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Preface

This book delves into the fascinating world of the Mumford-Shah functional, a cor-
nerstone of image processing and a rich source of challenging mathematical problems.
Introduced by Mumford and Shah in their seminal 1989 paper, this functional seeks to
capture the essence of an image by decomposing it into a piecewise smooth function and a set
of discontinuities. While its practical applications in image segmentation and reconstruction
are undeniable, the functional also presents profound theoretical questions. Many of these
regard the regularity of its minimizers: the central theme of this book is the exploration
of these regularity questions, focusing specifically on the planar case. We embark on a
comprehensive journey through the existing literature, revisiting classic results with fresh
perspectives and incorporating new advancements. Our goal is to provide a self-contained
and detailed account of the state-of-the-art, accessible to both aspiring researchers seeking
a thorough introduction and experts interested in the latest developments.

The Mumford-Shah conjecture, a long-standing open problem, predicts a remarkably
simple structure for the discontinuity set of minimizers: a collection of smooth curves
meeting at triple junctions forming equal angles. While this conjecture remains elusive in its
full generality, significant progress has been made. We present a detailed exposition of the ε-
regularity theory, a powerful tool that establishes the local regularity of the discontinuity set
under certain assumptions. This theory allows us to understand the behavior of minimizers
near points that resemble the conjectured structures. Beyond ε-regularity, we explore the
classification of global minimizers, the properties of critical points, and various structural
results that shed light on the nature of the discontinuity set.

Throughout the book we emphasize clarity and completeness, providing detailed proofs
for all the presented theorems. We assume a solid background in measure theory and basic
elliptic PDEs, while we provide supplementary material in the appendices to aid readers
less familiar with specific technical aspects. We hope that this book will serve as a valuable
resource for anyone intrigued by the beauty and complexity of the Mumford-Shah functional,
inspiring further research and deeper understanding of this remarkable mathematical object.
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CHAPTER 1

Introduction

The aim of these notes is to give a complete self-contained account of the current state
of the art in the regularity for planar minimizers and critical points of the Mumford-Shah
functional. The latter is an energy functional introduced by Mumford and Shah in their
seminal paper [39] on image reconstruction. Assuming that g is some function on the plane
whose values represent a noisy greyscale image, Mumford and Shah proposed to identify
the geometric content of the image as a pair (u,K), given by a set K of finite length and a
smooth function u on the complement Kc of K, which minimizes the functionalˆ

Kc

|∇u|2 + length (K) +
ˆ
Kc

(u− g)2 .

They also advanced the conjecture that, for such minimizers, the set K is described by
a collection of finitely many C1 arcs which do not cross and with the property that if an
endpoint belongs to more than one arc, then it is in fact a common endpoint of three arcs
meeting at equal angles. This conjecture is to date still open, even though there has been
considerable progress towards its resolution.

The question of existence of minimizers has been solved in the mathematical literature
by allowing suitable weaker formulations than the original one of Mumford and Shah.
One approach, due to De Giorgi, is to consider K as the set of “jump discontinuities” of
u and then to apply the direct methods of the calculus of variations in an appropriate
functional-analytic setting to an appropriate generalization of the Mumford-Shah functional.
This led De Giorgi and Ambrosio to introduce the space of “special functions of bounded
variations” in [21], and we refer the reader to the monograph [5] for a detailed account of
the various variational problems that found proper treatment in this fruitful setting, which
is not limited to the planar case. The other approach is to allow K to be a general closed
rectifiable set with finite Hausdorff measure and u to be a W 1,2 function on its complement,
and then to work out a suitable compactness theory for appropriate minimizing sequences,
see the work of Dal Maso, Morel, and Solimini [13]. The two theories are in fact equivalent
thanks to a fundamental result of De Giorgi, Carriero, and Leaci, cf. [22], a fact which is
also carefully explained in one of the appendices of this book.

Having established existence, the natural question is now whether minimizers fulfill the
prediction of Mumford and Shah. Note that over Kc the function u is a minimizer of the
quadratic functional

´
(|∇u|2 + (u− g)2) and thus a solution to a very elementary linear

elliptic differential equation. Therefore, the relevant question here is how regular the set K
is and how u behaves “at K”: this is what we understand as the regularity theory.

3



4 1. INTRODUCTION

Our ambition is to cover all the major results in the planar setting. However, we will
not only include the most recent theorems but also give some new takes on the older ones.
In several places we will present alternative proofs (e.g., we will give several simplified
arguments for many portions of [10]) and other parts will include material which is, strictly
speaking, completely new (e.g., we will generalize the results of [25] to include the fidelity
term in the energy).

At the same time, we will include detailed and complete arguments for all theorems.
This book can therefore be used both by readers with a solid background in measure theory
and elementary elliptic PDE who intend to learn the theory in detail for the first time,
and by experts who are interested in the most recent developments. Concerning the first
category of readers, we, however, assume that they are familiar with the notion of rectifiable
1-dimensional sets and with their most basic properties (for instance the sections 2.8, 2.9,
2.10, 2.11, and 2.12 in [5], specialized to the case of 1-dimensional sets in the plane, are
more than enough).

1.1. Setup

As already mentioned, the relevant energies are computed on pairs (u,K) where K is a
closed 1-rectifiable subset of some planar open set Ω and u is an element of W 1,2

loc (Ω \K).
For every bounded open set U ⊂ Ω, every g ∈ L∞(Ω), and every λ ≥ 0 we define

Eλ(u,K, U, g) :=
ˆ
U\K

|∇u|2 + H1(K ∩ U) + λ

ˆ
U

|u− g|2 . (1.1.1)

where H1 denotes the 1-dimensional Hausdorff measure. The open set U will be omitted if
it coincides with Ω or it is obvious from the context and likewise g will be omitted when
λ = 0 or when it is obvious from the context.

The term
F (u, U, g) =

ˆ
U

(u− g)2

will be often called “fidelity term”, while the remaining portion of the functional will be
consistently denoted by E0. In particular, we have the obvious identity Eλ = E0 + λF .
Under our assumption (i.e. g ∈ L∞) E0 dominates the fidelity term at small scales. In
particular, the case λ > 0 adds mainly technical complications and the reader who wishes
to avoid these technicalities could just focus on the case λ = 0. Quite a few constants in
the statements need to be adjusted if ∥g∥∞ becomes high. In order to avoid discussing the
size of these constants we will assume once and for all that

∥g∥∞ ≤ M0
1 and 0 ≤ λ ≤ 1 , (1.1.2)

where M0 is any given positive number. In particular, in the rest of the notes we will omit
the dependence of the constants from M0.

The energies can be naturally extended to the class of functions of special bounded
variation (shortly SBV (Ω)) and in that case we can regard K as the jump set of the SBV

1Throughout the notes we will omit the reference domain in the L∞ norm if it will be clear from the
context.
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function u (cf. the monograph [5] for the definitions). This is not really relevant for our
discussions, as long as the reader is willing to accept some compactness statements which
pertain to the existence theory (of minimizers and critical points) of the functionals. Such
statements will play anyway an important role and for the sake of completeness we will
include short proofs in the appendix: since we believe that it makes them conceptually
easier and cleaner, those arguments take advantage of the SBV theory.

1.2. Minimizers

We will consider three different notions of minimizers associated with the above energy
functionals. We start by defining the first two.

Definition 1.2.1. A pair (u,K) in an open set Ω ⊂ R2 will be called:
• an (absolute) minimizer of the functional Eλ if for every bounded open U ⊂ Ω and

for every pair (v, J) such that J∆K ∪ spt (u− v) ⊂⊂ U we have
Eλ(u,K, U, g) ≤ Eλ(v, J, U, g) ; (1.2.1)

• a restricted minimizer if (1.2.1) holds for those (v, J) with the additional property
that the number of connected components of J does not exceed that of K.

Remark 1.2.2. Strictly speaking our definition of restricted minimizers in Ω can be
made sense even if K has an infinite number of connected components: in the latter case
we understand that any competitor is allowed, and thus (u,K) is an absolute minimizer.
Clearly the interest in restricted minimizers lies in the cases where the number of connected
components is finite. In many statements this assumption is however not needed and we
will omit it: it will instead be spelled out explicitly when it is needed.

Absolute minimizers are generally just called minimizers in the literature and we will
often use the same convention: we will add the adjective absolute only when we want to
emphasize that we can compare its energy with any competitor. Obviously a minimizer is
also a restricted minimizer, while the converse is instead false in general. Note that the
value of the functional is invariant under the addition of H1-null sets, which creates an
annoying technicality when dealing with regulary issues. Assume for instance that (u, ∅)
is an absolute minimizer of E0. Then u is a classical harmonic function and so our pair
is as smooth as desirable. However, if K is any H1 null set, then (u,K) is as well an
absolute minimizer, so that we have several other minimizers with sets K which can be quite
irregular. In order to avoid this issue we wish to normalize minimizers in an appropriate
way, throwing away “unnecessary pieces” of K.

Definition 1.2.3. Following [15] a pair (u,K) will be called reduced if, for every open
set U , H1(K ∩ U) = 0 implies K ∩ U = ∅.

It is easy to see (cf. Corollary 2.1.4 below) that if (u,K) is a minimizer or a restricted
minimizer in Ω, then it can “be normalized” to a reduced pair in the following sense: if we
set N := {U open : H1(U ∩K) = 0} and let

K ′ := K \
⋃
U∈N

U ,
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then u can be extended to a C1 function u′ on Ω \K ′ (in fact an harmonic function when
λ = 0). Clearly the energy of (u′, K ′) coincides with that of (u,K). For this reason, from
now on we will always assume that a minimizing pair (or restricted minimizing pair) is a
reduced, unless we explicitly say that it might not be.

1.3. Epsilon regularity

The celebrated Mumford-Shah conjecture, which is still unsolved, states the following.
Conjecture 1.3.1 (Mumford-Shah conjecture). If (u,K) is a minimizer of Eλ then

K can be described as the union of finitely many closed C1 arcs γi which do not cross but
can meet at their endpoints at 120 degrees in “triple junctions”. In particular, if we fix a
point x ∈ K, then in any sufficiently small disk Br(x) the set K ∩Br(x) is diffeomorphic
to one of the following special types of closed sets:

(a) a radius of Br(x);
(b) a diameter of Br(x);
(c) the union of three radii of Br(x) forming angles of 120 degrees.

The main conclusion of the regularity theory developed thus far is that if K is close
in the Hausdorff distance2 to one of the three examples (a), (b) and (c) at some given
scale, then it is indeed diffeomorphic to the corresponding model at a slightly smaller scale:
a precise statement is given in Theorem 1.3.3 below. These results are typically called
“ε-regularity theorems”, the ε referring to the fact that the key assumption is the closeness
(at a certain scale and in an appropriate sense) to a given model. In geometric analysis
ε-regularity theorems appeared first in the pioneering work of De Giorgi on area-minimizing
hypersurfaces, cf. [19]. In fact many of our arguments in this book are heavily inspired by
analogous ones in the theory of minimal surfaces and we will highlight many parallels in
the sequel.

Before coming to the precise statements we introduce the following terminology.
Definition 1.3.2. Let x ∈ K. The point will be called, respectively, a regular loose

end, a pure jump, or a triple junction if for some r > 0 there is a C1 diffeomorphism Φ of
Br(x) with Φ(x) = x, DΦ(x) = Id, and such that:

(i) Φ(Br(x) ∩K) is a radius of Br(x);
(ii) Φ(Br(x) ∩K) is a diameter of Br(x);
(iii) Φ(Br(x) ∩K) is the union of three radii of Br(x) meeting at equal angles.

A maximal C1 arc of K is a closed (relatively to the domain Ω) C1 arc contained in K
which is not contained in any larger C1 arc. An extremum of a maximal C1 arc is an
endpoint belonging to the domain Ω.

If K ∩ Br(x) is a single continuous arc with endpoints x and y ∈ ∂Br(x) which is C1

away from {x} but not necessarily up to x, we then call the point x a loose end. In fact a
substantial portion of these notes will be dedicated to show that, if (u,K) is a minimizer

2Due to suitable compactness properties of minimizers, it actually suffices that K is close in a weaker
sense.
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(no matter whether absolute or restricted), then every loose end is regular. Likewise, an
outcome of the regularity theory is also that, if K ∩Br(x) consists of three continuous arcs
which meet at x, then these arcs are necessarily C1 up to their common endpoint x.

The focus of this book is then proving the following theorem which summarizes several
results in the literature. Proper credits about the various statements will be given in
Section 1.7, while in the remainder of this introduction we will discuss the content, in
particular its motivations and consequences.

Theorem 1.3.3. There are α > 0 and ε > 0 with the following property. Assume:
(1) (u,K) is an absolute minimizer of Eλ in Br(x) ⊂ R2;
(2) (1.1.2) holds and r ≤ 1;
(3) the Hausdorff distance of K ∩B2r(x) to a set K0 as in Conjecture 1.3.1(a), (b) or

(c) is smaller than εr.
Then:

(i) there is a C1,α diffeomorphism Φ of Br(x) such that Φ(K ∩Br(x)) = K0;
(ii) if λ = 0 or g ∈ C0, then K is C2 in some neighborhood of any pure jump;
(iii) if λ = 0 each maximal C1 arc is C2 up to its extrema, where its curvature vanishes.

Moreover:
(iv) the same conclusions hold in cases (b) and (c) if (u,K) is a restricted minimizer

(in particular ε is independent of the number of connected components of K);
(v) in case (a) the same conclusions hold if (u,K) is a restricted minimizer and

K ∩B2r(x) is connected;
(vi) in case (c) the three maximal C1 arcs forming K ∩Br(x) meet at equal angles.

Note that in case (c) the meeting point y of the three maximal C1 arcs forming K∩Br(x)
is not necessarily x. Likewise, in case (a) the interior regular loose end is not necessarily
located at x.

As it is known from the work of Bonnet [9], if (u,K) is a restricted minimizer of Eλ and
K has a finite number of connected components, then for every x ∈ K the assumptions of
Theorem 1.3.3 are satisfied in a sufficiently small disk Br(x). We thus get a quite satisfactory
description of the regularity of the set K, namely the conclusions of Conjecture 1.3.1 hold.

Corollary 1.3.4. Conjecture 1.3.1 hold for restricted minimizers (u,K) such that K
has a finite number of connected components.

A proof of the latter corollary will be given in Section 6.6. If g is more regular, the
regularity of K can be bootstrapped to higher regularity at regular jump points: loosely
speaking the regularity of K at jump points is 2 derivatives more than the regularity of g,
see [4]. In fact, even the real analiticity of K holds if g is real analytic, cf. [31]. However,
we will not pursue this issue in these notes.

We finally observe that the second part of conclusion (ii) in Theorem 1.3.3 has a curious
outcome: for restricted minimizers of E0 with finitely many connected components or
anyway for any minimizer for which the Mumford-Shah conjecture holds, the points of
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maximal curvature of any maximal arc forming K must be pure jump points, unless the
arc is a straight segment.

1.4. Global generalized minimizers and classification

Absolute minimizers enjoy a natural elementary energy upper bound on any disk
Br(x) ⊂ Ω, more precisely

Eλ(u,K,Br(x), g) ≤ 2πr + λπ∥g∥2
∞r

2 , (1.4.1)
cf. Lemma 2.1.2 below. Restricted minimizers satisfy the same bound under the additional
assumption that Br(x) ∩K ̸= ∅. If we therefore consider the following rescalings

ux,r(y) := r−1/2u(x+ ry)
Kx,r := {y−x

r
: y ∈ K} ,

then E0(ux,r, Kx,r, B1) enjoy a uniform bound. Since under the scaling detailed above the
“fidelity term” becomes negligible as r ↓ 0, the latter bound allows for a suitable compactness
statement for r ↓ 0, provided we introduce an appropriate concept of “generalized minimizer
of E0”, cf. Definition 2.2.4 (this is done elegantly in [9] for the case of restricted minimizers).
Note that in general, we do not have uniform bounds on the size of u, but only on the size of
∇u, hence the space of generalized minimizers of E0 must allow for a suitable normalization
of infinities. An important point is that the regularity theory detailed so far remains valid
for them.

Theorem 1.4.1. The conclusions of Theorem 1.3.3 remain valid for generalized and
generalized restricted minimizers of E.

Coming back to the scaling procedure outlined above, as r ↓ 0 the domain of definition
of (ux,r, Kx,r) becomes larger and in the limit we attain “global generalized minimizers”,
namely generalized minimizers on the entire R2. We warn the reader that in the literature
these are typically called just “global minimizers”. Our rationale for deviating slightly
from the usual terminology and adding the adjective “generalized” is explained in the next
chapter, see in particular Remark 2.2.5.

Looking at limits of these rescalings for r ↓ 0, which will often refer to as “blow-ups” ,
is reminiscent of the concept of tangent cones in the theory of minimal surfaces, see e.g.
[42]. There is however a notable ingredient missing in our context, namely a powerful
monotonicity formula as the one on the mass ratio for minimal surfaces. We will come back
to this later in this introduction and at several point in the rest of the notes.

If for any such global minimizer (u,K) of E0 the set K is empty, then u must be an
harmonic function and the upper bound (1.4.1) implies, by Liouville’s theorem, that u is
constant. This is the easiest among the “elementary” global minimizer, which we define as
generalized global minimizers whose Dirichlet energy vanishes identically on all compact
sets, cf. Theorem 2.4.1. Note that, since for these global minimizers the Dirichlet energy
is zero, not surprisingly they end up matching “global minimal 1-dimensional sets” in R2,
which is a more common terminology for them. We however prefer the term elementary
global minimizer because the values of the functions still play an important role (for instance
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we will see that there must be an “infinite jump” across the interfaces subdividing different
connected components).

Two elementary types of global generalized minimizers correspond to the cases (b) and
(c) explained above: in one case the set K consists of an infinite line and in the other case
it consists of three halflines meeting at a common origin at equal (120 degrees) angles. In
both cases the function is piecewise constant (in fact, in an appropriate sense, the difference
between all constant values must be ∞). This list exhausts the case of elementary global
minimizers.

If the Mumford-Shah Conjecture 1.3.1 holds, there is then only another possible type of
generalized global minimizer, namely K can only be a half line. It can be proved that the
corresponding u must then take a rather special form, cf. Chapter 4.

Definition 1.4.2. We will call cracktip any pair (u,K) in R2 which, up to translations,
rotations, subtraction of a constant and change of sign can be described as follows:

• K is the set R+ := {(t, 0) : t ≥ 0};
• u(x1, x2) =

√
2
π
Re

√
x1 + ix2 , where we use the convention that

√
z is the branch

of the square root yielding i on −1, with branch cut on R+. In polar coordinates
the function is given by

u(θ, ρ) =
√

2ρ
π

cos θ2 ,

while in cartesian coordinates we have

u(x1, x2) = 1√
π

x2

|x2|

√
x1 +

√
x2

1 + x2
2 if x2 ̸= 0,

and u(x1, 0) = 0 if x1 ≤ 0.
With a slight abuse of notation, sometimes we will also use cracktip for points p ∈ K

(in an admissible pair (u,K) which is not necessarily globally defined) where K is locally
diffeomorphic to a global cracktip as in the above definition.

Remark 1.4.3. In the literature it is more common to put the halfline of discontinuity
at the negative real line and hence to use the formula

u(θ, ρ) =
√

2ρ
π

sin θ2 .

The two conventions are obviously equivalent up to symmetries along the imaginary axis.
Since a lot of our analysis in Chapter 5 will be based on the paper [25], which fixes the
discontinuity set on the positive real axis, we have opted for the less common convention of
Definition 1.4.2.

Remark 1.4.4. Given that the Mumford-Shah conjecture is still open, currently the
existence of other global minimizers is not excluded. These are termed exotic by Bonnet
and David (see e.g. [10] and [15]). We will use the term “not elementary” for global
minimizers such that ∇u does not vanish, hence for both the cracktips and the (conjecturally
nonexisting) exotic minimizers.
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Theorem 1.3.3 implies that if the list of generalized global minimizers is exhausted by
the elementary ones and by cracktips, then the Mumford-Shah conjecture holds. Except for
the determination of what happens at loose ends, the latter conclusion was in fact proved
as a combination of the two remarkable works [14] and [10] (see also [15]). The only point
left by those references was the possibility that the set K forms a rather slow spiral at loose
ends: Theorem 1.3.3 excludes the latter possibility. This was first proved by Andersson
and Mikayelyan for minimizers of E0 under the assumption of connectedness of K in [8]. A
different argument for the same theorem was then given by the two authors and Ghinassi
in [25], while the present reference is the first to handle the case of Eλ for λ > 0.

The Mumford-Shah conjecture is indeed fully equivalent to the classification of general-
ized global minimizers, a fact which we record in the following theorem.

Theorem 1.4.5. Conjecture 1.3.1 holds for absolute minimizers if and only if any global
generalized minimizer is either one of the elementary minimizers listed in Theorem 2.4.1 or
a cracktip.

Note at this point that we would not need a classification of all global generalized
minimizers, but only of those which are arising as blow-ups. Moreover the elementary
minimizers and cracktips are all “homogeneous”, more precisely they are invariant under
the rescalings (K0,r, u0,r), if we assume that the origin is appropriately chosen (in the case
of pure jumps it must be contained in K, while in the case of triple junctions and cracktips
it must be, respectively, the common endpoint of the three halflines forming K and the
loose end of the halfline forming K). On the other hand if we had a suitable monotonicity
formula guaranteeing such homogeneity for the blow-ups, then it is not difficult to see
that the classification would be rather simple. There are interesting monotonicity formulae
available under certain assumptions and in this book we will highlight their usefulness, on
the other hand none of them is powerful enough to guarantee the homogeneity of blow-ups
in full generality.

A notable feature of the monotonicity formula for minimal surfaces is the fact that the
total volume of a minimal surface of dimension m in a ball Br(p) centered at some point p
on the surface is always bounded below by the volume of the corresponding m-dimensional
disk of radius r (as long as Br(p) does not intersect the boundary of the surface). This
“density lower bound” is in fact valid for the set K as well, as it was proved in the important
work [22], and it plays a fundamental role in the regularity theory.

Observe that Theorem 1.3.3 does not guarantee that cracktips are indeed global mini-
mizers: Theorem 1.3.3 would imply the latter conclusion only if one could find an absolute
minimum (u,K) such that K is close, in some disk Br(x), to a single straight segment
which terminates at x.

The global minimality of cracktip was however proved in the book [10]. While these notes
will not cover the proof of the latter fact, we will however cover the proof of one fundamental
conclusion of [10], which will be instrumental in showing case (c) of Theorem 1.3.3, and
which is interesting in its own right. The relevant statement is recorded in the first half
of the following theorem, while the second half is another remarkable result for global
generalized minimizers proved in [17], of which we will report as well the proof.
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Theorem 1.4.6. Let (u,K) be a generalized global minimizer in the sense of Defini-
tion 2.2.4. If all but at most one connected component of K are contained in a compact set of
R2, then (u,K) is either one of the elementary global minimizers described in Theorem 2.4.1
or it is a cracktip.

Let (u,K) be a generalized global minimizer for which K disconnects R2. Then (u,K)
is an elementary global minimizer.

1.5. Structural results

Even though the Mumford-Shah conjecture is widely open for absolute minimizers with
an infinite number of connected components, Theorem 1.3.3 and Theorem 1.4.6 tell us a lot
about the structure of the set K for minimizers (u,K). We first introduce the following
terminology.

Definition 1.5.1. Consider a closed set K ⊂ R2. A point p ∈ K is nonterminal if
there is a continuous injective map γ : (−1, 1) → K such that γ(0) = p. Otherwise p ∈ K
is called terminal.

Given a pair (u,K) which is an absolute, restricted, generalized, or generalized restricted
minimizer, we define:

• the regular part K(r) of K, which consists of those points which are either regular
loose ends, or pure jump points, or triple junctions;

• the irregular part K(i) of K, which is the complement of K(r) in K;
• the points K♯ of high energy, which is the union of K(i) and regular loose ends.

The following theorem summarizes all the structural results available in the literature
(at least to our knowledge).

Theorem 1.5.2. Assume (u,K) is an absolute or a generalized minimizer of Eλ. Then
(i) K(i) is a relatively closed subset, and its Hausdorff dimension is at most 1 − ε,

where ε is a positive geometric constant;
(ii) Every nonterminal point of K is either a triple junction or a pure jump point;
(iii) If U is an open set such that U ∩K consists of finitely many connected components,

then K(i) ∩ U = ∅;
(iv) A point p ∈ K belongs to K♯ if and only if

lim sup
r↓0

1
r

ˆ
Br(x)

|∇u|2 > 0 , (1.5.1)

which occurs if and only if

lim inf
r↓0

1
r

ˆ
Br(x)

|∇u|2 > 0 ; (1.5.2)

(v) Triple junctions and regular loose ends form a discrete set;
(vi) A terminal point which is not the accumulation point of infinitely many connected

components of K is necessarily a regular loose end.



12 1. INTRODUCTION

Note that K(i) could be further subdivided in the union of those points {p} of K
which are connected components of K (“singletons”) and of the irregular terminal points
of the connected components of K with positive length. The current state of the art
in the regularity theory does not allow to conclude that singletons are absent, or that
terminal points of connected components of K with positive length are always regular
loose ends. In both cases the scenario that cannot be excluded is that of points p which
are the accumulation of an infinite sequence of connected components of K with positive
length. It seems simpler to exclude that this might happen for terminal points of connected
components with positive length: the latter would be implied by the following strengthening
of the first part of Theorem 1.4.6, which is interesting in its own right.

Conjecture 1.5.3. Let (u,K) be a global generalized minimizer with the property that
K has one unbounded connected component. Then (u,K) is either an elementary global
minimizer or a cracktip.

We finally record here that the structure theorem yields another equivalent formulation
of the Mumford-Shah conjecture in terms of the optimal summability of ∇u (cf. [24]).

Theorem 1.5.4. Let (u,K) be an absolute or generalized minimizer of Eλ in Ω. The
set K(i) is empty if and only if ∇u ∈ L4,∞

loc , namely if and only if for every compact set
U ⊂ Ω there is a constant C = C(U) such that

|{x ∈ U : |∇u(x)|4 ≤ M}| ≤ C

M
∀M ≥ 1 . (1.5.3)

1.6. Critical points

Restricted, absolute, generalized, and generalized restricted minimizers are naturally
critical points in the following sense (cf. Proposition 2.5.1). We start by defining two classes
of appropriate variations of the relevant functionals.

Definition 1.6.1. Let (u,K) be an admissible pair in an open set U .
(Out) If φ ∈ W 1,2(U \K) with spt (φ) ⋐ U , then the 1-parameter family of competitors

(ut, Kt) = (u+ tφ,K) will be called an outer variation in U .
(In) Consider any one-parameter family of diffeomorphisms (−ε, ε) × R2 ∋ (t, x) 7→

Φt(x) = Φ(t, x) of U , which is C1 in both variables and such that Φt(x) = x for all
x outside a compact subset of U . Then (ut, Kt) = (u ◦ Φ−1

t ,Φt(K)) will be called
an inner variation.

As it can be naturally expected, for minimizers we will show that the condition
d

dt

∣∣∣∣∣
t=0

Eλ(ut, Kt, U, g) = 0 (1.6.1)

holds for every inner and outer variation in U . Equation (1.6.1) gives corresponding Euler-
Lagrange conditions, which in turn play a crucial role in the regularity theory. In fact
several conclusions can be inferred from such conditions alone and in these notes we will
make an effort to keep track of them.
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The first Euler-Lagrange condition, derived from outer variations is given by

−
ˆ

Ω\K
∇u · ∇φ = λ

ˆ
Ω
φ(u− g) ∀φ ∈ W 1,2(Ω \K) with spt (φ) ⊂⊂ Ω. (1.6.2)

The second, derived from inner variations, takes a particularly simple form when g ∈ C1:ˆ
Ω\K

(
|∇u|2divψ − 2∇uT ·Dψ∇u

)
+
ˆ
K

eT ·Dψ e dH1

= λ

ˆ
Ω\K

(2(u− g)∇g · ψ − |u− g|2divψ) ∀ψ ∈ C1
c (Ω,R2) , (1.6.3)

where e(x) is a unit tangent vector field to K and the notations a · b and Ab refer to,
respectively, the scalar product between two vectors a and b and the usual product of a
matrix A and a (column) vector b, ∇u denotes the gradient of the function u, and Dψ the
Jacobian matrix of the vector field ψ (this convention will be followed through the rest of
these notes). The test φ in the outer variation relates to ut through the relation ut = u+ tφ
when it is C1, while the test ψ relates to the one parameter family of diffeomorphisms in
Definition 1.6.1(In) via ψ(x) = ∂tΦ(0, x).

Note that (1.6.3) does not make sense when g ∈ L∞. In fact it is not at all obvious
that t 7→ Eλ(ut, Kt,Φt(U), g ◦ Φ−1

t ) is differentiable at t = 0 in that case. This can however
be shown for minimizers and corresponding Euler-Lagrange conditions can be derived. In
order to state it, we first introduce the normal ν, which is the counterclockwise rotation
of e by an angle of 90 degrees. For minimizers we can then show the existence of suitable
traces u+, u− and gK on K, which are locally bounded Borel functions and such thatˆ

Ω\K

(
|∇u|2divψ − 2∇uT ·Dψ∇u

)
+
ˆ
K

eT ·Dψ e dH1

= 2λ
ˆ

Ω\K
(u− g)∇u · ψ + λ

ˆ
K

(|u+ − gK |2 − |u− − gK |2)ψ · νdH1 ∀ψ ∈ C1
c (Ω,R2) .

(1.6.4)

The latter identity is in fact equivalent to (1.6.3) when g ∈ C1.
Motivated by the above discussion we introduce the following notions.

Definition 1.6.2. Consider g ∈ C1. A pair (u,K) in Ω is a critical point of Eλ if
(1.6.2)-(1.6.3) hold for every φ ∈ W 1,2(Ω \K) with spt (φ) ⊂⊂ Ω and every ψ ∈ C1

c (Ω,R2).
Consider g ∈ L∞. A pair (u,K) in Ω is a critical point of Eλ if (1.6.2) holds for every

φ ∈ W 1,2(Ω \K) with spt (φ) ⊂⊂ Ω and if there are bounded Borel functions u+, u−, and
gK such that (1.6.4) holds for every ψ ∈ C1

c (Ω,R2).

The variational identities (1.6.2)-(1.6.4) are proved for minimizers in Proposition 2.5.1.
Both (1.6.2) and (1.6.3) are well-known and their proof are reported, for instance, in [5].
However we have not been able to find a reference in the literature for (1.6.4) and we thus
give its derivation in the appendix.
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Remark 1.6.3. In these notes we will take advantage of the identity (1.6.4) to prove
several monotonicity formulae which we will freely use in the proofs of the regularity results
of Theorem 1.3.3 in cases (b) and (c). On the other hand, those ε-regularity statements
hold more generally for what in the literature are sometimes called quasi-minimizers (see
[5]) or almost-minimizers3 (see [15]) of the functional E0, of which minimizers of Eλ are a
distinguished example. In particular our use of the monotonicity formulae can be avoided.

More precisely, the conclusions of Theorem 1.3.3 in cases (b) and (c) of Conjecture 1.3.1
are proved in [14, 6, 3] (cf. also [5, 15]) for pairs (u,K) satisfying the following weakened
version of (1.2.1): there are ω, δ > 0 such that

E0(u,K,Br(y)) ≤ E0(v, J, Br(y)) + ωr1+δ

(where x, r and (v, J) are arbitrary and satisfy the conditions for competitors given in
Definition 1.2.1, with U = Br(x)). Note that minimizers of Eλ are indeed almost-minimizers
of E with δ = 1 and ω = 2π according to a simple comparison estimate.

However, the conclusion of Theorem 1.3.3 for Conjecture 1.3.1(a) seems to require
crucially (1.6.4) or anyway a suitable approximate version. At present we do not know how
to prove the same conclusion for almost-minimizers or even whether to expect it to be true
for them.

We also believe that the use of the variational identities in the proofs of the cases (b)
and (c) has its own interest: besides providing a different point of view which covers the
most important examples of almost-minimizers of E0 (i.e. minimizers of Eλ), it simplifies
considerably some of the arguments.

1.7. Plan of the notes

We start the notes with Chapter 2, which will collect a number of preliminary results
which have their own independent interest but will also be instrumental in the proofs of
the main theorems. We will in particular:

• state and prove some elementary bounds and maximum principles;
• state a fundamental density lower bound on the discontinuity set K, due to

De Giorgi, Carriero, and Leaci, whose proof is deferred to the appendix;
• introduce the “blow-up procedure” and state some relevant compactness properties

of minimizers, with most of the proofs deferred to the appendix;
• detail the variational identities stated in Section 1.6 (whose proofs are given in

the appendix) and derive a few important corollaries, in particular most of the
monotonicity formulae.

Chapter 3 will prove the cases (b) and (c) of Theorem 1.3.3 (cf. Subsection 3.8, see also
Theorems 3.1.1 and 3.1.2 for slightly different statements). Case (b) (e.g. the regularity
at “pure jumps”) was proved independently by David in [14] and Ambrosio, Fusco, and
Pallara in [3]. We essentially follow the approach of Ambrosio, Fusco, and Pallara, cf. the
book [5], but it must be noted that, while their arguments are written to cover the case of

3We warn the reader that [15] uses both the terms almost-minimizers and quasi-minimizers, but the
quasi-minimziers of [15] are not the ones of [5].
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all dimensions, in our setting we exploit the 1-dimensionality of the set K to take several
shortcuts. The case (c) of triple junctions was proved in [14]. Here we propose an approach
which is different and new, in particular we take advantage of the monotonicity formulae
of the first chapter (due to David and Léger in [17]) and of a “blow-in” argument which
considerably simplifies the overall proof.

Chapter 4 is a self-contained proof of Theorem 1.4.6. The arguments for the first part
of the theorem are borrowed from the book [10] while the arguments for the second part
are due to [17]. Here and there we propose alternative derivations and we streamline and
simplify a few steps of the original arguments. Moreover, we prove first the second part
of the theorem and hence take advantage of it whenever possible to prove the first part
(a possibility which was not at disposal of the authors in [10], given that the paper [17]
appeared afterwards).

The first part of Theorem 1.4.6 is in fact a stepping stone for case (c) of Theorem 1.3.3,
more precisely it implies the intermediate result of Corollary 4.1.2, namely that when for
an absolute minimizer (u,K) the set K is sufficiently close to a radius in the disk Br(x),
then it consists of a single connected component in Br/2(x). Chapter 5 starts from this
conclusion and leads to a complete proof of case (c) of Theorem 1.3.3 (cf. Theorem 5.0.1).
We follow the arguments of our previous work [25] with some appropriate modifications to
account for the fidelity term in the energy Eλ (the work [25] addressed the case of E0).

Chapter 6 examines a few important consequences of the ε-regularity theory. It first
studies which structural conclusions can be derived from it. More precisely it proves all
the structural results of Theorem 1.5.2, apart from item (ii), which is exactly the content
of Corollary 4.4.2: a quantitative version of item (i) is given in Corollary 6.1.4, and items
(iii) to (vi) are implied by Theorem 6.1.1. Theorem 1.5.4 is the content of Theorem 6.1.6.
Moreover the chapter addresses some other consequences of the ε-regularity theory, like
the porosity of the singular portion of K, and the higher integrability of ∇u, conjectured
by De Giorgi and first proved by the authors in [24] in the setting of this book (i.e. in
2-dimensions) and hence settled in all dimensions by De Philippis and Figalli in [26]. In
fact we present both arguments.

1.7.1. Acknowledgments. Both authors are very thankful to Silvia Ghinassi, for
helping with a preliminary version of Chapter 3, and to Francesco Deangelis, for reading
carefully the first draft of the book. The first author acknowledges the support of the
National Science Foundation through the grant FRG-1854147. The second author has
been supported by the European Union - Next Generation EU, Mission 4 Component 1
CUP 2022J4FYNJ, PRIN2022 project "Variational methods for stationary and evolution
problems with singularities and interfaces".





CHAPTER 2

Density bounds, compactness, variations, and monotonicity

In this chapter, we will collect some preliminary important considerations, before delving
into the ε-regularity theory in the next four chapters. For some aspects which are not our
main focus, but which are needed to understand the rest of the notes, we will nonetheless
include the arguments for the reader’s convenience (and because in some cases it has
been difficult to track in the literature appropriate arguments that apply to our precise
statements): however, when the proofs are long and technical we will move them to the
appendix.

After collecting some preliminary lower and upper bounds on the energy of minimizers
and on the length of K, we will use them to introduce a pivotal procedure in the regularity
theory, that of “blow-up”. This procedure will allow us to zoom around a point x ∈ K and
extract meaningful limits (global minimizers) which in turn will give us a first rough picture
of the local behavior around the point x. The second part of the chapter is devoted to
important variational identities that can be derived by plugging suitable tests in (1.6.4). We
will review several consequences of these identities (the determination of the cracktip factor,
Léger’s magic formula, the David-Léger-Maddalena-Solimini identity, and the truncated
test identities). Finally, in the last section, we will introduce two important monotonicity
formulae due, respectively, to Bonnet, and to David and Léger. While the first has a
straightforward proof, which will be given in this chapter, the latter requires a more
involved argument, which will be detailed later in Chapter 4.

Although the concept of “generalized minimizer” for E0 will be given in Definition 2.2.4,
some preliminary statements (which will be formulated earlier than Definition 2.2.4) hold
for generalized minimizers as well and we point this out when needed: the proof will either
become obvious once the concept is defined, or it is postponed to the appendix, where we
will treat all cases.

2.1. Preliminaries

In this section, we collect some preliminary considerations.

2.1.1. A maximum principle. We first give the following elementary maximum
principle (see Figure 1).

Lemma 2.1.1. Let (u,K) be an absolute or restricted minimizer of Eλ in Ω, or a
generalized (resp. generalized restricted) minimizer of E0 (cf. Definition 2.2.4) and let V
be a connected component of U \K for some open U ⊂⊂ Ω.

(a) If V ∩ ∂U = ∅, then ∥u∥L∞(V ) ≤ ∥g∥∞ when λ > 0 and ∇u|V = 0 when λ = 0;
17
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V
V

V ∩ ∂U

Figure 1. On the left case (a) and on the right case (b) of Lemma 2.1.1. In
these examples U is a disk.

(b) If V intersects ∂U , then if λ > 0

min
{

inf
V
g, inf

V ∩∂U
u
}

≤ inf
V
u ≤ sup

V
u ≤ max

{
sup
V
g, sup

V ∩∂U
u

}
,

while if λ = 0
inf
V ∩∂U

u ≤ inf
V
u ≤ sup

V
u ≤ sup

V ∩∂U
u .

Proof. Assume (a) is false. For λ = 0 we could define K̄ = K, ū = u on Ω \ V and
ū = 0 on V when (u,K) minimizes E0: the pair (ū, K̄) would then have a lower energy.
Similarly, when the pair minimizes Eλ with λ positive, u is the absolute minimizer of´
V

(|∇u|2 + λ(u − g)2) in V and hence its L∞ norm is bounded by ∥g∥∞ by an obvious
truncation argument. As for (b), if λ > 0 set

m := min
{

inf
V
g, inf

V ∩∂U
u
}
, M := max

{
sup
V
g, sup

V ∩∂U
u

}
.

If (b) were false, we could just define K̄ = K, ū = u on Ω \V and ū = min{M,max{m,u}}
on V : the pair (ū, K̄) would contradict the minimality. Similarly, if λ = 0 we conclude by
comparison with ū = min{supV ∩∂U u,max{infV ∩∂U u, u}}. □

2.1.2. Lower and upper bounds. Next, we point out that it is rather trivial to come
up with upper bounds for the full energy in a disk Br(x) using a second simple comparison
argument.

Lemma 2.1.2. Assume (u,K) is an absolute or restricted minimizer of Eλ in Ω ⊂ R2

or a generalized (resp generalized restricted) minimizer of E0 (cf. Definition 2.2.4). Let
Br(x) ⊂⊂ Ω and in case (u,K) is a restricted minimizer assume in addition Br(x)∩K ̸= ∅.
Then the estimate (1.4.1) holds.

Proof. Compare the energy of (u,K) to the competitor (v, J) defined by setting
J = ∂Br(x) ∪ (K \Br(x)), v = 0 on Br(x) and v = u on Ω \ (Br(x) ∪K). See Figure 2. □
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Figure 2. The competitor (v, J) in Lemma 2.1.2: we remove the dashed
part of the set K, we add the circle ∂Br(x), we set v = 0 in the shaded disk
and we keep v = u outside of it.

A much more interesting and nontrivial fact is that it is possible to bound uniformly
from below on any disk which is centered at a point of K the ratio of the length of K and
the radius of the disk itself. This fundamental discovery, which is at the foundation of all
the regularity theory, is due to De Giorgi, Carriero and Leaci [22] (and an appropriate
generalization appropriately holds in any dimension). Since then different proofs have
appeared in the literature (see [12, 13, 14, 41, 23, 11]). However, the statement below,
which is valid across different formulations and for restricted minimizers independently of
the number of the connected components of K, seems to be new and we include its proof
in the appendix.

Theorem 2.1.3. There exists a geometric constant ϵ > 0 with the following property.
(a) If (u,K) is a (absolute, restricted, generalized, or generalized restricted) minimizer

of E0 on Ω, then

H1(K ∩Bρ(x)) ≥ ϵρ ∀x ∈ K, ∀ρ ∈ (0, dist(x, ∂Ω)) . (2.1.1)

(b) If (u,K) is a (absolute or restricted) minimizer of Eλ on Ω, then

H1(K ∩Bρ(x)) ≥ ϵρ ∀x ∈ K, ∀ρ ∈ (0,min{1, dist(x, ∂Ω)}) . (2.1.2)

We remark that the constant ϵ in (2.1.2) depends in fact on λ and ∥g∥∞, a dependence
that we can ignore thanks to (1.1.2). Note that the two bounds (1.4.1)-(2.1.1) (resp. (2.1.2))
taken together describe a property of K which is often termed Ahlfors-David regularity in
the literature, namely the property that for some exponent α (in our case α = 1) and some
constant C > 0, the closed set K satisfies

C−1rα ≤ Hα(K ∩Br(x)) ≤ Crα (2.1.3)

for all x ∈ K and for all positive radii r < min{1, dist(x, ∂Ω)}.

2.1.3. Normalization and equivalence between classical and SBV formulations.
The density lower bound in Theorem 2.1.3 and Lemma 2.1.1, together with an elementary
fact about SBV functions observed by De Giorgi, Carriero and Leaci, gives the following
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corollary. We do not dwell here on the definition of BV and SBV functions and on the
definition of the set Su, but we refer the reader to the textbook [5].

