the states, the number of
atoms in each of themF Zeeman states were finally recorded, of the |F = 1⟩
and |F = 2⟩ hyperfine levels, applying a Stern–Gerlachmethod.[45] The dif-
ferent mF states were let to spatially separate by means of an inhomoge-
neousmagnetic field applied along the quantization axis and then, after 23
ms of free expansion, a standard absorption imaging sequence was exe-
cuted. The sequence was repeated twice, once with light resonant with the|F = 2⟩ state and immediately after with light resonant to the |F = 1⟩ state.

Photonic Platform: Degenerate 810 nm photon pairs were generated
from a 50 mW CW laser at 405 nm through Type I spontaneous paramet-
ric downconversion using a 3 mm BBO crystal. Both photons were filtered
with bandpass filters (FWHM = 7.3 nm) and single mode fibers. One pho-
ton acted as a trigger and was directly coupled to an avalanche photodiode
detector, while the other underwent the transformation Ũ(𝜙; n⃗) imparted
by the sequence of quarter–half–quarter wave plates described in themain
text. Quantum state tomography was then performed by collecting coin-
cidence counts in correspondence to the projections along the polariza-
tion directions horizontal, vertical, diagonal, anti-diagonal, right-circular,
and L-circular. For each state,≈20k coincidence events were collected, dis-
tributed among the six projectors.

Appendix A: Theoretical Details

The classical data set is reported in Figure A1. This data set cannot be
linearly separated in 1D representation, thus making the quantum em-
bedding a suitable resource to classify the two classes. In our case the

Adv. Quantum Technol. 2022, 5, 2100140 2100140 (5 of 8) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure A1. Data set to be classified using the embedding. The data set is
1D and it is not linearly separable. The classes (blue) and (red) have been
normalized to live in the interval [−𝜋, 𝜋].

training is performed on 1000 points and the cost function is optimized
as explained in the main text by using the simulation software Pennylane.
The peculiarity of Pennylane is that it integrates a suite of quantum sim-
ulations (that we use to implement the circuit) with common machine
learning tools such as TensorFlow and Pytorch. Leveraging the remarkable
automatic differentiation and optimization capabilities of these libraries
our procedure is able to converge to a minimum of our cost function in
200 iterations taking only a few minutes of computational time. We use
the TensorFlow backend with the Adam optimizer.

Once the optimization is done, we sample ten more data points (not
exploited for the training) in order to test the generalization capabilities of
the embedding. These ten test points are all correctly classified and they
subsequently serve as a benchmark for all the experimental platforms. Af-
ter this “learning” phase has been carried out on an ideal circuit, we deploy
the same embedding on different experimental platforms to test its ro-
bustness to real-world deployment scenarios. Since different experiments
have different capabilities, each deployment requires to “recompile” the
embedding unitary transformation to fit with the specifications of each de-
vice while keeping the learned parameters fixed. The different constraints
are extensively explained in the following sections.

Appendix B: Atomic Platform

Experimental Procedure: The experimental setup used for the atomic ex-
periment is shown in Figure B1. The embedding is realized by letting the
Bloch vector evolve from the initial state |0⟩ = |F = 2, mF = 0⟩ to the fi-
nal embedded state |x⟩ through the set of rotations in (5) dictated by the
embedding. The latter are implemented designing a microwave rectan-
gular wave, whose duration is fixed by the angles 𝜑i = Ω𝜏i, with i = 1, 2,
and 𝜗 = 𝛿T, where Ω = 2𝜋× 38(2) kHz is the Rabi frequency and 𝛿 = 2𝜋×
6.57(4) kHz the detuning of the microwave frequency from the atomic res-
onance. The interaction time withmicrowave switched on (𝜏1, 𝜏2) and with
microwave switched off (T) are reported in Table B1.

At the end of the evolution for each final state we measure the number
of atoms N|1⟩ in state |1⟩ and N|0⟩ in state |0⟩. From the relative popula-
tion P|1⟩ = N|1⟩∕(N|0⟩ +N|1⟩), we get the z-component of the state vector
defined as ⟨Sz⟩ = (N|0⟩ −N|1⟩)∕(N|0⟩ +N|1⟩), obtaining
⟨Sz⟩ = 1 − 2P|1⟩ (B1)

To measure the other components ⟨Sx⟩ and ⟨Sy⟩ of the final state, we
project themonto the z-axis of the Bloch sphere by adding further rotations
to the one computed to measure ⟨Sz⟩. Experimentally, we realize them by
adding another sequence of rectangular wave pulses of suitable duration.