Corollary 2.1.4. Let (u,K) be a (absolute, restricted, generalized, or generalized
restricted) minimizer of Eλ. Then u ∈ SBV (Ω) with Su ⊆ K. If u is an absolute
minimizer, then we have in addition K△Su = ∅.

Moreover, if H1(K∩U) = 0 for some open domain U ⊂⊂ Ω, then u extends to a function
u ∈ C1,α

loc ∩W 2,p
loc (U) for every p < ∞ and every α ∈ (0, 1) which solves ∆u = λ(u− g).

A proof of the corollary is given in Section B.5 of the appendix, where the first part is
used to conclude easily the second. However, it is possible to give the following elementary
argument for the second part, without resorting to SBV functions. First of all, once we
show that u ∈ W 1,2

loc (U), u is a local minimizer of
´

(|∇u|2 +λ(u−g)2) in U : u will then be a
weak solution of ∆u = λ(u− g) and recalling that u is locally bounded, while g is bounded,
the regularity of u is a consequence of the Schauder and Calderon-Zygmund estimates for
the Laplace equation. Our goal is thus to prove that ∇u is the weak derivative of u in U ,
namely that ˆ

u divX = −
ˆ
X · ∇u for every X ∈ C∞

c (U,R2).

Since K ∩ spt (X) is compact, set τ := min{dist(y, ∂U) : y ∈ K ∩ spt (X)} > 0. Fix now
any ε > 0 and choose a covering Bri

(xi) of K ∩ spt (X) with xi ∈ K, 2ri < τ and ∑i ri < ε.
By compactness we can assume that the cover is finite. For each i we let φi be a smooth
cut-off function with 0 ≤ φi ≤ 1, φi ≡ 1 on R2 \ B2ri

(xi) and φi ≡ 0 on Bri
(xi). We also

require that |∇φi| ≤ Cr−1
i , where the constant C is just dimensional. We consider then

ψε := Πiφi. Given that spt (Xψε) ⊂⊂ U \K and that u ∈ W 1,2
loc (U \K), we haveˆ

ψεX · ∇u = −
ˆ
uψεdivX −

ˆ
u∇ψε ·X .

Observe that ψε converges monotonically to 1 almost everywhere in R2 and thus we conclude

lim
ε↓0

ˆ
ψε(X · ∇u+ u divX) =

ˆ
(X · ∇u+ u divX) .

To prove our claim we therefore just need to show that
´
u∇ψε ·X converges to 0. Recalling,

however, that u and X are both bounded on compact subsets of U and using the properties
of ψε we conclude ∣∣∣∣∣

ˆ
u∇ψε ·X

∣∣∣∣∣ ≤ C
∑
i

ˆ
B2ri

(xi)
|∇φi| ≤ C

∑
i

ri ≤ Cε ,

for a constant C which is independent of ε.

Remark 2.1.5. Corollary 2.1.4 implies that the function u and its gradient ∇u are
pointwise defined on any open subset U in which H1(K ∩U) = 0, since u is continuous and
continuously differentiable. This easily implies that any minimizer can be “reduced” in the
sense of Definition 1.2.3, as explained in the introduction. In the rest of these notes we
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will make a similar assumption whenever dealing with general critical points, i.e. we will
assume that they are reduced and that they belong to C1,α

loc ∩W 2,p
loc (Ω \K).

2.2. Blow-up of minimizers

In this section we assume that (u,K) is an absolute or a restricted minimizer of the
energy functional Eλ (and we recall that g is bounded). Observe that (1.4.1) gives locally
an apriori estimate on the energy of u. Fix a point x ∈ K and a sequence of radii rj ↓ 0.
The bound suggests to consider the rescaled functions

Kj :=
{
y − x

rj
: y ∈ K

}
(2.2.1)

uj(y) := r
− 1

2
j u(x+ rjy) . (2.2.2)

When λ = 0 the pair (uj, Kj) is then still a minimizer of the functional E0 if (u,K) is. In
case of λ > 0, the density lower bound (cf. Theorem 2.1.3) ensures that

ϵ r ≤
ˆ
Br(x)

|∇u|2 + H1(K ∩Br(x))

for every sufficiently small radius r, while the maximum principle gives

F (u,Br(x), g) =
ˆ
Br(x)

|u− g|2 ≤ 4π∥g∥2
L∞(Br)r

2 ,

in particular the fidelity term F becomes negligible compared to E0 at small scales.
It would be desirable to use now the upper bound on Eλ in order to provide a suitable

compactness result. Note however that E0 controls the values of the function only up to
an additive constant in each connected component of Ω \K, while when λ > 0 the fidelity
term does not help because it is a lower order perturbation. Thus the space of rescalings
of minimizers is in general not (pre)compact in a classical sense: roughly speaking to find
a meaningful compactification we must allow the limits of the rescalings to take infinite
values, and in fact we need to distinguish between infinities of “different size”.

We next deal with a slightly more general situation in which we make the following
assumptions.

Assumption 2.2.1. We assume that
(i) λj is a sequence of numbers in [0, 1];
(ii) gj is a sequence of bounded functions with ∥gj∥∞ ≤ M0;
(iii) (uj, Kj) is a sequence of absolute or restricted minimizers of

Eλj
(·, ·, Uj, gj) = E0(·, ·, Uj) + λjF (·, Uj, gj)

on a sequence of domains Uj;
(iv) limj↑∞ λjrj = 0 and lim supj ∥uj∥∞ < ∞;
(v) a certain open domain U satisfies U ′ ⊂ Uj−xj

rj
for every U ′ ⊂ U compact and for j

large enough (depending on U ′).
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We define the rescaled sets and functions

Kj = Kj
xj ,rj

:= Kj − xj
rj

uj(y) = ujxj ,rj
(y) := uj(rjy + xj)

r
1/2
j

.

Up to subsequences (and using standard arguments) we can further assume the following.
(a) Kj∩U converges locally in the Hausdorff distance to a closed set K∩U , namely, for

every open set W ⊂⊂ U and every ε > 0, the following holds for every sufficiently
large j:

– Kj ∩W ⊂ {x : dist (x,K) < ε},
– K ∩W ⊂ {x : dist (x,Kj) < ε}.

(b) We enumerate the connected components {Ωk}k∈I of U \K and for each we select
a point zk ∈ Ωk. The real numbers

{uj(zk) − uj(zl)}j∈N (2.2.3)
converge to some elements pkl of the extended real line [−∞,∞].

(c) The functions
vkj := uj − uj(zk) (2.2.4)

converge locally in W 1,2
loc (Ωk) to an harmonic function vk (this requires classical

estimates for solution of the Laplace equation, for the details we refer the reader
to the appendix).

We introduce further the function v on U \K by setting v = vk on each Ωk.

When xj = x, rj ↓ 0, λj = λ, uj ≡ u0 and Kj ≡ K0, the above sequence will be called
a blow-up sequence. Observe in addition that, because of (i) and (ii), (iv) is always satisfied
for a blow-up sequence. It is elementary to see that Theorem 2.1.3 and Lemma 2.1.2 imply
that K has locally finite H1 measure (cf. the proof in the appendix). The rectifiability of
K is instead more delicate. Leaving that aside for the moment, we introduce the following
terminology.

Definition 2.2.2. The triple (v,K, {pkl}) as above will be called a limit point of (an
appropriate subsequence of) (uj, Kj) in the set U . In the case of a blow-up sequence, such
triple will be called a blow-up of (u0, K0) at x. A pair (w, J) will be called a “topological
competitor” for the pair (v,K) (cf. [15]) if it satisfies the following assumptions:

(i) (w, J) coincides with (v,K) outside of an open set O ⊂⊂ U ;
(ii) if x, y ∈ U \ (O ∪ K) belong to distinct connected components of U \ K, then

they belong to distinct connected components of U \ J (see Figure 3 for a simple
illustration of the latter condition).

It turns out that this is indeed a good candidate for a suitable variational problem in
the limit. The proof of the following theorem will be given in the appendix for the reader’s
convenience.
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A

B

C

pq

Figure 3. A visual explanation of the admissibility in point (ii) of Defini-
tion 2.2.2. The set K is given by the thick lines, while the open set O is
the interior of the circle. In O we are allowed to change K to a new set J
under the condition that any two points outside O which belong to distinct
components of U \K will still belong to distinct connected components of
U \J . For instance, we cannot remove from K any arc which lies between the
regions A and C, since such operation would “connect” the points p and q.
However we are allowed to remove from K an arc which lies between A and
B. The picture is also a good illustration of Lemma 2.2.6. As long as J ∩O
“separates” the four arcs which are the connected components of ∂O \K in
O, the pair (w, J) is certainly a topological competitor for (v,K).

Theorem 2.2.3. Let (uj, Kj) be a sequence as in Assumption 2.2.1 and let (v,K, {pkl})
be as in Definition 2.2.2. Then K is rectifiable and has locally finite H1 measure, while
v ∈ W 1,2(U ′ \K) for every U ′ ⊂⊂ U . Moreover the following holds.

(i) For every O ⊂⊂ U such that H1(∂O ∩K) = 0, we have
lim
j→∞

H1(Kj ∩O) = H1(K ∩O)

lim
j→∞

ˆ
O\Kj

|∇uj|2 =
ˆ
O\K

|∇v|2 .

For every continuous compactly supported function φ : P1R×U → R and for every
O bounded open set with H1(O ∩K) > 0 we have

lim
j→∞

ˆ
Kj∩O

φ(TxKj, x)dH1(x) =
ˆ
K∩O

φ(TxK, x) dH1(x) . (2.2.5)

(ii) In the case of absolute minimizers, if (w, J) is a topological competitor as in
Definition 2.2.2, then E0(w, J) ≥ E0(v,K). In the case of restricted minimizers
the same holds if J does not increase the number of connected components of K.

(iii) Let A ⊆ I be a set of indices with the property that −∞ < pkl < ∞ for every
k, l ∈ A . Define

– k0 := min A ;
– UA := ∪k∈A Ωk and ΩA := int

(
UA

)
;
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– uA := vk0 on Ωk0 and uA := vk + pkk0 on Ωk for any k ∈ A .
Then (uA , K) is an absolute (resp. restricted) minimizer of E0 on the set ΩA .

Definition 2.2.4. A triple (v,K, {pkl}) on U as in the theorem above will be called a
“generalized minimizer” resp. “generalized restricted minimizer” if it is the limit of absolute
resp. restricted minimizers . If U = R2, then the triple will be called “global generalized
minimizer”, resp. “global generalized restricted minimizer”. Finally, an “elementary global
generalized minimizer” is a global generalized minimizer whose Dirichlet energy vanishes
identically on compact sets.

Remark 2.2.5. It is worth emphasizing that the generalized minimizers as defined
above are not the same as the “topological minimizers” defined by David in [15]. The
energy of the latter can only be compared to that of topological competitors, while the
sense of point (iii) in Theorem 2.2.3 is that we have some more competitors which are not
topological: in particular if Ωk and Ωl are two connected components of R2 \K with the
property that pkl ∈ R sharing a common arc γ ⊂ K, we are allowed to use a competitor
which removes a portion of γ, thus connecting the two regions. We would not be allowed to
do this if instead pkl ∈ {−∞,∞}. In particular, the role of the constants pkl is ultimately
to tell us whether across a particular interface dividing two connected components we have
an “infinite jump”.

In a variety of situations, it will be useful to have a quick way to identify whether a
competitor (w, J) satisfies the requirement (ii) of Definition 2.2.2. The following simple
remark will be widely used in that sense.

Lemma 2.2.6. Let (v,K) and (w, J) be pairs in Ω which coincide outside of an open
disk Br(x) ⊂⊂ Ω. Let {γi}i be the connected components of ∂Br(x) ∩K = ∂Br(x) ∩ J . If
no distinct pairs γi and γj are contained in the closure of the same connected component of
Br(x) \J , then the pair (w, J) is a topological competitor in the sense of Definition 2.2.2(ii).

The proof is left as a simple exercise to the reader, see again Figure 3.

2.3. Compactness for generalized minimizers

The theorem above can be extended to generalized minimizers of E0 (absolute or
restricted). This remark will be especially used in “blow-down” procedures for global
generalized minimizers (u,K, {pij}), i.e. any limit of a subsequence of the rescalings
(u0,R, K0,R, {pij}) as the radius diverges, where recall that K0,R = K

R
and u0,R(y) =

R− 1
2u(Ry).

Assumption 2.3.1. We assume that
(i) Uj is a sequence of monotonically increasing domains which converge to some

domain Ω;
(ii) (uj, Kj) is part of a triple (uj, Kj, {pkl,j}j) of generalized (restricted) minimizers.

Up to subsequences we further assume the following.
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(a) Kj converges locally in the Hausdorff distance to a closed set K;
(b) We enumerate the connected components {Ωk}k∈I of Ω \ K, for each we select

a point xk ∈ Ωk. For each fixed xk, xl will belong to appropriate connected
components Ωk,j of Uj \Kj for j large enough and we will assume that

{uj(xk) − uj(xl) − pkl,j}j∈N (2.3.1)
converge to some elements pkl of the extended real line;

(c) The functions
vkj := uj − uj(xk) (2.3.2)

converge locally in W 1,2
loc (Ωk) to an harmonic function vk.

We introduce further the function v on Ω \K by setting v = vk on each Ωk.

Theorem 2.3.2. Under the Assumption 2.3.1 all the conclusions of Theorem 2.2.3
apply to the triple (v,K, {pkl}) and the corresponding sequence {(uj, Kj)}.

2.4. Elementary global generalized minimizers

We next turn to the simplest type of global generalized minimizers, i.e. those for which
the Dirichlet energy vanishes identically.

Theorem 2.4.1 (Classification of elementary global generalized minimizers). Let
(v,K, {pkl}) be a global generalized minimizer of E0 and assume that

´
|∇v|2 = 0. Then

(v,K, {pkl}) is either
(a) A constant, namely K = ∅ and v is a constant.
(b) A global pure jump, namely

(b1) K is a straight line,
(b2) v is constant on each connected component Ω1 and Ω2 of R2 \K,
(b3) and |p12| = ∞.

(c) A global triple junction, namely:
(c1) K is the union of three half lines originating at a common point where they

form equal angles,
(c2) v is constant on each of the three connected components Ω1,Ω2 and Ω3 of

R2 \K,
(c3) and |p12| = |p13| = |p23| = ∞.

For global generalized restricted minimizers such that K ̸= ∅, then K is as in (b1) or as in
(c1). The conclusions (b2) and (c2) hold as well. The conclusions (b3) and (c3) do not
hold for all generalized restricted minimizers, but do hold for those satisfying the following
stronger variational property:

• E0(v,K, U) ≤ E0(w, J, U) for any bounded open set U and any pair (w, J) such
that {v ̸= w} ⊂⊂ U and for which J consists of at most two connected components.

Finally, if (v,K, {pkl}) is a global generalized minimizer, then:
(i) If K is empty and (v,K, {pkl}) is an absolute minimizer, then it is necessarily a

constant;



26 2. DENSITY BOUNDS, COMPACTNESS, VARIATIONS, AND MONOTONICITY

(ii) If K is a straight line, then it is necessarily a pure jump;
(iii) If K is the union of three half lines originating at a common point, then it is

necessarily a triple junction.

Proof. We focus on the case of generalized minimizers, leaving the analogous one of
generalized restricted minimizers to the reader.

We start off proving items (i)-(iii) in the second part of the statement.
Assume first K = ∅, then v is harmonic on R2. In view of the density upper bound (cf.

(1.4.1)) and the mean value property for harmonic functions we conclude that |∇v| = 0 on
R2.

If K is a line, without loss of generality, we may assume K = {x ∈ R2 : x2 = 0} and
set H± := {x ∈ R2 : ±x2 > 0}. Then v is harmonic on H+ ∪ H− and ∂v

∂ν
= 0 on K. By

the Schwartz reflection principle, the even extensions v± of v|H± across K are harmonic on
the whole of R2 with ˆ

Bρ

|∇v±|2dx = 2
ˆ
H±∩Bρ

|∇v|2dx ≤ 4πρ.

Arguing as above, we infer that |∇v| = 0 on H+ ∪H−, therefore v is locally constant on
R2 \K. To conclude the proof of item (ii) we have to show that |p12| = ∞. Otherwise setting
A = {1, 2} and w = uA , we can apply Theorem 2.3.2 to the rescalings u0,R(x) := R− 1

2v(Rx)
and K0,R. Obviously they converge to (0, K, {0}) as R ↑ ∞, and so (ũ, K̃) = (0, K) would
have to be an absolute minimizer on any bounded open subset of R2. The latter assertion
is false, as we can remove any compact subset of K and extend the function ũ to 0 on it.

In case (iii), R2 \ K = Ω1 ∪ Ω2 ∪ Ω3, each Ωi being a convex cone with vertex p and
opening αi ∈ (0, 2π). Recalling that △v = 0 on Ωi and ∂v

∂ν
= 0 on ∂Ωi ∩K, we may expand

wi := v|Ωi
in Fourier series. In particular, given a point x ∈ Ωi, we set r = dist(x, p)

and we let ϑ ∈ [0, αi] be the angle formed be the segment [p, x] and one of the two half-
lines delimiting Ωi (the choice is not important). Hence, if we denote by ai,k the Fourier
coefficients of v|∂B1∩Ωi

in the angle ϑ, we can write

wi(r, ϑ) =
∞∑
k=0

ai,kr
kπ
αi cos

(
kπ

αi
ϑ
)
,

on Ωi, while we can computeˆ
Ωi∩Br(p)

|∇wi|2 =
∞∑
k=1

kπ

2 a2
i,kr

2 kπ
αi . (2.4.1)

Since 2kπ ≥ 2π > αi, k ≥ 1, we conclude that ai,k = 0 for all k ≥ 1 and i ∈ {1, 2, 3},
thanks again to inequality (1.4.1). Thus, v is locally constant on R2 \K. In turn, being v
a generalized global minimizer, K ∩ B1(p) is a set with minimal length connecting three
points on ∂B1(p), in particular the angles in p must be all equal to 2

3π.
Assume now pij is finite for some i ̸= j. Let A = {i, j} and consider w = uA on ΩA =

int(Ωi ∪ Ωj). Without loss of generality we can assume that ∂Ωi ∩ ∂Ωj = {x2 = 0, x1 ≥ 0}.
We can then choose the points yk := (k2, 0) and the radii Rk := k and consider the pairs



2.5. VARIATIONAL IDENTITIES 27

(wyk,Rk
, Kyk,Rk

) on the domains B√
k(0) obtained by rescaling and translating ΩA . We can

again apply Theorem 2.3.2 and we would conclude as above that (0, K) is a generalized
minimizer, which is a contradiction.

Finally, we prove the classification of generalized global minimizers with null gradient
energy as stated in (a)-(c). In this case K is a minimal Caccioppoli partition and then a
minimal connection of ∂BR∩K for all R (cf. [24, Lemma 12]). In particular, R 7→ H1(∂BR∩K)

R

is nondecreasing and K
R

is converging to a minimal cone K∞ as R ↑ ∞. Therefore, K∞ is
either a line or a propeller, the union of three half-lines meeting at a common point with
equal angles. In turn, this implies that H0(∂BR ∩K) ≤ 3 at least for some sequence of R’s
converging to infinity by the coarea formula [5, Theorem 2.93] (because R−1H1(BR∩K) ≤ 3
for every R > 0). In particular, either H0(∂Bρ ∩ K) = 3 for some ρ, and in this case
Bρ ∩K is a propeller, or H0(∂Bρ ∩K) = 2 for some ρ and in this case Bρ ∩K is a segment.
Moreover, in the first case H0(∂BR ∩K) = 3 for all R ≥ ρ, and thus K is a propeller, while
in the second case H0(∂BR ∩K) = 2 for all R ≥ ρ, and K is a line (cf. [24, Sections 2.3
and 3]).

We conclude the proof of (a)-(c) by appealing to the classification result contained in
(i)-(iii). □

A related classification result, expressed in terms of one-dimensional minimal sets in
Rn, is contained in [16, Theorem 10.1].

2.5. Variational identities

As we have already remarked, restricted and absolute minimizers (u,K) of Eλ are
critical points, namely they satisfy the identities (1.6.2) and (1.6.4). The same applies to
generalized minimizers of E0. We can thus summarize our conclusions in the following
statement (for the proof see Appendix A).

Proposition 2.5.1. Assume (u,K) is a (restricted or absolute) minimizer of Eλ or a
generalized (restriced or absolute) minimizer of E0. Then (u,K) is a critical point, namely
there exists suitable traces u+, u−, and gK ∈ L∞(Ω,H1 K) such that the identities (1.6.2)
and (1.6.4) hold, with the properties that ∥gK∥∞ ≤ ∥g∥∞ and that u± are the classical
one-sided traces of K in the sense of Sobolev-space theory. If g is, in addition, C1, (1.6.4)
is indeed equivalent to (1.6.3).

A more explicit form of the Euler-Lagrange conditions can be devised in case K is a
smooth graph. To this aim we denote by ν the counterclockwise rotation by 90 degrees of a
C0 unit tangent vector e locally orienting K, while we denote by κ the curvature of a local
compatible parametrization, namely

κ = γ̈ · ν , (2.5.1)
for an arclength parametrization γ such that γ̇ = e. Such classical definition of the curvature
κ assumes in general C2 regularity. We will use it under the assumption that K is C1,1:
the reader can check that local arc-length parametrizations belong to W 2,∞ and thus γ̈
is interpreted as an L∞ function of t. Under such assumptions the curvature κ is then a
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x1

x2

p = γ(t)
e(p)

ν(p)

+

−

Figure 4. The tangent vector e(p) = γ̇(t) (for an-arc length parametrization)
and the normal vector ν(p). The picture illustrates the convention for the
symbols ± on traces of functions over γ.

bounded Borel function defined H1-a.e. on K. Finally, w+ and w− are the one-sided traces
of the relevant function w on K (following the obvious convention that w+ is the trace on
the side which ν is pointing to, cf. Figure 4).

Proposition 2.5.2. Let (u,K) be a critical point of Eλ in U and assume that K ∩ U
consists only of regular jump points (i.e. K ∩ U is a C1 submanifold1). Then

(a) u has C1,α extensions on each side of K ∩ A, for every α < 1,
(b) K ∩ A is locally C1,1,
(c) the variational identities (1.6.2)-(1.6.4) are equivalent to the following three condi-

tions
∆u = λ(u− g) on Ω \K (2.5.2)
∂u

∂ν
= 0 on K (2.5.3)

κ = −(|∇u+|2 − |∇u−|2) − λ(|u+ − gK |2 − |u− − gK |2) H1 a.e. on K , (2.5.4)
where κ is the curvature of K and gK is the function in Proposition 2.5.1.

The proof is given in the appendix for the reader’s convenience. Therefore, in view of
Remark 2.1.5 and item (a) above, in the rest of the notes we can simply assume that u is
continuously differentiable in Ω \K.

We record here an important elementary consequence of (1.6.2) which will be used
throughout the notes

Corollary 2.5.3. Assume (u,K) is a critical point of Eλ in some domain Ω and fix
x ∈ Ω. For a.e. r ∈ (0, dist(x, ∂Ω)) the following holds. First of all we haveˆ

U

|∇u|2 + λ

ˆ
U

(u− g)u =
ˆ
∂Br(x)∩U

u
∂u

∂n
(2.5.5)

for every connected component U of Br(x) \K (where n is the unit normal to ∂Br(x)).
1In particular we are assuming that U ∩K does not contain any loose end of K.
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n

U

γ

n U
γ

Figure 5. The arc γ is the set U ∩∂Br(x) and since its two endpoints belong
to the same connected component of K, both conclusions of Corollary 2.5.3
apply. On the left the case U ⊂ Br(x), on the right the case U ⊂ Ω \Br(x).

Moreover if λ = 0 and γ is a connected component of ∂Br(x)\K such that the endpoints
of γ belong to the same connected component of K, thenˆ

γ

∂u

∂n
= 0 (2.5.6)

(see Figure 5 for an illustration of the two conclusions).

Proof. Without loss of generality we assume x = 0. We will prove the claims for any
radius r with the following property. First of all define the domain

K̂ := K ∪ {y ∈ Ω : ry
|y| ∈ K}

and we require that it is a Lebesgue null set. This is certainly the case for all r such that
∂Br ∩K is finite. Additionally we require that u|∂Br(x)\K ∈ W 1,2(∂Br(x) \K) and that

lim
δ↓0

1
δ

ˆ
Br+δ\(Br−δ∪K̂)

(
|∇u(x) − ∇u( rx|x|)|

2 + |u(x) − u( rx|x|)|
2
)
dx = 0 . (2.5.7)

This is again a property which certainly holds for a.e. r.
Let us first deal with the second statement and fix a corresponding γ. Then there is one

connected component U of Ω \ (γ ∪K) with the property that U ⊂⊂ Ω and ∂U contains γ.
There are now two possibilities, either U ⊂ Br(x), or U ⊂ Ω \ Br(x). In the first we

case we define

ψδ(x) :=


1 for |x| ≤ 1 − δ
1 − 1

δ
(|x| − 1 + δ) for 1 − δ ≤ |x| ≤ 1

0 otherwise,
(2.5.8)
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while in the second we define

ψδ(x) :=


0 for |x| ≤ 1
1
δ
(|x| − 1) for 1 ≤ |x| ≤ 1 + δ

1 otherwise.
We then define the function χ on Ω \ (K ∪ γ) as constantly equal to 1 on U and constantly
equal to 0 otherwise, and we set φ = χψδ( ·

r
). We then test (1.6.2) with φ and let δ ↓ 0.

Using (2.5.7) we easily get (2.5.6) in the limit.
As for the first statement, we test (1.6.2) with χuψδ( ·

r
) and let δ ↓ 0, with ψδ as in

(2.5.8). The proof is entirely analogous and we leave the details to the reader. □

2.5.1. Truncated tests. While obviously we cannot plug in (1.6.4) a test field which
is not compactly supported, a standard approximation argument allows to derive an
equivalent identity in that case too. This fact will play a pivotal role in the proof of several
theorems described in these notes: specific choices of the test field will in fact deliver some
remarkable identities. Analogous results can be inferred from (1.6.2), as done for instance
in Corollary 2.5.3. We do not work out the details since we do not need those results in
these notes.

Proposition 2.5.4. Let (u,K) be a critical point of Eλ in Ω and y ∈ Ω. For a.e.
r ∈ (0, dist(y, ∂Ω)) the following identity holds for every η ∈ C1(Br(y),R2)ˆ

Br(y)\K

(
|∇u|2 div η − 2∇uT ·Dη∇u

)
+
ˆ
Br(y)∩K

eT ·Dη e dH1

=
ˆ
∂Br(y)\K

(
|∇u|2η · n− 2∂u

∂n
∇u · η

)
dH1 +

∑
p∈K∩∂Br(y)

e(p) · η(p)

+ 2λ
ˆ
Br(y)\K

(u− g)∇u · η + λ

ˆ
Br(y)∩K

(
|u+ − gK |2 − |u− − gK |2

)
η · ν dH1 , (2.5.9)

where n(x) = x−y
|x−y| is the exterior unit normal to the circle centered in y, e(p) is the tangent

unit vector to K at p such that e(p) · n(p) > 0, and ν(p) = e(p)⊥.

Proof. We follow essentially the proof of [25]. In that reference we take advantage of
the regularity theory to avoid technicalities. In principle we could still consistently follow
the same approach: the regularity needed to carry over the proof of [25] relies only on case
(b) of Theorem 1.3.3, while Proposition 2.5.4 will be used only in the proof of the cases (a)
and (c). However, in order to keep our notes streamlined, we give here a proof which does
not rely on any regularity. Moreover, since the proof in the case of λ > 0 is just a minor
adjustment, we will focus on the case of E0.

Fix r > 0 and η ∈ C∞
c (Ω,R2) and without loss of generality assume y = 0. Consider ψδ

as in (2.5.8). We would like to plug ψδ( ·
r
)η in (1.6.4), however the latter is only Lipschitz

continuous. We therefore first plug in (1.6.4) a suitable smoothed version ψδ,ε( ·
r
)η, where

ψδ,ε could for instance be the convolution of ψδ with a standard smooth kernel φϵ. We then
wish to pass to the limit as ε ↓ 0. Observe first of all that the first summand in both the
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left and the right hand sides of (1.6.4) would carry to the obvious limits, respectively. Next
recall that, by the coarea formula [5, Theorem 2.93], for H1-a.e. r the intersection of K
with ∂Br is finite. In particular, for H1-a.e. δ the function ψδ( ·

r
)η is differentiable H1-a.e.

on K and the second term on the left hand side of (1.6.4) would then make sense. It is
also a simple measure theoretic exercise to see that the identity (1.6.4) in fact holds under
that assumption. We then can explicitly computeˆ

Br\K
ψδ(xr )(|∇u|2 div η − 2∇uT ·Dη∇u) +

ˆ
Br∩K

ψδ(xr )eT ·Dη e dH1

= 1
rδ

ˆ
Br\Br(1−δ)

(
|∇u|2η · x

|x| − 2(η · ∇u)(∇u · x
|x|)
)

+ 1
rδ

ˆ
K∩Br\Br(1−δ)

(e · η)(e · x
|x|) dH

1

+ 2λ
ˆ
Br\K

ψδ(xr )(u− g)∇u · η + λ

ˆ
Br∩K

ψδ(xr )
(
|u+ − gK |2 − |u− − gK |2

)
η · ν dH1 .

The terms on the left hand side in the equation above and the third and fourth integrals on
the right hand side converge as δ ↓ 0 to the obvious limits by dominated convergence. The
first term on the right hand side converge to the obvious limit for every r which satisfies
(2.5.7) as in the proof of Corollary 2.5.3. The remaining term on the right hand side can be
written in the following way using the coarea formula [5, Theorem 2.93]:

1
rδ

ˆ r

r(1−δ)

( ∑
p∈K∩∂Bs

e(p) · η(p)
)
ds .

We then observe that, by standard measure theory, for a.e. r the integral converges, as
δ ↓ 0, to the corresponding one in (2.5.9). We thus conclude that (2.5.9) holds for a.e. r.

The argument above makes, however, the choice of the radii dependent on the fixed
smooth vector field η. In order to gain a set of full measure for which (2.5.9) is valid for
every test η we use the following standard argument. We first select a countable family
{ηj} ⊂ C∞(Ω,R2) which is dense in the C1 topology in the space C1

c (Ω,R2). Hence we
observe that the above argument gives a set of full measure of radii r in (0, dist(y, ∂Ω)) for
which (2.5.9) is valid for every ηj. Next we fix an r in this set and an η ∈ C1(Br(y),R2).
We extend the latter to a vector field in C1

c (Ω,R2), hence select a sequence ηjn such that
∥ηjn − η∥C1 → 0 and derive (2.5.9) as limit of the corresponding identities for ηjn . □

We collect next specific choices of the test field which will be crucial in several instances
(cf. Lemma 2.6.5, Proposition 2.6.2, Proposition 5.2.1, Proposition 5.4.4).

Corollary 2.5.5. Let (u,K), y, and r be a as in Proposition 2.5.4. If η ∈ C1(Br,R2)
is conformal, thenˆ

Br(y)∩K
eT ·Dη e dH1 =

ˆ
∂Br(y)\K

(
|∇u|2η · n− 2∂u

∂n
∇u · η

)
dH1 +

∑
p∈K∩∂Br(y)

e(p) · η(p)

+ 2λ
ˆ
Br(y)\K

(u− g)∇u · η + λ

ˆ
Br(y)∩K

(
|u+ − gK |2 − |u− − gK |2

)
η · ν dH1 . (2.5.10)
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In particular, for every constant vector v ∈ R2 we have

0 =
ˆ
∂Br(y)\K

(
|∇u|2v · n− 2∂u

∂n

∂u

∂v

)
dH1 +

∑
p∈K∩∂Br(y)

e(p) · v

+ 2λ
ˆ
Br(y)\K

(u− g)∇u · v + λ

ˆ
∂Br(y)∩K

(
|u+ − gK |2 − |u− − gK |2

)
u · ν dH1 , (2.5.11)

and if τ(x) = (x−y)⊥

|x−y| , then

0 = −2
ˆ
∂Br(y)\K

∂u

∂n

∂u

∂τ
dH1 +

∑
p∈K∩∂Br(y)

e(p) · τ(p) + 2λ
ˆ
Br(y)\K

(u− g)∇u · τ . (2.5.12)

Proof. Recall that, if η ∈ C1(Br,R2) is conformal, then Dη(x) = ϑ(x)O(x), with
ϑ(x) > 0 and O(x) ∈ O(2) for all x ∈ Br: in particular |ξ|2div η − 2ξT Dη ξ vanishes
identically for every vector ξ, leading immediately to formula (2.5.10). The identities in
(2.5.11) and (2.5.12) are then simple consequences of (2.5.10) after we choose η(x) ≡ v and
η(x) = (x− y)⊥, respectively. □

2.5.2. The factor of the cracktip. Consider the pair (u,K) given by K = R+ and,
in polar coordinates, the function on R2 \K given by

u(θ, r) = br
1
2 cos θ2 . (2.5.13)

It is straightforward to see that (u,K) is a critical point of E0 on any set Ω = Br \Bδ for
positive r and δ by taking advantage of Proposition 2.5.2 Note however that K is not any
more smooth at the tip: in a suitable variational sense the curvature of K is singular at
the origin. This singularity must be somewhat balanced by the variation of the Dirichlet
energy and, remarkably, one outcome is that the constant b is then determined up to sign.
Proposition 2.5.4 gives indeed a very short proof.

Proposition 2.5.6. Assume K = R+ and u is given by (2.5.13). If (u,K) is a critical
point of E0, then b2 = 2

π
.

Proof. We use identity (2.5.11) in Corollary 2.5.5 on Br(x) = B1(0) with vector
v = (1, 0). On the other hand, using polar coordinates, |∇u|2(θ, 1) = b2

4 , while η · n = cos θ
and hence (2.5.9) becomes

1 = 2
ˆ
∂B1\{(1,0)}

∂u

∂n

∂u

∂η
. (2.5.14)

We then compute
∂u

∂n
(1, θ) = b

2 cos θ2 (2.5.15)

∂u

∂θ
(1, θ) = − b

2 sin θ2 (2.5.16)

∂u

∂η
(1, θ) = cos θ∂u

∂n
(1, θ) − sin θ∂u

∂θ
(1, θ) = b

2

(
cos θ cos θ2 + sin θ sin θ2

)
. (2.5.17)
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So the right hand side of (2.5.14) equals

2
ˆ 2π

0

b2

4

(
cos2 θ

2 cos θ + cos θ2 sin θ2 sin θ
)
dθ = b2

2

ˆ 2π

0

(
cos θcos θ + 1

2 + sin2 θ

2

)
dθ

=b
2

4

ˆ 2π

0
(1 + cos θ) dθ = πb2

2 ,

and inserting it in (2.5.14) we achieve b2 = 2
π
. □

We remark that [35, Proposition 2.1] provides a proof that (u,K), with u defined in
(2.5.13) and K = R+, is a critical point of E0 on R2.

2.5.3. Léger’s “magic formula”. A remarkable discovery of Léger in [32] is a closed
singular integral formula for (

∂u

∂x
− i

∂u

∂y

)2

when (u,K) is a global critical point of the Mumford-Shah functional. This formula will
not be used in our notes, but since it can be seen as a simple and direct consequence of the
inner variation identity, we include a very short proof in this section.

Proposition 2.5.7. Assume (u,K) is a global generalized restricted minimizer. Then
the following formula holds for every (x0, y0) ̸∈ K:(

∂u

∂x
− i

∂u

∂y

)2

(x0, y0) = − 1
2π

ˆ
K

dH1(x, y)
((x− x0) + i(y − y0))2 . (2.5.18)

Remark 2.5.8. Introducing the complex coordinate z = x+ iy the formula (2.5.18) can
be elegantly rewritten as: (

∂u

∂z

)2

(z0) = − 1
8π

ˆ
K

dH1(w)
(w − z0)2 . (2.5.19)

Remark 2.5.9. The assumptions on the global minimality of (u,K) can be considerably
relaxed. The proof only uses the facts that the pair (u,K) is a critical point and that the
growth estimate

H1(K ∩Br) +
ˆ
Br\K

|∇u|2 ≤ Cr (2.5.20)

holds for all sufficiently large disks.

Proof. First of all, by translation invariance it suffices to prove the formula when
(x0, y0) = 0. Next observe that the real part of (2.5.18) reads(∂u

∂x

)2

−
(
∂u

∂y

)2
 (0) = 1

2π

ˆ
K

y2 − x2

(x2 + y2)2dH
1 , (2.5.21)

while the imaginary part is in fact equivalent to (2.5.21) in the system of coordinates which
results from a 45 degrees counterclockwise rotation of the standard one. We focus therefore
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on the proof of (2.5.21). Since (u,K) is a critical point of the Mumford-Shah functional
without fidelity term, the inner variations (1.6.3) readsˆ

R2\K
(2∇uT ·Dψ∇u− |∇u|2divψ) =

ˆ
K

eT ·Dψ e dH1 . (2.5.22)

We fix positive radii ρ < R and consider the vector field ψ(x, y) = φ(|(x, y)|)(x,−y) where

φ(t) =


ρ−2 −R−2 if t ≤ ρ
t−2 −R−2 if ρ ≤ t ≤ R
0 otherwise .

Strictly speaking the latter is not a valid test in (2.5.22) because it is not continuously
differentiable. However, if we assume that H1(K ∩ (∂Bρ ∪ ∂BR)) = 0, it is easily seen that
the right hand side (2.5.22) makes sense because ψ is H1-a.e. differentiable on K, while
a standard regularization argument, analogous to the ones already used in the previous
sections, shows the validity of the formula. Next we compute Dψ in the two relevant
domains where it does not vanish:

Dψ =
(

1
ρ2 − 1

R2

)(
1 0
0 −1

)
on Bρ

Dψ = − 1
R2

(
1 0
0 −1

)
+ 1

(x2 + y2)2

(
y2 − x2 2xy
−2xy y2 − x2

)
on BR \ B̄ρ .

Choose then ρ sufficiently small to have Bρ ∩K = ∅ and obtain

2
ρ2

ˆ
Bρ

(∂u
∂x

)2

−
(
∂u

∂y

)2
− 2

R2

ˆ
BR

(∂u
∂x

)2

−
(
∂u

∂y

)2


= 1
R2

ˆ
K∩BR

(e2
2 − e2

1)dH1 +
ˆ
K∩BR

y2 − x2

(x2 + y2)2 dH
1 .

Then, we first let R ↑ ∞ and use (2.5.20) to obtain

2
ρ2

ˆ
Bρ

(∂u
∂x

)2

−
(
∂u

∂y

)2
 =

ˆ
K

y2 − x2

(x2 + y2)2 dH
1 ,

and hence we let ρ ↓ 0 and use the regularity of u at 0 to infer (2.5.21). □

2.6. Monotonicity formulae

An important role in our arguments will be played by three monotonicity statements,
valid for minimizers of Eλ (irrespectively whether they are absolute, restricetd, generalized,
or generalized restricted). The first statement was discovered by Bonnet in [9], while the
other two were discovered and proved by David and Léger in [17]. The first and the second
are considerably easier to prove and we will show them in this section.
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Proposition 2.6.1. Assume (u,K) is a critical point of E0. Fix x ∈ Ω and consider

d(x, r) := D(x, r)
r

:= 1
r

ˆ
Br(x)\K

|∇u|2 . (2.6.1)

Then r 7→ D(x, r) is an absolutely continuous function and d
dr
d(x, r) ≥ 0 for a.e. r ∈

(0, dist(x, ∂Ω)) which satisfies the following property:
(i) The set K ∩ ∂Br(x) belongs to the same connected component of K.

Moreover, if (i) holds, d(x, r) is constant on the interval (0, r0) and in addition (u,K) is a
restricted, an absolute, or a generalized minimizer, then either ∇u = 0 L2-a.e. on Br0(x)
or (u,K) is a cracktip with loose end located at x.

Proposition 2.6.2. Let (u,K) be an absolute, restricted, generalized, or generalized
restricted minimizer of Eλ in Ω. Fix x ∈ Ω and consider

F (x, r) := 2
r

ˆ
Br(x)\K

|∇u|2 + 1
r

H1(Br(x) ∩K) =: 2d(x, r) + ℓ(x, r)
r

. (2.6.2)

Then r 7→ F (x, r) is a function of bounded variation. The singular part of its derivative is
a nonnegative measure, while there is a constant C such that the absolutely continuous part
F ′(r) satisfies

F ′(x, r) ≥ min
(

1, 3 − 2α
π

)
D′(x, r)

r
− Cλ (2.6.3)

at a.e. radius r ∈ (0, dist(x, ∂Ω)) such that
(i) each connected component of ∂Br(x)\K has length less or equal to αr, with α ≤ 3

2π.
Moreover, if λ = 0, r 7→ F (x, r) is constant on (0, r0) and (i) holds for a.e. r ∈ (0, r0), then
(u,K) coincides in Br0(x) with an elementary global minimizer as in Theorem 2.4.1(b) and
(c). In both cases necessarily x ∈ K and in case (c) it must in fact be a triple junction.

The third is more laborious and will only be used in the second part of these notes. We
therefore postpone its proof to Section 4.4.

Proposition 2.6.3. Let (u,K), Ω, x, and F be as in Proposition 2.6.2 with λ = 0.
Then F ′(x, r) ≥ 0 at a.e. point r such that

(i) N(r) := ♯(K ∩ ∂Br(x)) ∈ {0} ∪ [3,∞)
(ii) or N(r) = 2 and the two points of K ∩ ∂Br(x) belong to the same connected

component of K.
Moreover, if r 7→ F (x, r) is constant on (0, r0) and (i) or (ii) hold for a.e. r ∈ (0, r0), then
(u,K) coincides in Br0(x) with an elementary global minimizer as in Theorem 2.4.1(a),
(b), or (c). In both cases (b) and (c) necessarily x ∈ K and in case (c) it must in fact be a
triple junction.