Figure B1. Left: Pictorial representation of the atom chip placed inside
the vacuum science cell to achieve the BEC and manipulate the atoms’
internal dynamics. An external microwave antenna, shown in the image
below the chip, is used to drive the evolution of the qubit and to realize
the embedding. Note that the drawing is not to scale. Right: Typical ab-
sorption image of the atomic clouds after Stern–Gerlach separation. All
Zeeman substates can be simultaneously detected. In the inset we show
the involved level scheme with yellow thin lines representing the radio-
frequency transitions while thick lines represent the microwave transition.

Table B1. Interaction times with the microwave switched on (𝜏1, 𝜏2) and
off (T) for the atomic experiment, in order to generate the ten optimally
embedded quantum states.

State 𝜏1[𝜇s] T[𝜇s] 𝜏2[𝜇s]

1 19 36 8

2 45 51 7

3 20 37 1

4 20 38 3

5 19 28 3

6 30 47 38

7 32 20 8

8 4 7 35

9 4 25 12

10 7 10 6

In this way we retrieve ⟨Sx⟩ and ⟨Sy⟩ by the measured relative population
with Equation (B1). By doing so, we implement the quantum state tomog-
raphy of the embedded states.

Accuracy and Stability: The experimental realization of the embedding
protocol with atoms is fundamentally limited by the accuracy and stability
with which we measure the Rabi frequency and the radio-frequency detun-
ing necessary to set the desired rotations. Therefore, in order to estimate
this accuracy, we have performed Rabi oscillations and a Ramsey interfer-
ometer up to a duration of 300 μs, much longer that any of the embedding
sequences. We have hence measured a fluctuation of the order of 1% on
Rabi and detuning frequencies. Furthermore, the frequency stability, pre-
sumably due to microwave power fluctuations for the Rabi frequency and
due to magnetic field fluctuations for the detuning, have been evaluated
measuring the Allan variance for a total time interval of 3 h. The results
have allowed us to estimate a fluctuation of 2𝜋× 1.5 kHz and of 2𝜋× 71
Hz for Rabi frequency and detuning, respectively, evaluated on an average
time of 115 s corresponding to the time needed for five repeated measure-
ment of each embedded state. The linear uncertainty propagation realized
with a simulation of the experiment results in an evaluated error of 0.1
on the measurement of the components ⟨Sx⟩, ⟨Sy⟩, and ⟨Sz⟩ of the final
collective-spin vector. The fidelities between the predicted states and the
reconstructed experimental ones, together with error bars computed via
uncertainty propagation, are shown in Figure B2.

Adv. Quantum Technol. 2022, 5, 2100140 2100140 (6 of 8) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure B2. Fidelity between the predicted state and the one experimentally
reconstructed in the atomic experiment by measuring the three S⃗ compo-
nents after applying the quantum embedding circuit, calculated for the ten
validation states. Each measurement of the components is repeated five
times and the uncertainty on the fidelity is obtained via error propagation.
The error bar for the state 5 is smaller than the marker.

Figure C1. Optical experimental setup: SPDC through a 3 mm Type I BBO
crystal generates degenerate photon pairs at 800 nm. One photon is used
for heralding, while the other is rotated with a quarter wave plate–half
wave plate–quarter wave plate and then quantum state tomography is per-
formed with a quarter wave plate, half wave plate, and a polarizing beam
splitter. Coincidence counts are then collected as reported in themain text.

Appendix C: Photonic Platform

The experimental setup used for the photonic experiment is shown in Fig-
ure C1. A heralded single photon source is set up, based on paramet-
ric down conversion, and a three-plate arrangement is used to impart a
generic transform, while tomography adopts the standard technique of
projecting on three mutually unbiased bases.

The embedding parameters dictating the rotation for each of the ten
states are reported in Table C1. The fidelities between the predicted states
and the reconstructed ones are shown in Figure C2. Uncertainties have
mainly statistical origin, due to fluctuations in the number of collected
counts. In order to account for those, we have performed a Monte Carlo
routine, simulating 300 experiments: in each of them, counts are gen-
erated by bootstrapping on the observed values, assuming Poissonian
statistics, as customary. The uncertainty on the fidelity is thus evaluated
as the standard deviation of the fidelities with the target state observed in
the Monte Carlo replicas.

Table C1. Embedding parameters for the photonic experiment.