Remark 2.6.4. While it is plausible that (ii) in Proposition 2.6.3 could be weakened to
the single assumption N(r) = 2, the monotonicity of F is certainly false when N(r) = 1.
We indeed show here that it fails for any functional of type Fc(x, r) := c d(x, r) + ℓ(x,r)

r
.
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Consider the cracktip pair (u,K) of Definition 1.4.2 and change it to the pair (ua, Ka)
where Ka = K + (a, 0) and ua(x1, x2) = u(x1 − a, x2). We then introduce the function

f(a, r) := Fc((−a, 0), r) = c

r

ˆ
Br

|∇ua|2 + H1(Ka ∩Br)
r

=: D(a, r) + L(a, r)

and we study it on the domain Λ := {|a| < 1
2 , |r − 1| < 1

2}. First of all observe that
L(a, r) = r−a

r
and it is thus a smooth function on Λ. Next we integrate by parts and write

D(a, r) = c

r

ˆ
∂Br\(1,0)

ua
∂ua
∂n

.

The latter formula shows immediately that D is smooth as well on Λ. Next observe that
|∇ua|2(x) = 1

2π|x−(a,0)| and in particular by symmetry we conclude D(a, r) = D(−a, r). We
thus infer ∂2D

∂a∂r
(0, r) = 0. On the other hand we can explicitly compute ∂2L

∂a∂r
= 1

r2 and thus
we get ∂2f

∂a∂r
(0, r) = 1

r2 . Since it is obvious that ∂f
∂r

(0, r) = 0, there is δ > 0 such that
∂f

∂r
(a, r) < 0 ∀r ∈ [3

4 ,
5
4 ],∀a ∈ [−δ, 0) .

This shows that the function r → Fc((−a, 0), r) is certainly not monotone for a < 0
sufficiently small. In fact a simple scaling argument shows that the monotonicity fails on
some interval for every a negative.

2.6.1. The David-Léger-Maddalena-Solimini identity. A first important ingre-
dient in the proofs of both Proposition 2.6.2 and 2.6.3 is given by an interesting identity
discovered independently by David and Léger in [17] and Maddalena and Solimini in [37]
for critical points of E0. In the following we state its version for critical points of Eλ

Lemma 2.6.5. Let F be as in Proposition 2.6.2. If (u,K) is an absolute, restricted,
generalized, or a generalized restricted minimizer of Eλ in Ω, then for every y ∈ Ω and for
a.e. r ∈ (0, dist(y, ∂Ω)) we have
ˆ
∂Br(y)\K

(
∂u

∂n

)2

=
ˆ
∂Br(y)\K

(
∂u

∂τ

)2

− H1(K ∩Br(y))
r

+
∑

p∈∂Br(y)∩K
e(p) · n(p)

+ 2λ
r

ˆ
Br(y)\K

(u− g)∇u · (x− y) + λ

r

ˆ
Br(y)∩K

(
|u+ − gK |2 − |u− − gK |2

)
(x− y) · ν dH1

(2.6.4)
where the vectors n and e are as in Proposition 2.5.4, in particular n(p) · e(p) > 0 for all
p ∈ ∂Br(y) ∩K, and τ(p) = n⊥(p).

Proof. Test with η(x) = x−y
r

the equation (2.5.9). □

2.6.2. Elementary estimate on harmonic extensions. A second important ingre-
dient is an elementary estimate on harmonic extensions.

Lemma 2.6.6. Let U ⊂ Br(x) be an open set such that
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• ∂Br(x) ∩ ∂U is a connected arc γ;
• U is contained in a circular sector of angle α < 2π.

Then for every g ∈ W 1,2(γ) there is an harmonic extension v ∈ W 1,2(U) such that
ˆ
U

|∇v|2 ≤ αr

π

ˆ
γ

(
∂g

∂τ

)2

. (2.6.5)

Proof. Since the statement is invariant under rotations, translations, and dilations,
without loss of generality we assume x = 0, r = 1, and, using polar coordinates (θ, ρ),
U ⊂ V := {ρ < 1, 0 < θ < α}. Observe that γ = {ρ = 1, a ≤ θ ≤ b} with 0 ≤ a < b ≤ α.
Extend now g to {ρ = 1, 0 ≤ θ ≤ α} by setting it to be constant on the arcs {ρ = 1, 0 ≤
θ ≤ a} and {ρ = 1, b ≤ θ ≤ α}: recalling that g is continuous by Morrey’s embedding,
it is obvious that the latter extension can be achieved in W 1,2. It then suffices to find a
W 1,2 extension to the whole sector V which enjoys the desired bound. In other words, we
can assume without loss of generality that U is itself the sector V := {ρ < 1, 0 < θ < α}.
Consider now g as a function on the interval [0, α] and extend it to an even W 1,2 function
on [−α, α], which can be thought as a periodic function on R with period 2α. In particular
we can write its Fourier series as

g(θ) = a0 +
∑
k≥1

ak cos kπ
α
θ .

We then consider the harmonic extension

v(θ, ρ) = a0 +
∑
k≥1

akρ
kπ/α cos kπ

α
θ

and standard computations yield
ˆ
V

|∇v|2 =
∑
k≥1

kπ

2 a2
k ≤

∑
k≥1

k2π

2 a2
k = α

π

ˆ
γ

(
∂g

∂τ

)2

. □

2.6.3. Proof of Proposition 2.6.2. We assume without loss of generality that x = 0,
thus we drop the dependence on the base point in all the relevant quantities, i.e. for instance
D(r) =

´
Br\K |∇u|2 and ℓ(r) = H1(Br ∩ K). Observe that r 7→ D(r) is an absolutely

continuous function with

D′(r) =
ˆ
∂Br\K

|∇u|2 =
ˆ
∂Br\K

(
∂u

∂n

)2

+
ˆ
∂Br\K

(
∂u

∂τ

)2

. (2.6.6)

r 7→ ℓ(r) is a monotone nondecreasing function, and hence a function of bounded variation.
Moreover, the absolutely continuous part of is derivative equals, by the coarea formula [5,
Theorem 2.93],

ℓ′(r) =
∑

p∈∂Br∩K

1
e(p) · n(p) (2.6.7)
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(where we follow the notation of Proposition 2.5.4). The first claim of the proposition is
thus obvious, while for a.e. r we have

r2F ′(r) = 2r
ˆ
∂Br\K

|∇u|2 + r
∑

p∈∂Br∩K

1
e(p) · n(p) − 2D(r) − ℓ(r) . (2.6.8)

We first prove the conclusion for λ = 0. Using (2.6.4) we get

r2F ′(r) =3r
ˆ
∂Br\K

(
∂u

∂τ

)2

+ r

ˆ
∂Br\K

(
∂u

∂n

)2

+ r
∑

p∈∂Br∩K

(
1

e(p) · n(p) + e(p) · n(p)
)

− 2(D(r) + ℓ(r))

≥3r
ˆ
∂Br\K

(
∂u

∂τ

)2

+ r

ˆ
∂Br\K

(
∂u

∂n

)2

+ 2rN(r) − 2E0(u,K,Br) , (2.6.9)

where N(r) := ♯(K ∩ ∂Br). Consider next a competitor (w, J) for (u,K) in the following
fashion:

• (w, J) = (u,K) outside Br;
• J ∩Br consists of N(r) straight segments joining each point of ∂Br ∩K with the

origin;
• on each connected component of Br \ J , which according to assumption (i) is a

circular sector with angle α ≤ 3π
2 , we let w be the extension of the trace of u on

the corresponding circular arc given by Lemma 2.6.6.
Observe that J does not increase the number of connected components and that we can
apply Lemma 2.2.6. In particular (w, J) is a topological competitor for restricted and
generalized restricted minimizers as well. We can use estimate (2.6.5) in Lemma 2.6.6 to
infer

E0(u,K,Br) ≤E0(w, J,Br) =
ˆ
Br\J

|∇w|2 + rN(r) ≤ α

π
r

ˆ
∂Br\K

(
∂u

∂τ

)2

+ rN(r) .

Combined with (2.6.9) we then conclude

r2F ′(r) ≥
(

3 − 2α
π

)
r

ˆ
∂Br\K

(
∂u

∂τ

)2

+ r

ˆ
∂Br\K

(
∂u

∂n

)2

.

In particular, we deduce from (2.6.6) that

F ′(r) ≥ min
(

1, 3 − 2α
π

)
D′(r)
r

.

Finally, if F is constant on (0, r0) and (i) holds for a.e. r ∈ (0, r0), we would necessarily
conclude from the last but one inequality that, for a.e. r ∈ (0, r0),ˆ

∂Br\K

(
∂u

∂n

)2

= 0 .
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Equality (2.5.5) easily implies that u must be locally constant on Br0 \K, and thus K in
∂Br is a minimizing network. More precisely, if r is a radius such that N(r) < ∞, K ∩Br

consists of finitely many connected components K1, . . . , Kj and each Kj is a connected set
which minimizes the length among all closed connected sets K̂ ⊂ Br with K̂∩∂Br = Kj∩Br.
In particular we conclude that Kj ∩Br is either a single segment or it consists of a network
of a finite number of segments joining at triple junction.

Observe next that from (2.6.9), being u locally constant on Br0 \K, the constancy of F
implies

2N(r) =
∑

p∈∂Br∩K

(
1

e(p) · n(p) + e(p) · n(p)
)

for a.e. r ∈ (0, r0). For every such r we must then have e(p) = n(p) for every p ∈ K ∩ ∂Br.
In particular we conclude that K ∩Br0 is a cone centered at the origin. But then it is either
a straight segment or it is a collection of three radii meeting at the origin, or it is the empty
set. The latter is excluded by assumption (i).

We now come to the monotonicity statement for λ > 0. We plug (2.6.4) in (2.6.8) to
infer the following inequality from Cauchy-Schwartz and the energy upper bound in (1.4.1):

r2F ′(r) =3r
ˆ
∂Br\K

(
∂u

∂τ

)2

+ r

ˆ
∂Br\K

(
∂u

∂n

)2

+ r
∑

p∈∂Br∩K

(
1

e(p) · n(p) + e(p) · n(p)
)

− 2(D(r) + ℓ(r))

+ 2λ
ˆ
Br\K

(u− g)∇u · y + λ

ˆ
Br∩K

(
|u+ − gK |2 − |u− − gK |2

)
y · ν dH1

≥3r
ˆ
∂Br\K

(
∂u

∂τ

)2

+ r

ˆ
∂Br\K

(
∂u

∂n

)2

+ 2rN(r) − 2Eλ(u,K,Br) − Cλr2 ,

(2.6.10)
where C depends on ∥g∥∞ thanks to Lemma 2.1.1. We use the competitor (w, J) defined
above to get

Eλ(u,K,Br) ≤Eλ(w, J,Br) =
ˆ
Br\J

|∇w|2 + rN(r) + λ

ˆ
Br

(w − g)2

≤ α

π
r

ˆ
∂Br\K

(
∂u

∂τ

)2

+ rN(r) + 4πλ∥g∥2
∞r

2

(note that w consists of harmonic extensions in Br \ J and since the trace of w on ∂Br is
bounded by ∥g∥∞, we see immediately that ∥w∥∞ ≤ ∥g∥∞). The latter estimate combined
with (2.6.10) gives

r2F ′(r) ≥
(

3 − 2α
π

)
r

ˆ
∂Br\K

(
∂u

∂τ

)2

+ r

ˆ
∂Br\K

(
∂u

∂n

)2

− Cλr2 ,

and (2.6.3) follows at once.
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2.6.4. Proof of Proposition 2.6.1. First of all we start by assuming, without loss of
generality, that ∇u does not vanish identically.

We follow the same approach of the previous section and will just carry on our compu-
tations assuming that we have selected a good radius. We thus have

d

dr
d(r) = d

dr

D(r)
r

= 1
r

ˆ
∂Br(x)\K

|∇u|2 − D(r)
r2 . (2.6.11)

Observe that we are in a position to apply both statements in Corollary 2.5.3. In particular,
if we let ci be the average of u on any connected component γi of ∂Br(x) \K we can write

D(r) (2.5.5)=
ˆ
∂Br(x)\K

u
∂u

∂n

(2.5.6)=
∑
i

ˆ
γi

(u− ci)
∂u

∂n
≤
∑
i

(ˆ
γi

(u− ci)2
) 1

2
ˆ

γi

(
∂u

∂n

)2
 1

2

≤
∑
i

H1(γi)
π

ˆ
γi

(
∂u

∂τ

)2
 1

2
ˆ

γi

(
∂u

∂n

)2
 1

2

≤2r
ˆ

∂Br\K

(
∂u

∂τ

)2
 1

2
ˆ

∂Br\K

(
∂u

∂n

)2
 1

2

≤ r

ˆ
∂Br\K

(∂u
∂τ

)2

+
(
∂u

∂n

)2


=r
ˆ
∂Br\K

|∇u|2 , (2.6.12)

where he have used that the sharp constant in the 1-dimensional Poincaré-Wirtinger
inequality on an interval of length L is L2

π2 .
Next notice that, if D(r)

r
is constant on (0, r0) then the equality holds for a.e. r ∈ (0, r0)

in all the inequalities above. First of all observe that, if ∂Br ∩K consists of more than one
point, then all the connected components of ∂Br \K have length strictly less than 2π. This
would give a strict inequality sign at the beginning of the third line, unless one of the two
functions ∂u

∂n
and ∂u

∂τ
vanish identically on ∂Br \K. If however only one of them vanishes

identically on ∂Br \K, then the second inequality in the third line is strict. So they would
have to vanish both identically on ∂Br \K. Then necessarily from (2.6.11) we would get

D(r) = r

ˆ
∂Br\K

|∇u|2 = 0.

So, if there is a set of radii of positive measure such that ∂Br ∩K consists of more than
one point, then ∇u vanishes identically on Br for any such radius r.

Observe that the same argument implies that there cannot be a set of radii of positive
measure for which ∂Br ∩K is empty, because the constant in the sharp Poincaré-Wirtinger
inequality on the unit circle equals the constant of the sharp Poincaré-Wirtinger inequality
on an interval of length 2π, and we know that on the interval [0, 2π[ the latter is achieved
by the functions of type

a+ b cos θ2 (2.6.13)
where a and b are constants.
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In particular, we conclude that there exists a subset R of (0, r0) of full measure, functions
a, b : R → R, and a function c : R → S1 with the following properties

(a) K ∩ ∂Br = {(r cos c(r), r sin c(r))} =: {p(r)} for all r ∈ R;
(b) u(θ, r) = a(r) + b(r) cos

(
θ−c(r)

2

)
in polar coordinates2;

(c) b never vanishes on R.
Note in particular that K ∩ ∂Br consists of exactly one point for a.e. r. Fix next r ∈ R
and next define the function

ū(θ, ρ) = a(r) + b(r)(r−1ρ) 1
2 cos θ − c(r)

2
and let K̄ be the segment with endpoints the origin and p(r).

This is obviously a competitor for (u,K). Moreover, a direct computation gives
immediatelyˆ

Br\K̄
|∇ū|2 = 2r

ˆ
∂Br\K̄

(
∂ū

∂τ

)2

= 2r
ˆ
∂Br\K

(
∂u

∂τ

)2

=
ˆ
Br\K

|∇u|2 ,

where in the last equality we use the optimality conditions which can be derived from
the constancy of D(r)

r
(cf. (2.6.12)). So, by minimality of (u,K), H1(K) ≤ H1(K̄). In

particular, since we already know that H1(K ∩Br) ≥ r we actually conclude
H1(K ∩Br) = r . (2.6.14)

This holds for a.e. r and thus implies that the approximate tangent to the rectifiable set
K must in fact be orthogonal to the circle ∂Br at the point (r cos c(r), r sin c(r)) for a.e.
r ∈ (0, r0). It also implies that, if we define

R := {(r cos c(r), r sin c(r)) : r ∈ R} ,
then H1(K \R) = 0. On the other hand, by the density lower bound, this also means that
R is dense in K.

Consider again a radius r ∈ R and, after applying a rotation, assume without loss of
generality that c(r) = π

2 . Notice that, since K is closed, there is a positive δ with the property
that, if ρ ∈ (r− δ, r+ δ), the open set U := {(ρ cosϕ, ρ sinϕ) : r− δ < ρ < r+ δ, 0 < ϕ < π

4 }
does not intersect K. We use the addition formula for the cosine to write

u(θ, r) = a(r) + b(r) cos c(r)2 cos θ2 + b(r) sin c(r)2 sin θ2
on the set U . Note that u is smooth over U and in particular the map

r 7→ u(θ, r)
must be smooth on the interval I = (r−δ, r+δ) for every fixed θ ∈ (2π

4 , π). This immediately
implies that the three functions a, b cos c

2 and b sin c
2 have smooth extensions from R ∩ I

to I, because varying θ it is easy to find three linearly independent linear combinations of
2In the latter formula we understand that the angle of the polar coordinates is taken to vary in

[c(r), c(r) + 2π[, so that the θ 7→ u(θ, r) has at most a jump discontinuity at θ = c(r) and is smooth
everywhere else.
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these functions which are smooth. Using that cos2 + sin2 = 1, we then conclude that also b2

has a smooth extension to I. Now, if such smooth extension were to vanish at some point
ρ, we then would have that the trace of u is constant on ∂Bρ. But this would immediately
imply the constancy of the function u in Bρ and then, as already argued, that ∇u ≡ 0 on
Br0 .

Being that b2 has a smooth extension which is bounded away from zero, b itself has a
smooth extension if it does not change sign over I. Now, again because K is closed, for
any fixed δ we can assume that c(ρ) ∈ (π2 − δ, π2 + δ) for all ρ ∈ I, so that in particular
cos c

2 is positive and bounded away from zero on I. But then the existence of a smooth
extension of b cos c

2 over I would preclude b from changing sign. We thus conclude that b
has a smooth extension. Moreover, over the interval (π2 − δ, π2 + δ) the function cos ·

2 has a
smooth inverse, which allows us to conclude that c has a smooth extension to I as well.

Therefore, we conclude that K is a smooth curve in Br+δ \Br−δ. But from the discussion
above we also know that K intersects ∂Bρ transversally for a.e. ρ ∈ (r − δ, r + δ). This
means that K is a straight segment, or in other words c is constant. We can now integrate
by parts to conclude that

a′(r) = d

dr

1
2πr

ˆ
∂Br

u = 1
2πr

ˆ
∂Br

∂u

∂n
= 0 ,

so that a is constant over I. Moreover we can use the fact that

1
r

ˆ
Br

|∇u|2 =
ˆ
∂Br

(
∂u

∂τ

)2

is constant in r to conclude that b(r) = βr1/2 for some nonzero β.
Summarizing, for every r ∈ R we have concluded that there is an interval I containing

it over which a and c are constant and b takes the form βr1/2 for some constant β. Without
loss of generality assume a = c = 0. Let I be a maximal such interval, which we denote by
(s, t), and assume that s > 0. Then the trace of u on ∂Bs on the exterior of the disk Bs is
of the form βs1/2 cos θ

2 . We now claim that K ∩ ∂Bs must consist of the single point (s, 0)
(in cartesian coordinates). Indeed, if K ∩ ∂Bs contains some other point, then there is a
sequence of radii {rk} ⊂ R with rk → s and c(rk) → ϕ ̸= 0, because we know that R is
dense in K. But then it would follow from our formulas that u|∂Brk

converges to a function
of the form a′ + b′ cos θ−ϕ

2 , which disagrees with βs1/2 cos θ
2 on the whole circle ∂Bs minus a

discrete set of points. This would only be possible if ∂Bs ⊂ K, which however is excluded
from the fact that H1(K \R) = 0.

Now, if K ∩ ∂Bs consists only of the point (s, 0), then it turns out that u is smooth in
a neighborhood of ∂Bs \K. We already know that the trace from the exterior of the disk
Bs must be βs1/2 cos θ

2 , in particular we can conclude that s ∈ R. But then we can iterate
the argument above and show that in fact there is an interval (s− δ, s+ δ) over which a
and c are constant and b takes the form βs1/2. This then shows that the same is true on
the interval (s− δ, t), thereby contradicting the maximality of (s, t).
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The conclusion is that in fact s must be 0. Likewise, an entirely analogous argument
shows t = r0. We thus have conclude that over Br0 the discontinuity set K is a radius and
u is given by the formula of the statement of the proposition.





CHAPTER 3

Pure jumps and triple junctions

This chapter is devoted to proving the cases (b) and (c) of Theorem 1.3.3.
We first state, in Section 3.1 the two key ε-regularity theorems proved by David

in his pioneering work [14] (see also [15]). The only difference with the statements in
Theorem 1.3.3 is that we will make the additional assumption that the Dirichlet energy is
also small, while the statements in Theorem 1.3.3 assume only the smallness of the Hausdorff
distance to the model cases. We will show that it is rather straightforward to remove the
smallness of the Dirichlet energy with a “blow-up” argument, thanks to Theorem 2.4.1.

The sections 3.2, 3.3, 3.4, and 3.5 are then devoted to prove the ε-regularity at pure
jumps, essentially following the approach by [3] (see also [5, Chapter 8]). More precisely, the
argument is based on a suitable decay lemma which is very close to the pioneering lemma of
De Giorgi in the regularity theory of area-minimizing hypersurfaces, but it is conceptually
more complicated because we will need to juggle two quantities. One, cf. (3.2.2), measures,
in a scaling-invariant fashion, the L2-closeness of the jump set K to a flat line in a disk of
radius r. The other, cf. (3.2.1), is the natural scaling-invariant Dirichlet energy in a disk
of radius r. The decaying quantity is the maximum of the two, cf. Proposition 3.2.1 (in
reality, the actual decaying quantity, defined in (3.2.3), takes also into account the fidelity
term when λ > 0). The key strategy is to then split the decay in two cases: the flatness
of K decays if it is at least comparable to the Dirichlet energy and likewise the Dirichlet
energy decays if it is at least comparable to the flatness of K, cf. Lemmas 3.2.2 and 3.2.3.

A pivotal technical tool to prove the decay Lemmas is Proposition 3.3.1 which shows
how, when the Dirichlet energy and the flatness are both small, the set K coincides, up to
a small error, with the graph of a Lipschitz function. Section 3.4 will exploit the Lipschitz
approximation to prove the decay lemmas. When the flatness is comparable to the Dirichlet
energy, the Lipschitz approximation will be shown to be very close to an affine map. This is a
manifestation that K is close to minimize the length: it corresponds to the one-dimensional
case of De Giorgi’s harmonic approximation in the case of area-minimizing hypersurfaces.
When the Dirichlet energy is comparable to the flatness, we will instead show that u is
close to an harmonic function on a half disk, satisfying a Neumann boundary condition on
the flat part of boundary. This is a manifestation of the fact that u minimizes the Dirichlet
energy and satisfies a Neumann boundary condition at K. An important part of the proof
is to estimates the size of the “possible holes of K.”

The final sections 3.6 and 3.7 are devoted to prove ε-regularity at triple junctions by
taking advantage of the case of jump points and of the monotonicity formula contained
in Proposition 2.6.2. This argument is new and quite different to David’s original one.

45



46 3. PURE JUMPS AND TRIPLE JUNCTIONS

Section 3.6 uses a “blow-down” argument and leverages to ε-regularity theorem for pure
jumps to show that, once the set K is sufficiently close to a triple junction in some disk
B2r(x0), then it stays close to a triple junction in every smaller disk centered at some point
y not too far from x. In particular the argument implies that in Br(y) the set K is the
union of three arcs joining at y (but it does not imply that each arc is regular up to and
including the extremum y). In Section 3.7 the regularity up to y we will then be concluding
thanks to the monotonicity formula of Proposition 2.6.2

3.1. Epsilon-regularity statements

We start off by stating the case in which K is close in Hausdorff distance to a line. First,
we introduce some useful notation. We let:

• Rθ be the counterclockwise rotation of angle θ ∈ [0, 2π] in R2.
• V0 be the infinite line {(t, 0) : t ∈ R}.

Hence we combine in a single quantity the measure of the Hausdorff distance, distH , of K
from a diameter and of the smallness of the Dirichlet energy

Ωj(θ, x, r) := r−1distH(K ∩B2r(x), (x+ Rθ(V0)) ∩B2r(x)) + r−1
ˆ
B2r(x)\K

|∇u|2 . (3.1.1)

Moreover, we will use the notation gr (f) for the graph of a given function f . Finally, to
make our statements less cumbersome, we agree to use “minimizer” whenever the statement
holds for absolute, restricted, generalized, and generalized restricted minimizers (i.e. for all
type of minimizers considered in these notes).

Theorem 3.1.1. There are constants ε, α, C > 0 with the following property. Assume
(i) (u,K) is a minimizer of Eλ on B2r(x) with r ≤ 1;
(ii) There is θ ∈ [0, 2π] such that

Ωj(θ, x, r) + λ∥g∥2
∞r

1
2 < ε .

Then K ∩Br(x) is the graph of a C1,α function f . More precisely there is f : [−r, r] → R
such that K ∩Br(x) = (x+ Rθ(gr (f))) ∩Br(x) and

∥f∥0 + r∥f ′∥0 + r1+α[f ′]α ≤ Cr
(
Ωj(θ, x, r) + λ∥g∥2

∞r
1
2
) 1

2 . (3.1.2)

The proof we will give shows that a weaker assumption suffices for Theorem 3.1.1.
Indeed, the Hausdorff distance in the definition of Ωj can be substituted by an L2, one-sided
analogue (cf. the definition of the mean flatness β in (3.2.2) afterwards).

A higher dimensional version of the previous result has been established contemporarily
and independently by Ambrosio, Fusco and Pallara [6, 3] (see also [5, Chapter 8]). The
proof we provide is inspired by that in [5, Chapter 8], despite the several shortcuts we can
take due to the 2d setting.

Next, we state the case in which K is close to a propeller. To that end we introduce
further the notation

• V +
0 for the halfline {(t, 0) : t ≥ 0};
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• T0 for the global triple junction

T0 := V +
0 ∪ R 2π

3
(V +

0 ) ∪ R 4π
3

(V +
0 ) ; (3.1.3)

• Ωt(θ, x, r) for the analog of Ωj(θ, x, r):

Ωt(θ, x, r) := r−1distH(K ∩B2r(x), (x+ Rθ(T0)) ∩B2r(x)) + r−1
ˆ
B2r(x)\K

|∇u|2 . (3.1.4)

Theorem 3.1.2. There are constants ε, α, C > 0 with the following property. Assume:
(i) (u,K) is a minimizer of Eλ in B2r(x) with r ≤ 1;
(ii) There is θ ∈ [0, 2π] such that

Ωt(θ, x, r) + λ∥g∥2
∞r

1
2 < ε .

Then there is a C1,α diffeomorphism Φ : Br → Br(x) such that K ∩Br(x) = Φ(T0 ∩Br) and

|Φ(0) − x| + r
(
∥DΦ − Rθ∥0 + ∥DΦ−1 − R−θ∥0

)
+ r1+α

(
[DΦ]α + [DΦ−1]α

)
≤ Cr

(
Ωt(θ, x, r) + λ∥g∥2

∞r
1
2
) 1

2 . (3.1.5)

In 3d Lemenant [33] has proven an analogous statement provided that K in B2r(x) is
close either to the union of three half-planes meeting along their edges by 120 degree angles
(a Y-cone), or to a cone over the union of the edges of a regular tetrahedron (a T-cone).

We finally record an interesting corollary, which implies that, under the assumptions
(i)-(ii) above, if λ = 0, then the three arcs forming K are in fact C2 up to the triple junction
and their respective curvatures vanish there.

Corollary 3.1.3. Let (u,K) be a minimizer of E0 satisfying the assumptions of
Theorem 3.1.2. Then the three arcs forming K ∩ Br(x) are C2 up to the junction point
x̄ = Φ(0) included and moreover κi(x̄) = 0 for every i ∈ {1, 2, 3}.

3.1.1. Useful corollaries of the epsilon-regularity at pure jumps and triple
junctions. We observe here that, as it is standard for ε-regularity statements as Theo-
rem 3.1.1 in geometric analysis, we can infer from these theorems a number of consequences
which will be useful in the sequel, namely:

• an improved convergence result of the jump sets when the limit is itself smooth;
• a partial regularity result, which will be extensively used in the rest of the notes;
• a rigidity at “infinity” of certain global minimizers.

We start with the improved convergence.

Corollary 3.1.4. Let V ⊂⊂ U be two open planar domains and let:
(a) K ⊂ U be a set which is the union of finitely many nonintersecting C1 arcs (with

endpoints in ∂U) and finitely many C1 simple closed curves, all pairwise disjoint;
(b) u : U \ K → R be a C1 function with the property that, for every connected

component A of U \K, u|A has a C1 extension to A.
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Then, for every δ > 0 there is a ε(u,K, V, U, δ) > 0 with the following property. If (v, J) is
a minimizer of Eλ and

distH(J ∩ U,K ∩ U) +
ˆ
U\(J∪K)

|∇v − ∇u|2 + λdiam (U)∥g∥2
∞ < ε , (3.1.6)

then J ∩ V is C1,α close to K ∩ V , where α is the constant of Theorem 3.1.1.

The proof follows from a simple application of Theorem 1.3.3 (and Theorem 1.4.1) for
the case of a pure jump and a standard covering argument. An analogous statement, which
we leave to the reader, holds if K is allowed to have a finite number of triple junctions.

We next state the partial regularity result.

Corollary 3.1.5. Assume (u,K) is a minimizer of Eλ in some open domain U . Then
the subset of K of pure jump points is relatively open and has full H1 measure.

Proof. The openness follows immediately from Corollary 3.1.4. Observe moreover
that, since K is rectifiable, at H1-a.e. point p ∈ K the sets

Kp,r := K − p

r

converge to the approximate tangent line ℓp to K at p. Although such convergence is just
in a measure theoretic sense, the compactness Theorem 2.2.3 upgrades it to local Hausdorff
convergence. By the case (b) of Theorem 1.3.3 every such p is a pure jump point and a
point of regularity for K. □

Actually, it was established by David [14] (see also [15, Theorem 51.20]) that the
Hausdorff dimension of the complement in K of pure jump points is strictly less than 1.
We will give a different proof of this fact in Corollary 6.1.4 as a consequence of a higher
integrability result for the gradient.

We close this section with the following rigidity theorem.

Corollary 3.1.6. Assume that (u,K, {pkl}) is a global generalized (or generalized
restricted) minimizer and that, for some sequence of radii rj ↑ ∞, a subsequence of
rescalings K0,rj

converge to a pure jump or to a triple junction. Then (u,K) itself is,
respectively, a pure jump or a triple junction.

Proof. By the ε-regularity theory, we conclude that in each disk Brj
with rj sufficiently

large, K ∩Brj
is diffeomorphic either to a straight line or to a triple junction, and in the

latter case the point of junction must be contained in Brj/2. It is then simple to see that
K is connected. In particular, by the Bonnet’s monotonicity formula Proposition 2.6.1,
1
r

´
Br

|∇u|2 is monotone nondecreasing in r. Since the limit of 1
rj

´
Brj

|∇u|2 is 0, we conclude
that ∇u vanishes identically. But then by Theorem 2.4.1, (u,K) itself is either a pure jump
or a triple junction. □
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3.2. Regularity at pure jumps: preliminaries

The proof of Theorem 3.1.1 is based on a suitable decay proposition for which we need
some notation and terminology. Let

L := {V | V ⊂ R2 is a linear 1-dimensional subspace};

A :=
{
z + V | z ∈ R2 and V ∈ L

}
.

Let (u,K) be an admissible pair in B1. For all x ∈ B1 and 0 < r < 1 − |x| recall that

d(x, r) = D(x, r)
r

= 1
r

ˆ
Br(x)\K

|∇u|2, (3.2.1)

and define

β(x, r) := min
V ∈A

ˆ
Br(x)∩K

dist2(y,V )
r2

dH1(y)
r

(3.2.2)

m(x, r) := max{d(x, r), β(x, r), λ∥g∥2
∞r

1
2 }. (3.2.3)

In what follows in case x = 0 we shall drop the dependence on the base point from
the notation introduced above. Observe that the following crude estimates are a simple
consequence of our definitions:

β(x, τr) ≤ τ−3β(x, r) (3.2.4)
d(x, τr) ≤ τ−1d(x, r). (3.2.5)

The starting point to prove ε-regularity for K is the decay of the energy under a smallness
condition at a certain radius.

Proposition 3.2.1. There are geometric constants ε, τ > 0 such that, if (u,K) is a
minimizer of Eλ on B1 and 0 ∈ K, then

m(r) ≤ ε ⇒ m(τr) ≤ τ
1
2m(r) . (3.2.6)

The proof is based on two lemmas.

Lemma 3.2.2. There exists τ1 ∈ (0, 1) such that for any τ ≤ τ1 and for any δ > 0 we
can choose η1 = η1(δ, τ) > 0 with the following property. If (u,K) is a minimizer of Eλ on
B1 and 0 ∈ K, then for all r ∈ (0, 1) such that

δmax{d(r), λ∥g∥2
∞r

1
2 } ≤ β(r) ≤ η1,

we have
β(τr) ≤ τβ(r). (3.2.7)

Lemma 3.2.3. There exists τ2 ∈ (0, 1) such that for any τ ≤ τ2 and for any δ > 0 we
can choose η2 = η2(δ, τ) > 0 with the following property. If (u,K) is a minimizer of Eλ on
B1 and 0 ∈ K, then for all r ∈ (0, 1) such that

δmax{β(r), λ∥g∥2
∞r

1
2 } ≤ d(r) ≤ η2,
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we have
d(τr) ≤ τ

1
2d(r). (3.2.8)

Before coming to the proofs of the two Lemmas we show how the decay proposition can
be easily concluded from them.

Proof of Proposition 3.2.1. First of all fix τ = min{τ1, τ2}, denote by δ̄ a positive
parameter smaller than 1 to be chosen later in terms of τ and let ε = min{η1(τ, δ̄), η2(τ, δ̄)}.
We next claim that, for an appropriate choice of δ̄ ∈ (0, 1), the conclusion of the proposition
holds (in fact we will see below that δ̄ ≤ τ

7
2 suffices).

We distinguish four cases (actually, Case 4 below is not possible if λ = 0).
Case 1: δ̄max{d(r), λ∥g∥2

∞r
1
2 } ≤ β(r) and δ̄max{β(r), λ∥g∥2

∞r
1
2 } ≤ d(r). In this case

β(τr) ≤ τβ(r) by (3.2.7) and d(τr) ≤ τ
1
2d(r), by (3.2.8), and thus m(τr) ≤

τ
1
2m(r).

Case 2: δ̄max{d(r), λ∥g∥2
∞r

1
2 } ≤ β(r) and d(r) < δ̄max{β(r), λ∥g∥2

∞r
1
2 }. Observe that

we have

d(τr)
(3.2.5)

≤ τ−1d(r) < τ−1δ̄max{β(r), λ∥g∥2
∞r

1
2 }

β(τr)
(3.2.7)

≤ τβ(r) .

Hence, provided δ̄ ≤ τ
3
2 , we have m(τr) ≤ τ

1
2m(r).

Case 3: β(r) < δ̄max{d(r), λ∥g∥2
∞r

1
2 } and δ̄max{β(r), λ∥g∥2

∞r
1
2 } ≤ d(r). In this case

β(τr)
(3.2.4)

≤ τ−3β(r) < τ−3δ̄max{d(r), r 1
2 }

d(τr)
(3.2.8)

≤ τ
1
2d(r) ,

Hence, by choosing δ̄ ≤ τ
7
2 we conclude.

Case 4: β(r) < δ̄max{d(r), λ∥g∥2
∞r

1
2 } and d(r) < δ̄max{β(r), λ∥g∥2

∞r
1
2 }. In this last case

m(r) = λ∥g∥2
∞r

1
2 , being δ̄ < 1, and max{β(r), d(r)} ≤ δ̄λ∥g∥2

∞r
1
2 . Hence, we

conclude that

β(τr)
(3.2.4)

≤ τ−3β(r) ≤ τ−3δ̄λ∥g∥2
∞r

1
2

d(τr)
(3.2.5)

≤ τ−1d(r) ≤ τ−1δ̄λ∥g∥2
∞r

1
2

It suffices to choose δ̄ ≤ τ
7
2 to infer the desired decay. □

3.3. Lipschitz approximation

A key ingredient in the proof of both decay lemmas is the Lipschitz approximation
for the set K. Before stating it we introduce a suitable notion of “excess” which, like the
quantity β, measures the flatness of the set K. Given V ∈ L, we denote by πV : R2 → V
and π⊥

V : R2 → V ⊥ the orthogonal projections onto V and onto its orthogonal complement
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V ⊥, respectively. Given V ,V ′ ∈ L, consider the linear map L : R2 → R2, L := πV − πV ′ ,
and denote by |L| its Hilbert-Schmidt norm. In particular,

|L|2 = 2 − 2πV : πV ′ ,

where : denotes the scalar product between 2 × 2 matrices. The excess is then given for
x ∈ B1 and 0 < r < 1 − |x| by

exc(x, r) := min
V ∈L

excV (x, r) (3.3.1)

where for every V ∈ L

excV (x, r) := 1
r

ˆ
Br(x)∩K

|V − TyK|2 dH1(y), (3.3.2)

here TyK denotes the approximate tangent plane to K at y which exists for H1-a.e. y ∈ K
(cf. [5, Theorem 2.83]). It is also convenient to introduce a variant of the β-number: for all
A ∈ A, we set

βA (x, r) :=
ˆ
Br(x)∩K

dist2(y,A )
r2

dH1(y)
r

.

The basic idea behind the Lipschitz approximation is that the subset of K consisting of
those points y where excV (y, r) is controlled by a (sufficiently small geometric) constant
c0 at all scales is contained in the graph of a Lipschitz function. This is analogous to the
“Lipschitz truncation” of Sobolev functions φ ∈ W 1,1: the restriction of φ to the lower level
set {M |Dφ| ≤ λ} of the Hardy-Littlewood maximal function of |Dφ| is Lipschitz with a
constant comparable to λ, cf. [27, Section 6.6]. At the technical level, in order to implement
the latter idea we will need a suitable “vertical separation” lemma, which will be proved in
Section 3.3.2.

However, in order to be useful in our context, we also need to show that the excess can
be controlled by the flatness β. This will be accomplised in Section 3.3.1.

Proposition 3.3.1. There exist C, δ, σ, α > 0 geometric constants with the following
properties. Assume that

(a) (u,K) is a minimizer of Eλ in Br;
(b) 0 ∈ K and V0 is the horizontal axis;
(c) there exists c ∈ R such that setting β̄(r) := β(0,c)+V0(r),

d(r) + β̄(r) + λ∥g∥2
L∞(Br)r < δ .

Then,
(i) K ∩B r

2
⊂ {|x2| ≤ Cr(β̄(r))α};

and there exists f : [−σr, σr] → R Lipschitz such that
(ii) ∥f∥C0 ≤ Crβ̄(r)α and Lip(f) ≤ 1;
(iii) the following estimates hold

H1
(
(gr (f)△K) ∩ [−σr, σr]2

)
≤ Cr(d(r) + β̄(r) + λ∥g∥2

L∞(Br)r)
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and ˆ
|f ′|2 ≤ H1(gr (f) \K) + C

ˆ
gr (f)∩K

|V0 − TxK|2 dH1(x)

≤ Cr(d(r) + β̄(r) + λ∥g∥2
L∞(Br)r);

(iv) for any Λ > 0, δ can be chosen so that for any ε > Cr(β̄(r))α (cf. item (i) above),
H1([−σr, σr] \ πV0(K ∩ {|x2| < εr})) ≤ Λrd(r) .

Finally, there are constants τ̄ > 0, ε̄ > 0 with the property that

K̃ :=

x ∈ K ∩Bτ̄ r | sup
0<ρ< r

4

(d(x, ρ) + excV0(x, ρ)) < ε̄

 ⊆ gr (f). (3.3.3)

3.3.1. Tilt Lemma. The first basic tool to prove Proposition 3.3.1 is the following “tilt
lemma”, heavily inspired by a similar result in the theory of minimal surfaces due to Allard,
cf. the seminal paper [1]. In turn the lemma can be thought as a “geometric counterpart”
of the classical Caccioppoli inequality for solutions of elliptic partial differential equations,
in which the L2 norm of the derivative of the solution in a given ball is controlled with the
L2 norm of the solution in a slightly larger ball. As in Allard’s tilt lemma, our proof is
based in plugging in the “internal” first variation a suitable test vector field.

Lemma 3.3.2. There exists a universal constant C > 0 such that, if (u,K) is a minimizer
of Eλ in B1 and 0 ∈ K,

exc
(
r
4

)
≤ C

(
d(r) + β(r) + λ∥g∥2

L∞(Br)r
)

for all r ≤ 1. (3.3.4)

More precisely, if A = (0, c) + V0 for some c ∈ R, we have the more accurate estimate

excV0

(
r
4

)
≤ C

(
d(r) + βA (r) + λ∥g∥2

L∞(Br)r
)
. (3.3.5)

Proof. We start off noting that (3.3.5) implies (3.3.4). By rotating we can assume
that A = (0, c) + V0, for some constant c ∈ R. By the density upper bound (1.4.1) we
have excV0( r4) ≤ 16

r
H1(K ∩B r

4
) ≤ 8π + λπ∥g∥2

∞r. Let γ > 0 be a fixed a parameter which
will be chosen appropriately later. If βA (r) ≥ γ, then excV0( r4) ≤ 8π

γ
βA (r) + λπ∥g∥2

∞r, and
thus (3.3.5) follows in this case. Therefore, we may additionally suppose that

βA (r) ≤ γ. (3.3.6)
Next, we claim that

|c| ≤ 2
(
βA (r)
ϵ

) 1
3

r. (3.3.7)

Indeed, first observe that |c| < r
2 for γ small enough. Otherwise, being 0 ∈ K, the density

lower bound inequality in (2.1.2) would imply

ϵ

64 ≤ ϵ

4

(
|c|
2r

)2

≤ 1
r3

ˆ
B r

4
∩K

|x2 − c|2 dH1(x) ≤ βA (r),
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where in the second inequality we have used that |x2 − c| ≥ |c|
2 for all x ∈ B r

4
. By (3.3.6)

this would give a contradiction for γ sufficiently small. Then, as |c| < r
2 , arguing similarly

we deduce that

ϵ

(
|c|
2r

)3

≤ 1
r3

ˆ
B |c|

2
∩K

|x2 − c|2 dH1(x) ≤ βA (r),

as |x2 − c| ≥ |c|
2 for all x ∈ B |c|

2
.