State 𝜙 nx ny nz

1 0.668 0.667 0.143 0.731

2 1.986 −0.423 0.460 −0.781

3 2.111 −0.510 0.379 −0.772

4 2.408 0.619 0.240 0.748

5 1.301 −0.405 0.914 0.034

6 4.258 0.418 0.908 −0.006

7 4.367 0.247 0.969 0.026

8 3.549 −0.475 0.847 0.239

9 4.379 0.197 0.980 0.036

10 3.762 −0.433 0.877 0.208

Figure C2. Fidelity between the predicted state and the experimentally re-
constructed one in the photonic experiment, obtained by quantum state
tomography after applying the quantum embedding circuit, calculated for
the ten validation states.

Acknowledgements
F.C. was financially supported by the European Union’s Horizon 2020 re-
search and innovation programme under FET-OPEN Grant Agreement
No. 828946 (PATHOS). N.B. was financially supported by the Qombs
Project, FET Flagship on Quantum Technologies grant no. 820419.

Open Access Funding provided by Universita degli Studi di Firenze
within the CRUI-CARE Agreement.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
I.G., V.C., and M.B. carried out the photonic experiment; I.M., N.B., L.D.
and F.S.C. carried out the atomic experiment; F.C. and L.B. led and carried
out the theoretical work. L.B. performed the numerical optimizations and
the analysis of the results from the Rigetti machine. F.C. conceived the
whole project. F.C., M.B., and F.S.C. supervized the project. All authors
contributed to the discussion, analysis of the results, and the writing of
the manuscript.

Adv. Quantum Technol. 2022, 5, 2100140 2100140 (7 of 8) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202100140 by U

niversita D
i Firenze Sistem

a, W
iley O

nline L
ibrary on [21/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
experimental quantum technologies, noisy intermediate size quantum de-
vices, quantum machine learning, quantum optics, ultra-cold atoms

Received: November 4, 2021
Revised: March 7, 2022

Published online: June 9, 2022

[1] F. Rosenblatt, Psychol. Rev. 1958, 65.
[2] J. Schmidhuber, Neural Networks 2015, 61.
[3] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-

ing: Data mining, Inference, and Prediction, Springer Science & Busi-
ness Media, Berlin 2009.

[4] S. Grigorescu, B. Trasnea, T. Cocias, G. Macesanu, J. Field Robot.
2020, 37, 362.

[5] N. Sebe, I. Cohen, A. Garg, T. S. Huang,Machine Learning in Computer
Vision, Springer Science & Business Media, Berlin 2005.

[6] A. Graves, A. Mohamed, G. Hinton, 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2013, pp. 6645–6649,
http://doi.org/10.1109/ICASSP.2013.6638947.

[7] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, MIT
Press, Cambridge, MA 2016.

[8] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
Berlin 2006.

[9] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT
Press, Cambridge, MA 2018.

[10] S. Lloyd, M. Schud, A. Ijaz, J. Izaac, N. Killoran, arXiv:2001.03622
2020.

[11] P. Wittek, Quantum Machine Learning: What Quantum Comput-
ing Means to Data Mining, Academic Press, Cambridge, MA
2014.

[12] J Gao, L.-F. Qiao, Z.-Q. Jiao, Y.-C. Ma, C.-Q. Hu, R.-J. Ren, A.-L. Yang,
H. Tang, M.-H. Yung, X.-M. Jin, Phys. Rev. Lett. 2018, 120, 240501.

[13] A. Rocchetto, S. Aaronson, S. Severini, G. Carvacho, D. Poderini, I.
Agresti, M. Bentivegna, F. Sciarrino, Sci. Adv. 2019, 5, eaau1946.

[14] G. Torlai, B. Timar, E. P. L. van Nieuwenburg, H. Levine, A. Omran, A.
Keesling, H. Bernien, M. Greiner, V. Vuletic, M. D. Lukin, R. G. Melko,
M. Endres, Phys. Rev. Lett. 2019, 123, 230504.

[15] A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D.
Biamonte, S. Kulik, npj Quantum Inf. 2020, 6, 20.

[16] T. Giordani, A. Suprano, E. Polino, F. Acanfora, L. Innocenti, A. Fer-
raro, M. Paternostro, N. Spagnolo, F. Sciarrino, Phys. Rev. Lett. 2020,
124, 160401.

[17] E. S. Tiunov, V. V. Tiunova (Vyborova), A. E. Ulanov, A. I. Lvovsky, A.
K. Fedorov, Optica 2020, 7, 448.

[18] V. Cimini, M. Barbieri, N. Treps, M. Walschaers, V. Parigi, Phys. Rev.
Lett. 2020, 125, 160504.