We next use (3.3.6) and (3.3.7) to choose γ > 0 small enough to have B r
4

⊂ B r
3
((0, c)) ⊂

B 2r
3

((0, c)) ⊂ Br. Hence, we conclude that it is enough to prove

1
r

ˆ
B r

3
((0,c))∩K

|V0 − TxK|2 dH1

≤C
(
d
(

2r
3

)
+ 1
r3

ˆ
B 2r

3
((0,c))∩K

|x2 − c|2dH1 + λ∥g∥2
L∞(B 2r

3
((0,c)))r

)
,

which by translating is implied by
1
r

ˆ
B r

3
∩K

|V0 − TxK|2 dH1 ≤ C
(
d(r) + 1

r3

ˆ
B 2r

3
∩K

|x2|2 dH1 + λ∥g∥2
L∞(B 2r

3
)r
)
. (3.3.8)

Let e : K → S1 be a tangent vector field to K with e(x) = (e1(x), e2(x)). Then

|V0 − TxK|2 =
∣∣∣∣∣
(

1 0
0 0

)
−
(
e2

1 e1e2
e1e2 e2

2

)∣∣∣∣∣
2

= 2 − 2e2
1 = 2e2

2 .

In particular, (3.3.8) is equivalent to

1
r

ˆ
K∩B r

3

e2
2(x) dH1 ≤ C

d(r) + 1
r3

ˆ
K∩B 2r

3

|x2|2 dH1 + λr∥g∥2
L∞(B 2r

3
)

 . (3.3.9)

Let η(x) = φ2(x)(0, x2), φ ∈ C∞
c (B 2r

3
, [0, 1]) with φ ≡ 1 on B r

3
and ∥∇φ∥L∞(B 2r

3
) ≤ 6

r
. We

have
Dη(x) = 2φ(x)(0, x2) ⊗ ∇φ(x) + φ2(x)

(
0 0
0 1

)
,

and thus
φ2e2

2 ≤ eT Dη e+ 2φ|∇φ||x2||e2|.

The internal variation formula (1.6.4) for critical points of Eλ, namelyˆ
Br∩K

eT ·Dη e dH1 = −
ˆ
Br\K

(
|∇u|2 div η + 2∇uT ·Dη∇u

)
+ 2λ

ˆ
Br\K

(u− g)η · ∇u+ λ

ˆ
Br∩K

(
|u+ − gK |2 − |u− − gK |2

)
η · ν dH1
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yieldŝ

K∩Br

φ2e2
2 dH1 ≤ 2

ˆ
K∩Br

φ|∇φ||x2||e2| dH1 + C

ˆ
B 2r

3
\K

|∇u|2 + Cλ∥g∥2
L∞(B 2r

3
)r

2 ,

where we have used that |Dη| ≤ C and that ∥u∥L∞(B 2
3 r

) ≤ ∥g∥L∞(B 2
3 r

). So we conclude
ˆ
K∩Br

φ2e2
2 dH1 ≤ C

ˆ
K∩Br

|∇φ|2|x2|2 dH1 + C
(
rd
(2r

3

)
+ λr2∥g∥2

L∞(B 2r
3

)

)
.

Since φ ∈ C∞
c (B 2r

3
, [0, 1]) with φ ≡ 1 on B r

3
and ∥∇φ∥L∞(B 2r

3
) ≤ 6

r
, (3.3.9) follows at

once. □

3.3.2. Vertical separation. The second main ingredient to prove Proposition 3.3.1 is
the following “vertical separation lemma”.

Lemma 3.3.3. There exist ε, τ > 0 such that:
(a) if (u,K) is a minimizer of Eλ in B1;
(b) z1, z2 ∈ K and z1 ∈ B 1

2
;

(c) |z1 − z2| < τ
2 and

sup
|z1−z2|

2 <ρ<
|z1−z2|

τ

(
d(z1, ρ) + excV0(z1, ρ)

)
< ε . (3.3.10)

Then |z1
2 − z2

2 | ≤ |z1
1 − z2

1 |.
Proof. We first consider the case of absolute and generalized absolute minimizers. For

the sake of contradiction, assume the conclusion does not hold: in particular set ε = 1
j

and τ = 1
j

and let {(uj, Kj)} and z1
j , z

2
j ∈ Kj be a sequence of minimizers and pairs

of points which contradict the statement. Rescale the minimizers and translate so that
|z1
j − z2

j | = 1 and z1
j = 0. Thanks to Theorem 2.2.3, up to subsequences assume that

(uj, Kj) converges to a generalized global minimizer (ū, K̄) and that zij converges to some
zi, with z1 = 0 and |z2| = 1. From the hypothesis we know that

´
Br

|∇ū|2 = 0 for every r.
By Theorem 2.4.1, the pair (ū, K̄) can only be a constant, a pure jump, or a triple junction.
We know z1, z2 ∈ K, so K is non-empty and u cannot be a constant. Consider now that,
by (2.2.5) in Theorem 2.2.3, the set K̄ has tangent V0 at H1-a.e. point. In particular, as
excV0(0, ρ) = 0 for all ρ ∈ (1

2 ,+∞) (and then for all ρ > 0), K̄ cannot be the triple junction.
So (u,K) must be a pure jump with a horizontal discontinuity. But from the contradiction
assumption we also deduce that |z2

2 | ≥ |z2
1 |. Since z1 = 0 ̸= z2 and |z2| = 1, the two points

cannot belong to the same horizontal line. This gives a contradiction.
In the case of restricted and generalized restricted minimizers, note that we can again

make a blow-up argument where we know that Kj is converging to an unbounded closed
connected set K̄ of locally finite length in R2. As above we conclude that the tangent to K̄
is V0 H1-a.e., in particular we conclude that K̄ is either a halfline or a line, both contained
in V0. At any rate this implies that z1 and z2 both belong to the horizontal line V0, which
is the same contradiction reached above. □
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3.3.3. Proof of Proposition 3.3.1. We may argue as in Lemma 3.3.2 (cf. (3.3.7)) to
get |c| ≤ 2

(
β̄(r)
ϵ

) 1
3
r. In fact the same argument implies that

K ∩B r
2

⊂ {x : |x2 − c| ≤ 2
(
β̄(r)
ϵ

) 1
3

r} .

To this aim, assume that on the contrary there is z ∈ K∩B r
2

such that |z2 −c| > 2
(
β̄(r)
ϵ

) 1
3
r.

Set ρ :=
(
β̄(r)
ϵ

) 1
3 r

2 , if δ < ϵ then Bρ(z) ⊂ Br and we reach a contradiction as:

9
8 β̄(r) = 9

r3 ϵρ
3 ≤ 1

r3

ˆ
Bρ(z)∩K

|x2 − c|2 dH1(x) ≤ β̄(r),

since |x2 − c| ≥ 3ρ for every x ∈ Bρ(z).
In particular, we deduce that

K ∩B r
2

⊂ {|x2| ≤ Cr(β̄(r)) 1
3 }. (3.3.11)

Fix ε and τ as in Lemma 3.3.3 and let

K̃ :=

x ∈ K ∩B τ
4 r

| sup
0<ρ< r

2

(d(x, ρ) + excV0(x, ρ)) < ε

 .
On setting σ := τ

4 , using Lemma 3.3.3 we can define a 1-Lipschitz function f : [−σr, σr] → R
such that

K̃ ⊂ {(t, f(t)) | |t| ≤ σr} = gr (f).

In particular, by (3.3.11) we get conclusions (i) and (ii) with α = 1
3 , as well as (3.3.3).

In addition, for what conclusion (iii) is concerned, being Lip(f) ≤ 1, the second estimate
there follows immediately from Lemma 3.3.2 provided that the first estimate in conclusion
(iii) itself is established. To this aim, by using Besicovitch covering theorem (see for instance
[5, Theorem 2.18]), one can cover (K \ K̃) ∩ Bσr with a countable family of balls with
controlled overlapping such that in each ball the defining condition of K̃ does not hold, so
that the ensuing estimate follows easily

H1((K\K̃)∩Bσr) ≤ C

ε
r
(
d
(

3
4r
)

+ excV0

(
3
4r
))

≤ C

ε
r
(
d(r)+β̄(r)+λr∥g∥2

L∞(Br)

)
, (3.3.12)

where in the last inequality we have used (3.3.5) in the Tilt Lemma. Therefore, to conclude
item (iii) we need to estimate H1

(
(gr (f) \K) ∩ [−σr, σr]2

)
. To this aim, note that

πV0(gr (f) \K) ∩ [−σr, σr] ⊂ [−σr, σr] \ πV0(K̃),
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so that (recalling Lip(f) ≤ 1) we get

H1
(
(gr (f) \K) ∩ [−σr, σr]2

)
≤

√
2H1 (πV0(gr (f) \K) ∩ [−σr, σr]) ≤

√
2H1

(
[−σr, σr] \ πV0(K̃)

)
≤

√
2H1 ([−σr, σr] \ πV0(K)) +

√
2H1([−σr, σr] ∩ πV0(K \ K̃))

≤
√

2H1 ([−σr, σr] \ πV0(K)) +
√

2H1((K \ K̃) ∩Bσr),

In view of (3.3.12) we are left with estimating the measure of the set A := [−σr, σr]\πV0(K).
In this respect, consider the vertical segments Wt := {t} ×

[
−1

2 ,
1
2

]
, then

Wt ∩K = ∅ ∀t ∈ A. (3.3.13)

Theorem 2.4.1 and a compactness argument show that, choosing δ small enough in the
assumption (c) of Proposition 3.3.1, (u′, K ′) must be close to a pure jump (v, J), where
J = {x2 = 0} and v = v+χ{x2>0} + v−χ{x2<0}, with |v+ − v−| ≥ 2C0 > 0, for some universal
constant C0. In particular, |u′(t, 1

2) − u′(t,−1
2)| ≥ C0 and then from Jensen inequality we

get ˆ
Wt

|∇u′|2dx2 ≥
(ˆ

Wt

|∇u′|dx2

)2

≥ C2
0 ∀t ∈ A′ = A

r
.

From the latter we infer
1
r

H1(A) = H1 (A′) ≤ 1
C2

0

ˆ
B1

|∇u′|2 = 1
C2

0r

ˆ
Br

|∇u|2,

that concludes the proof of (iii).
To prove (iv), we argue as above with

Ã := [−σr, σr] \ πV0(K ∩ {|x2| < ε}) = [−σr, σr] \ πV0(K).

Set
Wt = {t} × [−γ, γ] , ∀t ∈ Ã ,

for a fixed γ = O(λ 1
2 ). As before, by Jensen inequality we get

1
2γ

ˆ
Wt

|∇u|2dx2 ≥
(

1
2γ

ˆ
Wt

|∇u|dx2

)2

≥
(
C0

2γ

)2

,

and hence
H1(Ã) ≤ 2γ

C2
0

ˆ
Br

|∇u|2,

which implies (iv).

3.4. Regularity at pure jumps: decay lemmas

We are now ready to prove the two main decay lemmas.
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3.4.1. Proof of Lemma 3.2.2. For the sake of contradiction, let τ1 > 0 to be chosen
appropriately in what follows: then there are τ ∈ (0, τ1) and δ > 0 such that there exist
sequences (uj, Kj) of minimizers of Eλ, radii rj ∈ (0, 1), and real numbers cj such that

δmax{dj, λj∥gj∥2
∞r

1
2
j } := δmax

 1
rj

ˆ
Brj \Kj

|∇uj|2, λj∥gj∥2
∞r

1
2
j


≤ 1
r3
j

ˆ
Brj ∩Kj

|x2 − cj|2 dH1 =: βj → 0, (3.4.1)

min
A

ˆ
Brj ∩Kj

dist2(x,A )dH1 =
ˆ
Brj ∩Kj

|x2 − cj|2 dH1, (3.4.2)

and that ˆ
Bτrj ∩Kj

dist2(x,A ) dH1 ≥ τ 4r3
jβj ∀j, ∀A ∈ A (3.4.3)

(we can assume (3.4.2) thanks the the fact that our statement is invariant under rotations).
To apply Proposition 3.3.1 let τ1 ≤ σ

2 , σ being defined there. For j sufficiently large, let
fj : [−σrj, σrj] → R be the 1-Lipschitz function provided by Proposition 3.3.1, and denote
by Γj its graph. In light of conclusion (ii) in Proposition 3.3.1, we can assume Γj to be
contained inside the rectangle [−σrj, σrj] × [−σ

2 rj,
σ
2 rj]. For any η ∈ C∞

c ((−σrj, σrj)2;R2)
consider the corresponding inner variation (1.6.4) to infer from the density upper bound in
(1.4.1) and (3.4.1)

|δΓj(η)| :=
∣∣∣∣∣
ˆ

Γj

ej(x)T ·Dη ej(x) dH1
∣∣∣∣∣

≤ C∥η∥C1

ˆ
[−σrj ,σrj ]2\Kj

|∇uj|2 + C∥η∥C0λj∥gj∥2
∞rj

≤ Cδ̄−1∥η∥C1βjrj + Cδ̄−1∥η∥C0βjr
1
2
j ,

where ej is the unitary tangent vector field to Γj, and C > 0 is a constant.
Note that by choosing η(x1, x2) = (0, φ(x1)ψ(x2)), where φ, ψ ∈ C∞

c ((−σrj, σrj)) and
ψ ≡ 1 on

(
−σ

2 rj,
σ
2 rj
)
, we can use the classical first variation formula for the length of the

graph of a function to compute

δΓj(η) =
ˆ

f ′
jφ

′√
1 + |f ′

j|2
.

In addition, by Proposition 3.3.1 (iii) and (3.4.1), we have that
ˆ

|f ′
j|2 ≤ Crj(dj + βj + λj∥gj∥2

∞rj) ≤ Crj(βj + βjr
1
2
j ) ≤ Cδ̄−1rjβj ,
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where C > 0 is a constant. Thus, we set

hj(x1) := fj(rjx1) − fj(0)
rjβ

1
2
j

,

and conclude that, passing possibly to a subsequence, the hj ’s converge weakly in the Sobolev
space W 1,2((−σ, σ)) to a function h. Note that, because of the embedding W 1,2((−σ, σ)) ⊂
C1/2((−σ, σ)) the convergence is uniform, and in particular we conclude that h(0) = 0.
Moreover ˆ

h′ζ ′ = 0 ∀ζ ∈ C∞
c ((−σ, σ)).

Hence, h(x) = ax1 for some constant a ∈ R. Consider Vj := {(x1, fj(0) + β
1
2
j ax1) | x1 ∈ R},

then from Proposition 3.3.1 (ii), recalling that τ < τ1 ≤ σ
2 , we concludeˆ

Bτrj ∩Γj

dist2(x,Vj) dH1 = o(r3
jβj). (3.4.4)

On the other hand, from Proposition 3.3.1 (i), (iii) and (3.4.1) we have (assuming α there
to be such that 2α ≤ 1)ˆ

Bτrj ∩(Kj\Γj)
dist2(x,Vj) dH1 ≤ Cr2

jβ
2α
j H1(Kj \ Γj) ≤ Cδ̄−1r3

jβ
2α+1
j , (3.4.5)

where C > 0 is a constant. Hence, putting together (3.4.4) and (3.4.5),ˆ
Bτrj ∩Kj

dist2(x,Vj) dH1 = o(r3
jβj)

contradicting (3.4.3), and so we are done with the proof of (3.2.7).

3.4.2. Proof of Lemma 3.2.3. We argue by contradiction. Let τ2 > 0, to be suitably
chosen afterwards: then there are τ ∈ (0, τ2), δ̄ > 0, and sequences (uj, Kj) of minimizers
of Eλj

, real numbers cj and radii rj such that

dj := 1
rj

ˆ
Brj \Kj

|∇uj|2 → 0 ,

δ̄max{βj, λj∥gj∥2
∞r

1
2
j } := δ̄max

 1
r3
j

ˆ
Brj ∩Kj

|x2 − cj|2, λj∥gj∥2
∞r

1
2
j

 ≤ dj , (3.4.6)

min
A

ˆ
Brj ∩Kj

dist2(x,A )dH1 =
ˆ
Brj ∩Kj

|x2 − cj|2 dH1 ,

and ˆ
Bτrj \Kj

|∇uj|2 ≥ τ
3
2 rjdj. (3.4.7)
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Let (vj, K̄j) be defined by K̄j := r−1
j Kj, and vj(y) := (djrj)− 1

2uj(rjy). In view of Proposi-
tion 3.3.1, the assumptions above and the density lower bound yield that K̄j ∩

[
−1

2 ,
1
2

]2
→

{x2 = 0, |x1| ≤ 1
2} in Hausdorff convergence. In addition,ˆ

B1\K̄j

|∇vj|2 = 1, (3.4.8)

thus by compactness for harmonic functions there exist harmonic functions v± and constants
κj such that, up to subsequences,

vj − κj → v± in W 1,2
loc (B±

1 ), (3.4.9)
where B±

ρ := Bρ ∩ {±x2 > 0}, ρ > 0. The heart of the proof is to show that

lim
j→∞

ˆ
Bσ

2
\K̄j

|∇vj|2 =
ˆ
B+

σ
2

|∇v+|2 +
ˆ
B−

σ
2

|∇v−|2 (3.4.10)

(σ the constant introduced in Proposition 3.3.1). In fact, once we have (3.4.10) we can
easily conclude from (3.4.7) and (3.4.8) that

τ
3
2

(ˆ
B+

σ
2

|∇v+|2 +
ˆ
B−

σ
2

|∇v−|2
)

≤ τ
3
2 ≤

ˆ
B+

τ

|∇v+|2 +
ˆ
B−

τ

|∇v−|2.

On the other hand, from the harmonicity of v± we have for τ < σ
2ˆ

B±
τ

|∇v±|2 ≤ 4τ 2

σ2

ˆ
B±

σ
2

|∇v±|2,

and we get a contradiction as long as 4τ2

σ2 < τ
3
2 , for instance by choosing τ2 = σ4

32 .
We are now left to establish (3.4.10). By (3.4.9), it is enough to prove that the Dirichlet

energy of vj on B±
σ
2

does not concentrate on
[
−σ

2 ,
σ
2

]
× {0}. For the sake of contradiction, if

the energy concentrates, there would exist a constant θ > 0 and a sequence εj → 0 such
that ˆ

(− σ
2 ,

σ
2 )×(−

εj
2 ,

εj
2 )\K̄j

|∇vj|2 ≥ θ. (3.4.11)

Up to replacing εj with max{εj, C(δ̄−1dj)α}, where C is the constant in (iv) of Proposi-
tion 3.3.1, we may assume εj ≥ C(δ̄−1dj)α. Thus, using (3.4.6), we infer that εj ≥ Cβαj .

To get a contradiction, we first note that being (uj, Kj) a minimizer of Eλj
on Brj

,
(vj, K̄j) minimizes on B1 the functional

Fj(v, K̄) :=
ˆ
B1

|∇v|2 + 1
dj

H1(K̄ ∩B1) + λjr
2
j

ˆ
B1

|v − ḡj|2 (3.4.12)

where ḡj(x) := (djrj)− 1
2 gj(rjx). We next use (3.4.11) to build a competitor (wj, K ′

j) for
(vj, K̄j) with Fj(wj, K ′

j) < Fj(vj, K̄j) for j large, which contradicts the minimality of
(vj, K̄j). For the sake of simplicity we assume that the minimizers are absolute minimizers,
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the reader can anyway easily check that the competitor exhibited below is allowed also in
the case of restricted and generalized minimizers.

To this aim consider the 1-Lipschitz function fj : [−σrj, σrj] → R given by Proposi-
tion 3.3.1 applied to (uj, Kj). Note that by item (ii) there ∥fj∥C0 ≤ Crj(δ̄−1dj)α, and by
item (iii) there and by (3.4.6) we haveˆ σrj

−σrj

|f ′
j|2 ≤ Cδ̄−1rjdj, H1((gr (fj)△Kj)△[−σrj, σrj]2) ≤ Cδ̄−1rjdj,

where C > 0 is a constant, and by item (iv) for any Λ, ε > 0 for j sufficiently large
H1([−σrj, σrj] \ πV0(Kj ∩ {|x2| < εrj})) ≤ Λrjdj.

In particular, the function f̄j(t) := r−1
j fj(rjt), t ∈ [−σ, σ], is 1-Lipschitz with ∥f̄j∥C0 ≤

C(δ̄−1dj)α < εj, andˆ σ

−σ
|f̄ ′
j|2 ≤ Cδ̄−1dj, H1((gr (f̄j)△K̄j)△[−σ, σ]2) ≤ Cδ̄−1dj, (3.4.13)

and
H1([−σ, σ] \ πV0(K̄j ∩ {|x2| < ε})) ≤ Λdj. (3.4.14)

In view of (3.4.8) and (3.4.14), an elementary averaging argument implies that we can find
two points, aj ∈ [−σ,−3

4σ] and bj ∈ [3
4σ, σ], with the property that on the region

Rj := ([aj − εj, aj + 2εj] ∪ [bj − εj, bj + 2εj]) ×
[
−3

4σ,
3
4σ
]

we have ˆ
Rj\K̄j

|∇vj|2 ≤ Cεj, H1((K̄j△gr(f̄j)) ∩Rj) ≤ Cεjdj, (3.4.15)

for some positive constant C depending on σ and δ̄. Let hj be the affine function such
that hj(aj) = f̄j(aj) and hj(bj) = f̄j(bj). Note that ∥hj∥C0 ≤ Cδ̄−α

j dαj , and |h′
j| ≤ Cd

1
2
j by

(3.4.13). Next, for simplicity of exposition we assume that the graph of hj is horizontal
(this is clearly always true up to a rotation). Let hj ≡ h̄j ∈ R under the new choice of
coordinates. In particular, h̄j → 0 as j ↑ ∞.

Set Qj := [aj, bj ] ×
[
−σ

2 ,
σ
2

]
, assuming σ sufficiently small we construct a map Φj : B1 →

B1 as follows (see Figure 1 for a visual description of Φj):
• Φj(x1, x2) = (x1, x2), if (x1, x2) ∈ B1 \Qj;
• Φj(x1, x2) = (x1, φj(x1, x2)) if (x1, x2) ∈ Qj;

where φj : Qj → Qj is defined by
• If aj + εj ≤ x1 ≤ bj − εj, the map x2 7→ φj(x1, x2)

i) is identically h̄j for |x2 − h̄j| ≤ 2εj;
ii) maps linearly the segments {x1} × [h̄j + 2εj, σ2 ] and {x1} × [−σ

2 , h̄j − 2εj ] onto
{x1} × [h̄j, σ2 ] and {x1} × [−σ

2 , h̄j], respectively.
• If aj ≤ x1 ≤ aj + εj, the map x2 7→ φj(x1, x2)
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x1

x2
σ
2

−σ
2

aj bj

Figure 1. A visual description of the map Φj in the rotated coordinates
(x1, x2). The map is the identity outside the gray zones. The diamond shaped
dark gray zone is the region Σj: Φj “squeezes” it on the horizontal central
segment Sj (which lies on the dashed horizontal line). The 6 lighter gray
zones are consequently stretched by Φj: in Tj, the two central lightest ones,
and in the four remaining lateral zones the Lipschitz constant is controlled
by 1 +Cεj . The set K̄j is depicted by the thick arcs, while the graph of f̄j is
thick and dashed (and has a large overlap with K̄j). While the graph of f̄j
must lie in the region Σj , there might well be portions of K̄j which lie outside.

i) is identically h̄j if |x2 − h̄j| ≤ 2(x1 − aj);
ii) maps linearly the segments {x1} × [h̄j + 2(x1 − aj), σ2 ] and {x1} × [−σ

2 , h̄j −
2(x1 − aj)] onto {x1} × [h̄j, σ2 ] and {x1} × [−σ

2 , h̄j], respectively.
• If bj − εj ≤ x1 ≤ bj, the map x2 7→ φj(x1, x2)

i) is identically h̄j if |x2 − h̄j| ≤ 2(bj − x1);
ii) maps linearly the segments {x1} × [h̄j + 2(bj − x1), σ2 ] and {x1} × [−σ

2 , h̄j −
2(bj − x1)] onto {x1} × [h̄j, σ2 ] and {x1} × [−σ

2 , h̄j], respectively.
Let Sj := [aj, bj ] × {h̄j}, Σj := Φ−1

j (Sj), Tj := {(x1, x2) ∈ Qj : aj + εj ≤ x1 ≤ bj − εj, 2εj ≤
|x2 − h̄j| ≤ σ

2 }, and Uj := [aj + εj, bj − εj] × [−σ
2 ,

σ
2 ]. Then

(a) Φj|Σj
is the projection onto Vj := {(x1, h̄j) : x1 ∈ R} with Φj(Σj) = Sj, Φj : B1 →

B1 is Lipschitz, and Φj : B1 \ Σj → B1 \ Sj is bi-Lipschitz;
(b) ∥DΦj∥L∞((B1\Qj)∪Σj ,B1) = 1, ∥DΦj∥L∞(Qj\Σj ,B1) ≤ 1 + Cεj, and

∥D(Φ−1
j )∥L∞(B1\Sj ,B1\Σj) ≤ 1 + Cεj, for some universal C > 0, and where we are

using the operator norm on DΦj;
(c) gr (f̄j) ∩Qj ⊂ Σj.

The competitor (wj, K ′
j) to test the minimality of (vj, K̄j) for Fj is then given by

K ′
j := (K̄j \Qj) ∪ Sj ∪ Φj(K̄j \ Σj), wj := vj ◦ Φ−1

j on B1 \K ′
j
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In particular, note that the number of connected components of K ′
j is less than or equal to

that of K̄j.
We begin by estimating the length of K ′

j . First note that K ′
j\Qj = K̄j\Qj . Furthermore,

we have

H1(Sj) = H1(Φj(K̄j ∩ Σj)) + H1(Sj \ Φj(K̄j ∩ Σj))
(a),(b)

≤ H1(K̄j ∩ Σj) + H1([aj, bj] × {h̄j} \ πVj
(K̄j))

(3.4.14)
≤ H1(K̄j ∩ Σj) + Λdj

where we recall that Vj = {(x1, h̄j) : x1 ∈ R}. On the other hand, the very definition of K ′
j

gives

H1((K ′
j ∩Qj) \ Sj) = H1(Φj((K̄j ∩Qj) \ Σj))

(b)
≤ (1 + Cεj)H1((K̄j ∩Qj) \ Σj)

(c)
≤ H1((K̄j ∩Qj) \ Σj) + CεjH1((K̄j ∩Qj) \ gr (f̄j))
(3.4.13)

≤ H1((K̄j ∩Qj) \ Σj) + Cεjdj .

Hence, we conclude that

H1(K ′
j ∩B1) ≤ H1(K̄j ∩B1) + Λdj + o(dj). (3.4.16)

Now, we estimate the Dirichlet energy. Note that wj = vj on B1 \Qj, and in addition
thatˆ

Uj\K′
j

|∇wj|2
(a),(b)

≤ (1 + Cεj)2
ˆ
Tj\K̄j

|∇vj|2
(3.4.11)

≤ (1 + Cεj)2
(ˆ

Qj\K̄j

|∇vj|2 − θ

)
.

and thatˆ
Qj\(Uj∪K′

j)
|∇wj|2 ≤∥D(Φ−1

j )∥2
L∞(B1\Sj ,B1\Σj)

ˆ
Qj\(Uj∪K̄j)

|∇vj|2
(3.4.15), (b)

≤ Cεj .

Therefore, we conclude by (3.4.8) that
ˆ
B1\K′

j

|∇wj|2 ≤
ˆ
B1\K̄j

|∇vj|2 − θ + o(1). (3.4.17)

By taking into account that ∥wj∥L∞(B1) = ∥vj∥L∞(B1) ≤ ∥ḡj∥L∞(B1) = (djrj)− 1
2 ∥gj∥L∞(Brj ),

and that λj∥gj∥2
L∞(B1)rj ≤ δ̄−1r

1/2
j dj in view of (3.4.6), adding up (3.4.16) and (3.4.17) we

get from the very definition of Fj in (3.4.12)

Fj(wj, Kj) ≤ Fj(vj, K̄j) + Λ − θ + o(1),

which, for j large enough and Λ < θ, contradicts the fact that (K̄j, vj) minimizes Fj.
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3.5. Regularity at pure jumps: conclusion

We are now ready to show how the ε-regularity Theorem 3.1.1 follows from the decay
Proposition 3.2.1.

Proof of Theorem 3.1.1. Without loss of generality assume that x = 0 and that
θ = 0. First note that the very definition of β in (3.2.2) gives

β(0, 2r) ≤ (2r)−3dist2
H(K ∩ B̄2r,V0 ∩ B̄2r)H1(K ∩ B̄2r)

≤ C(Ωj(0, 0, r))2(1 + λ∥g∥2
∞r

2) ≤ CΩj(0, 0, r)
where C > 0 is a universal constant, assuming ε ∈ (0, 1), and using assumption (ii) and the
energy upper bound in (1.4.1) for the last inequality. In turn, from this we deduce that

β(0, 2r) + d(0, 2r) + λ∥g∥2
∞(2r) 1

2 ≤ C(Ωj(0, 0, r) + λ∥g∥2
∞r

1
2 ) =: ε(r) < Cε .

Then from assumption (ii), (3.2.4) and (3.2.5) we get

β(z, r) + d(z, r) + λ∥g∥2
∞r

1
2 < Cε(r) ∀z ∈ Br .

Using Proposition 3.2.1, if ε is chosen sufficiently small, we get for all k ∈ N

β(z, τ kr) + d(z, τ kr) + λ∥g∥2
∞(τ kr) 1

2 < Cε(r)τ k
2 ∀z ∈ K ∩Br .

In particular, we can easily conclude

β(z, ρ) + d(z, ρ) + λ∥g∥2
∞ρ

1
2 ≤ Cε(r)ρ 1

2 ∀ρ < r, ∀z ∈ K ∩Br (3.5.1)
(where from now on we stop keeping track of geometric constants). From the Tilt
Lemma 3.3.2 we infer that

exc(z, ρ) ≤ Cε(r)ρ 1
2 ∀ρ < r

4 ,∀z ∈ K ∩Br. (3.5.2)

For each z and ρ as above, let now V (z, ρ) ∈ L be such that
exc(z, ρ) = excV (z,ρ)(z, ρ),

(cf. (3.3.1) and (3.3.2) for the definition of excess), then observe that for all ρ < t < r
8 and

t ≤ 2ρ, using the density lower bound in Theorem 2.1.3, we have

|V (z, ρ) − V (z, t)|2 ≤ C

ρ

ˆ
K∩Bρ(z)

|V (z, ρ) − V (z, t)|2dH1(y)

≤ C(exc(z, ρ) + exc(z, t))
(3.5.2)

≤ Cε(r)ρ 1
2 . (3.5.3)

Additionally, with a similar argument we infer that

|V (z, ρ) − V (y, ρ)|2 ≤ Cε(r)ρ 1
2 ∀z, y ∈ K ∩Br with |z − y| ≤ ρ

4 , ρ < r
8 .

Combining both estimates with (3.5.2), an elementary summation argument on dyadic
scales yields that

|V (z, ρ) − V (0, r16)|2 ≤ Cε(r)r 1
2 ∀z ∈ K ∩B r

16
,∀ρ < r

8 .
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If we rotate the coordinates so that V (0, r16) is the horizontal line V0, the density lower
bound in Theorem 2.1.3, (3.5.2) and the latter inequality imply that

excV0(z, ρ) = 1
ρ

ˆ
K∩Bρ(z)

|TyK − V0|2 dH1(y) ≤ Cε(r)r 1
2 ∀z ∈ K ∩B r

16
,∀ρ < r

8 .

Therefore, thanks to (3.5.1) and (3.3.3) in Proposition 3.3.1, we know that for a choice of ε
sufficiently small there is a 1-Lipschitz function f : [−σr, σr] → R such that K∩Bσr ⊆ gr (f),
where σ is the geometric constant in Proposition 3.3.1. This shows the graphicality of K
over V (0, r16), but since the angle between V (0, r16) and V0 is small, we have in fact shown
also graphicality over V0.

In addition, estimate (3.5.1) yields that

lim
ρ↓0

1
ρ

ˆ
Bρ(z)

|∇u|2 = 0

for every z ∈ K ∩ B r
16

. Hence, by Theorem 2.4.1 any blow-up at every such z is either a
pure jump or a triple junction. On the other hand, since β(z, ρ) ↓ 0 as ρ ↓ 0 (cf. (3.5.1)),
we infer that any blow-up is in fact a pure jump. In particular, we conclude that

lim
ρ↓0

H1(K ∩Bρ(z))
2ρ = 1 . (3.5.4)

Note that, choosing ε sufficiently small, we can assume that K ∩ Bσr
4

is not empty (cf.
item (i) in Proposition 3.3.1). In particular, ∥f∥C0([− σr

4 ,
σr
4 ]) ≤ 3

4σr. Denote by R the open
rectangle

R =
(

− σr

4 ,
σr

4
)

×
(

− 3
4σr,

3
4σr

)
.

We show next that K ∩R = gr (f) ∩R. We know that πV0(K ∩R) is a relatively closed set
inside I = (−σr

4 ,
σr
4 ) and it is not empty. If I \ πV0(K) is not empty, then it contains at

least an open interval (a, b) with one extremum, say b, which belongs to πV0(K). Namely
y = (b, f(b)) ∈ K ∩ R, but the density of the set K at y would be strictly less than 1, a
contradiction to (3.5.4). Hence K ∩R = gr (f) ∩R, in particular K ∩Bσr

4
= gr (f) ∩Bσr

4
.

Finally, observe that the limit of V (z, ρ) for ρ ↓ 0 exists at every z = (s, f(s)) ∈ K∩gr (f)
by (3.5.3), that together with (3.5.2) yield that any s ∈ I is a Lebesgue point of f ′. In turn,
this fact implies the differentiability of f at every s ∈ I, with the limit being the graph
of the linear map t 7→ f ′(s)t (cf., for instance, the proof of Rademacher’s theorem in [5,
Theorem 2.14]). In particular, the decay of exc(z, ·) in (3.5.2) can be translated into s+δ

s−δ
|f ′(t) − f ′(s)|2 dt ≤ Cε(r)δ 1

2 ∀δ ≤ σρ0 − |s|,

and so the classical Campanato’s theorem implies that f ∈ C1, 1
4 (I) with [f ′] 1

4
≤ (Cε(r)) 1

2

(cf. [5, Theorem 7.51]). Estimate (3.1.2) follows from this and Proposition 3.3.1. This
proves the claim of the theorem except that the graphicality of K has been shown in Bσr

4
rather than in Br. Note however that we can proceed with a simple covering argument to
achieve graphicality in Br (provided we choose ε even smaller). □
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3.6. Triple junctions, closeness at all scales

We turn to the proof of Theorem 3.1.2. We start off proving the following fact: if around
a point x a minimizer is close to a triple junction at some scale r, then there is a nearby
point y such that the minimizer is close to a triple junction at every scale ρ < r around y.
In order to formulate our conclusion more precisely, we recall the notation introduced in
Theorem 3.1.2

Ωt(θ, x, r) = r−1distH
(
K ∩B2r(x), (x+ Rθ(T0)) ∩B2r(x)

)
+ r−1

ˆ
B2r(x)\K

|∇u|2 ,

where θ ∈ [0, 2π], Rθ is the corresponding rotation, and T0 is defined in (3.1.3). Furthermore
we define

Ωt(x, r) := inf
θ

Ωt(θ, x, r) . (3.6.1)

Lemma 3.6.1. For every δ > 0 there is η > 0 such that the following holds. Assume
that (u,K) is a minimizer of Eλ in B2r(x) such that

Ωt(x, r) + λ∥g∥2
∞r

1
2 < η .

Then there is a y ∈ Bδr(x) such that

Ωt(y, ρ) + λ∥g∥2
∞ρ

1
2 ≤ δ ∀ρ < r .

Lemma 3.6.1 follows in fact easily from the following more technical statement.
Lemma 3.6.2. There exists γ0 > 0 such that for every γ ∈ (0, γ0) there is ε0(γ) > 0

with the following property. For every ε ∈ (0, ε0) there is N = N(ε) ∈ N such that for
all r ∈ (0, 1], for all (u,K) minimizer of Eλ in B2r(x), and for all (N + 1)-ple of points
x0 = x, x1, . . . , xN in B2r(x) such that

Ωt(xk, 2−kr) + λ∥g∥2
∞(2−kr) 1

2 ≤ ε ∀k ∈ {0, . . . , N}
|xk+1 − xk| ≤ γ2−kr ∀k ∈ {0, . . . , N − 1} ,

then there is a point xN+1 ∈ B2r(x) such that

Ωt(xN+1, 2−N−1r) + λ∥g∥2
∞(2−N−1r) 1

2 ≤ ε

|xN+1 − xN | ≤ γ2−Nr .

3.6.1. Proof of Lemma 3.6.1. Without loss of generality x = 0. Fix δ > 0, and
additionally choose ε and γ sufficiently small, whose choice will be specified later, so that
Lemma 3.6.2 is applicable. Let N be given by Lemma 3.6.2 and notice that, if η is chosen
sufficiently small, the assumption of that Lemma holds with x = x0 = x1 = . . . = xN = 0.
We thus find xN+1 as in the conclusion there. Observe therefore that we can apply the
lemma again in B r

2
(x1), but this time the points x0, . . . , xN substituted by x1, . . . , xN+1.

Proceeding inductively we find a sequence of points {xk} with:
• x0 = 0;
• |xk+1 − xk| ≤ γ2−kr;
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• Ωt(xk, 2−kr) + λ∥g∥2
∞(2−kr) 1

2 ≤ ε.
Since {xk} is a Cauchy sequence, it has a limit y. Observe that |y − xk| ≤ γ2−k+1r. Fix
ρ ≤ r and choose k such that 2−k−1r < ρ ≤ 2−kr. In particular Bρ(y) ⊂ B2−k+1r(xk). Let
θk be such that

Ωt(θk, xk, 2−kr) + λ∥g∥2
∞(2−kr) 1

2 ≤ ε .

Observe that

ρ−1distH
(
K ∩B2ρ(y), (y + Rθk

(T0)) ∩B2ρ(y)
)

+ ρ−1
ˆ
B2ρ(y)

|∇u|2 + λ∥g∥2
∞ρ

1
2

≤Cγ + C(2−kr)−1distH
(
K ∩B2−k+1r, (xk + Rθk

(T0)) ∩B2−k+1r(xk)
)

+ C(2−kr)−1
ˆ
B2−k+1r

(xk)
|∇u|2 + Cλ∥g∥2

∞(2−kr) 1
2 ≤ C(γ + ε) ,

where C ≥ 1 is a geometric constant. We choose first Cγ ≤ δ
4 . Having fixed γ, we can

take ε0(γ) as in Lemma 3.6.2 and hence impose that Cε < min{ε0(γ), δ4}. This ensures the
applicability of Lemma 3.6.2 in the argument above, and the inequality C(γ + ε) < δ. We
thus conclude

Ωt(y, ρ) + λ∥g∥2
∞ρ

1
2 ≤ Ωt(θ, y, ρ) + λ∥g∥2

∞ρ
1
2 < δ .

3.6.2. Proof of Lemma 3.6.2 for absolute and generalized minimizers. The
argument for the two cases is entirely analogous and for simplicity we focus on absolute
minimizers.

Without loss of generality x = 0. We argue by contradiction. We assume that, for
some γ > 0 and ε > 0 sufficiently small (the smallness will be specified later) and for every
N ∈ N there are

(a) A family of numbers λN ∈ [0, 1];
(b) A family of fidelity functions gN with ∥gN∥∞ ≤ M0;
(c) A family of radii rN ∈ (0, 1];
(d) A family of points xk,N , with k ∈ {0, . . . , N}, and

x0,N = 0 (3.6.2)
|xk+1,N − xk,N | ≤ γ2−krN ∀k ∈ {0, . . . , N − 1} ; (3.6.3)

(e) An absolute minimizing pair (uN , KN) of EλN
(·, ·, B2rN

, gN) for which

Ωt(xk,N , 2−krN) + λN∥gN∥2
∞(2−krN) 1

2 ≤ ε , (3.6.4)

for all k ∈ {0, . . . , N};
(f) For every y ∈ Bγ2−NrN

(xN,N)

Ωt(y, 2−N−1rN) + λN∥gN∥2
∞(2−N−1rN) 1

2 > ε . (3.6.5)
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For each N we consider the rescaled pairs
vN(x) := (2−NrN)− 1

2uN
(
xN,N + 2−NrNx

)
, (3.6.6)

JN := (2−NrN)−1(KN − xN,N) . (3.6.7)
Next, observe that from items (a)-(c) above we achieve

lim
N→∞

λN∥gN∥2
∞(2−NrN) 1

2 = 0 . (3.6.8)

We can therefore apply Theorem 2.2.3 to conclude the convergence, up to subsequences, of
(vN , JN) to a generalized minimizer (v, J, {pkl)}) of E0.

Note that, the points xk,N are mapped to points yk,N := (2−NrN )−1(xk,N − xN,N ). From
(3.6.3) we immediately get

|yN−k,N | ≤ γ
k∑
j=1

2j ≤ γ2k+1 .

In particular, for every fixed k ≥ 1, up to extraction of an appropriate subsequence, we
can assume that yN−k,N converges to a point yk with |yk| ≤ γ2k+1. In particular for (v, J),
from (3.6.4) we immediately conclude

Ωt(yk, 2k) ≤ ε ∀k ∈ N . (3.6.9)
But from the convergence in Theorem 2.2.3, from (3.6.5) and (3.6.8), we also conclude that

Ωt(z, 1/2) ≥ ε ∀z ∈ Bγ . (3.6.10)
For each k choose θk such that

distH(J ∩B2k+1(yk), yk + Rθk
(T0)) = min

θ
distH(J ∩Bk+1(yk), yk + Rθ(T0)) .

We fix δ > 0 and we wish now apply Corollary 3.1.4 to the pair (2−k(J −yk), 2− k
2 v(yk + 2k·))

choosing (u,K) equal to (Rθk
(T0)), 0), while U = B1 \ B̄γ and V = B1−γ \B2γ. This just

requires ε to be chosen sufficiently small depending on γ and δ. In particular we conclude
that 2−k(J − yk) ∩ (B1−γ \B2γ) is the union of three C1 arcs, δ-close to the three segments
Rθk

(T0)) ∩ (B1−γ \ B2γ). Scaling back, we conclude that in Ak := J ∩ (B2k(1−γ) \ B2k+1γ)
the set J consists of three C1 arcs with Hausdorff distance less than δ2k from the three
segments yk + Rθk

(T0). Choosing γ smaller than a geometric constant, it is easy to see
that each of the three C1 curves Ak ∩ J coincide with one of the three C1 curves Ak+1 ∩ J
in Ak ∩ Ak+1, and viceversa, see Figure 2.

Thus J ∩ (R2 \B 1
2
) consists of three distinct nonselfintersecting C1 infinite curves Γi,

which subdivide R2 \B 1
2

in three infinite connected components. Note that, moreover, for
each r ≥ 1

2 , each curve Γi intersects each ∂Br in exactly one point pi(r) and that, the three
points p1(r), p2(r), p3(r) subdivide ∂Br in three arcs of length 2π

3 r(1−δ) ≤ li(r) ≤ 2π
3 r(1+δ).

Therefore, we are in a position to apply Proposition 2.6.2 and deduce from (2.6.3) thatˆ 2k+1

2k

1
ρ

ˆ
∂Bρ

|∇v|2dρ ≤ C
(
F (2k+1) − F (2k)

)
∀k ≥ −1 ,
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A1 A0

Figure 2. The region A1 is delimited by the two dashed circles, while the
region A0 is delimited by the two dashed-and-dotted circles. In each of this
regions the set J consists of three C1 arcs which are close to three straight
lines meeting at 120 degrees. The arcs must coincide where the regions A0
and A1 overlap, hence J ∩ (A0 ∪ A1) consists of three C1 arcs.

where we recall that F (r) := 2d(r) + ℓ(r)
r

. Summing for k = −1 to k0 − 1, using that F (r)
is positive and thanks to the density upper bound (1.4.1), we conclude

ˆ 2k0

1
2

1
ρ

ˆ
∂Bρ

|∇v|2dρ ≤ CF (2k0) ≤ C

2k0
E0(v, J, B2k0 ) ≤ C . (3.6.11)

Letting k0 to infinity we achieveˆ ∞

1
2

1
ρ

ˆ
∂Br

|∇v|2dρ ≤ C ,

or equivalently by integration on dyadic intervals,∑
k≥0

2−k
ˆ
B2k \B2k−1

|∇v|2 ≤ C . (3.6.12)

We claim that (v, J, {pij}) is indeed a triple junction, with z0 being the point where the three
half-lines meet together. This obviously would give a contradiction to (3.6.10), because
Ωt(0, 2) ≤ ε, with ε ≤ ε0(γ), would imply, for an appropriately chosen ε0(γ), that z0 belongs
to Bγ.

To this aim we start off showing that for all R ≥ 1 the connected components of ∂BR \J
belong to three distinct connected components of R2 \ J . As a first step we show that each
“blow-down” of (v, J, {pij}), i.e. any limit as R → ∞ of a subsequence of the rescalings
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(v0,R, J0,R, {pij}), is a triple junction. For the sake of notational simplicity we drop 0 in the
previous subscripts.

First of all, since v is harmonic in R2 \ J and being J \B 1
2

smooth, standard estimates
for harmonic functions give for every k ≥ −1

∥∇v∥2
L∞(B2k+1 \(B2k ∪J)) ≤ C

(
2−2k

ˆ
B2k+2 \(B2k−1 ∪J)

|∇v|
)2

≤ C2−2k
ˆ
B2k+2 \(B2k−1 ∪J)

|∇v|2

(3.6.13)
C > 0 independent of k. Recall that Γi is locally C1,1 by item (b) in Proposition 2.5.2, and
that by (2.5.4)

κi = −(|∇v+|2 − |∇v−|2) H1-a.e. on Γi
where κi denotes the curvature of Γi. Thus we conclude from the energy upper bound
(1.4.1), and estimates (3.6.12) and (3.6.13)ˆ

J\B 1
2

|κi|dH1 ≤ 2
∑
k≥0

∥∇v∥2
L∞(B2k \(B2k−1 ∪J))H1

(
Γi ∩ (B2k \ (B2k−1 ∪ J))

)

≤ C
∑
k≥0

2−k
ˆ
B2k+2 \(B2k−1 ∪J)

|∇v|2 ≤ C .

In particular, each Γi is asymptotic at ∞ to some straight line ℓi, and in particular as
R ↑ ∞, JR converges, locally in the sense of Hausdorff, to a set J∞ which is the union of
three half-lines meeting at the origin. Apply Theorem 2.3.2 and let (v∞, J∞, {qkl}) be any
limit of a subsequence Rj ↑ ∞ of (vRj

, JRj
, {pkl}). It follows that v∞ is harmonic in each of

the three sectors which form the connected components of R \ J∞ and that ∂v∞
∂ν

= 0 on J∞.
We also know that the angles formed by the three half-lines ℓi are all close to 2π

3 . Using
Theorem 2.4.1(iii) we conclude that (v∞, J∞, {qkl}) is a triple junction.

We next argue that the three connected components of R2 \ (B 1
2

∪ J) belong to different
connected components of R2 \ J . In turn, this implies the claim that ∂BR \ J belongs to
three different connected components of R2 \ J for all R ≥ 1. Indeed, by contradiction fix
two connected components Ω1 and Ω2 of R2 \ (B 1

2
∪J) and two arbitrary points q1 ∈ Ω1 and

q2 ∈ Ω2 that are connected by a C1 arc in R2 \ J . The boundaries of Ω1 and Ω2 have one of
the Γi in common and to fix ideas let us assume it is Γ1. The latter is asymptotic to the half
ℓ1, which is common to the boundaries of two of the sectors of R2 \J∞. We denote Λ1 and Λ2
these two sectors and we fix two points q̂1 ∈ Λ1 and q̂2 ∈ Λ2 with |q̂1| = |q̂2| = 1. It is then
easy to see that there are two C1 curves σ1, σ2 contained in R2 \ (B 1

2
∪ J) and containing,

respectively, q1 and q2, and such that for R sufficiently large, σi \BR = {ρq̂i : ρ ≥ R}. Thus
by (3.6.12) and (3.6.13) we can write, for 2k−1 ≥ R,

|v(2kq̂i) − v(2k−1q̂i)| ≤
ˆ
σi∩(B2k \B2k−1 )

|∇v| dH1

≤ H1
(
σi ∩ (B2k \B2k−1)

)
∥∇v∥L∞(B2k \B2k−1 ) ≤ C 2 k

2
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Hence we can estimate
|v(2kq̂1) − v(2kq̂2)| ≤ C2 k

2 ,

given that there is a curve connecting Rq̂1 and Rq̂2 which does not intersect J .
On the other hand, since all blow-downs of (v, J, {pkl}) are triple junctions, from

Theorem 2.3.2 we necessarily conclude that

lim
k→∞

|v(2kq̂1) − v(2kq̂2)|
2 k

2
= ∞ ,

which would be a contradiction.
In particular, having shown that each connected component of ∂BR \ J belongs to

distinct connected components of R2 \ J , we can apply Proposition 2.6.1, and thus we
conclude that

[1,∞) ∋ R 7→ 1
R

ˆ
BR\J

|∇v|2

is nondecreasing in R. Since however we know that the blow-downs of (v, J, {pkl}) are triple
junctions, we have

lim
R↑∞

1
R

ˆ
BR\J

|∇v|2 = 0 .

We thus conclude that
´
BR\J |∇v|2 = 0 for every R ≥ 1. In particular by Theorem 2.4.1

(v, J, {pkl}) is itself a triple junction.

3.6.3. Proof of Lemma 3.6.2 for restricted minimizers. In the case of restricted
(and generalized restricted) minimizers, we apply the same procedure above. Note, however,
that we cannot immediately conclude that the blow-downs are triple junctions, because
the proof that (v∞, J∞, {qkl}) are triple junctions, i.e. |qkl| = ∞, relies on a comparison
with a competitor which increases the number of connected components. Now, assume
that for every fixed R > 1 the number of connected components of the sets JRj

in the
blow-down sequence is larger than 1, namely at least two, for an infinite number of j. Then,
for the limiting blow-down we can use a competitor which has two connected components,
because the cut-and-paste argument which from this competitor yields the competitors
for the approximating sequence keeps the same number of connected components. On the
other hand the argument |qkl| = ∞ relies indeed in using a better competitor which has
two connected components. Hence in this case the conclusion is valid and in particular the
set J is connected. If instead there is an R for which the number of connected components
of the JRj

is 1 for an infinite set of j’s, then we conclude directly that J is connected. At
any rate, in both cases J must be connected. Hence we can apply the monotonicity formula
in Proposition 2.6.1 and conclude that J is the union of three half lines, while v is locally
constant. Note that the proof that the three half lines must meet at 120 degrees holds for
restricted minimizers as well, since it is based on exhibiting competitors that consist of a
single connected component.
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3.7. Proof of Theorem 3.1.2

Denote by ε0 the constant in assumption (ii) of Theorem 3.1.1 and fix a δ > 0, whose
choice will be specified later. Let then the constant ε in the statement of Theorem 3.1.2
be smaller than the constant η provided by the conclusion of Lemma 3.6.1. Let y be the
point in Bδr(x) provided by Lemma 3.6.1 itself. Arguing as in Lemma 3.6.2, if δ is chosen
sufficiently small with respect to ε0, then K ∩Br(y) \ {y} consists of three arcs Γ1,Γ2,Γ3
with the following properties:

(i) Each Γi is a C1, 1
2 arc in Br(1−s)(y) \Brs(y) for every s ∈ (0, 1

2).
(ii) For every k ∈ N, k ≥ 1, there is an angle θk such that K ∩ (B2−kr(y) \B2−k−1r(y))

is δ2−kr close in the Hausdorff distance to (y+ Rθk
(T0))) ∩ (B2−kr(y) \B2−k−1r(y)).

(iii) Each Γi is, in B2−kr(y) \B2−k−1r(y), a C1, 1
2 graph over the corresponding straight

line ℓk,i of y + Rθk
(T0) of a function ψk,i with ∥ψ′

k,i∥∞ ≤ Cδ.
From now on, in order to simplify our notation, we assume without loss of generality that
y = 0.

We are now in the position to apply Proposition 2.6.2 for all radii ρ ∈ (0, r). Thus, from
(2.6.3) we infer that

D′(ρ)
ρ

≤ C F ′(ρ) + C

for L1 a.e. ρ ∈ (0, r). Therefore, by direct integration and the density upper bound (1.4.1)
we deduce thatˆ r

0

D′(ρ)
ρ

dρ ≤ CF (r) + Cr ≤ C

r
Eλ(u,K,Br, g) + Cr ≤ C ,

for a dimensional constant C > 0, or equivalently by passing to dyadic intervals,∑
k≥2

1
2−kr

ˆ
B2−k+2r

\B2−k+1r

|∇u|2 ≤ C . (3.7.1)

Since ∆u = λ(u−g) on B2r \K, K∩ (B2−k+2r \B2−k+1r) is C1, 1
2 and u satisfies the Neumann

boundary conditions on K, by elliptic regularity we have

∥∇u∥2
L∞(B2−k+1r

\(B2−kr
∪K)) ≤ C

2−2kr2

ˆ
B2−k+2 \(B2−k−1r

∪K)
|∇u|2 + Cλ2−2kr2(∥u∥2

∞ + ∥g∥2
∞)

(3.7.2)
for some constant C > 0.

Denote by κi the curvature of Γi and recall that
κi = −(|∇u+|2 − |∇u−|2) − λ(|u+ − gK |2 − |u− − gK |2)

H1-a.e. on Γi by (2.5.4) for an appropriate trace gK of g (which enjoys the same upper
bound on the L∞ norm). From (3.7.2) we thus concludeˆ

Γi∩(B2−k+1r
\B2−k−1r

)
|κi|dH1 ≤ C

2−kr

ˆ
B2−k+2r

\B2−k−1r

|∇u|2 + C2−kr (3.7.3)
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for some constant C > 0. We therefore conclude from (3.7.1)ˆ
Γi∩Br\{0}

|κi|dH1 ≤ C .

In turn, from this we deduce that Γi is a C1 graph up to the origin. Moreover, a blow-up
argument shows that the tangents to Γi in the origin form equal angles and thus, up to
rotations, we can assume that they are given by {θ = 0}, {θ = 2π

3 } and {θ = 4π
3 }.

We shall prove next that Γi is a C1,γ graph up to the origin, γ ∈ (0, 1), by means of a
suitable monotonicity formula. First notice that for ρ ∈ (0, r) we have H0(∂Bρ ∩K) = 3.
Then, if we consider the set K ′ which is the union of the three segments obtained by joining
each point in ∂Bρ ∩K with the origin we have

H1(Bρ ∩K) ≤ 3ρ = H1(Bρ ∩K ′) .
In addition, Bρ \K ′ = Ω1 ∪ Ω2 ∪ Ω3, where each Ωi is a convex cone with vertex the origin
and opening αi, with |αi− 2

3π| ≤ Cδ(ρ), with δ(ρ) → 0 if ρ → 0. Therefore if Cδ(ρ) < δ0 for
ρ ≤ ρ0 (δ0 can be chosen as small as we want up to reducing ρ0) and if wi is the (harmonic)
function provided by Lemma 2.6.6, we have

ˆ
Ωi

|∇wi|2 ≤ αi
π
ρ

ˆ
∂Ωi∩∂Bρ

(
∂u

∂τ

)2

. (3.7.4)

If w is defined as w|Ωi
= wi, w = u on B2r \Bρ, then testing the minimality of (u,K) with

the competitor (w,K ′) we get for α0 := 2
3π + δ0 (note that max{α1, α2, α3} ≤ α0)

ˆ
Bρ

|∇u|2 + H1(Bρ ∩K) + λ

ˆ
Bρ

|u− g|2 ≤ α0

π
ρ

ˆ
∂Bρ

(
∂u

∂τ

)2

+ 3ρ+ λ

ˆ
Bρ

|w − g|2 ,

from which we deduce straightforwardly that for L1-a.e. ρ ∈ (0, ρ0)

D(ρ) ≤ α0

π
ρD′(ρ) + 4πλ∥g∥2

∞ρ
2.

In turn, the latter inequality and the energy upper bound in (1.4.1) imply that for all
ρ ∈ (0, ρ0)

D(ρ) ≤ Cρ
− π

α0
0 (D(ρ0) + ρ2

0)ρ
π

α0 ≤ Cρ
1− π

α0
0 ρ

π
α0 , (3.7.5)

for some constant C > 0 depending on λ, ∥g∥∞ and α0. Finally, estimates (3.7.3) and
(3.7.5) yield ˆ

Γi∩Bρ

|κi|dH1 ≤ Cρ
π

α0
−1
,

and the claimed C1,γ regularity of Γi up to the origin then follows at once choosing δ0
sufficiently sufficiently small so that α0 < π.

We now come to the construction of the diffeomorphism Φ which is given as the
composition Φ0 ◦ Φ1 of two other diffeomorphisms. We note that due to our assumption we
have actually set θ = 0. Without loss of generality we assume r = 1. Φ0 maps y (which
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without loss of generality has been assumed to be 0) into the origin. If we let φ ∈ C∞
c (B1)

be a function which is identically equal to 1 on B 1
2
, Φ0 is then given by the formula

Φ0(z) := z + (1 − φ(z))x .

(observe that Bδ(x) contains the origin, in particular |x| ≤ δ: thus if δ is sufficiently small,
the latter map can be seen to be C1 close to the identity, and hence a diffeomorphism). Φ1
is then the inverse of a map Ψ which maps K ′ := Φ−1

0 (K) onto three straight half-lines
emanating from 0 and forming equal angles. We know indeed that K ′ consists of three C1,α

arcs γ1, γ2, and γ3 meeting at 0, where they form equal angles. We use polar coordinates
(θ, ρ) to define the map Φ1. Upon a suitable rotation we can also assume the tangents to γ1,
γ2, and γ3 at the origin are given by {θ = 0}, {θ = 2π

3 }, and {θ = 4π
3 }. In particular each γi

is given in polar coordinates by {(ρ, θi(ρ))}, where θi : (0, 2r) → S1 is a C1,α function and
satisfies ∥θi − (i− 1)2π

3 ∥ ≤ δ and |θ′
i(r)| ≤ δr−1. In particular we can assume that δ < 1

2 .

Let now ψ ∈ C∞
c (−1, 1) be a function which is identically equal to 1 on (−1

2 ,
1
2). In polar

coordinates the map Φ1 is then given by

(θ, ρ) 7→
(
θ +

∑
i

ψ
(
θ − (i− 1)2π

3

) (
θi(ρ) − (i− 1)2π

3

)
, ρ
)
.

The estimate (3.1.5) follows from the corresponding estimates for the functions θi and for
|x| and is left to the reader.

3.7.1. Proof of Corollary 3.1.3.

Proof. We first note that K \ {x̄} is the union of three C1,1 arcs in view of Proposi-
tion 2.5.2. We use the notation and arguments in the proof of Theorem 3.1.2, in particular
x̄ = 0 by translation. We build upon the conclusions of Theorem 3.1.2 and substitute the
monotonicity formula employed there by a sharper one inspired by Proposition 2.6.1.

Let ρ ∈ (0, 2r), then H0(∂Bρ ∩ K) = 3. Let Bρ \ K = S1 ∪ S2 ∪ S3 with ∂Bρ \ K =
γ1 ∪ γ2 ∪ γ3, γi ⊂ ∂Si, and |H1(γi) − 2

3πρ| ≤ Cερ1+γ . Denote by ui the mean value of u on
γi and recall that

´
γi

∂u
∂ν

= 0 by (2.5.6) (here we use λ = 0). For every i ∈ {1, 2, 3}, by the
sharp Poincaré-Wirtinger inequality we then get that

ˆ
Si

|∇u|2 (2.5.5)=
ˆ
γi

u
∂u

∂ν

(2.5.6)=
ˆ
γi

(u− ui)
∂u

∂ν
≤
ˆ
γi

δ
2(u− ui)2 + 1

2δ

(
∂u

∂ν

)2


≤
ˆ
γi

δ
2

(
H1(γi)
π

)2 (
∂u

∂τ

)2

+ 1
2δ

(
∂u

∂ν

)2
 = H1(γi)

2π

ˆ
γi

|∇u|2
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having chosen δ = π
H1(γi) in the last inequality. In turn, from this we conclude that for

L1-a.e. ρ ∈ (0, ρ0), ρ0 < 2r sufficiently small, we have

D(ρ) =
ˆ
Bρ\K

|∇u|2 =
3∑
i=1

ˆ
Si

|∇u|2 ≤ max
i∈{1,2,3}

H1(γi)
2π

ˆ
∂Bρ\K

|∇u|2

= max
i∈{1,2,3}

H1(γi)
2π D′(ρ) ≤ 5

12ρD
′(ρ).

By direct integration and the energy upper bound in (1.4.1) we deduce that for all ρ ∈ (0, ρ0)

D(ρ) ≤ D(ρ0)
(
ρ

ρ0

) 5
12

≤ 2πρ− 7
5

0 ρ
12
5 ,

and thus estimate (3.7.3) yields ˆ
Γi∩Bρ

|κi|dH1 ≤ Cρ
7
5 .

In particular, since Γi is C1,γ up to the origin, we deduce that it is actually C2 in the origin
itself with κi(0) = 0.

Since u has C1,α extensions on each side of Γi ∩ A (cf. item (a) in Proposition 2.5.2)
and Γi is C1,γ, the conclusion follows at once using (2.5.4) for λ = 0. □

Remark 3.7.1. Actually, the arcs composing K \ {x̄} are C∞ (resp. analytic) if g is
C∞ (resp. analytic) in view of the higher regularity theory contained in [5, Theorem 7.42]
(resp. [31]).

3.8. Proof of Theorem 1.3.3 for pure jumps and triple junctions

We start by proving conclusion (i). First of all we observe that, by a standard covering
argument, it is enough to prove the conclusion in a ball Bδr(x) rather than in Br(x), where
δ is a fixed geometric constant. We focus on the case of a pure jump and of absolute
minimizers. The various other possibilities are all treated with the same idea, with minor
changes. Without loss of generality assume x = 0.

We wish to apply Theorem 3.1.1 and in order to do it we claim that
(Cl) For any ε > 0 there are constants δ > 0 and η > 0 such that, if (u,K) is an

absolute minimizer and, for some r > 0, distH(V0 ∩B2r, K ∩B2r) ≤ ηr, thenˆ
B2δr\K

|∇u|2 + λ∥g∥2
∞(2δr) 3

2 < 2εδr .

First of all, since ∥g∥∞ ≤ M0, λ ≤ 1, and r ≤ 1, it is easy to see that, for δ sufficiently
small,

λ∥g∥2
∞(2δr) 3

2 < εδr .

We therefore focus on the Dirichlet energy and argue by contradiction. In particular, if our
claim is false, we find a sequence of radii rj ≤ 1 and of absolute minimizers (uj, Kj) in B2rj

of Eλj
with fidelity terms gj, satisfying the following properties:
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(1) distH(V0 ∩B2rj
, Kj ∩B2rj

) ≤ 2−jrj;
(2)

´
B2j−1rj

\Kj
|∇uj|2 ≥ εj−1rj for some positive ε.

We now consider the rescalings (vj, Jj) of (uj, Kj) given by

Jj := Kj

j−1rj

vj(x) := (j−1rj)− 1
2uj(j−1rjx) .

Note that λj∥gj∥2
∞j

−1rj → 0 as j ↑ ∞. In particular we can apply Theorem 2.2.3 and
assume that, up to a subsequence not relabeled, the pairs (vj, Jj) converge to a generalized
global minimizer (v, J). Observe that on any disk BR we have

dist (V0 ∩BR, Jj ∩BR) ≤ j2−j .

Hence J must coincide with V0. But then from Theorem 2.4.1 it follows that ∇v ≡ 0 on
R2 \ V0. In particular, by the convergence proved in Theorem 2.2.3,

lim
j→∞

ˆ
B1\Jj

|∇vj|2 = 0 .

On the other hand ˆ
B1\Jj

|∇vj|2 = 1
j−1rj

ˆ
B2j−1rj \Kj

|∇uj|2 ,

and we thus reach a contradiction with (2).
We next come to point (ii). In the case of pure jumps observe that if λ = 0 or g ∈ C0, ∆u

is continuous and from classical estimates for the Neumann problem we infer that ∇u has a
C0,α extensions up to K on each side of it. In particular, from the Euler-Lagrange conditions
of Proposition 2.5.2 we conclude that the distributional curvature of K is continuous, which
in turn implies its C2 regularity.

As for point (iii), it follows from Corollary 3.1.3 if the extremum is a triple junction.





CHAPTER 4

The Bonnet-David rigidity theorem for cracktip

4.1. Main statement and consequences

This part of our notes is devoted to prove the following rigidity theorem of Bonnet and
David, which in turn is the first step towards the proof of case (c) in Theorem 1.3.3, namely
Corollary 4.1.2. We start by stating both these facts.

Theorem 4.1.1. Let (u,K, {pkl}) be a global generalized minimizer and assume that,
for a sufficiently large radius R:

(a) K \BR consists of a single unbounded connected component;
(b) K ∩ ∂BR consists of a single point.

Then (u,K, {pkl}) is a cracktip.
Corollary 4.1.2. There is a δ > 0 with the following property. Assume that

• (1.1.2) holds;
• (u,K) is an absolute minimizer of Eλ in B4r(x) for some 4r ≤ 1;
• distH (K ∩B4r(x), (x+ Rθ)(V +

0 ) ∩B4r(x)) < δr.
Then B2r(x) ∩K consists of a single continuous nonselfintersecting arc with an endpoint
y ∈ Br(x) (which according to our terminology is a terminal point of K) and an endpoint
in ∂B2r(x). Moreover the arc is C1,1 in B2r(x) \ {y}.

Note that the conclusion of Corollary 4.1.2 does not prevent the possibility that K
spirals around y. This fact needs further analysis and will be actually ruled out in Chapter 5.

In this chapter we will not only prove Theorem 4.1.1 but also give some general properties
of global generalized minimizers (u,K, {pkl}) which are not elementary. In order to simplify
our terminology, we will call them nonelementary global minimizers. An important result
of David and Léger, presented below, shows that for a nonelementary global minimizer
the set R2 \ K is in fact connected. Due to this we can (and will) omit to mention the
“normalizations” {pkl} for nonelementary global minimizers.

We conclude this section by showing how Corollary 4.1.2 follows from Theorem 4.1.1.

4.1.1. Proof of Corollary 4.1.2. The argument is similar to that used in Section 3.6.
Following a similar path we introduce the quantities

Ωc(θ, x, r) := r−1distH(K ∩B2r(x), (x+ Rθ(V +
0 )) ∩B2r(x))

and
Ωc(x, r) := min

θ
Ωc(θ, x, r) .

The following lemma is then the analog of Lemma 3.6.2.
77
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Lemma 4.1.3. For every γ > 0 sufficiently small there exists ε0(γ) with the following
property. Assume ε ∈ (0, ε0) and let N = N(ε) ∈ N be sufficiently large. Let r ∈ (0, 1] and
assume that (u,K) is an absolute minimizer of Eλ in B2r(x), while x = x0, x1, . . . , xN are
points such that

Ωc(xk, 2−kr) + λ∥g∥2
∞(2−kr) 1

2 ≤ ε ∀k ∈ {0, 1, . . . , N} (4.1.1)
|xk+1 − xk| ≤ γ2−kr ∀k ∈ {0, 1, . . . , N − 1} . (4.1.2)

Then there is a point xN+1 ∈ B2r(x) such that |xN+1 − xN | ≤ γ2−Nr and

Ωc(xN+1, 2−N−1r) + λ∥g∥2
∞(2−N−1r) 1

2 ≤ ε .

Proof. We argue by contradiction and assume that, for some γ > 0 and ε > 0
sufficiently small (the smallness will be specified later) there are

(a) A family of numbers λN ∈ [0, 1];
(b) A family of fidelity functions gN with ∥gN∥∞ ≤ M0;
(c) A family of radii rN ∈ (0, 1];
(d) A family of points xk,N , for k ∈ {0, . . . , N}, with

x0,N = x |xk+1,N − xk,N | ≤ γ2−krN ∀k ∈ {0, . . . , N − 1}; (4.1.3)

(e) An absolute minimizing pair (uN , KN) of EλN
(·, ·, B2rN

, gN) for which

Ωc(xk,N , 2−krN) + λN∥gN∥2
∞(2−krN) 1

2 ≤ ε , (4.1.4)

for all k ∈ {0, . . . , N};
(f) For every y ∈ Bγ2−NrN

(xN,N)

Ωc(y, 2−N−1rN) + λN∥gN∥2
∞(2−N−1rN) 1

2 > ε .

For each N we consider the rescaled pairs

vN(x) := (2−NrN)− 1
2uN

(
xN,N + 2−NrNx

)
JN := (2−NrN)−1(KN − xN,N) .

Next observe that from (4.1.4) we get

λN∥gN∥2
∞2−NrN ≤ ε(2−NrN)1/2 .

and thus in particular λN∥gN∥2
∞2−NrN → 0. We can therefore apply Theorem 2.2.3 to

conclude the convergence, up to subsequences, of (vN , JN) to a generalized minimizer
(v, J, {pkl}). Note that the points xk,N are mapped to the points

yk,N := (2−NrN)−1(xk,N − xN,N)
We thus infer yN,N = 0 for all N , and for k ∈ {1, . . . , N}

|yN−k,N | ≤ γ
k∑
j=1

2j ≤ γ2k+1 .
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Up to extraction of a subsequence we can assume that, for each fixed k ≥ 1, yN−k,N
converges, as N ↑ ∞, to some yk with |yk| ≤ γ2k+1, k ≥ 1. Set moreover y0 = 0. In
particular for (v, J) we have

Ωc(yk, 2k) ≤ ε ∀k ∈ N ,
On the other hand our contradiction assumption implies as well

inf
z∈Bγ

Ωc(z, 1/2) ≥ ε . (4.1.5)

Next observe that, by taking ε smaller than a suitably chosen ε0(γ), the ε-regularity
theory at pure jumps would imply that, in the corona Ak = B(1−γ)2k+1(yk) \Bγ2k+1(yk) the
set K consists of a single arc with endpoints on the circles ∂B(1−γ)2k+1 and ∂Bγ2k+1 . If γ is
smaller than a geometric constant, the coronas Ak+1 and Ak have a large overlap. It then
follows that K consists of a single unbounded curve in ∪k≥1Ak = R2 \ B2γ. We can thus
apply Theorem 4.1.1 to conclude that (v, J) is a cracktip. If we denote by z0 the starting
point of the half-line J , the condition Ωc(0, 1) ≤ ε will imply that z0 ∈ Bγ, provided ε is
smaller than a suitably chosen positive ε0(γ). This however contradicts (4.1.5) and hence
completes the proof. □

Proof of Corollary 4.1.2. The proof is entirely similar to that of Lemma 3.6.1.
Like in there we assume without loss of generality that x = 0. We fix then δ, ε, and γ whose
choice will be specified later. First of all ε is assumed to be smaller than the ε0(γ) given by
Lemma 4.1.3, so that the latter is applicable. We then let N be the natural number given
by the conclusion of the latter lemma. If we let r0 ≤ 1 be such that

λM2
0 r

1/2
0 = ε

2 ,

we observe that, by choosing ε sufficiently small, we can at the same time ensure that
(1) Lemma 4.1.3 is applicable in B2r̄ with r̄ = min{r, r0};
(2) K ∩ (B2r \Br̄/2) is a single C1 arc γ with endpoints in ∂Br̄/2 and ∂B2r.

Indeed, the first point is simply because, by choosing δ sufficiently small, the condition
of the Lemma is satisfied with xk,N all equal to 0, k ∈ {0, . . . , N} (note that N and ε are
fixed at this point). As for the second point, it is just a consequence of the ε-regularity
theory at pure jumps.

We now note that, after having applied Lemma 4.1.3 to find xN+1, we can actually
apply it again to Br̄/2(x1), but this time the points x0, . . . , xN would be substituted by
x1, . . . , xN+1. We then proceed inductively to produce a sequence of points xk with

x0 = 0
|xk+1 − xk| ≤ γ2−kr̄

Ωc(xk, 2−kr̄) + λ∥g∥2
∞(2−kr̄) 1

2 ≤ ε .

Since {xk} is a Cauchy sequence, it has a limit y. Observe that by choosing γ smaller than
a geometric constant we can then ensure y ∈ Br̄. Moreover, it is easy to see that

Ωc(y, ρ) ≤ 4(ε+ γ)
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for every ρ ≤ r̄ simply by choosing k so that 2−k−2r̄ ≤ ρ ≤ 2−k−1r̄ and comparing Ωc(y, ρ)
with Ωc(xk, 21−kr̄), if γ ≤ 1.

In particular, if ε and γ are chosen sufficiently small, K ∩ (B2ρ/3 \ Bρ/3) consists of a
single C1 arc with endpoints in the respective circles ∂B2ρ/3 and ∂Bρ/3. This shows that
B2r ∩K consists of a single continuous arc joining y with a point in ∂B2r, which moreover
is C1,α in B2r \ {y}. But then by the Euler-Lagrange conditions in Proposition 2.5.2 we
conclude that the arc is C1,1 in B2r \ {y}. □

4.2. An overview of the ideas in the proof of Theorem 4.1.1

Even though for some steps we give independent proofs, the overall strategy and the
main ideas for proving Theorem 4.1.1 are all taken from the book [10] of Bonnet and David.
In this section we give an overview of the whole argument, which is very ingenious. Before
coming to it, we first notice that in Section 4.4 we prove another Liouville-type Theorem,
namely Theorem 4.4.1, which is due to David and Léger in the work [17], posterior to [10].
However, one big advantage of having Theorem 4.4.1 at disposal is that it implies a series
of useful corollaries (above all Corollary 4.4.2) which cut a lot of technicalities of [10]. The
proof of Theorem 4.4.1 are based on the monotonicity formulas in Propositions 2.6.2 and
2.6.3.

One main player in the proof of Theorem 4.1.1 is the “harmonic conjugate” v, a function
with the property that ∇v = ∇u⊥ on R2 \K, and which can be shown (for a nonelementary
global minimizer) to have a unique continuous extension to K. v is obviously harmonic on
R2 \K. Its existence and some preliminary properties are given in Section 4.5: one pivotal
property is that v is constant on each connected component of K.

Much of the technical work for the proof of Theorem 4.1.1 goes into describing the
structure of the level sets of v. The sections 4.6 and 4.7 will prove facts which are valid for
all nonelementary global minimizers. The most important are that:

• no level set of v contains a loop (a particular case of this statement will actually
be shown in the next section: K itself has no loops);

• most of them do not have “terminal points”.
Section 4.8 then uses the additional assumption of Theorem 4.1.1 (namely that outside a
sufficiently large ball K consists of a single connected component) together with Bonnet’s
monotonicity formula (cf. Proposition 2.6.1) to infer that asymptotically at infinity (u,K)
is a cracktip. In particular any level set of v has precisely “two infinite ends” outside of
a sufficiently large disk. This information, combined with the previous analysis allows to
conclude that:

• up to a change of sign in u the function v achieves its absolute minimum m0 exactly
on the unbounded connected component of K;

• Most of the level sets of v are just single (i.e. nonintersecting) unbounded curves.
The first information allows us to define the maximum m̄ of v on K, while another simple
argument shows that if m̄ = m0 then K is connected and hence it is the cracktip.
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{v > m̄}

p− p+σ

Figure 1. The picture is a visualization of the final argument for The-
orem 4.1.1 under the simplifying assumption that G does not have triple
junctions. The analysis in the Sections 4.6-4.9 implies that the global mini-
mum and global maximum of the trace of u on G are assumed at two point
p− and p+ “on the same side of G”: the picture shows in particular the level
set {v = m̄} departing at those points and delimiting the upper level set
{v > m̄}, whose closure cannot contain the terminal points of G. The range
of the lower trace of u on the segment σ = [p+, p−] ⊂ G is thus necessarily
contained in the range of the upper trace over the same segment σ: the
intermediate value theorem provides then a point q ∈ σ where the two traces
have the same value.

Arguing by contradiction that (u,K) is not a cracktip we can then introduce the pivotal
object in the final argument for Theorem 4.1.1: a connected component G of K where the
value of v equals m̄. With a variant of the Bonnet’s monotonicity formula we can show that
K must have positive length and that no terminal point of G can actually be contained in
the closure of {v > m̄}, cf. Section 4.9.

The final argument comes now from looking at the trace of u as we go “around G”
(which will be shown to be continuous) and is explained in Section 4.10 and it is particularly
simple to explain when G does not have triple points and it is thus, topologically, a segment
with two terminal points.

One outcome of the topological description of the level sets of v is that while going
around G the trace of u has exactly two local extrema, which are clearly the global minimum
point and the global maximum point. This happens because to each local extremum of the
trace of u at G corresponds to a distinct end of the level set {v = m̄} at infinity: having
proved that such ends are precisely 2, the trace must have precisely one local minimum
and one local maximum. At the global maximum and the global minimum the level set
{v = m̄} departs from G as two infinite half-lines, which delimit one connected component
of R2 where v is above m̄ and one connected component where v is below m̄.

The other fundamental outcome of the previous analysis is that, since the terminal
points of G are not in the closure of {v > m̄}, the global minimum and maximum points of
the trace of u on G (which for simplicity we denote by p− and p+) are on the “same side”
of G: a schematic picture of what happens is given in Figure 1. p± delimit a segment σ in
G. Referring to the Figure 1, the range of the trace of u on the “upper side” of σ is [m,M ],
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U

Figure 2. U is a “pocket”, namely a bounded connected component of
Ω \K which does not intersect the boundary ∂Ω of the domain of (u,K).

where m denotes the global minimum and M the global maximum. So the range of the
trace in the lower side must be a segment [m′,M ′] strictly contained in [m,M ]. By the
intermediate value theorem there must then be a point q ∈ σ where the upper and lower
traces coincide. However this point must be a jump point (cf. Corollary 4.4.2) and at those
points upper and lower traces must necessarily differ. This gives the desired contradiction.

4.3. The absence of pockets

In this section we prove a simple fact valid for all concepts of minimizers of E0, the
absence of “internal pockets”, see Figure 2.

Lemma 4.3.1. Consider a minimizer (u,K) of E0 in Ω. If U is a connected component
of Ω \K, then either it is unbounded, or its closure has to intersect ∂Ω.

Proof. If the statement were false, then there would be a connected component U of
Ω \K with the property that U ⊂⊂ Ω. In particular it turns out that u must necessarily
be constant on U . Moreover, for any given constant c, if we define the function

uc :=
{
u on Ω \ U
c on U ,

then (uc, K) has the same energy has (u,K) and it is not difficult to check that it must
have the same minimizing property of (u,K). Now, observe that H1(∂U) > 0 and thus, by
Corollary 3.1.5, there is at least one regular jump point x ∈ K, i.e. there is a neighborhood
of x where K is a C1 arc. Assume without loss of generality that x = 0 and that the
tangent to K at 0 is {(x1, x2) : x2 = 0}. In particular, for a sufficiently small δ > 0 we have
that K ∩ [−δ, δ]2 = gr (f) for some C1,α function f : [−δ, δ] → [−δ, δ] with f(0) = f ′(0) = 0.
We next assume, without loss of generality, that

U ∩ [−δ, δ]2 = {(t, s) : s > f(t), s ∈ [−δ, δ]} .
At the same time we know that the restriction of u to [−δ, δ]2 \ gr (f) coincide with two
C1,α functions u± which can in fact be extended C1,α up to the boundary K ∩ [−δ, δ]2. u+

in fact is a constant while, by a classical extension theorem, we assume that u− is extended
C1 to the full square [−δ, δ]2.
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Let now c = u−(0) and consider (uc, K). We now consider a new function defined in
the following way. Let χ : R → [0, 1] be a smooth function which is identically equal to 1
on [1,∞) and identically equal to 0 on (−∞,−1] and let φ ∈ C∞

c ((−1, 1)2) be a function
which is identically 1 on (−1/2, 1/2)2. Then we first define

v(x) = cχ
(
x2

δ

)
+ u−(x)

(
1 − χ

(
x2

δ

))
,

which is a C1 function on [−δ, δ]2. Then on U we define

w(x) = c
(

1 − φ
(
x

δ

))
+ v(x)φ

(
x

δ

)
,

while on the complement of U ∪K we define

w(x) = u−(x)
(

1 − φ
(
x

δ

))
+ v(x)φ

(
x

δ

)
.

Observe that the function w coincides with a C1 function on Q := [− δ
2 ,

δ
2 ] × [−δ, δ] and we

can thus consider J := K \Q, so that (w, J) is a pair in the domain of E0. Note that the
pair is obviously a competitor for absolute minimizers. For restricted minimizers observe
that we are not creating an additional connected component, while for generalized and
generalized restricted minimizers it is easy to see that, if V is a bounded open set such
that V ⊃⊃ U , there are no pair of points belonging to distinct connected components of
Ω \K and lying outside V which would belong to the same connected component of Ω \ J .
Finally, observe that |∇w| ≤ C in Q, for some constant C independent of δ. So, whileˆ

V

|∇w|2 ≤
ˆ
V

|∇u|2 + Cδ2

we have
H1(J ∩ V ) ≤ H1(K ∩ V ) − δ .

For a sufficiently small δ we then contradict the minimizing property of (uc, K). □

4.4. The David-Léger rigidity theorem and consequences

In this section we prove the second part of Theorem 1.4.6, which we recall here for the
reader’s convenience.

Theorem 4.4.1. Assume (u,K, {pkl}) is a global generalized minimizer of E0 and K
disconnects the plane. Then (u,K, {pkl}) is either a pure jump or a triple junction.

Before coming to the proof of Theorem 4.4.1, we register some very important corollaries.

Corollary 4.4.2. Statement (ii) of Theorem 1.5.2 holds.

Corollary 4.4.3. If (u,K, {pkl}) is a global generalized minimizer of E0, then K
cannot have two distinct unbounded connected components.

Corollary 4.4.4. If (u,K, {pkl}) is a global generalized minimizer and ∇u vanishes
on some open set, then (u,K, {pkl}) is an elementary global minimizer.
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We start by giving a proof of the theorem, which relies on Proposition 2.6.3. Since the
latter has not yet been proved, we will follow with its argument, and hence we will prove
the three corollaries above.

Proof of Theorem 4.4.1. Let U1 and U2 be two connected components of R2 \K.
First of all observe that, by Lemma 4.3.1, both Ui are unbounded. In particular, for every
r sufficiently large Br ∩ Ui ̸= ∅ for both i’s. Again by Lemma 4.3.1, ∂Br ∩ Ui ≠ ∅ for both
i’s as well. It thus turns out that K ∩ ∂Br has cardinality at least 2 for all r sufficiently
large. If the cardinality is precisely 2, then ∂Br \K consists of two arcs γ1 and γ2 and it
turns out that one of them belongs to U1 while the other to U2. But then K ∩ ∂Br must
belong to the same connected component of K ∩Br.

Thus, in any case for all r sufficiently large we fall under the assumption of Proposi-
tion 2.6.3, which implies that the map r 7→ F (r) is monotone for r sufficiently large. Let
F0 be its limit as r ↑ ∞, and consider the “blow-downs” of (u,K), namely any generalized
global minimizer (v, J, {qkl}) which is the limit of a sequence of rescalings (u0,rj

, K0,rj
) for

some rj ↑ ∞. We then conclude that the function

r 7→ 2
r

ˆ
Br\J

|∇v|2 + H1(Br ∩ J)
r

has the constant value F0. We will show below that:
(Cl) J disconnects R2, and there is no r > 0 for which Br \ J belongs to the same

connected component of R2 \ J .
Assuming the claim, we can argue as above to conclude that one of the two assumptions (i)
and (ii) of Proposition 2.6.3 holds for a.e. r > 0. From the second part of the proposition
we infer that (v, J) is an elementary global minimizer, with J that is either a straight
line passing through the origin, or the union of three half lines meeting at the origin at
equal angles. However, in one case F0 = 2 and in the other F0 = 3. We could now apply
Corollary 3.1.6 to conclude that (u,K) itself is an elementary global minimizer.

In order to show (Cl), consider the set V := IntU1 and the (local) Hausdorff limit
J̃ of ∂V0,rj

(which exists up to subsequences). Clearly J̃ ⊂ J . Fix moreover ρ > 0 and
observe that for every sufficiently large j the set Bρ/2 \V0,rj

is nonempty because Bρrj/2 ∩U2

is not empty. So, for each ρ > 0 there is at least one point p = p(ρ) ∈ J̃ ∩ Br. By
Corollary 3.1.5, a.e. such p is a pure jump point. So there is a δ > 0 such that J̃ ∩B2δ(p)
divides B2δ(p) in two regions W+ and W−. Again by Corollary 3.1.5, for j sufficiently
large the same statement is correct for K0,rj

∩Bδ(p) and moreover K0,rj
∩Bδ(p) converges

smoothly to J ∩Br. Note that K0,rj
∩Bδ(p) must contain a point of ∂V0,rj

for all j large
enough. But then the smoothness implies that K0,rj

∩ Bδ(p) ⊂ ∂V0,rj
. One of the two

connected components of K0,rj
belongs then to V0,rj

, while the other is contained in a
different connected component of R2 \ K0,j: this is a consequence of the definition of V
as formed by the interior points of the closure of U1. We thus infer that W+ and W−

cannot belong to the same connected component of R2 \ J . Otherwise there would be an
arc γ with endpoints p± ∈ W±, which is at positive distance from J . By the Hausdorff
convergence, such path would be contained in R2 \K0,rj

for all j large enough, implying
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then that Bδ(p) \K0,rj
is contained in the same connected component of R2 \K0,rj

. This is
a contradiction and hence completes the proof. □

4.4.1. Proof of Proposition 2.6.3. Without loss of generality we assume x = 0, and
as usual we will drop the base point in the notation of all the relevant quantities.

First of all we argue as in the proof of Proposition 2.6.2 to conclude

r2F ′(r) = 2r
ˆ
∂Br\K

|∇u|2 + r
∑

p∈∂Br∩K

1
e(p) · n(p) − 2D(r) − ℓ(r) (4.4.1)

and

r2F ′(r) ≥3r
ˆ
∂Br\K

(
∂u

∂τ

)2

+ r

ˆ
∂Br\K

(
∂u

∂n

)2

+ 2rN(r) − 2E0(u,K,Br) , (4.4.2)

Note however that (2.6.4) can be used to derive also

r2F ′(r) ≥r
ˆ
∂Br\K

(
∂u

∂τ

)2

+ 3r
ˆ
∂Br\K

(
∂u

∂n

)2

− 2D(r) , (4.4.3)

In the rest of the proof we consider several competitors for (u,K) in Br, all constructed in
the following fashion:

• (w, J) coincides with (u,K) on Ω \Br;
• J ∩Br is connected and consists of finitely many segments;
• J ∩ ∂Br ⊃ K ∩ ∂Br;
• J ∩Br partitions Br in finitely many connected components Ωi;
• either H1(Ωi ∩ ∂Br) = 0, and w is defined to be constant on Ωi, or Ωi ∩ ∂Br is a

closed arc βi which intersects only one connected component of ∂Br \K, and in
that case we use Lemma 2.6.6 to extend u|βi

to Ωi.
Since J does not increase the number of connected components of K and we can apply
Lemma 2.2.6, the pair (w, J) is a valid competitor under all our assumptions and thus we
can infer

E0(u,K,Br) ≤ E0(w, J,Br) ≤ H1(J ∩Br) + α(J)
π

r

ˆ
∂Br\K

(
∂u

∂τ

)2

, (4.4.4)

where α(J) is the least real number such that each Ωi is contained in an open circular sector
of angle α(J) centred in the origin. Observe that in the extreme case α(J) = 2π, in order
to apply Lemma 2.2.6, we need each Ωi to be contained in a “slit domain”. i.e. in Br \ [0, qi]
for some qi ∈ ∂Br.

In what follows, when invoking (4.4.4) we will then just need to specify J ∩ Br and
estimate α(J) and H1(J ∩Br). Moreover, since J coincides with K outside the closed disk
Br, with a slight abuse of notation we will just refer to J for the piece inside the disk itself.

We next focus on proving F ′(r) ≥ 0, leaving the discussion of the implications of F ′ ≡ 0
to the very end. Observe that we can always resort to Proposition 2.6.3 to prove F ′(r) ≥ 0
when the largest arc of ∂Br \K has length at most 3

2πr. We therefore assume from now on
that:



86 4. THE BONNET-DAVID RIGIDITY THEOREM FOR CRACKTIP

p1

q p4

p3

p2

Figure 3. The set J in an example where N(r) = 4 and K ∩ ∂Br lies in
the first quadrant.

(A) ∂Br ∩K is contained in a subarc of ∂Br which has length no larger than πr
2 .

Case N(r) ≥ 4. By applying a rotation (and because of (A)) we can assume that
K ∩ ∂Br = {p1, . . . , pN} are contained in the quadrant {x1 ≥ 0, x2 ≥ 0}. Without loss of
generality assume p1 = (r, 0) and order p2, . . . , pN counterclockwise, moreover denote by q
the point (0, r). We then use (4.4.4) with J = [0, p1]∪ [p1, p2]∪. . .∪ [pN−1, pN ]∪ [pN , q]∪ [q, 0]
(cf. Figure 3). Observe that H1(J) < 2r + πr

2 < 4r ≤ N(r)r and that α(J) = 3π
2 , so that

E0(u,K,Br) < N(r)r + 3
2

ˆ
∂Br\K

(
∂u

∂τ

)2

We then conclude from (4.4.2) that r2F ′(r) > 0.

Case N(r) = 3. Let {p+, p−, q} = K ∩ ∂Br and once again we invoke (A) and the
possibility of rotating the domain to assume that p± = (c,±

√
r2 − c2) for some r

√
2

2 ≤ c ≤ r

and that q = (d,
√
r2 − d2) for some 0 < c ≤ d, cf. Figure 4. We now use (4.4.4) with two

distinct (w, J): the corresponding sets J1 and J2 are specified in the picture Figure 4
Observe that

H1(J1) ≤ 2r +
√

2r
H1(J2) ≤ r +

√
2r

α(J1) = π

α(J2) = 2π .

Apply now (4.4.4) with the two distinct competitors, average the inequalities and use (4.4.2)
to conclude F ′(r) > 0.
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p+

q

p−

p+

q

p−

Figure 4. The sets J1 and J2 when N(r) = 3.

Case N(r) = 2. Let γ1 and γ2 be the two arcs delimited by ∂Br ∩K and again assume
without loss of generality that ω := 1

πr
max{ℓ(γi)} ≥ 3

2 . Observe first that, by (1.6.2),

D(r) =
∑
i

ˆ
γi

u
∂u

∂n
.

Next, let ci be the average of u on γi and recall Corollary 2.5.3 to estimate

D(r) =
∑
i

ˆ
γi

(u− ci)
∂u

∂n
≤
(∑

i

ˆ
γi

(u− ci)2
) 1

2
ˆ

∂Br\K

(
∂u

∂n

)2
 1

2

≤ωr

ˆ
∂Br\K

(
∂u

∂τ

)2
 1

2

︸ ︷︷ ︸
=:a

ˆ
∂Br\K

(
∂u

∂n

)2
 1

2

︸ ︷︷ ︸
=:b

.

In particular, using (4.4.3) we conclude
rF ′(r) ≥ a2 + 3b2 − 2ωab =: P1(ω, a, b) . (4.4.5)

Next we use (4.4.2) with two competitors J1 and J2 constructed in the following fashion.
Without loss of generality we assume ∂Br = {p+, p−} where p± are, as in the previous step,
symmetric with respect to the x1-axis and in the quadrant {x1 > 0,±x2 > 0}, respectively.
We then let J1 be the connected set of minimal length joining the origin with the two points
p± while, after setting c̄ = (−r, 0), we let J2 = J1 ∪ [c̄, 0], cf. Figure 5. Observe that J1 is
easily determined as the union of the three segments joining 0, p+ and p− to the unique
point c where such segments form equal angles.

Observe that α(J1) = 2π and α(J2) = π, while H1(J2) = r + H1(J1). In order to apply
(4.4.4), we now wish to compute H1(J1), relating its length to the angle 2π − ωπ, which is
twice the angle formed by p± with the x1 axis. Thus we can explicitly calculate

H1(J1) =H1([0, c]) + 2H1([c, p+])

=r
(

cos(π(1 − ω
2 ) − 1√

3 sin(π(1 − ω
2 ))
)

+ 4r√
3 sin(π(1 − ω

2 ))

=2r
(

1
2 cos(π(1 − ω

2 )) +
√

3
2 sin(π(1 − ω

2 ))
)

= 2r sin(7π
6 − ωπ

2 ) =: rf(ω) . (4.4.6)
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p+

p−

c

p+

p−

cc̄

Figure 5. The sets J1 and J2 when N(r) = 2.

Applying now (4.4.2) we thus get
rF ′(r) ≥ −a2 + b2 + 4 − 2f(ω) =: P2(ω, a, b)
rF ′(r) ≥ a2 + b2 + 2 − 2f(ω) .

Averaging between the two we then get
rF ′(r) ≥ b2 + 3 − 2f(ω) =: P3(ω, a, b) . (4.4.7)

Introduce now the function h(ω, a, b) = max{P1, P2, P3}(a, b, ω) (recall that P1 is defined in
(4.4.5)). We are thus reduced to show that h ≥ 0 on the interval [3

2 , 2). First of all, P1 ≥ 0
if ω ≤

√
3. Moreover, the function f is clearly a decreasing function of ω, which equals 3

2
at the point ω0 determined by

ω0 := 7
3 − 2

π
arcsin 3

4 .

Hence P3 ≥ 0 for ω ≥ ω0. We thus have to show that h is positive when ω ∈ I := (
√

3, ω0).
Observe that

• h ≥ P3 ≥ 0 unless
b2 < 2f(ω) − 3 ; (4.4.8)

• h ≥ P2 ≥ 0 unless
b2 + 4 − 2f(ω) < a2 ; (4.4.9)

• h ≥ P1 ≥ 0 unless
(ω −

√
ω2 − 3)2b2 < a2 < (ω +

√
ω2 − 3)2b2 . (4.4.10)

Now, (4.4.9) and (4.4.10) would imply

4 − 2f(ω) < ((ω +
√
ω2 − 3)2 − 1)b2 ,

which combined with (4.4.8) would imply

4 − 2f(ω) < ((ω +
√
ω2 − 3)2 − 1)(2f(ω) − 3)) ,

which in turn becomes
1 < (ω +

√
ω2 − 3)2(2f(ω) − 3) . (4.4.11)
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Recall that I = (
√

3, ω0), and define
f1(ω) := (ω +

√
ω2 − 3)2 , (4.4.12)

f2(ω) := 2f(ω) − 3 , (4.4.13)
we then just need to show that f1f2 ≤ 1 on I. Now, we already observed that f2 is monotone
decreasing, while it is easy to see that f1 is monotone increasing. It can be explicitly
computed that f2(

√
3) < 1

4 , which in turn implies supI f2 <
1
4 . Since it can be readily

checked that f1(7
4) = 4, we conclude sup(

√
3,7/4] f1 ≤ 4, in turn implying sup(

√
3,7/4] f1f2 < 1.

On the other hand it can be readily checked that ω0 < 1.8 and f1(1.8) < 5.3, which in turn
implies supI f1 < 5.3. Since f2(7

4) < 0.18, we conclude max[7/4,ω0] f2 < 0.18, from which we
infer max[7/4,ω0] f1f2 < 0.18 · 5.3 < 1.

We also observe that in all these cases F ′(r) would actually result positive unless either
a and b vanish.

Case N(r) = 0. In this case we compare (u,K) in Br with the harmonic extension w
of u|∂Br . Recalling that the harmonic extension satisfies the estimateˆ

Br

|∇w|2 ≤ r

ˆ
∂Br

(
∂u

∂τ

)2

,

from (4.4.1) we immediately conclude

r2F ′(r) ≥ 2
ˆ
∂Br

(
∂u

∂n

)2

.

F constant. Observe that if F ′(r) = 0 and we are in the assumptions of Proposition 2.6.2
then ˆ

∂Br

(
∂u

∂n

)2

= 0 .

However, the same conclusion can be drawn as well in all the cases examined above. But
then the arguments of the final part of the proof of Proposition 2.6.2 apply here as well
and we reach the conclusion that, if F is constant on (0, r0) and for a.a. r ∈ (0, r0) one of
the assumptions (i) and (ii) holds, then K ∩ Br0 coincides with one of three elementary
global minimizers of Theorem 2.4.1, with the additional information that, if K is not empty,
0 ∈ K and that, if K is a triple junction, then 0 is the point of junction.

4.4.2. Proof of Corollary 4.4.2. We assume without loss of generality that the
nonterminal point is the origin. By definition there is an injective continuous map γ :
[−1, 1] → K such that γ(0) = 0. Set

2r := min{|γ(−1)|, |γ(1)|} (4.4.14)
and observe that there must be at least one negative s− and one positive s+ such that
|γ(s±)| = r. We let s− be the largest negative number and s+ the smallest positive
number with the latter property. Using the Jordan curve theorem we then conclude
that Br \ γ((s−, s+)) consists of two connected components Ω±. Consider now the limit
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(u∞, K∞, {pkl}) of some sequence {(u0,rk
, K0,rk

)} with rk ↓ 0, as in Theorem 2.2.3. If we
can show that K∞ disconnects R2, then Theorem 4.4.1 would imply that (u∞, K∞) is an
elementary global minimizer and thus, by the cases (b) and (c) of Theorem 1.3.3 (resp
Theorem 1.4.1), 0 would be a regular point, i.e. a point for which there is a disk Br in
which K is diffeomorphic either to a diameter, or to three radii joining at the origin.

In order to show that K∞ disconnects the plane, we consider the rescalings

Ω±
k := {x : rkx ∈ Ω±} ∩B1

Γk := {x : rkx ∈ γ(s−, s+)} ∩B1 .

Up to extraction of a further subsequence, we can assume that Ω±
k converge to some open

sets Ω±
∞ and Γk converges (locally in the Hausdorff distance) to some Γ ⊂ K∞. Since

∂Ω±
k ⊂ Γk ∪ ∂B1, the convergence of the open sets means that

(i) |Ω+
∞∆Ω+

k | + |Ω−
∞∆Ω−

k | → 0;
(ii) x ∈ Ω±

∞ if and only if there is a ρ > 0 and a k0 ∈ N such that Bρ(x) ⊂ Ω±
k for

k ≥ k0.
Notice also that each Γk contains at least one arc which connects the origin with ∂B1. Hence
Γ as well contains at least one arc which connects the origin with ∂B1 and in particular Γ
is not empty.

Pick now a point q ∈ Γ which is a pure jump point (and whose existence is guaranteed
by Corollary 3.1.5). Then, for sufficiently small ρ, Bρ(q) ∩ Γ is a C1,α arc which divides
Bρ(q) in two regions. On the other hand, by the regularity theory developed in the first
part of the notes, for a sufficiently large k we have that K0,rk

∩Bρ(q) consists also of a C1,α

arc which divides Bρ(q) into two regions. Since Γk → Γ, for k sufficiently large we must
have that K0,rk

∩ Bρ(q) = Γk ∩ Bρ(q). In particular Γk divides Bρ(q) in two regions. By
construction, one of the regions must be in Ω+

k and the other must be in Ω−
k . It then turns

out that lim infk min{|Ω+
k |, |Ω−

k |} > 0. Thus (i) above implies that both Ω+
∞ and Ω−

∞ are
not empty.

We now use the latter fact to show that K∞ disconnects R2. Consider indeed two points
q± ∈ Ω±

∞ \K∞ whose existence is guaranteed by the fact that both Ω±
∞ are not empty. If

these points belonged to the same connected component of R2 \K∞, then there would be a
continuous curve η : [0, 1] → R2 \ K∞ with η([0, 1]) ∩ K∞ = ∅, η(0) = q− and η(1) = q+.
For k sufficiently large we have

• η([0, 1]) does not intersect K0,rk
(by local Hausdorff convergence of K0,rk

to K∞);
• q± ∈ Ω±

k (by condition (ii) above);
• η([0, 1])] ⊂ Br/rk

, where r is the radius on (4.4.14).
Fix now a k sufficiently large so that all the conclusions above apply. Then:

• p− := rkq
− ∈ Ω+, p+ := rkq

+ ∈ Ω−;
• t 7→ rkη(s) is a continuous curve contained in Br which does not intersect K and

hence does not intersect γ((s−, s+)).
However, since Ω± are the two distinct connected components of Br \ γ((s−, s+)), we have
reached a contradiction.
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4.4.3. Proof of Corollary 4.4.3. Assume by contradiction that (u,K) is a global
generalized minimizer such that K has two unbounded connected components K1 and K2.
Without loss of generality we can assume that both components intersect the unit disk B1
and we fix two points p1 ∈ K1 ∩B1, p2 ∈ K2 ∩B1.

Fix now k ∈ N \ {1, 2} and consider the class of Lipschitz curves
{β : [0, ℓ(β)] → K1 : |β̇| = 1, β(0) = p1, |β(ℓ(β))| ≥ k2} .

By Lemma C.0.2 such class is nonempty. It is easy to see that there is a curve β in this
class whose domain of definition has minimal length (the argument is the same as in Step
3 of the proof of Lemma C.0.2). Such curve must then be injective and |β(ℓ(β))| = k2,
otherwise it would not have the minimizing property just described. We then consider the
largest s such that |β(s)| = 1. The arc γk : [s, ℓ(β)] ∋ σ 7→ β(σ) ∈ K1 is thus an injective
arc connecting a point in ∂B1 to a point in ∂Bk2 . We find likewise an injective arc ηk in K2
with the same properties. By the Jordan curve theorem the two paths γk ∪ ηk subdivide
Bk2 \B1 into two connected components U±

k .
We consider now the rescaled pairs (u0,k, K0,k) and the corresponding domains Ω±

k ⊂
Bk \ B1/k, resulting from appropriately scaling the domains U±

k . As in the proof of
Corollary 4.4.2, up to subsequences we can assume that (u0,k, K0,k) converge to a global
generalized minimizer (u∞, K∞), that the paths ηk ∪ γk converge locally in the Hausdorff
topology to a connected closed set Γ ⊂ K∞ and that the sets Ω±

k ∩ B1 converge to open
sets Ω±

∞. As above Γ ∩ B1 is not empty and we can pick a point q ∈ Γ ∩ B1 which is a
pure jump point for K∞. Again the regularity theory will imply that there is a Bρ(q) and a
k0 such that for all k ≥ k0 K0,k ∩Bρ(q) is a smooth arc subdividing Bρ(q) into two open
subsets which have roughly the same area. Such arc is then either a subset of the rescaled
ηk or a subset of the rescaled γk and in both cases we conclude that one the two regions in
which Bρ(q) is subdivided by Γ is a subset of Ω+

∞, while the other is a subset of Ω−
∞.

Similarly to the proof of Corollary 4.4.2 we argue then that any pair of arbitry points
q± ∈ Ω±

∞ \K∞ must belong to different connected components of R2 \K∞. This in turn
allows us to apply Theorem 4.4.1 and conclude that (u∞, K∞) is an elementary global
generalized minimizer. But then Corollary 3.1.6 would imply that (u,K) was itself an
elementary global generalized minimizer. In that case K must be connected, contradicting
the initial assumption that K contains at least two distinct connected components.

4.4.4. Proof of Corollary 4.4.4. Assume (u,K, {pkl}) is a global generalized mini-
mizer and that ∇u vanishes on some open set. If K disconnects R2 then we know from
Theorem 4.4.1 that the minimizer is elementary. We can thus assume that R2 \ K is
connected. But then, by the unique continuation for harmonic functions we conclude that
∇u = 0 on the whole R2 \ K and in particular that u is constant. This however is only
possible if K is empty.

4.5. The harmonic conjugate

This and the next remaining four sections of the chapter will be dedicated to prove
Theorem 4.1.1. A fundamental role in the proof will be played by the harmonic conjugate
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v of the function u in a minimizing pair (u,K), which will be introduced in this section. v
is, locally in R2 \K, a classical harmonic conjugate of u, i.e. a function v whose gradient
∇v is the counterclockwise rotation of ∇u by 90 degrees (which we will denote by ∇u⊥),
or alternatively such that the map ζ(x+ iy) = u(x, y) + iv(x, y) is holomorphic. The main
point is that v exists globally on R2 \ K, it is unique up to addition of a constant (if
the minimizer is nonelementary), and it can be uniquely extended to a Hölder continuous
function on the whole plane.

Proposition 4.5.1. Let (u,K) be a nonelementary global minimizer of E0. Then there
is a function v : R2 → R with the following properties:

(i) v is harmonic and smooth on R2 \K, where ∇v = ∇u⊥;
(ii) v ∈ W 1,2

loc (R2), it is Hölder continuous with exponent 1
2 and the Hölder seminorm

is globally bounded, i.e.

sup
x ̸=y

|v(x) − v(y)|
|x− y| 1

2
< ∞ ;

(iii) v is constant on each connected component of K;
(iv) v is unique up to addition of a constant.

Before coming to the proof of the proposition we observe a simple consequence of
Corollary 4.4.2, which will be useful in other occasions.

Lemma 4.5.2. Let (u,K) be a restricted, absolute, or generalized minimizer of Eλ. Let
x, y be two nonterminal points in the same connected component of K. There is then
an injective Lipschitz curve γ : [0, 1] → K with γ(0) = x and γ(1) = y and a partition
0 = s0 < s1 < . . . < sN+1 = 1 such that:

(i) γ|[si,si+1] ∈ C1,α;
(ii) Each γ(si) with i ∈ {1, . . . , N} is a triple junction, while γ(t) is a pure jump for

every t ̸= si.1

In particular, if K ′ ⊂ K is a connected component, the subset of nonterminal points of K ′

is still arc connected.

Proof. Consider γ as in Lemma C.0.2. Since it is injective, γ(s) is a nonterminal
point for every s ∈ (0, 1). On the other hand γ(0) and γ(1) are nonterminal points by
assumption. In particular, by the regularity theory developed so far, for each s ∈ [0, 1] there
is a neighborhood U of s such that γ(U \ {s}) consist of pure-jump points. It thus turns
out that there are at most finitely many s’s such that γ(s) is a triple junction. If we then
parametrize γ with constant speed, assertion (i) follows from the regularity theory. □

Proof of Proposition 4.5.1. Consider the L2 vector field ∇u⊥. Observe that (1.6.2)
implies that the distributional curl of ∇u⊥ vanishes. In particular ∇u⊥ must have a potential
v ∈ W 1,2

loc (R2). A simple direct proof of the latter claim can be found by convolving with a
standard family of mollifiers φε: clearly curl(∇u⊥) ∗ φε is a smooth curl-free vector field

1Observe that 0 and 1 can be triple junctions or pure jumps.
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by (1.6.2) and as such it has a potential vε which we can normalize to vε(0) = 0. We can
then use the compact embedding of W 1,2 to extract a sequence εk ↓ 0 such that vεk

has
a local weak limit in W 1,2. Claim (i) is then an obvious consequence of the smoothness
of v in R2 \K, while the uniqueness up to constant is obvious because, by Theorem 4.4.1,
R2 \K is connected. Observe next thatˆ

Br(x)
|∇v|2 =

ˆ
Br(x)\K

|∇u|2 ≤ 2πr

for every disk Br(x). Hence (ii) follows from the standard Morrey’s estimate.
Finally, in order to prove (iii) fix a connected K ′ ⊂ K. Since by Corollary 3.1.5 pure

jump points (which clearly are nonterminal) are dense, it suffices to prove that v(x) = v(y)
for every pair of pure jump points x, y ∈ K ′, which from now on we assume to be fixed.
Let γ be a curve as in Lemma 4.5.2 and observe that the corresponding partition must
satisfy 0 < s1 < s2 < . . . < sN < 1. Observe moreover that v|K must be constant in the
neighborhood of every pure jump point by the regularity theory developed thus far: indeed
at each jump point we have that u has C1 extensions u+ and u− on both sides of K, while
the Euler-Lagrange conditions for u imply ∂u±

∂ν
= 0. This in turn implies that v as well

has C1 extensions v+ and v− on both sides of K, and since ∇v is a counterclockwise 90
degree rotation of ∇u, we conclude that both ∇v+ and ∇v− are orthogonal to K. Hence
s 7→ v(γ(s)) is constant on the arcs [0, s1), (s1, s2), . . . , (sN−1, sN), (sN , 1]. By continuity
we conclude that v ◦ γ is constant over the whole interval [0, 1], which in turn implies
v(x) = v(γ(0)) = v(γ(1)) = y as desired. □

4.6. The level sets of the harmonic conjugate: Part I

In this section we study the level sets of the harmonic conjugate introduced in Proposi-
tion 4.5.1. Our main conclusion is Proposition 4.6.2 below. Observe that for both v and u
we have a quite good description of their behavior at every point of K which is either a
pure jump point or a triple junction. We thus wish to first gain some more information
on points which belong to the remaining set K♯, i.e. points which either turn out to form
a connected component of K by themselves or which are terminal points of a connected
component with positive length (cf. Definition 1.5.1). At all such points we claim that u
can be extended continuously.

Proposition 4.6.1. There is a universal constant C with the following property. Let
(u,K) be a nonelementary global minimizer and assume that x ∈ K♯ (i.e. that x ∈ K is
neither a triple junction nor a pure jump point). Then there is a ū ∈ R such that

|ū− u(y)| ≤ C|x− y|
1
2 ∀y ̸∈ K . (4.6.1)

In particular there is a unique continuous extension of u to K♯ and from now on we will
just use the same notation u for such extension. We are now ready to state the following
structural proposition.

Proposition 4.6.2. Let (u,K) be a nonelementary global minimizer and let v be as in
Proposition 4.5.1. Then for a.e. m ∈ R we have the following properties:
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(i) u is continuous at every point of {v = m};
(ii) H 1

2 (K ∩ {v = m}) = 0;
(iii) {v = m} \K is the union of countably many real analytic arcs;
(iv) {v = m} has locally finite H1 measure;
(v) for every injective Lipschitz curve γ : [0, 1] → {v = m} the function u ◦ γ is

absolutely continuous, u is differentiable at γ(s) for a.e. s such that γ̇(s) ̸= 0 and
d

dt
(u ◦ γ) = ((∇u) ◦ γ) · γ̇ (4.6.2)

where the right hand side is defined as 0 at every point s where γ̇(s) = 0, irrespec-
tively of whether u is differentiable or not at that point.

Remark 4.6.3. Note that, as a consequence of (v) we have the integral identity

u(γ(1)) − u(γ(0)) =
ˆ 1

0
∇u(γ(t)) · γ̇(t) dt . (4.6.3)

4.6.1. Proof of Proposition 4.6.1. Without loss of generality assume that x = 0.
Given an open set U we define

osc (u, U) := sup{|u(x) − u(y)| : x, y ∈ U \K} .

We just need to show that there is a universal constant C such that osc (u,Br(0)) ≤ Cr
1
2

and then we can simply define
ū := lim

y ̸∈K,y→0
u(x)

to conclude (4.6.1). Since we are claiming that the constant C in our estimate is independent
of (u,K), we can assume by scaling that r = 1 and we are thus reduced to show

sup{|u(x) − u(y)| : x, y ∈ B1 \K} ≤ C . (4.6.4)
We will accomplish the latter estimate in three steps.

Step 1 Firs of all consider F := {r ∈ (1, 2) : ♯(K ∩ ∂Br) < ∞} and for each r ∈ F we
define

d(K, r) := min{|x− y| : x ̸= y and x, y ∈ K ∩ ∂Br} .
We then claim that there is a k ∈ N such that

|{r ∈ F : d(K, r) > k−1}| ≥ 2k−1 . (4.6.5)
Assume indeed that the statement is false for every k and let (uk, Kk) be a counterexample
for k. Hence a subsequence (ukj

, Kkj
) converges to a global generalized minimizer (u∞, K∞).

By the coarea formula [5, Theorem 2.93] there must be at least one radius r ∈ (5/4, 7/4)
such that ∂Br ∩ K∞ consists of finitely many pure jump points x1, . . . , xN , intersecting
∂Br transversally. But then there is δ > 0 such that (Br+2δ \ Br−2δ) ∩K∞ consists of N
arcs, intersecting all circles at an angle no smaller than 2δ. In turn the regularity theory
developed in the first part implies the existence of a positive η such that, for sufficiently
large j, d(Kkj

, ρ) > η for all ρ ∈ (r − η, r + η), which is a contradiction.
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Fix now a k ∈ N such that (4.6.5) holds and set

R :=
{
r ∈ F : d(K, r) > k−1 and

ˆ
∂Br

|∇u|2 ≤ 8πk
}
.

Observe that |R| ≥ k−1

For each r ∈ R we let I1(r), . . . , IN(r)(r) be the connected components of ∂Br \ K.
Observe that the length of each Ij(r) is at least 1

k
. For each Ij(r) let

δj(r) := max{dist (x,K) : x ∈ Ij(r)}

and
δ(r) := min

j
δj(r) .

We claim that there is some M ∈ N universal constant such that δ(r) > M−1 for at least
one r ∈ R. Assume the contrary and for each M > 0 let (uM , KM) be such that δ(r) ≤ 1

M
for every r in the set

RM := {r : d(KM , r) > k−1} .
Let then (uMj

, KMj
) be a sequence which converges to (u∞, K∞). Let R∞ be the set of all

ρ ∈ (1, 2) which are cluster points of a sequence {rj} with rj ∈ RMj
. Then R∞ cannot

be finite. Fix now ρ ∈ R∞. We then easily conclude that ∂Bρ ∩K∞ contains at least one
interval of length larger than 1

k
. However this would imply that H1(K∞ ∩B2) = ∞.

Step 2 Let now Ω(K, δ,R) := {x ∈ BR : dist (x,K) > δ}. We then claim that for
every δ > 0 there is L ∈ N such that Ω(K, δ, 2) is contained in the same connected
component of Ω(K, 1

L
, L). Indeed, assume the claim is false and for every L let (uL, KL)

be a counterexample. Extract a subsequence (uLj
, KLj

) which is converging to a global
generalized minimizer (u∞, K∞). Note that K∞ must then disconnect R2 and thus, by
Theorem 4.4.1, (u∞, K∞) is a generalized global minimizer. Recall that by assumption
0 ∈ KL for every L ∈ N and hence 0 ∈ K∞. In turn, by the regularity theory 0 ∈ KLj

must
be a triple junction or a pure jump point, while we are assuming that 0 ∈ K♯.

Step 3 Fix now M and k as in Step 1 and let r ∈ R be such that δ(r) > M−1. Let L be
as in Step 2. Let Ii, i ∈ {1, . . . , N}, be the connected components of ∂Br \K, and for each i
select xi ∈ Ii such that BM−1(xi) ⊂ R2 \K. Fix now ℓ and consider that xℓ and xℓ+1 are in
the same connected component of Ω(K, 1

L
, L), which we denote by Ω′. Consider a maximal

subset of points S = {yj} ⊂ Ω′ with the property that |yi − yj| ≥ 1
8L for each distinct pair

yi, yj . We then have that {B(4L)−1(yj)} covers Ω′. At the same time the cardinality of S is
bounded by a constant since B(16L)−1(yj) are pairwise disjoint.

A chain of S is given by a choice of balls {B(4L)−1(yi(j))}j∈{1,...N} where the i(j) are all
distinct and B(4L)−1(yi(j)) ∩B(4L)−1(yi(j+1)) ̸= ∅. We say that B(4L)−1(yK) and B(4L)−1(xJ)
are chain-connected if there is a chain such that I = i(1) and J = i(N). Assume now,
without loss of generality, that B(4L)−1(y1) contains xℓ and let C ⊂ S be the subset of
points such that B(4L)−1(yj) is chain-connected to B(4L)−1(y1). C must coincide with S
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otherwise the two open sets

U :=
⋃
i∈C

B(4L)−1(yi) (4.6.6)

V :=
⋃

i∈S \C

B(4L)−1(yi) (4.6.7)

would be disjoint and would disconnect Ω′. Upon reindexing our balls we can thus assume
that {B(4L)−1(yi)}i∈{1,...,N} is a chain such that xℓ ∈ B(4L)−1(y1) and xℓ+1 ∈ B(4L)−1(yN ). Set
z0 = xℓ, zN = xℓ+1, and choose zi ∈ B(4L)−1(yi)∩B(4L)−1(yi+1) for every other 1 ≤ i ≤ N−1.
Consider then the piecewise linear curve γ consisting of joining the segments [zi, zi+1]. Since
|zi+1−zi| ≤ 1/(2L), the length of the curve is bounded by a universal constant. Furthermore,
each point z on the curve is at distance at least 1/2L from K. In turn this and the energy
upper bound in (1.4.1) imply ˆ

B1/(2L)(z)
|∇u|2 ≤ π

L
.

By the mean-value property of harmonic functions, we conclude that |∇u| is bounded by a
universal constant on the curve γ. This then implies that |u(xℓ) − u(xℓ+1)| is bounded by a
universal constant too.

Next recall that ˆ
∂Br

|∇u|2 ≤ 8πk .

Hence, by Morrey’s embedding, we conclude that osc (u, ∂Br \K) is bounded by a universal
constant. At this point the maximum principle of Lemma 2.1.1 implies that osc (u,Br \K)
is bounded as well by the same constant, concluding the proof.

4.6.2. Proof of Proposition 4.6.2. Consider first the union K̃ of the connected
components ofK with positive length. SinceK\K̃ consists of irregular points, H1(K\K̃) = 0
and thus Proposition E.0.1 implies that H 1

2 ((K \ K̃) ∩ {v = t}) = 0 for a.e. t since v ∈ C
1
2

by (ii) in Proposition 4.5.1. On the other hand, v(K̃) is a countable set, because the
connected components of K with positive length are countaly many, and on each such
component the function v is constant. Thus, except for a countable values of t’s we have
K̃ ∩ {v = t} = ∅. In particular, (ii) follows. Moreover, Proposition 4.6.1 implies that u is
continuous at every point x ∈ {v = t} if {v = t} does not intersect K̃, hence giving (i).

The fact that {v = t} \ K consists of a locally finite union of real analytic arcs is a
direct consequence of the harmonicity of u on R2 \K. Next, for every N ∈ N consider that
by the coarea formula [5, Theorem 2.93] it is true thatˆ

H1({v = t} ∩ (BN \K)) dt =
ˆ
BN \K

|∇v| =
ˆ
BN \K

|∇u| < ∞ .

Therefore for a.e. t we have that H1({v = t} ∩ (BN \ K)) < ∞ for every N ∈ N, thus
implying (iv).
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Again by the coarea formula [5, Theorem 2.93] we know thatˆ ˆ
BN ∩{v=t}\K

|∇u|dH1 dt =
ˆ
BN \K

|∇v||∇u| =
ˆ
BN \K

|∇u|2 < ∞ .

We thus infer that for a.e. tˆ
BR∩{v=t}\K

|∇u|dH1 < ∞ ∀R > 0 . (4.6.8)

Fix now a t which satisfies (i), (ii), and (4.6.8) and let γ : [0, 1] → {v = t} be an injective
Lipschitz curve. We want to show that u ◦ γ ∈ W 1,1. In order to do that we set

h(s) :=
{

|∇u(γ(s))||γ̇(s)| if γ(s) ̸∈ K
0 otherwise.

Observe that, by injectivity of γ and the 1-dimensional area formulaˆ 1

0
h(s) ds =

ˆ
γ([0,1])\K

|∇u| < ∞ .

The absolute continuity of u ◦ γ will then follow once we prove that, for all σ, s ∈ [0, 1],

|u(γ(s)) − u(γ(σ))| ≤
ˆ s

σ

h(τ) dτ . (4.6.9)

First of all, (4.6.9) is obvious if γ([σ, s]) ⊂ R2 \ K, because in that case u is smooth
on [σ, s]. On the other hand it is not possible that γ([σ, s]) ⊂ K for σ < s because
H 1

2 (K ∩ {v = t}) = 0, hence K ∩ {v = t} is totally disconnected and γ([σ, s]) ⊂ K would
imply that γ is constant on [σ, s], contradicting the injectivity of γ.

Fix now an arbitrary σ < s. By the above argument we know that there is a sequence
σk ↓ σ and a sequence sk ↑ s such that γ(σk), γ(sk) ̸∈ K, hence it suffices to prove (4.6.9)
when γ(s), γ(σ) ̸∈ K. However, if γ([σ, s]) ⊂ R2 \ K, then we already observed that the
inequality is correct. Thus, we can assume the existence of at least one τ ∈ (σ, s) such that
γ(τ) ∈ K.

Fix now δ > 0 and using the fact that H 1
2 (K ∩ {v = t}) = 0 cover γ([0, 1]) ∩K with a

collection C of open disks Bri
(xi) such that xi ∈ γ([0, 1]) ∩K and∑

i

r
1
2
i < δ .

Observe that γ([0, 1]) ∩ K is compact and thus we can assume that the cover is finite.
Moreover, by taking the disks suitably small, we can assume that γ(σ) and γ(s) do not
belong to any of them. Finally, since H 1

2 (γ([0, 1]) ∩K) = 0 we can choose the disks so that
∂Bri

(xi) ∩ (γ([0, 1]) ∩K) = ∅, which in turn implies that
γ([0, 1]) ∩K ∩Bri

(xi) is compact for every i. (4.6.10)
Select now the smallest s1 ∈ (σ, s) such that γ(s1) ∈ K. Then clearly γ(s1) belongs to
some disk of the cover C and by reindexing it we can assume it is Br1(x1). We then let
σ2 be the largest number such that γ(σ2) ∈ K ∩ Br1(x1), which exists by (4.6.10) and is
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smaller than s because γ(s) ̸∈ K. If γ((σ2, s]) ∩K = ∅ we stop the procedure, otherwise
we select the smallest s2 > σ2 such that γ(s2) ∈ K. Then γ(s2) must belong to a disk of C
which however cannot be Br1(x1), and upon reindexing we can assume is Br2(x2). We then
proceed as in the first step and since C is finite the procedure stops in finite time. We let
σN be the last chosen number and set σ1 = σ and sN = s. We can then partition [σ, s] as

[σ1, s1) ∪ [s1, σ2] ∪ (σ2, s2) ∪ . . . ∪ [sN−1, σN ] ∪ (σN , sN ] .

Each (σi, si) is contained in R2 \K. Thus u is smooth on the arc γ((σi, si)) and for every
sufficiently small ε we can write

u(γ(si − ε)) − u(γ(σi + ε)) =
ˆ si−ε

σi+ε

d

dτ
(u ◦ γ)(τ) dτ .

In particular

|u(γ(si)) − u(γ(σi))| ≤
ˆ si

σi

h(τ) dτ .

On the other hand u(γ(si)), u(γ(σi+1)) ∈ Bri
(xi). Recall that xi ∈ γ([0, 1]) ∩ K and

since γ([0, 1]) does not intersect any connected component of K with positive length, we
necessarily have xi ∈ K♯. Hence by Proposition 4.5.1

|u(γ(σi+1)) − u(γ(si))| ≤ Cr
1
2
i .

We can thus estimate

|u(γ(s)) − u(γ(σ))| ≤
N∑
i=1

|u(γ(si)) − u(γ(σi))| +
N−1∑
i=1

|u(γ(σi+1)) − u(γ(si))|

≤
N∑
i=1

ˆ si

σi

h(τ) dτ + C
N−1∑
i=1

r
1
2
i ≤

ˆ s

σ

h(τ) dτ + Cδ .

Since δ is arbitrary, we then conclude (4.6.9).
As for (4.6.2) recall first that, since u ◦ γ is in W 1,1, it is a.e. differentiable. The

derivative at a.e. τ ∈ [0, 1] \ γ−1(K) can be computed using the chain rule because u is
smooth on R2 \K. Nex observe that, by (4.6.9),∣∣∣∣∣ ddτ (u ◦ γ)

∣∣∣∣∣ ≤ h a.e.

and since g vanishes on γ−1(K), we conclude that

d

dτ
(u ◦ γ) = 0 a.e. on γ−1(K).

However, as already noticed we have that γ̇ = 0 a.e. on γ−1(K). Hence we can claim (4.6.2)
a.e. on [0, 1] if we interpret the expression as 0 at every point where γ̇ exists and vanishes.
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4.7. The level sets of the harmonic conjugate: Part II

In this section we deepen the analysis of the level sets of the harmonic conjugate. We
will make use of the following terminology:

Definition 4.7.1. A set J ⊂ R2 contains no loops if any injective continuous map
γ : S1 → J is necessarily constant. A point p ∈ J is terminal if there is no injective
continuous map: γ : (−1, 1) → J such that γ(0) = p. Points p ∈ J which are not terminal
will be called nonterminal.

Note that the terminology is consistent with the terms terminal and nonterminal points
introduced in Definition 1.5.1 and used thus far for points of K.

Proposition 4.7.2. Let K, u, and v be as in Proposition 4.6.2. Then:
(i) For every m the level set {v = m} does not disconnect R2 and in particular contains

no loops.
(ii) v satisfies the maximum and minimum principle, i.e.

max
U

v = max
∂U

v , (4.7.1)

min
U
v = min

∂U
v , (4.7.2)

for every bounded open set U . Moreover, if x ∈ U is a local minimum (resp.
maximum), then necessarily x ∈ K.

(iii) For every m to which all the conclusions of Proposition 4.6.2 apply, the level set
{v = m} contains no terminal points.

Proof. Proof of (i) If {v = m0} contains a loop, then it disconnects R2 and at least
one connected component of {v ̸= m0}, which we denote by U , must be bounded. Clearly v
on U must either be strictly larger than m0 or strictly smaller than m0. To fix ideas let us
assume that it is strictly larger and let δ > 0 be such that Um := {v > m} ∩U is not empty
for every m ∈ (m0,m0 + δ). Consider that ∂Um is rectifiable for a.e. m by Proposition 4.6.2
and that ˆ m0+δ

m0

H1(∂Um) dm < C .

We fix next a suitable regularization vk of v, for instance by convolution, so that

lim sup
k

ˆ m0+δ

m0

H1(∂{vk > m} ∩ U) dm < ∞ .

By a standard diagonalization procedure we can find a sequence of values mk converging to
some m ∈ (m0,m0 + δ) with the properties that:

(a) All the conclusions of Proposition 4.6.2 apply.
(b) {vk = mk} ∩ U consist of non degenerate points (i.e. ∇vk ≠ 0 everywhere on

{vk = mk} ∩ U).
(c) H1({vk = mk} ∩ U) converge to H1({v = m} ∩ U).
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Since {vk = mk} ∩ U is (for sufficiently large k) compactly contained in U , it consists
of finitely many loops. Each such loop bounds a corresponding disk. Fix a point p in
{v > m} ∩ U : for sufficiently large k’s p must belong to one such disk. We denote it by Dk

and we let γk be the corresponding loop. Note that the length of γk is uniformly bounded in
k. We can thus parametrize γk by a constant multiple of the arc length over S1. Without loss
of generality we keep denoting by γk such parametrization. By Ascoli-Arzelà we can assume
that γk converges to some Lipschitz map γ : S1 → U . Observe that γ(S1) ⊂ {v = m} ∩ U .
But observe also that the length of γ(S1) must be equal to the limits of the lengths of γk(S1)
(which we might assume exist by extraction of a subsequence), otherwise item (c) above
would be violated. In particular we obtain thatˆ

|γ̇| = H1(γ(S1)) .

Observe also that we can choose δ positive so that Bδ(p) ⊂ {v > m} ∩ U . In particular,
for all sufficiently large k the disk Bδ(p) must be contained inside the disk Dk. We thus
conclude from the isoperimetric inequality that

H1(γ(S1)) > 0 .
Choose now the orientation of γk so that

γ̇⊥
k

|γ̇k|
= λk∇vk ◦ γk

for some positive function λk. In particular
γ̇⊥
k

|γ̇k|
is the inward unit normal to Dk and vk increases in its direction. It is then easy to see that

γ̇⊥

|γ̇|
· ∇v ◦ γ ≥ 0

holds a.e., since the convergence of vk to v is in fact smooth on γ(S1)\K, which has measure
zero. But then we conclude that in fact

γ̇⊥

|γ̇|
· ∇v ◦ γ > 0

a.e., since both vectors are collinear and nonzero a.e. on γ(S1) (recall that v is harmonic
outside K and as such the set of points not contained in K where its gradient vanishes
must be countable).

In particular, we conclude
γ̇ · ∇u ◦ γ > 0 a.e..

However, by Proposition 4.6.2 the latter would imply

0 = u(γ(2π)) − u(γ(0)) =
ˆ 2π

0
∇u(γ(t)) · γ̇(t) dt > 0 ,
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which is a contradiction.
Proof of (ii) The two cases are entirely analogous and we focus on the case of maxima for

simplicity. Consider, by contradiction, a bounded open set V for which maxV v > max∂V v.
Then there is an m0 such that {v = m0} does not intersect ∂V and {v > m0} ∩ V is
not empty. Setting U := {v > m0} we can argue as in the previous step to obtain a
contradiction. Next, if x ∈ U is a local maximum and x ̸∈ K, by the harmonicity of v we
conclude that ∇v must vanish in a neighborhood of x. But this is not possible because
Corollary 4.4.4 would imply that (u,K) is an elementary minimizer.

Proof of (iii) We will prove the claim for any m such that all the conclusions of
Proposition 4.6.2 apply. Fix then a point x0 in {v = m} and assume, without loss of
generality, that x0 = 0. The proof will be split in several step

Step 1. Choice of a good radius. Let r > 0, and G be any connected component
of {v = m} ∩ Br and observe that it must necessarily intersect ∂Br. Otherwise, using
Lemma C.0.1 we find a Jordan curve γ which does not intersect {v = m} and bounds a disk
D which contains G. Clearly we must have either v < m or v > m on ∂D and in particular
we would violate (ii).

We thus infer that {v = m} ∩ ∂Br ̸= ∅ for every r, because some connected component
of {v = m} ∩Br must contain the origin (recall that x0 = 0 ∈ {v = m}).

We next appeal to the coarea formula [5, Theorem 2.93] to choose an r ∈ (1, 2) with
the properties that

(1) {v = m} ∩ ∂Br is finite;
(2) {v = m} ∩ ∂Br ∩K = ∅;
(3) ∇v(y) ̸= 0 for every y ∈ {v = m} ∩ ∂Br (hence {v = m} is a smooth arc in a

sufficiently small neighborhood of any such y);
(4) {v = m} intersects ∂Br transversally at any y ∈ ∂Br ∩ {v = m}.

Fix now any point y ∈ ∂Br ∩ {v = m}. By (4) the normal to {v = m} at y cannot be
perpendicular to ∂Br: recall that this normal is colinear with ∇v(y), which by (3) does
not vanish. We thus conclude that ∇v(y) cannot be perpendicular to ∂Br. Hence, if we
consider the restriction of the function v − m to ∂Br, such function is changing sign at
each point y ∈ ∂Br ∩ {v = m}. Therefore {v = m} ∩ ∂Br consists of an even number of
points which divide the cirle ∂Br into an even number of arcs γi: on half of them v −m is
positive, while on the other half it is negative, cf. Figure 6.

Step 2. 0 ∈ ∂A for some connected component A of Br \ {v = m}. Consider now
the connected components {Ai} of Br \ {v = m}. v −m does not change sign nor vanishes
on each Ai. ∂Ai must then intersect ∂Br: otherwise we would have v ≡ m on ∂Ai, violating
(ii). Since each Ai is connected, if ∂Ai intersects a given γj , the latter being one of the arcs
introduced in the previous step, then γj ⊂ Ai. In particular each γj is contained in at most
one ∂Ai, while each ∂Ai contains at least one γj. Hence the Ai’s are finitely many.

Next, since {v = m} contains no interior point, every z ∈ {v = m} ∩ Br must be
contained in ∂Ai for some i. This holds for 0 as well. We therefore assume that 0 ∈ ∂A1
and for simplicity we set A = A1.
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Br

γ1

γ2γ3

γ4

Figure 6. ∂Br \ {v = m} consists of an even number of arcs, on which the
function v −m takes alternating signs. The picture depicts {v = m} only in
a neighborhood of ∂Br.

Step 3. A is simply connected. Furthermore, to simplify our discussion we assume
that v > m on A. Note next that A must be simply connected: if γ is a smooth simple
Jordan curve in A, then it bounds a disk D and the latter must be contained in A otherwise
D would contain a portion of ∂A which does not intersect γ, and from the latter we would
get a connected component of {v = m} which does not intersect ∂Br. Since A contains D,
γ is contractible in A.

Step 4. Finding a suitable Jordan curve in ∂A. Having established that A is
simply connected, i.e. it is a topological disk, we infer that its boundary ∂A cannot be
disconnected by a point p ∈ ∂A. We next devise a suitable algorithm to generate a suitable
Jordan curve contained in ∂A.

Fix first a γi contained in ∂A, relabel it so that i = 1 and consider its two endpoints a1
and b1. If we remove the (open arc) γ1 from ∂A, the remainder is a closed connected set
with finite Hausdorff measure. We can thus apply Lemma C.0.2 to conclude that there is an
injective curve η in ∂A \ γ1 which connects b1 and a1. Consider it as a parametrized curve
η : [0, 1] → ∂A with η(0) = b1 and η(1) = a1. Since in a neighborhood U of b1 {v = m} ∩U
consists of a single smooth arc crossing {v = m} precisely in b1, for a sufficiently small
δ > 0 η([0, δ)) must be contained in this arc. In particular η((0, δ)) does not intersect ∂Br.
On the other hand η(1) = a1 ∈ ∂Br. Consider therefore the smallest positive s such that
η(s) ∈ ∂Br: the arc η1 = η([0, s]) is then a simple arc joining b1 with either a1 or with one
extremum of some other arc γj, and η1((0, s)) is contained in ∂A \ ∂Br. If η1(s) = a1 we
stop and we conclude that γ1 ∪ η1 is a Jordan curve.

Otherwise η1(s) must be an extremum of a second γj contained in ∂A. We relabel so
that j = 2 and denote by a2 and b2 its extrema, with the convention that a2 = η1(s). We
now remove γ1 ∪ η1 ∩ γ2 from ∂A (where we follow the convention that the arcs γi are open
while the arcs ηi are closed). The remaining set is still connected, has finite H1 measure,
and contains b2 and a1. We can thus repeat the procedure above to produce a second
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a1

b1

a2

b2

a3

b3

γ1

γ2

γ3

η1

η2

η3A

Figure 7. The picture is an illustration of the algorithm to find a Jordan
curve inside ∂A. The algorithm finds inductively the pairs of Jordan arcs
(γi, ηi) starting from γ1.

simple arc η2 ⊂ ∂A \ (γ1 ∪ η1 ∪ γ2) which connects b2 with the endpoint of some other arc
γk contained in ∂Br, taking care that η2 lies in Br except for its two extrema. Recall that
one extremum of η2 is b2: if the second is a1 we stop the procedure. Otherwise note that
it cannot be an extremum of either γ1 or γ2: it must be the extremum of some γk with
k ̸= 1, 2, cf. Figure 7. We then let k = 3 after relabeling and proceed as above.

Since the γj’s are finitely many, the procedure must end. Assume it ends after N steps.
If we string together γ1 ∪ η1 ∪ γ2 ∪ . . . ∪ ηN , we achieve a Jordan curve.

Step 5. Describing ∂A. The Jordan curve β : S1 → ∂A found by the previous
algorithm bounds then a topological disk D which must be contained in Br and which
contains 0. Observe that A must be contained in D. Indeed D is a connected component of
Br \ β(S1) and, since β(S1) ⊂ ∂A ⊂ {v = m}, any connected component of Br \ {v = m}
either does not intersect D, or it is contained in D. On the other hand both A and
D contains 0, so A ∩ D ̸= ∅. Next v = m on all the ηi’s, while v > m on all the γi’s
(v ≥ m on each of them because they are in ∂A and the strict inequality is because none
of them intersects {v = m}). But then we conclude that v ≥ m on D, by (ii). We
now want to exclude that v = m somewhere in D. Indeed, if z ∈ {v = m} ∩ D notice
that there is a connected component G of {v = m} which contains z and intersects ∂Br.
But then H1({v = m} ∩ D) > 0. Since H1({v = m} ∩ K) = 0, we must have some
z ∈ {v = m} ∩ D \ K. But then, by Proposition 4.6.2(ii) v − m takes both signs in any
neighborhood of z, contradicting v ≥ m in D. Having concluded that v > m in D, we infer
that D ∩ {v = m} = ∅. In particular D is a connected component of Br \ {v = m}. Since
it contains A, it actually must be equal to A.

We are now ready to conclude: recalling that 0 ∈ ∂A, it must be contained in some
ηj. The latter is an injective curve, it is contained in {v = m}, and 0 is not one of its two
extrema: in particular 0 is a nonterminal point of {v = m}. □
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4.8. The level sets of the harmonic conjugate: Part III

We are now ready to conclude our analysis of the level sets of v. While so far all the
conclusions apply for a global generalized minimizer which is not elementary, in this section
we use substantially the additional assumption that all but one connected component
of K are contained in a fixed disk BR. Before coming to the relevant statement, let us
point out that, given any global generalized minimizer (u,K, {pkl}) and any constant c,
(±(u− c), K, {±pkl}) is also a global generalized minimizer.

Proposition 4.8.1. Let (u,K) be a nonelementary global minimizer satisfying (a) and
(b) in Theorem 4.1.1 and let v be as in Proposition 4.5.1. Then:

(i) every blow-down of (u,K) (i.e. any limit of (u0,rj
, K0,rj

) for rj ↑ ∞) is the cracktip;
(ii) |∇v(x)| ≥ c0|x|− 1

2 for all x ̸∈ K large enough and for a positive geometric c0;
(iii) up to changing the sign of u, v achieves its global minimum min v;
(iv) for every m > min v there is a radius R = R(m) such that {v = m} \Br is smooth

and {v = m} intersects each ∂Br transversally in exactly two points for every
r ≥ R(m);

(v) for a.e. m > min v the level set {v = m} is a properly embedded unbounded line;
(vi) the unbounded connected component of K is {v = min v}.

Proof. Proof of (i). Since K \BR0 is a single connected component for a sufficiently
large R0, by Proposition 2.6.1 the quantity

1
r

ˆ
Br

|∇u|2

is monotone for r > R0. Let (w, J) be any blow-down. It then turns out that J consists of
a single unbounded connected component and that

1
r

ˆ
Br

|∇w|2

is a nonzero constant thanks to Corollary 4.4.4, being (u,K) nonelementary. But then
Proposition 2.6.1 implies that it is a cracktip. Observe that, while we lack at this point
any uniqueness statement and the half-line of the cracktip could change depending on the
blow-down sequence, it is easy to verify that the sign of the constant b in (2.5.13) must
always be the same, independently of the subsequence (cf. Proposition 2.5.6).

Proof of (ii), (iii), and (iv). Fix r > 0 sufficiently large and rotate the coordinates
by an angle θ(r) so that Rθ(r)(K) ∩ ∂Br = {(r, 0)}. We consider the pair

Kr := 1
r

Rθ(r)(K) (4.8.1)

ur(x) := r−1/2u(rR−θ(r)(x)) (4.8.2)

and the function
vr(x) := r−1/2v(rR−θ(r)(x)) .
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Up to a change of the sign of u we can assume (ur, Kr) is converging to the following specific
cracktip (w∞, K∞):

K∞ = {(t, 0) : t ≥ 0} (4.8.3)

w∞(x) =
√

2
π
r

1/2 cos θ2 . (4.8.4)

On the other hand vr is converging (locally uniformly, thanks to the Hölder estimate of
Proposition 4.5.1) to a Hölder function v∞ which is harmonic on R2 \ K∞ and satisfies
∇v∞ = ∇u⊥

∞ and v∞(0) = 0. But then it turns out that

v∞(x) =
√

2
π
r

1/2 sin θ2 .

We next appeal to the ε-regularity theory at pure jumps to argue that the convergence of
Kr to K∞ is in C1,α on B4 \B 1

2
. Hence we can appeal to the regularity theory coming from

the Euler-Lagrange conditions of Proposition 2.5.2 to conclude that the convergence of ur
and vr to u∞ and v∞ is also in C1,α “up to the discontinuity set Kr”: more precisely, there
are C1,α diffeomorphisms Φr of B4 \ (B1/4 ∪Kr) onto B4 \ (B1/4 ∪K∞) such that

• Φr converges to the identity in C1,α as r ↑ ∞;
• ur ◦ Φ−1

r , vr ◦ Φ−1
r converge in C1,α to u∞, v∞ on B2 \ (B 1

2
∪K∞).

We can then easily draw the following conclusions:
(1) |∇ur| ≥ c > 0 on B2 \ (B 1

2
∪Kr) for some suitable positive constant c and every

sufficiently large r. This clearly implies (ii).
(2) Since |∇vr| = |∇ur| we infer that the level sets of vr are smooth on B2 \ (B 1

2
∪Kr).

(3) Since ±∂v∞
∂θ

(1,±θ) ≥ 1
2
√

2π for θ ∈ (0, π2 ), we conclude ±∂vr

∂θ
(1,±θ) ≥ 1

4
√

2π for
θ ∈ (0, π2 ) and r large enough.

(4) Since v∞(1, θ) ≥ π−1/2 for θ ∈ (π2 ,
3π
2 ), clearly vr(1, θ) ≥ 1

2π
−1/2 for θ ∈ (π2 ,

3π
2 ) and

r large enough.
The last two facts imply that, if r is large enough, then vr(1, θ) > vr(1, 0) for all θ ∈ (0, 2π).
Translating this information back to v, we conclude that, if we denote by m̄ the constant
value achieved by v on the unbounded connected component of K, then v > m̄ on ∂Br \K.
By the maximum principle of Proposition 4.7.2 the latter implies that m̄ is the absolute
minimum of v.

Fix now m > m̄, then

{v = m} \B r
2

= r({vr = r−1/2m} \B 1
2
) .

If r is sufficiently large, the set {vr = r−1/2m} intersects ∂B1 transversally in exactly two
points, by (3) and (4). This shows (iv)

Proof of (v). Pick m > m̄ to which all the conclusions of Proposition 4.7.2 apply and
let r be large enough so that ∂Br intersects {v = m} transversally in exactly two points.
Since Br ∩ {v = m} has no terminal points and no loops, {v = m} ∩Br must be a Jordan
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arc. Indeed we could even notice that the very argument given in the previous section for
Proposition 4.7.2(iii) shows this fact directly.

Proof of (vi). Let L be the unbounded connected component of K. Observe that
we have already shown that L ⊂ {v = m̄}, where m̄ = min v. Next observe that, for a.e.
m > m̄, the level set {v ≤ m} is connected, because of (v). Since {v = m̄} = ⋂

m>m̄{v ≤ m},
we conclude that {v = m̄} is connected as well. Next notice that {v = m̄} ⊂ K, because
by Proposition 4.6.2(ii) any point of {v = m̄} is a global minimum for v. We have thus
inferred that L ⊂ {v = m̄} ⊂ K and that {v = m̄} is connected. Recalling that L is a
connected component of K, we must have L = {v = m̄}. □

4.9. A special bounded connected component of K

From now on we will establish a set of conditions which we can assume for a couple
(u,K) as in Theorem 4.1.1 without loss of generality, thanks to Proposition 4.8.1.

Assumption 4.9.1. (u,K) is a nonelementary global generalized minimizer (in particular
R2 \K is connected) and v is an harmonic conjugate of u as in Proposition 4.5.1, which
satisfy in addition the following properties.

(i) v ≥ 0.
(ii) L := {v = 0} is the only unbounded connected component of K.
(iii) There is R > 0 s.t. K \BR ⊂ L and L ∩ ∂BR has cardinality 1.

We then let m0 be maxK v.
Observe that m0 is well defined because it is in fact maxK∩BR

v by (ii) and (iii) above,
while v is continuous and K ∩ BR compact. We next point out a pivotal (yet simple)
outcome of the Bonnet monotonicity formula.

Corollary 4.9.2. Let (u,K) be as in Assumption 4.9.1. If m0 = 0, then (u,K) is a
cracktip.

We postpone its simple proof, for the moment, and note that it gives us a route to the
proof of Theorem 4.1.1: we assume that m0 > 0 and wish to derive a contradiction. To
that end it will be useful to make the following preliminary analysis.

Proposition 4.9.3. Let (u,K) be as in Assumption 4.9.1 and assume that m0 > 0.
Then any x ∈ K ∩ ∂{v > m0} is either a pure jump or a triple junction. In particular, if G
is any connected component of K contained in {v = m0}, then

(i) G is bounded and H1(G) > 0;
(ii) if x ∈ G is a terminal point, then there is a neighborhood of x in which v ≤ m0.

4.9.1. Proof of Corollary 4.9.2. If m0 = 0 it follows immediately from our assump-
tions that K = {v = 0}, it is connected, and it is unbounded. Since K does not disconnect
R2, K must have at least one terminal point, which without loss of generality we can assume
to be 0. By Proposition 2.6.1 we know that

D(r)
r

= 1
r

ˆ
Br

|∇u|2
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is monotone nondecreasing. Recall that the blow-downs of (u,K) are cracktips by (i)
Proposition 4.8.1. Observe that, if limr↓0 r

−1D(r) = 0, then the blow-ups of (u,K) at 0
are elementary minimizers. By the density lower bound none of them can be a constant,
so they must be either pure jumps or triple junctions. But then the ε-regularity theory
developed thus far would imply that K ∩Br is diffeomorphic either to a diameter of Br or
to three radii meeting at the origin, contradicting the hypothesis that 0 is a terminal point
of K. We thus conclude that c := limr↓0 r

−1D(r) > 0. But then any blow-up (u0, K0) at 0
must have K0 connected and must satisfy

1
r

ˆ
Br

|∇u0|2 ≡ c > 0

Thus the second part of Proposition 2.6.1 implies that (u0, K0) is a cracktip. We thus
conclude that r−1D(r) is as well constant and nonzero. Hence we can once again appeal to
Proposition 2.6.1 to conclude that (u,K) itself is a cracktip.

4.9.2. Proof of Proposition 4.9.3. First of all we address the two consequences
(i) and (ii) of the main statement. (ii) is indeed obvious because of the main part of the
Proposition.

Next consider any connected component G of K in {v = m0}, and note that G is
necessarily bounded in view of Assumption 4.9.1. Let x ∈ G. Recall that the connected
component J of {v = m0} ∩ Br(x) which contains x must intersect ∂Br(x), by Proposi-
tion 4.7.2 (otherwise Lemma C.0.1 would provide an open disk D with smooth boundary γ
containing J and with γ ∩ {v = m0} = ∅: such a D would then violate the maximum prin-
ciple of Proposition 4.7.2). Therefore, if {x} were a connected component of K, then there
would be a sequence xk ∈ J \K converging to x. v would be harmonic in a neighborhood
of these points, and since it is nowhere constant because of Corollary 4.4.4, v −m0 would
need to change sign in these neighborhoods. In particular we could provide a sequence
yk such that |xk − yk| ≤ 1

k
with v(yk) > m0, thus showing that x ∈ K ∩ ∂{v > m0}. But

then by the first part of the Proposition x would be a pure jump point or a triple junction,
showing that K ∩Bρ(x) is connected in some disk Bρ(x), a contradiction.

We next come to the main part of the Proposition, which will be split in several steps.
Step 1. Consider the set V := {v > m0} and fix any point x in R2. In this step we

show that the functional
O(x, r) := 1

r

ˆ
V ∩Br(x)

|∇u|2

is monotone in r. In this step for convenience of notation we assume that x = 0 and,
arguing as in the proof of Proposition 2.6.1, we observe that O(0, ·) is absolutely continuous
and its derivative is given by

O′(0, r) = 1
r

ˆ
V ∩∂Br

|∇u|2 − 1
r2

ˆ
V ∩Br

|∇u|2 .

We next claim that ˆ
V ∩Br

|∇u|2 =
ˆ
V ∩∂Br\K

u
∂u

∂n
. (4.9.1)
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In order to prove it we observe first that the identity can be justified if V is replaced by
{v > m} for some m bigger than m0 for which the conclusion of (v) of Proposition 4.8.1
applies, because then we can let m ↓ m0. Next, for any such m the set {v = m} is a
nonintersecting infinite curve which does not intersect K (because by definition v ≤ m0 on
K). It then turns out that ∇v cannot vanish on it: as it is well known, since v is harmonic,
around a point p where ∇v vanishes the level set {v = v(p)} cannot be a Jordan arc, and it
is rather diffeomorphic to the union of N ≥ 4 segments joining at p. This follows simply
from the fact that, in a sufficiently small neighborhood of p, the level set {v = v(p)} is
diffeomorphic to the zero set of the first nontrivial harmonic polynomial in the Taylor
expansion of v − v(p) at p: up to rotations, the latter is necessarily of the form Re(z − z0)k
for some k ≥ 2, where z0 = x0 + iy0 for p = (x0, y0), and z = x+ iy. It thus turns out that
{v > m} is a smooth set and we can use the relation ∂u

∂n
= 0 on ∂{v > m} = {v = m}.

Next observe that ˆ
γ

∂u

∂n
= 0

for every connected component γ of {v > m0} ∩ ∂Br. Again it suffices to show it first
for every connected component of {v > m} ∩ ∂Br for the m > m0 to which we can apply
Proposition 4.8.1 and then pass to the limit. In fact by varying m we can assume that
the intersection of {v = m} with ∂Br is transversal. Then it suffices to observe that for
each such γ we can find an arc η in {v = m} with the same endpoints as γ such that η ∪ γ
bounds a disk D. We then use

0 =
ˆ
γ∪η

∂u

∂n
=
ˆ
γ

∂u

∂n
,

where the second identity is due to ∂u
∂n

= 0 on η, and the first is implied by the harmonicity
of u in D, if D∩K = ∅. More generally we can use Proposition 2.5.1 if K ∩D ̸= ∅, because
(taking into account that λ = 0) (1.6.2) is the weak formulation of the Neumann condition
∂u±

∂n
= 0 on K. However in this particular instance we can show that D ∩K = ∅. Indeed

{v ≥ m} ⊂ R2 \ K as m > m0 and m0 ≥ v on K, therefore K ∩ D is contained in the
endpoints of γ, which are actually points of η and K ∩ η = ∅. At any rate we are now in
the position of arguing as in Proposition 2.6.1 to show that

1
r

ˆ
V ∩∂Br

|∇u|2 ≥ 1
r2

ˆ
V ∩Br

|∇u|2 .

Step 2. Fix now any x ∈ R2 and observe that V = {v > m0} ⊂ R2 \K, and that by
Proposition 4.8.1(i),

lim
r↑∞

O(x, r) = lim
r↑∞

1
r

ˆ
Br(x)\K

|∇u|2 ,

while the latter value equals the constant value

C∞ := 1
r

ˆ
Br\Kc

|∇uc|2 = 1
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for a cracktip (uc, Kc) with terminal point at the origin. Indeed, observe first that
Br−|x|(0) ⊂ Br(x) ⊂ Br+|x|(0)

and therefore it suffices to show that

lim
r→∞

1
r

ˆ
({v>m0}∩Br)\K

|∇u|2 = C∞ .

Next, introduce ur(x) := r−1/2u(rx), Kr := r−1K, and vr(x) := r−1/2v(rx) and consider
that

1
r

ˆ
({v>m0}∩Br)\K

|∇u|2 =
ˆ

({vr>r−1/2m0}∩B1)\Kr

|∇ur|2 .

However, up to extraction of subsequences (which for the sake of keeping our notation
simple we ignore) ∇ur converges strongly in L2 to ∇uc, while vr converges (uniformly, given
that ∥vr∥C1/2 ≤ C) to the harmonic conjugate vc of uc normalized to be 0 at 0. Depending
on the sign of the cracktip uc, vc is either nonnegative, or nonpositive. In the first case we
have {vc > 0} = R2 \ Kc, while in the second we have {vc < 0} = R2 \ Kc. In particular
{vr > r−1/2m0} converges to {vc > 0}. The second case, namely vc ≤ 0, is then excluded
because the limit of the integrals would be 0. We thus must have {vc > 0} = R2 \Kc, which
in turn implies

lim
r→∞

ˆ
({vr>r−1/2m0}∩B1)\Kr

|∇ur|2 =
ˆ
B1\Kc

|∇uc|2 .

In particular, if we set
C(x) := lim

r↓0
O(x, r) ,

we then conclude that C(x) ∈ [0, 1]. Observe that, arguing as in Proposition 2.6.1, if
C(x) = 1, then O′(x, ·) ≡ 0, which in turn implies that:

• either V ∩Br(x) has Lebesgue measure zero for every r;
• or Br(x) \ V is a straight segment originating at x and u is 1

2 -homogeneous on V .
It is immediate to see that the first case is excluded as it would be C(x) = 0, while we are
assuming that C(x) = 1. In the second case (u,K) is a cracktip with terminal point at x.
But then m0 could not be larger than 0, so the latter conclusion is excluded as well. Thus,
C(x) ∈ [0, 1).

Assume now that C(x) ∈ (0, 1). Consider then any blow-up (u0, K0, {pkl}) at x, limit of
some sequence of rescalings ux,rj

, Kx,rj
) with rj ↓ 0, and consider the limit v0 of the rescaled

harmonic conjugate function

vx,rj
(y) := r

−1/2
j (v(rjy + x) −m0) .

In view of Step 1, it then turns out that
1
r

ˆ
Br∩{v0>0}

|∇u0|2 = C(x) > 0 for all r > 0.

We again argue as in Step 1 and conclude that the last identity yields that either {v0 > 0}∩Br

has measure zero for all r (which is excluded from the fact that C(x) > 0), or that u0 is the
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cracktip. In this case, however v0 is the harmonic conjugate of the cracktip, normalized to
be 0 at 0. Arguing as above, it follows again that either v0 is nonnegative or it is nonpositive.
But in the second case {v0 > 0} would be empty, which in turns gives C(x) = 0. It thus
follows that v0 is nonnegative, which in turn implies {v0 > 0} = R2 \K0. In particular we
have C(x) = 1, which is also a contradiction.

We thus have established that
lim
r↓0

O(x, r) = 0

for every x ∈ R2.
Step 3. Consider now x ∈ K and let (u0, K0, {pkl}) be a blow-up of (u,K) at x. Let

moreover v0 be as above. We distinguish two possibilities:
(a) {v0 > 0} is not empty;
(b) {v0 > 0} is empty.

In case (a), being C(x) = 0, we would have |∇v0| = |∇u0| = 0 on a nontrivial open set.
It therefore follows that ∇u0 vanishes identically on at least one connected component of
R2 \ K0. Since K0 is nontrivial by the density lower bound, K0 must disconnect R2 (cf.
Corollary 4.4.4). In particular it follows that (u0, K0, {pkl}) is either a pure jump or a triple
junction. The ε-regularity theory for these two cases allows then to conclude the main
claim of the proposition.

Step 4. We are now ready to conclude the proof of the Proposition: we just need to
handle case (b). Consider (u0, K0, {pkl}) and v0 as above. Consider in addition the closure
H of {v > m0} and observe that H∩Br(x) is connected for every r > 0 by Proposition 4.8.1,
while it also contains x. Consider now its rescalings Hj := r−1

j (H − x) and assume, up to
subsequences, that it converges locally in the sense of Hausdorff to some closed set H0. H0
is connected and moreover it contains the origin. Observe that v0 ≥ 0 on H0. Observe that,
since we are in case (b) above, v0 ≤ 0. Therefore, v0 = 0 on H0. Now, if exists z ∈ H0 \K0,
then v0 is harmonic in a neighborhood of z, and hence constant. We can thus argue as in
the previous step to conclude that (u0, K0, {pkl}) is either a pure jump or a triple junction.
Otherwise we have H0 ⊂ K0. Since H0 must be unbounded, we conclude that it contains
some regular jump point z. Let Bρ(z) be such that Bρ(z)∩H0 is a smooth arc γ and denote
by B+

ρ (z) and B−
ρ (z) the connected components of Bρ(z) \H0. By the unique continuation

for harmonic functions at smooth boundaries, ∇u+
0 cannot vanish identically on γ, unless

u0 is constant on B+
ρ (z). The latter situation however falls back in what already analyzed

in Step 3 and we can ignore it. We thus conclude that ∇v+
0 does not vanish indentically on

γ and likewise ∇v−
0 does not vanish indentically on γ either, which means of course that

∂v±
0

∂n
do not vanish identically on γ. By possibly changing z and making ρ smaller we can

assume that they do not vanish on γ at all (recall that v0 = 0 on H0).
Consider now that, by the ε-regularity theory, Kx,rj

∩Bρ(z) is converging smoothly to
γ ∩Bρ(z). So for a sufficiently large j it is an arc γj very close to γ. Now, the value of vj
over γj is converging to 0. On the other hand we also know that vj ≤ 0 on γj, because
v ≤ m0 on K.
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Let now B+
j and B−

j be the two connected components in which Bρ(z) is divided by
γj. Consider that |∂v

±
j

∂n
| ≥ c > 0 on γj for some constant c. At the same time the second

derivatives D2vj are uniformly bounded on the B±
j . Observe that ∂v±

j

∂n
cannot change sign

on γj, which is connected. We thus can examine the following cases, depending on their
signs:

• ∂v+
j

∂n
≥ c > 0 on γj or ∂v−

j

∂n
≥ c > 0 on γj, for j sufficiently large. Thanks to the

uniform bound on the second derivatives and to the smooth convergence towards γ,
we can choose ρ sufficiently small but independent of j, so that B+

ρ (z) (or B−
ρ (z)),

is contained in H0, which is a contradiction, because H0 does not contain interior
points.

• ∂v+
j

∂n
≤ −c and ∂v−

j

∂n
≤ −c < 0 on γj for j sufficiently large. Again thanks to

the bound on the second derivatives, if we then choose ρ sufficiently small and
j sufficiently large, we must have vj < 0 on B+

j and B−
j . In particular, since Hj

is the closure of {vj > 0}, we conclude that Hj ∩ Bρ(z) = ∅. But that is also a
contradiction because z is in H0, which is the Hausdorff limit of Hj in Bρ(z).

4.10. Proof of Theorem 4.1.1

In this section we complete the proof of Theorem 4.1.1. We thus fix a nonelementary
global minimizer (u,K), an harmonic conjugate v as in Assumption 4.9.1, and set m0 :=
maxK v. Because of Corollary 4.9.2 we just need to show that m0 = 0. Towards a
contradiction we assume m0 > 0 and we can now use Proposition 4.9.3 to fix a bounded
connected component G of K with H1(G) > 0 and on which v takes the constant value m0.
We next recall that, because of Proposition 4.9.3 and Corollary 4.4.2, every point p ∈ G
can be assigned to one of the following three categories:

• Pure jump points p: for each of them there is a disk Bρ(p) such that Bρ(p) ∩K =
Bρ(p) ∩ G is a smooth arc subdviding Bρ(p) into two topological disks. From
Proposition 2.5.2 we gather immediately that this arc is smooth.

• Triple junctions p: for each of them there is a disk Bρ(p) such that G ∩Bρ(p) =
K ∩Bρ(p) is diffeomorphic to three radii of Bρ(p) joining at p at 120 degrees.

• Terminal points p (according to Corollary 4.4.2 then p /∈ ∂{v > m0} in this case).
Obviously the triple junctions are countably many, because they form a discrete set: if x
is a triple junction, by the ε-regularity theorem already established there is a punctured
disk Br(x) \ {x} in which the set K is regular, in particular x is the only triple junction in
Br(x). However, we caution the reader that for the terminal points the only information
available is that they form a compact set of H1 measure zero.

4.10.1. Touring G counterclockwise. Without loss of generality we will assume
that H1(G) = π (this can be achieved by a simple rescaling argument). We now wish to
find a surjective Lipschitz map α : S1 → G with the following properties:

(i) Each jump point of G has exactly two counterimages;
(ii) Each triple junction point of G has exactly three counterimages;
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Figure 8. The picture is a visualization of the map α in case the number
of maximal smooth open subarcs of G is finite. The map is particularly easy
to define if the arcs are finitely many and very regular: in that case α is
the limit as t ↓ 0 of the clockwise arc-length parametrizations of the sets
{x : dist (x,G) = t}.

(iii) Each terminal point has exactly one counterimage.

The idea is that such a map “goes around G”. In fact it can be shown that, up to a change
of phase in S1 and of orientation, the map is unique. We want then to select the one which
“goes around G clockwise”.

Before detailing the construction of this map, it is useful to break down G as the union
of maximal smooth open subarcs: a C∞ open subarc of G is the image of a smooth injective
η : (0, ℓ) → K, parametrized by arc-length, and a maximal one is a C∞ closed subarc of G
which is not a strict subset of any other closed subarc. Observe that any maximal smooth
open subarc consist only of jump points and has a unique arc-length parametrization up
to orientation. If η : (0, ℓ) → K is one such arc-length parametrization, arbitrarily chosen,
then η can be extended continuously to both 0 and ℓ. The corresponding values, which
we will call extrema of the subarc, cannot be equal (G contains no loops by Lemma 4.3.1)
and cannot be jump points (otherwise the subarc would not be a maximal smooth one).
Therefore, they are either terminal points, or triple junctions (and of course one of them
could be a triple junction, while the other is a terminal point). From now on when treating
a maximal smooth subarc of G we will always understand that its parametrization includes
the two endpoints, even though the extension is not at all guaranteed to be smooth (the
best we can say is that it is Lipschitz continuous at extrema which are terminal points, and
C2 at extrema which are triple junctions). The underlying idea about the map α is quite
simple to define directly when the number of smooth maximal arcs is finite. We do not give
a precise definition of the map in this case, since it can be easily inferred from the general
construction below, we rather refer to reader to Figure 8 for a visual description of what α
does.

We now describe in the detail the algorithm which produces the map α.

Construction of the map α. Fix a maximal smooth subarc (its choice is not
important). We denote it by G0 and let p0 the point which divides it into two arcs of equal
length. Without loss of generality we assume that p0 = 0 and that the tangent to η0 at 0 is
horizontal. We then fix an arclength parametrization η0 : [−L0, L0] → R2 with η0(0) = 0
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Figure 9. The map α0 going around G0.

and η̇0(0) = (1, 0). We start defining a map α0 : [−L0, 3L0] → R2 as follows:

α0(θ) =
{
η0(θ) if −L0 ≤ θ ≤ L0
η0(2L0 − θ) otherwise .

α0 is a map as in Figure 9.
If both extrema of G0 are terminal points, then G = G0 and thus L0 = π

2 . In this case
the map α is given by α0, after we indentify −π

2 with 3π
2 so that the domain of α is S1.

Otherwise, at least one of the extrema of η0 is a triple junction. If only one of them is,
we consider the two additional maximal subarcs which have that particular extremum in
common, if both of them are, then we consider the four additional subarcs. Either way, the
union of these subarcs and the initial one η0 will be denoted by G1. G1 is, schematically, a
tree with finitely many nodes, in the second alternative it will look like the set in Figure 8.
We now define a new map α1 : [−a1, b1] → R2 which is “going around G1 clockwise” by
putting together pairs of oppositely oriented parametrizations of each maximal subarc
forming G1. The parametrizations are chosen and joined in a unique way, once we prescribe
that [−L0, L0] ⊂ [−a1, b1] and that it must coincide with α0 on [−L0, L0]. Note that G1
has a finite number of terminal points. If all of them are terminal points of K we then
stop the procedure. Otherwise we select all the ones which are triple junctions and add
to G1 all the maximal subarcs that have one of them as extrema. This forms G2 and we
can then construct the corresponding map α2. We keep iterating this algorithm: if it stops
after finitely many times N , we then set α = αN . If the procedure never stops, then we can
easily check that αi converges to a unique map α (recall that H1(G) < ∞, and that the
maximal subarcs are parametrized by arc-length).

Surjectivity of α. Once we show that α is surjective on G, it is a simple fact that it
satisfies all the properties above.

In order to show its surjectivity, let G̃ be the image of α and observe at first the following
property:

(R1) if p, q ∈ G are two triple junctions extrema of the same maximal open subarc of G,
then p ∈ G̃ if and only if q ∈ G̃.

In fact, assume p ∈ G̃. If p ∈ Gi for some i, then certainly q ∈ Gi+1 ⊂ G̃ by construction.
On the other hand if p were not included in some Gi, then there would be a sequence
of points pi ∈ Gi \ Gi−1 converging to p. pi would belong to an arc ηi added at the i-th
stage. Since the total length of G̃ is finite, the length Li must converge to 0 as i ↑ ∞. Note
however that each such Li must have at least one extremum which is a triple junction. But
then p would be a limit of triple junctions, which is not possible since the latter are isolated.
We next observe the following further simple consequence of the same idea:
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(R2) If p ∈ G̃ is a triple junction, then G̃ contains all three maximal smooth open
subarcs of K which have p as one endpoint.

Fix now a point q ∈ G and observe that, since G is a connected, there is an injective arc
γ : [0, L] → G such that γ(0) = 0 and γ(L) = q, which we can assume to be parametrized
by arc-length. If γ([0, L]) contains no triple junctions, then γ is contained in G0 and hence
q ∈ G0 ⊂ G̃. Otherwise let P ⊂ [0, L] be the subset of points s such that γ(s) is a triple
junction. This set must be discrete in [0, L): we can order its elements as p1 < p2 < . . ..
Notice that p1 is an extremum of G0 and thus contained in G̃ by (R1). In particular by
(R1) and (R2) we must have that p2 ∈ G̃ as well. By induction all pk belong to G̃. But
then we have two possibilities:

• The number of pk’s is finite: if pN is the largest of them, then q = γ(L) is in the
closure of a maximal smooth open subarc with endpoint pN : by (R2) this subarc
belongs to G̃ and since the latter is closed, q ∈ G̃;

• The number is infinite: in this case pk → q and since G̃ is closed and pk ∈ G̃ for
every k, we conclude again q ∈ G̃.

4.10.2. Final contradiction. With the map α at hand, we define
J := {t ∈ S1 : α(t) is a jump point} .

For each t ∈ J we then let e(t) := α̇(t). Recall that the latter is well defined (as α is indeed
smooth on J) and has unit norm. We then denote by n(t) its counterclockwise rotation by
90 degrees. Recall that for every t ∈ J there is one (and only one) other element s ∈ J
such that α(s) = α(t). By construction we then have e(s) = −e(t) and n(s) = −n(t). Next
recall that for every t ∈ J , if p = α(t), then there is a disk Bρ(p) in which G is a smooth arc
dividing Bρ(p) in two topological disks. Observe that the restrictions of v and u to any of
these two open sets have smooth extensions to its closure (in particular smooth extensions
up to G ∩Bρ(p)). We can therefore define

f(t) := lim
δ↓0

n(t) · ∇v(α(t) + δn(t)) , (4.10.1)

h(t) := lim
δ↓0

u(α(t) + δn(t)) . (4.10.2)

Clearly f(t) tells us whether at the point p the function v is decreasing or increasing in
the direction n(t). But it is also easy to check that h′(t) = f(t) (recall that e(t) = α̇(t)).
Observe in addition that h has a continuous extension to S1. Indeed for a point t ̸∈ J we
just have two possibilities.

• α(t) is a triple junction. In this case t is an isolated point of S1 \ J and h can be
continuously extended at t by the regularity theory at triple junctions.

• α(t) is a terminal point. But then by Proposition 4.6.1 u is continuous at α(t) and

|u(α(t)) − h(s)| ≤ C|t− s|1/2

for all s ∈ J and a universal constant C.
The final contradiction argument then hinges on the following pivotal lemma.
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Lemma 4.10.1. The continuous function f : J → R defined above has the following
properties:

(i) {f = 0} has empty interior;
(ii) The closure S+ of {f > 0} in S1 is a connected arc.

Before coming to the proof of Lemma 4.10.1 we show how to conclude the proof of
Theorem 4.1.1 from it. First of all, since v(α(t)) = m0 for every t, when t ∈ {f > 0}
clearly there is a ε > 0 with the property that v(α(t) + σn(t)) > m0 for every σ ∈ (0, ε).
In particular we conclude that α(t) ∈ ∂{v > m0}. Moreover {f > 0} is dense in S+

and therefore α(S+) ⊂ ∂{v > m0}. Proposition 4.9.3 (ii) implies that α(S+) consists
all of jump points and triple junctions. Since G has at least two terminal points (cf. (i)
Proposition 4.7.2), we conclude that the complement of S+ is not empty, and we will denote
it by S−.

At this point it is convenient to change phase to the parametrization α so that α([0,M ]) =
S+ and α(M, 2π) = S− (cf. (ii) Lemma 4.10.1). Clearly, as h′ = f , the function h is
increasing on S+ and decreasing on S−: h(0) is then the minimum and h(M) is the
maximum. Observe also that in both intervals (0,M) and (M, 2π) the monotonicity of h is
strict, because the zero set of h′ has empty interior.

Since [0,M ] contains no terminal points, we can subdivide [0,M ] as [0, t1] ∪ [t1, t2] ∪
. . . ∪ [tN ,M ], where each ti is a triple junction and each open interval (t0, t1), . . . , (tN ,M)
contains no triple junctions. Observe that α is injective on [0,M ] (because α([0,M ])
contains no terminal point).

The situation is particularly easy when (0,M) itself contains no triple junctions.
α((0,M)) has a second, disjoint, counterimage (s0, s0 + M). This counterimage must
be contained in S−. We therefore can draw the following conclusions:

• h is strictly decreasing on [s0, s0 +M ].
• h(0) < h(s0 + M) < h(s0) < h(M) (the inequalities are justified as h is strictly

decreasing on S−, for the first we also use that h(0) = h(2π));
• α(s) = α(s0 + M − s) (because recall that α|[0,M ] and α|[s0,s0+M ] are arclength

parametrizations of the same smooth arc with opposite orientations.
Now, define the function

k(s) := h(s) − h(s0 +M − s) (4.10.3)

and note that k is strictly increasing on [0,M ] while k(0) < 0 < k(M). In particular,
k(0) = [u](α(0)) and k(M) = −[u](α(M)). Therefore k must have a zero z0 in (0,M). Such
zero z0 corresponds to a pure jump point p = α(z0) with the property that the two traces
u+(p) and u−(p) on the two sides of K at p are equal. But since u is an absolute minimizer
this is not possible (note that here we are using the property that at a jump point the
one-sided traces of u have to differ: this property does not hold for restricted minimizers).

We now analyze the more general case in which (0,M) is not contained in J . We
then let t1, . . . , tN be as above and set t0 = 0 and tN+1 = M . We then find points
sN+1 < s+

N < s−
N < s+

N−1 < s−
N−1 < . . . < s−

1 < s0 such that:
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• α maps [sN+1, s
+
N ] onto α([tN , tN+1]), [s−

1 , s0] onto α([t0, t1]), and [s−
j , s

+
j−1] onto

α([tj−1, tj]);
• α(sN+1) = α(tN+1), α(s0) = α(t0), and α(s−

j ) = α(s+
j ) = α(tj).

Moreover by (ii) Lemma 4.10.1:
• h(t0) < h(s0);
• h(sN+1) < h(tN+1);
• h(t0) < h(t1) < . . . < h(tN+1);
• h(s0) < h(s−

1 ) < h(s+
1 ) < . . . < h(s−

N) < h(s+
N) < h(sN+1).

In order to streamline the rest of the discussion we use the convention that s+
0 = s−

0 = s0.
Assume now there is j ≤ N such that h(s−

j ) ≤ h(tj). In that case we let j be the
smallest of them. Observe then that h(s+

j−1) ≥ h(s−
j−1) > h(tj−1). We then set a := tj−1,

a + d := tj, b := s+
j−1 and observe that s−

j = b + d. Our function k is now defined on
[a, a+ d] as

k(s) = h(s) − h(b+ d− (s− a)) (4.10.4)
Once again k is strictly increasing on [a, a+ d] and moreover h(a) < 0 ≤ h(a+ d). Then h
must have a zero z0 in (a, a+ d]. If this zero is smaller than a+ d, then we are in the exact
same situation as in the case analyzed when α((0,M0)) contains no triple junction. In case
the zero is a+ d, we then find a triple junction point at which two of the three traces of u
coincide: this again (thanks to the regularity theory at triple junctions) contradicts the
absolute minimality of u.

If there is no j ≤ N such that h(s−
j ) ≤ h(tj), then obviously h(s+

N) > h(s−
N) > h(tN).

But then the exact argument just given can be replicated defining a = tN , b+ d = tN+1,
s+
N = b. Then sN+1 = b+d and defining k as in (4.10.4) we find this time h(a) < 0 < h(a+d).

Thus we can repeat the very same argument above and conclude that this case too leads to
a contradiction.

4.10.3. Proof of Lemma 4.10.1. In order to conclude our proof of Theorem 4.1.1 we
are thus left with giving an argument for Lemma 4.10.1. First of all, if {f = 0} contains
an interior point, then there is a jump point p ∈ G and a neighborhood Bρ(p) with the
properties that:

• G ∩Bρ(p) divides Bρ(p) into two topological disks, B+ and B−;
• the trace of ∇u on G∩Bρ(p) from one of the two sides B+ or B− vanishes identically

(as ∂u
∂n

± = 0 on K).
Assume without loss of generality that the side is B+. The unique continuation of harmonic
functions then implies that ∇v vanishes identically on B+. But then u would be constant on
B+ and we know this is not possible in view of Corollary 4.4.4 being (u,K) nonelementary.

In order to prove the second statement of the lemma, consider first t ∈ J with f(t) > 0
and let s be the only other point on S1 such that α(s) = α(t). We want to show that
f(s) ≤ 0. Assume indeed f(s) > 0. We can then select δ > 0 such that v is strictly
increasing on the two segments [α(s), α(s) + δn(s)] and [α(t), α(t) + δn(t)]. For any
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m > m0 = v(α(s)) = v(α(t) sufficiently close to m0 we find then a, b ∈ (0, δ) such that
v(α(t) + an(t)) = v(α(s) + bn(s)) = m.

For an appropriately chosen m we can apply the conclusion (v) of Proposition 4.8.1. So the
two points p = α(t) + an(t) and q = α(s) + bn(s) lie in the properly embedded unbounded
line {v = m}. In particular p and q determine a bounded Jordan arc β on {v = m}.
The union of the arc β with the segment [p, q] (which is directed along n(t) = −n(s) and
hence contains the point α(t) = α(s)) is a simple curve, which by the Jordan’s Theorem
bounds a disk D. Note that on ∂D we have v ≥ m0 and thus v ≥ m0 on D. In particular
D ∩K ⊂ ∂{v > m0}. But K ∩ ∂D consists only of the point α(s). In particular it would
follow that D ∩K contains a terminal point, contradicting Proposition 4.9.3.

Having established the claim above, we are now ready to prove the second conclusion of
the lemma. Towards a contradiction we assume that there are points t1, t2, t3, t4 in J ⊂ S1

with the property that t2 and t4 belong to the two distinct arcs of S1 delimited by t1 and t3
and at the same time f(t3), f(t1) > 0 and f(t2), f(t4) < 0. Moreover, because of the first
statement of the lemma, by perturbing t1 and t3 we can assume that, if s1 and s3 are the
two other points such that α(s1) = α(t1) and α(s3) = α(t3), then f(s1), f(s3) < 0

Consider now as above a δ > 0 such that v is strictly increasing on both segments
S1 = [α(t1), α(t1) + δn(t1)] and S3 = [α(t3), α(t3) + δn(t3)]. Fix as above an m > m0 to
which the conclusion (v) of Proposition 4.8.1 apply and let p1, p3 be the only intersections
of S1 and S3 with {v = m}. Again as above let β ⊂ {v = m} be the Jordan arc delimited
by p1 and p3. Meanwhile let γ be a Jordan arc connecting α(t1) and α(t3) in G (which
exists by Lemma C.0.2). The curve γ ∪ β ∪ [α(t1), p1)] ∪ [α(t2), p2] is simple and therefore
it delimits a disk D. Arguing as above, v ≥ m0 in D and thus D cannot intersect K. In
particular it follows that γ = K ∩ ∂D contains a finite number of triple junctions. So we
can chop γ as the union of closed arcs

γ0 ∪ γ1 ∪ . . . ∪ γN ∪ γN+1

such that:
• The right endpoint pi of γi is the left endpoint qi+1 of γi+1;
• For i ∈ {1, . . . , N} each γi is the closure of a maximal smooth open subarc γi

joining the triple junctions qi and pi;
• γ0 joins q0 = α(t1) to the triple junction p0 = q1 while γN+1 joins the triple junction
pN = qN+1 the pN+1 = α(t3), but both γ0 and γN+1 contain no other jump points.

We parametrize γ by arclength so that, while we are following it from q0 to pN+1, the
counterclockwise rotation of γ̇ by 90 degrees points “inwards” with respect to D

It is now easy to see that there is an interval I ⊂ S1 over which α is injective and
α(I) = γ and that we can choose it so that n(s) always agrees with the counterclockwise
rotation of γ̇(σ) for the only σ with γ(σ) = α(s). But then clearly the two extrema of the
intervals must be t1 and t3, because n(s1) and n(s3) point outwards. We conclude that g is
never negative over the interval I. So neither t2 nor t4 can belong to it, and rather we have
t2, t4 ∈ S1 \ I. This is however precisely in contradiction to our initial assumption.





CHAPTER 5

Epsilon regularity at the cracktip

This chapter is devoted to the final part in the proof of Theorem 1.3.3. In view of the
previous chapters, and in particular of Corollary 4.1.2 and of the ε-regularity of pure jumps,
to establish the case (a) of Theorem 1.3.3 it will suffice to prove the following statement.

Theorem 5.0.1. There are positive constants ε0, α0 and r0 with the following property.
Assume that (u,K) is a critical point of Eλ in B3 and that:

(i) (1.1.2) holds;
(ii) K ∩B2 consists of a single Jordan arc γ with endpoints 0 and p ∈ ∂B2;
(iii) γ is C1,1

loc in B2 \ {0};
(iv) distH(K, [0, p]) ≤ ε0.

Then, up to a suitable rotation of coordinates, K ∩ [0, r0]2 is given by {(t, ψ(t)) : t ∈ [0, r0]}
for some C1,α0 function ψ : [0, r0] → R with ψ(0) = ψ′(0) = 0. If λ = 0 then, in addition,
ψ ∈ C2,α0 and ψ′′(0) = 0.

Let us now briefly describe the contents of the Chapter. In Section 5.1 we rescale and
reparametrize u and γ to obtain in the new variables a nonlinear evolution system from the
outer and inner variation identities satisfied by (u,K). Theorem 5.0.1 is then reduced to
prove suitable decay estimates for solutions of the latter. To this aim, Section 5.2 contains a
first linearization of the evolution system around the cracktip, the tangent couple to (u,K)
dictated by the assumptions in Theorem 5.0.1. Section 5.3 is then devoted to the spectral
analysis of the linearized system in order to rewrite conveniently its solutions. Taking
advantage of this, in Section 5.4 we establish a notable property for such solutions, called in
what follows linear three annuli property, that implies a suitable decay of the corresponding
coefficients. A crucial ingredient for this, is the linearized version of the boundary variations
in Proposition 2.5.4 in order to exclude some slowly decaying solution of the linearized
system itself (cf. (5.3.22)). In turn, a nonlinear three annuli property for solutions to
the nonlinear system is used in Section 5.5 to improve upon the above mentioned first
linearization, and get the appropriate decay estimates to finally prove Theorem 5.0.1 in
Section 5.1.

For the sake of simplifying the calculations, we will actually not work with u, but rather
with its harmonic conjugate w if λ = 0, and a suitable substitute if λ > 0. Therefore, we
need some preparatory work. Thanks to Lemma 5.0.4 u is continuous at 0 and we may
assume without loss of generality u(0) = 0. Thus, by Corollary 4.1.2 and the ε-regularity

119



120 5. EPSILON REGULARITY AT THE CRACKTIP

at pure jumps we infer (cf. again Lemma 5.0.4) that1

|u(x)| + |x||∇u(x)| ≲ |x|1/2 . (5.0.1)

Moreover, in view of Proposition 2.5.2 u has C1,1− extensions on each side of K ∩B2
2

and the variational identities (1.6.2)-(1.6.4) imply the following three conditions
∆u = λ(u− g) on B2 \K (5.0.2)
∂u

∂ν
= 0 on K (5.0.3)

κ = −(|∇u+|2 − |∇u−|2) − λ(|u+ − gK |2 − |u− − gK |2) H1 a.e. on K ∩B2. (5.0.4)
We stress that the equivalence in Proposition 2.5.2 has been obtained assuming K to be
locally a C1,1 graph. We do not know that this property holds at the origin, the loose end,
but we know it on K \ {0}. Indeed, Corollary 4.1.2 provides only a parametrization of K
in polar coordinates smooth up to the tip excluded, i.e. γ ∈ C1,1((0, 2)) such that

K = {γ : [0, 2] → B2 : γ(r) = r(cosα(r), sinα(r))} . (5.0.5)
On the other hand, it is reductive to focus only on (5.0.3)-(5.0.4) and it turns out that
we can deduce more pieces of information from (1.6.2)-(1.6.4) using Proposition 2.5.4,
which will play a key role in our analysis. In particular, we need the following simple
consequence of Corollary 2.5.5 in which we consider the situation described in item (ii)
above of Theorem 5.0.1, i.e. K ∩ ∂Br consists of a single point. We can then take a suitable
linear combination of (2.5.11) and (2.5.12) (in fact we subtract the second from the first) to
derive a boundary integral identity, which does not involve the set K in case λ = 0. Recall
the notation n(x) = x/|x| and τ(x) = x⊥/|x| for all x ∈ R2 \ {0}.

Corollary 5.0.2. Let (u,K) be as in Theorem 5.0.1, and assume that K ∩ ∂Br = {p}.
Then, for a.e. r ∈ (0, dist(0, ∂Ω)) it is true that

0 =
ˆ
∂Br\{p}

(
|∇u|2n · τ(p) + 2∂u

∂n
∇u · (τ − τ(p))

)
dH1

− 2λ
ˆ
Br\K

(u− g)(τ − τ(p)) · ∇u dx+ λ

ˆ
Br∩K

(
|u+ − gK |2 − |u− − gK |2

)
τ(p) · ν dH1 .

(5.0.6)

It is also convenient to define a natural substitute of the harmonic conjugate in case
λ > 0. We argue similarly to Proposition 4.5.1 and consider an auxiliary function ua which
satisfies

∆ua = −λ(u− g) on B2

and
ua(0) = 0 , ∇ua(0) = 0. (5.0.7)

1Here and in what follows we adopt the notation φ ≲ ψ if there is C > 0 such that φ ≤ Cψ.
2namely, u has extensions on each side of K ∩B2 that are C1,α for every α < 1.
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In order to obtain a canonical choice, we fix a cut-off function φ supported in B3 and
identically 1 on B2 and we let

ūa = λΓ ∗ (φ(u− g)) ,
where Γ(x) = − 1

2π log |x| is the fundamental solution of the Laplace equation. Clearly
ūa ∈ H2 ∩ C1,1−(B3) by elliptic regularity (namely ūa ∈ C1,α(B2) for all α ∈ (0, 1)). We
then set ua(x) = ūa(x) − ūa(0) − ∇ūa(0) · x. Observe that, with this canonical choice,
ua = 0 if λ = 0.

By the very definition of ua, the L2 vector field ∇(u+ua)⊥ is curl free on B2 in the sense
of distributions. By mollification we find a potential w ∈ H1

loc(B2), i.e. ∇w = ∇(u+ ua)⊥,
which is harmonic and smooth onB2\K. The following facts follow from simple modifications
of arguments already used in the previous sections, which we anyway report for the reader’s
convenience.

Lemma 5.0.3. w ∈ C0,1/2(B2) and we can normalize it so that w(0) = 0. Let γ ∈
C1,1((0, 2)) be as in (5.0.5), and define

h1(r) :=
ˆ r

0
∇ua(γ(ρ)) · γ̇⊥(ρ)dρ (5.0.8)

and
h2 := 2(∇u+ − ∇u−) · ∇ua − λ(|u+ − gK |2 − |u− − gK |2)

= 2(∇u+ − ∇u−) · ∇ua − λ(|u+|2 − |u−|2 − 2(u+ − u−)gK) . (5.0.9)
Then 

∆w = 0 on B2 \K
w = h1 on K

κ = −(|∇w+|2 − |∇w−|2) + h2 H1 a.e. on K ∩B2,
(5.0.10)

and the functions h1 and h2 satisfy the growth estimates3

h1 ∈ C1,1−

loc ([0, 2)), and |h1| + r|h′
1| ≲ r2− (5.0.11)

h2 ∈ L∞
loc(B2), and |h2(x)| ≲ |x|1/2−

. (5.0.12)
when λ > 0, while they vanish identically if λ = 0.

Finally, if r ∈ (0, 2) and ∂Br ∩K = {p}, then the following identity holds

2
ˆ
Br

∇uTa ·Dτ ∇ua

=
ˆ
∂Br

(
|∇ua|2n · τ(p) + 2∂ua

∂n
∇ua · (τ − τ(p))

)
dH1 + 2λ

ˆ
Br

(u− g)(τ − τ(p)) · ∇ua ,

(5.0.13)

where τ(x) = x⊥

|x| (a function which belongs to W 1,p
loc (R2;R2) for every p ∈ [1, 2)).

3Here and in what follows we write 0 ≤ φ(x) ≲ (ψ(x))β− if φ(x) ≲ (ψ(x))α for all α < β, with a
constant depending on α in the last inequality.
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Proof. Observe that, since ∥∇ua∥C0 ≤ C, we have
ˆ
Br(x)

|∇w|2 =
ˆ
Br(x)

|∇u+ ∇ua|2 ≤ 2
ˆ
Br(x)

|∇u|2 + Cr2 ≤ Cr .

In particular w ∈ C0,1/2 follows from the usual Morrey’s embedding. The equation ∆w = 0
on B2 \K is obvious from the definition, while the Dirichlet condition w|K = h1 follows from
w(0) = 0 integrating ∇w along K. The last equation in (5.0.10) follows immediately from
(5.0.4) using |∇w±|2 = |∇u± + ∇ua|2. The estimates (5.0.11)-(5.0.12) follow immediately
from (5.0.1) and the formulas for h1 and h2. Finally, (5.0.13) is a simple integration by
parts using ∆ua = −λ(u− g). □

Lemma 5.0.4. Under the assumptions of Theorem 5.0.1 u is continuous at 0 and
moreover there are constants C, r1 > 0 such that

|u(x) − u(0)| + |x||∇u(x)| ≤ C|x|1/2 ∀x ∈ Br1 \K . (5.0.14)

Proof. Consider a point x ∈ (Br \Br/2) \K. We distinguish two situations:
• Br/8(x) ∩ K = ∅. Recalling that

´
Br/8(x) |∇u|2 ≤ Cr and using the mean value

property for harmonic functions we immediately infer

|∇u(x)| ≤ 82

πr2

ˆ
Br/8(x)

|∇u| ≤ 8
r

ˆ
Br/8(x)

|∇u|2
1/2

≤ Cr−1/2 ≤ C|x|−1/2 .

• Br/8(x) ∩K ̸= ∅. We can then fix a point x̄ ∈ Br/8(x) ∩K. We consider therefore
Br/4(x̄) ⊆ B3r/2 \Br/8 and notice that we can apply the jump case of the ε-regularity
theory to Br/4(x̄) because of Corollary 4.1.2, provided |x| ≤ r1 for a sufficiently
small r1. In particular the conclusion of the ε-regularity theory, classical estimates
for the PDE (5.0.2) and (5.0.3), and the estimate

ˆ
Br/4(x̄)

|∇u|2 ≤ Cr ,

we conclude again

|∇u(x)| ≤ Cr−1/2 ≤ C|x|−1/2 .

We observe next that, again by the ε-regularity theory at pure jumps, for every 0 < r < r1
∂Br ∩K consists of a single point. In particular, by the estimate on |∇u|, we conclude that
osc (u, ∂Br) ≤ Cr

1/2. In particular, by the maximum principle Lemma 2.1.1, we conclude
that

osc (u,Br) ≤ Cr
1/2 .

In particular u is continuous at 0 and |u(x) − u(0)| ≤ C|x|1/2. □
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5.1. Rescaling and reparametrization

Before starting our considerations, we introduce the model “tangent function” of a
minimizer at a loose end. By Theorem 4.1.1, in polar coordinates the latter is given by the
function

Rsq(ϕ, r) :=
√

2r
π

cos ϕ
2 (5.1.1)

with jump set KRsq equal to the open half line {(t, 0) : t ∈ R+} (in cartesian coordinates).
Observe that Rsq is, up to the prefactor

√
2
π
, the real part of a branch of the complex

square root. We will likewise use the notation for its harmonic conjugate Isq, which is the
imaginary part of the same branch, multiplied by the same prefactor, namely

Isq(ϕ, r) :=
√

2r
π

sin ϕ
2 . (5.1.2)

5.1.1. Rescalings. From now until the very last section, (u,K) will always denote
a critical point of Eλ in B2 satisfying the assumptions of Theorem 5.0.1. Keeping the
notation introduced in (5.0.5), for ρ > 0 set

uρ(ϕ, r) := ρ−1/2 u(ϕ+ α(ρ r), ρ r), (5.1.3)
αρ(r) := α(ρ r) . (5.1.4)

Lemma 5.1.1. For every δ > 0 the following holds.
If λ > 0, then for every ε > 0 there is ε1 > 0 such that, if (u,K) is as in Theorem 5.0.1

and α is as in (5.0.5) with ε0 ≤ ε1, then

∥uρ − Rsq∥C1,1−ε([0,2π]×[1/2,2]) + ∥αρ∥C1,1−ε([1/2,2]) ≤ δ ∀ ρ ≤ 1
4 . (5.1.5)

If λ = 0, then for every k ∈ N there is ε1 > 0 such that, under the very same assumptions,

∥uρ − Rsq∥Ck([0,2π]×[1/2,2]) + ∥αρ∥Ck([1/2,2]) ≤ δ ∀ ρ ≤ 1
4 . (5.1.6)

Proof. First of all, we introduce the function uρ(x) := ρ−1/2u(ρx) and the rescaled
singular set Kρ := K

ρ
. Recall that (uρ, Kρ) converges, up to subsequences, to a global

minimizer of E0, which we denote by (u0, K0). We also know that |∇u(x)| ≤ C|x|−1/2 from
Lemma 5.0.3. But then it follows easily that the rescaled set Kρ satisfies uniform C1,1

estimates on B1 \B1/4. Hence the estimate of αρ in (5.1.5) simply follows from the fact that
the curve parametrized by αρ is converging to the straight segment [0, (1, 0)], while αρ has a
uniform C1,1 bound. As for the other estimate in (5.1.5) it follows from classical regularity
for the Neumann problem, using ∆u = λ(u− g) (and the uniform L∞ bounds on u and g).

Next, observe that, for the case λ = 0, the rescaled pair (uρ, Kρ) is still a minimizer of
the Mumford-Shah functional, and the estimate (5.1.6) would follow (by compactness) once
we show uniform Ck,1/2 estimates for both uρ and Kρ in B1 \B1/2. However, the latter is a
simple bootstrapping process using the equation. Note for instance that Theorem 3.1.1 gives
a uniform C1,α bound on Kρ ∩ (B2−µ \Bµ) for every µ ∈ (0, 1). But then using the uniform
L2 bound for ∇u and classical estimates for the Neumann problem, we conclude uniform
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Cα estimates for ∇u in B2−2µ \ (B2µ ∪ Kρ) for every µ ∈ (0, 1/2). We can now use the
equation for the curvature κ to conclude uniform C2,α estimates for Kρ ∩ (B2−3µ \B3µ) for
every µ ∈ (0, 1/3). In turn this implies uniform C1,α estimates for ∇u in B2−4µ \ (B4µ ∪Kρ)
for every µ ∈ (0, 1/4). This bootstrap argument can be repeated finitely many times, until
we achieve Ck+1,α estimates. □

Corollary 5.1.2. For every δ > 0 the following holds.
(a) If λ > 0, then for every ε > 0 there is ε1 > 0 such that, if (u,K) and α satisfy the

assumptions of Theorem 5.0.1 with ε0 ≤ ε1, then
∥ri−1/2∂jϕ∂

i
r(u(ϕ+ α(r), r) − Rsq(ϕ, r))∥C0,1−ε([0,2π]×(0,1/2)) ≤ δ ∀ i+ j ≤ 1, (5.1.7)

∥rα′(r)∥C0,1−ε((0,1/2)) ≤ δ , (5.1.8)
(b) If λ = 0, then for every k ∈ N there is ε1 > 0 such that, if (u,K) and α satisfy the

assumptions of Theorem 5.0.1 with ε0 ≤ ε1, then
sup

[0,2π]×(0,1/2)
ri−

1/2|∂jϕ∂ir(u(ϕ+ α(r), r) − Rsq(ϕ, r))| ≤ δ ∀ i+ j ≤ k, (5.1.9)

sup
(0,1/2)

ri|α(i)(r)| ≤ δ ∀ i ≤ k . (5.1.10)

Proof. We discuss only the case λ = 0, the other being analogous. Observe first that
(αρ)(i)(r) = ρiα(i)(ρr) .

Taking the supremum in r ∈ [1/2, 2] in the latter identity, we easily infer
ρi∥α(i)∥C0([ρ/2,2ρ]) = ∥(αρ)(i)∥C0([1/2,2]) ,

and hence conclude (5.1.10) from Lemma 5.1.1.
Next, from (5.1.3) and the 1/2-homogeneity of Rsq we conclude

u(ϕ+ α(r), r) − Rsq(ϕ, r) = ρ
1/2
(
uρ
(
ϕ, r

ρ

)
− Rsq

(
ϕ, r

ρ

))
.

Differentiating the latter identity j times in θ and i times in r, we conclude

∂ir∂
j
ϕ (u(ϕ+ α(r), r) − Rsq(ϕ, r)) = ρ

1/2−i∂ir∂
j
ϕ (uρ − Rsq)

(
ϕ, r

ρ

)
Substitute first ρ = r and take then the supremum in ϕ and r to achieve (5.1.7), again from
Lemma 5.1.1. □

5.1.2. Reparametrization. Following Simon’s insight for studying the uniqueness of
tangent cones to minimal surfaces [42] we next introduce the functions

ϑ(t) :=α(e−t), (5.1.11)
ϱ(t) :=e−t(cosϑ(t), sinϑ(t)), , (5.1.12)

f(ϕ, t) :=et/2 w(ϕ+ ϑ(t), e−t) = we
−t(ϕ, 1) , (5.1.13)

rsq(ϕ) :=Rsq(ϕ, 1), (5.1.14)
isq(ϕ) :=Isq(ϕ, 1), (5.1.15)
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where Rsq, Isq are defined respectively in (5.1.1), (5.1.2). Note that the change of phase
in the definition of f in (5.1.13) maps the set K onto the halfline {0} × [0,∞).

In the next lemma we derive a system of partial differential equations for the functions
f and ϑ, exploiting the Euler-Lagrange conditions satisfied by u and K (cf. (1.6.2) and
(1.6.4)). The effect of the negative exponential reparametrization is that we will get an
evolution equation for f . The claimed regularity for γ corresponds to exponential decay
estimates in time t for ϑ̇, which will be the object of study in the next sections.

We also rewrite the estimates of Corollary 5.1.2 in terms of the new functions. It is
more convenient to work with w rather than u. This is clear when λ = 0 because of the
homogeneous Dirichlet boundary condition satisfied by w on K instead of its Neumann
counterpart satisfied by u.

Lemma 5.1.3. If (u,K) satisfies the assumptions of Theorem 5.0.1 and ϑ, f are given
by (5.1.11) and (5.1.13), then

ft = f

4 + fϕϕ + ftt +
(
ϑ̇fϕ + ϑ̇2fϕϕ − 2ϑ̇ftϕ − ϑ̈fϕ

)

f(0, t) = f(2π, t) = H1(t)

ϑ̈− ϑ̇− ϑ̇3

(1 + ϑ̇2)5/2
= f 2

ϕ(2π, t) − f 2
ϕ(0, t) +H2(t)

(5.1.16)

where (recalling the definition of h1 in (5.0.8) and h2 in (5.0.9)) the functions Hi are given
by the following formulas:

H1(t) := e
t
2h1(e−t) , (5.1.17)

H2(t) := 2ϑ̇(t)
1 + ϑ̇2(t)

(
H1(t)

2 − Ḣ1(t)
)

(fϕ(2π, t) − fϕ(0, t)) + e−t

1 + ϑ̇2(t)
h2(ϑ(t), e−t) . (5.1.18)

Moreover, it is true that
H1 ∈ H

3/2 ∩ C1,1−((1,+∞)), and H2 ∈ L∞((1,+∞)) , (5.1.19)
and for every ε > 0 there is a constant Cε > 0 such that for all t > 0 and s ≥ t

|H1(t)| + |Ḣ1(t)| + |H2(t)| ≲ (e−t)3/2−
(5.1.20)

|Ḣ1(t) − Ḣ1(s)| ≤ Cεe
−( 3

2 −ε)t|s− t|1−ε . (5.1.21)
Finally, for every fixed σ, δ > 0, ε ∈ (0, ε0) and k ∈ N, the following estimates hold provided
ε0 in Theorem 5.0.1 is sufficiently small: if λ > 0

∥ϑ̇∥C0,1−ε([σ,∞)) ≤ δ , (5.1.22)

∥∂iϕ∂
j
t (f − isq)∥C0,1−ε([0,2π]×[σ,∞)) ≤ δ for all i+ j ≤ 1, (5.1.23)

and if λ = 0
∥ϑ(i)∥C0([σ,∞)) ≤ δ for all i ≤ k, (5.1.24)

∥∂iϕ∂
j
t (f − isq)∥C0([0,2π]×[σ,∞)) ≤ δ for all i+ j ≤ k. (5.1.25)
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x1

x2

p = ϱ(t)
e(p)

ν(p)

+

−

Figure 1. The tangent vector e(p) and the normal vector e(p) and a point
p ∈ K. Since t 7→ |ϱ(t)| is a decreasing function, e(p) points towards the
origin. Consequently the convention for the symbols ± on traces of functions
is as illustrated in the picture.

Proof. Let us first introduce the unit tangent and normal vector fields to K denoted
by e(t) and for the normal vector ν(t), the latter is obtained from e(t) by a counterclockwise
rotation of 90 degrees, that is:

e(t) := ϱ̇(t)
|ϱ̇(t)| , ν(t) := e⊥(t).

Moreover, we will denote by ∇u+ and ∇u− the traces of ∇u on K where ± is identified by
the direction in which the vector ν is pointing. More precisely, if p ∈ K, then

∇u+(p) = lim
s↓0

∇u(p+ sν(p)) ,

∇u−(p) = lim
s↓0

∇u(p− sν(p)) .

Observe that, under the assumptions of Lemma 5.1.1, e(t) is pointing “inward”, i.e. towards
the origin, and hence for p = ϱ(t) = (e−t(cos(ϑ(t)), sin(ϑ(t))) (cf. (5.0.5)) we have

∇u+(p) = lim
ϕ↑2π

∇u(e−t(cos(ϑ(t) + ϕ), sin(ϑ(t) + ϕ)) , (5.1.26)

∇u−(p) = lim
ϕ↓0

∇u(e−t(cos(ϑ(t) + ϕ), sin(ϑ(t) + ϕ)) . (5.1.27)

We refer to Figure 1 for a visual illustration.
Since (u,K) is a critical point of the Eλ energy on B2, the identities (5.0.2)-(5.0.4) are

true. Note that the curvature κ of K is given by

κ(t) = 1
|ϱ̇(t)| ė(t) · ν(t) .
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In particular, the auxiliary function w defined in Lemma 5.0.3 satisfies (5.0.10), which we
rewrite for the readers’ convenience

△w = 0 on B1

w = h1 on K

κ = −|∇w+|2 + |∇w−|2 + h2 on K ,

(5.1.28)

where h1 and h2 are defined in (5.0.8) and (5.0.9), respectively. Recalling that

w(ϕ, r) = r
1/2f(ϕ− ϑ(− ln r),− ln r), (5.1.29)

we compute

wr = r−1/2

(
f

2 − ft + ϑ̇fϕ

)
, wϕ = r

1/2fϕ. (5.1.30)

Next we recall the formula for the Laplacian in polar coordinates:
△w = 0 ⇐⇒ r−2wϕϕ + r−1(rwr)r = 0.

By means of (5.1.30) we get
r−2wϕϕ = r−3/2fϕϕ ,

and

r−1(rwr)r =r−1
(
r

1/2

(
f

2 − ft + ϑ̇fϕ

))
r

=r−3/2

(
f

4 − ft
2 + ϑ̇fϕ

2

)
+ r−1/2

(
−r−1ft

2 + r−1ϑ̇
fϕ
2

)
+ r−1/2

(
r−1ftt − 2r−1ϑ̇ftϕ − r−1ϑ̈fϕ + r−1ϑ̇2fϕϕ

)
=r−3/2

(
f

4 − ft + ϑ̇fϕ + ftt − 2ϑ̇ftϕ − ϑ̈fϕ + ϑ̇2fϕϕ

)
.

In conclusion, we get

ft = f

4 + fϕϕ + ftt +
(
ϑ̇fϕ + ϑ̇2fϕϕ − 2ϑ̇ftϕ − ϑ̈fϕ

)
. (5.1.31)

Next, recalling equality (5.1.29), we may rewrite the Dirichlet condition in the new
coordinates simply as

f(0, t) = f(2π, t) = e
t
2h1(e−t) = H1(t) . (5.1.32)

Finally, we derive the equation satisfied by the scalar curvature κ. To this end take into
account that

ϱ̇(t) = − ϱ(t) + ϑ̇(t)ϱ⊥(t) , (5.1.33)

and thus differentiating (5.1.33) we get

ϱ̈(t) = − ϱ̇+ ϑ̈ϱ⊥ + ϑ̇ϱ̇⊥ . (5.1.34)
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On the other hand, explicitly we have

ϱ̇(t)⊥ = −e−t(− sinϑ(t), cosϑ(t)) − e−tϑ̇(t)(cosϑ(t), sinϑ(t))
= −ϱ⊥(t) − ϑ̇(t)ϱ(t) . (5.1.35)

Hence, we conclude

κ(t) = 1
|ϱ̇(t)|

(
d

dt

ϱ̇(t)
|ϱ̇(t)|

)
· ϱ̇

⊥(t)
|ϱ̇(t)| = ϱ̈(t) · ϱ̇⊥(t)

|ϱ̇(t)|3

=(ϑ̇+ ϑ̇3 − ϑ̈)|ϱ(t)|2

(1 + ϑ̇2)3/2|ϱ(t)|3
= et

ϑ̇+ ϑ̇3 − ϑ̈

(1 + ϑ̇2)3/2
. (5.1.36)

As

|∇u|2 = |∇w|2 = (wr)2 + r−2(wϕ)2 = r−1
(
f

2 + ϑ̇fϕ − ft

)2

+ r−1f 2
ϕ

we get

ϑ̇+ ϑ̇3 − ϑ̈

(1 + ϑ̇2)3/2
= −

(f
2 + ϑ̇fϕ − ft

)2

+ f 2
ϕ

∣∣∣∣∣∣
2π

0

+ e−th2(ϑ(t), e−t) . (5.1.37)

Thus, by taking into account (5.1.32) and (5.1.37) we conclude the third equation in (5.1.16).
If λ = 0 we note that in terms of ϑ the bound of α in (5.1.10) reads as

sup
t∈[σ,∞)

|ϑ(i)(t)| ≤ Ci δ for every i ≤ k.

Indeed, differentiating i times the identity ϑ(t) = α(e−t) we get

ϑ(i)(t) =
i∑

j=1
bi,je

−jtα(j)(e−t) ,

with bi,j ∈ R. Then, (5.1.24) follows at once.
Instead, the bound (5.1.25) is a consequence of the linearity and elementary arguments,

together with the decay (5.1.9). Indeed, the latter translates into

sup
ϕ

|∂iϕ∂
j
t (ξ − rsq)| ≤ Cj δ for every t ∈ [σ,∞) and i+ j ≤ k,

having set ξ(ϕ, t) := e
t/2u(ϕ+ ϑ(t), e−t). To prove the latter estimate we argue as follows.

Using the 1/2-homogeneity of Rsq, we infer

ξ(ϕ, t) − rsq(ϕ) = e
t/2
(
u(ϕ+ α(e−t), e−t) − Rsq(ϕ, e−t)

)
=: et/2h(ϕ, e−t) . (5.1.38)

We conclude that (5.1.9) can be reformulated as

sup
r∈(0,1/2)

ri−
1/2∥∂jθ∂irh(·, r)∥C0 ≤ Ci δ for every t ∈ [σ,∞) and i+ j ≤ k.
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On the other hand, differentiating (5.1.38) yields

∂jϕ∂
i
t(ξ(ϕ, t) − rsq(ϕ)) =

i∑
ℓ=0

bi,ℓ e
t/2−ℓt[∂jϕ∂ℓth](ϕ, e−t) ,

for some bi,ℓ ∈ R. Setting r = e−t, we then conclude

∥∂iϕ∂
j
t (ξ − rsq)∥C0([0,2π]×[σ,∞)) ≤ δ for all i+ j ≤ k ,

and thus (5.1.25) follows at once, using that the gradient of the harmonic conjugate is the
counterclockwise rotation by 90 degrees of the gradient of u.

Instead, if λ > 0 we argue analogously to infer (5.1.22) and (5.1.23), using in addition
classical estimates for the function ua. Finally, being ua ∈ C1,1−

loc (B2), in view of the bounds
in (5.0.11)-(5.0.12), we infer (5.1.19)-(5.1.21). □

5.2. First linearization

In this section we consider a sequence (uj, αj) as in Theorem 5.0.1 where condition (iv)
holds for a vanishing sequence ε0(j) ↓ 0. Without loss of generality we assume αj(1) = 0.
With fixed ε̂ ∈ (0, 3/2) we define δj, θj, and vj thanks to (5.1.11)-(5.1.13) as follows:

δj := ∥fj(·, · + j) − isq∥H2((0,2π)×(0,3)) + ∥ϑ̇j(· + j)∥H1((0,3)) + λe−(3/2−ε̂)j , (5.2.1)
θj(t) := δ−1

j ϑj(t+ j) , (5.2.2)
vj(ϕ, t) := δ−1

j (fj(ϕ, t+ j) − isq(ϕ)) . (5.2.3)

Next, we show that the limit of (vj, θj) solves a linearization of (5.1.16), and in addition
it satisfies the linearization of (2.5.9) (actually it suffices to consider (5.0.6)). The latter
remark is crucial for our purposes.

Proposition 5.2.1. Let (uj, αj) as in Theorem 5.0.1 where the smallness condition in
item (iv) holds for a vanishing sequence ε0(j) ↓ 0. Assume αj(1) = 0 and define ϑj and fj
as in (5.1.11)-(5.1.13) and vj and θj as above. Then, up to subsequences,

(a) vj converge to some function v weakly in H2((0, 2π) × (0, 3)) and strongly in
W 1,p((0, 2π) × (0, 3)) for all p ≥ 1;

(b) θj converge to some θ; weakly in H2((0, 2π)) and in C1, 1
2 −ε([0, 3]) for all ε ∈ (0, 1).

More precisely, the convergences are
(c) either if λ = 0: in C2,α([0, 2π] × [σ, 3 − σ]) for vj, and in C2,α([σ, 3 − σ]) for θj,

for all σ ∈ (0, 3
2), α ∈ (0, 1), respectively;

(d) or if λ > 0: in C1,1−ε([0, 2π]× [σ, 3−σ]) and strongly in H2((0, 2π)× (σ, 3−σ)) for
vj, and strongly in H2((σ, 3 − σ)) for θj, for all σ ∈ (0, 3

2), ε ∈ (0, 1), respectively.
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Moreover, the pair (v, θ) solves the following linear system of PDEs in (0, 2π) × (0, 3)

vt − vtt = v
4 + vϕϕ + (θ̇ − θ̈)isqϕ

v(0, t) = v(2π, t) = 0

θ̇(t) − θ̈(t) =
√

2
π
(vϕ(2π, t) + vϕ(0, t))

θ(0) = 0 ,

(5.2.4)

and satisfies the following integral condition for every t ∈ (0, 3):ˆ 2π

0
vϕ(ϕ, t) sin ϕ2 dϕ = 0 . (5.2.5)

Proof. The statements in (a) and (b) are obvious consequences of the bounds on
(vj, θj) (and of the fact that H2((0, 2π) × (0, 3)), resp. H2((0, 3)), embeds compactly in
W 1,p((0, 2π) × (0, 3)) for all p ≥ 1, resp. C1, 1

2 −ε([0, 3]) for all ε ∈ (0, 1
2)). Observe that, by

assumption, θj(0) = 0 and thus θ(0) = 0 is a consequence of the uniform convergence.
We next observe that the PDE in (5.1.16) is linear in the unknown f . Hence, recalling

that (fj(ϕ, t+ j), ϑj(t+ j)) = (isq(ϕ) + δjvj(ϕ, t), δjθj(t)), we infer

vj,tt + vj,ϕϕ = −vj
4 + vj,t + (θ̈j − θ̇j)(isqϕ + δjvj,ϕ) + 2δj θ̇jvj,tϕ − δj θ̇

2
j (isqϕϕ + δjvj,ϕϕ) (5.2.6)

and
vj(0, t) = vj(2π, t) = δ−1

j H1(t+ j) . (5.2.7)
Passing into the limit we therefore conclude easily that v solves the PDE in the first line
of (5.2.4). Likewise the boundary condition v(0, ·) = v(2π, 0) = 0 is also a consequence of
uniform convergence, of the bounds (5.1.20) and (5.1.21), and of the very definition of δj in
(5.2.1), in turn implying for all ε ∈ (0, ε̂)

∥δ−1
j H1(· + j)∥C1,1−ε([0,3]) + ∥δ−1

j H2(· + j)∥L∞((0,3)) → 0 j → +∞ . (5.2.8)

Moreover, note that again thanks to the bounds in (5.1.20) and (5.1.21) we can also deduce
that for all j ≥ 1

[Ḣ1(· + j)]2H1/2((0,∞)) =2
ˆ ∞

j

dt

ˆ ∞

t

|Ḣ1(s) − Ḣ1(t)|2
|s− t|2

ds

=2
ˆ ∞

j

dt
∞∑
k=0

ˆ t+k+1

t+k

|Ḣ1(s) − Ḣ1(t)|2
|s− t|2

ds

≤2C2
ε

ˆ ∞

j

dt
∞∑
k=0

ˆ k+1

k

e−(3−2ε)(t+k)

τ 2ε dτ ≤ C̃εe
−(3−2ε)j .

Therefore,
∥δ−1

j H1(· + j)∥H3/2((0,∞)) → 0 . (5.2.9)
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We next write the third equation in (5.1.16) in terms of θj and vj:

θ̈j − θ̇j =δ2
j θ̇

3
j + 4(1 + δ2

j θ̇
2
j )

5/2
(
δj(v2

j,ϕ(2π, t) − v2
j,ϕ(0, t))

−
√

2
π
(vj,ϕ(2π, t) + vj,ϕ(0, t)) + δ−1

j H2(t+ j)
)
. (5.2.10)

Observe that, by the trace theorems, vj,ϕ(2π, ·) and vj,ϕ(0, ·) enjoy uniform bounds in H
1
2 .

Clearly, by (5.2.8) we get that the third equation in (5.2.4) holds.
Moreover, by (5.2.8) and by the Sobolev embedding, we conclude that the right hand

side of (5.2.10) has a uniform control in Lq for every q < ∞, in particular the same bound
is enjoyed by θ̈j − θ̇j and, using that ∥θ̇j∥C0 is bounded, we conclude that θ̇j has a uniform
W 1,q bound for every q < ∞.

Next, we distinguish the two cases λ = 0 and λ > 0, the former being considerably
simpler at least for what computations are concerned.
Case λ = 0. We start off rewriting the equation in (5.2.6) above in the following way:

(1 + δ2
j θ̇

2
j )vj,ϕϕ + vj,tt − 2δj θ