[19] V. Gebhart, M. Bohmann, K. Weiher, N. Biagi, A. Zavatta, M. Bellini,
E. Agudelo, arXiv:2101.07112 2021.

[20] S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew,
J. L. O’Brien, M. G. Thompson, Phys. Rev. Lett. 2017, 118, 100503.

[21] V. Cimini, I. Gianani, N. Spagnolo, F. Leccese, F. Sciarrino, M. Barbi-
eri, Phys. Rev. Lett. 2019, 123, 230502.

[22] S. P. Nolan, A. Smerzi, L. Pezzé, arXiv:2006.02369 2020.
[23] S. Martina, S. Gherardini, F. Caruso, arXiv:2101.03221 2021.
[24] M. Krenn, M. Malik, M. R. Fickler, R. Lapkiewicz, R. A. Zeilinger, Phys.

Rev. Lett. 2016, 116, 090405.
[25] A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A.

Zeilinger, H. J. Briegel, Proc. National Acad. Sci. 2018, 115, 1221.
[26] T. Kadowaki, H. Nishimori, Phys. Rev. E 1998, 58, 5355.
[27] J. Brooke, T. F. Rosenbaum, G. Aeppli, Nature 2001, 413, 610.
[28] E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028 2014.
[29] A. Peruzzo, J. McClean, P. Shadbolt, M. Yung, X. Zhou, P. J. Love, A.

Aspuru-Guzik, J. L. O’brien, Nat. Commun. 2014, 5, 4213.
[30] A. Kandala, A.Mezzacapo, K. Temme,M. Takita,M. Brink, J.M. Chow,

J. M. Gambetta, Nature 2017, 549, 7671.
[31] H. Neven, V. S. Denchev, G. Rose, W. G. Macready, arXiv:0811.0416

2008.
[32] V. S. Denchev, N. Ding, S. V. N. Vishwanathan, H. Neven,

arXiv:1205.1148 2012.
[33] K. L. Pudenz, D. A. Lidar, Quantum Inf. Process. 2013, 12, 5.
[34] A. Mott, J. Job, J. Vlimant, D. Lidar, M. Spiropulu, Nature 2017, 550,

7676.
[35] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B.

Bloom, S. Caldwell, N. Didier, E. S. Fried, S. Hong, P. Karalekas, C. B.
Osborn, A. Papageorge, E. C. Peterson, G. Prawiroatmodjo, N. Rubin,
C. A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah, R. S.
Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, B. R. Johnson, M.
Reagor, M. P. da Silva, C. Rigetti, arXiv:1712.05771 2017.

[36] W. Vinci, L. Buffoni, H. Sadeghi, A. Khoshaman, E. Andriyash, M. H.
Amin,Mach. Learn.: Sci. Tech. 2020, 1, 4.

[37] L. Buffoni, F. Caruso, EPL 2020, 132, 60004.
[38] J. Preskill, Quantum 2018, 2, 79.
[39] J. A. K. Suykens, J. Vandewalle, Neural Process. Lett. 1999, 9, 293.
[40] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, C. Blank, K. McKiernan,

N. Killoran, arXiv:1811.04968.
[41] M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, M.

Scheer, N. Alidoust, E. A. Sete, N. Didier, M. P. da Silva, E. Acala, J.
Angeles, A. Bestwick, M. Block, B. Bloom, A. Bradley, C. Bui, S. Cald-
well, L. Capelluto, R. Chilcott, J. Cordova, G. Crossman, M. Curtis, S.
Deshpande, T. El Bouayadi, D. Girshovich, S. Hong, A. Hudson, P.
Karalekas, K. Kuang, et al., Sci. Adv. 2018, 4.2, eaao3603.

[42] R. S. Smith, M. J. Curtis, W. J. Zeng, arXiv:1608.03355 2016.
[43] J. Petrovic, I. Herrera, P. Lombardi, F. Schäfer, F. S. Cataliotti, New J.

Phys. 2013, 15, 043002.
[44] C. Lovecchio, F. Schäfer, S. Cherukattil, M. Alì Khan, I. Herrera, F. S.

Cataliotti, T. Calarco, S. Montangero, F. Caruso, Phys. Rev. A 2016, 93,
010304(R).

[45] W. Gerlach, O. Stern, Z. Phys. 1922, 9, 353.

Adv. Quantum Technol. 2022, 5, 2100140 2100140 (8 of 8) © 2022 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202100140 by U

niversita D
i Firenze Sistem

a, W
iley O

nline L
ibrary on [21/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com
http://doi.org/10.1109/ICASSP.2013.6638947

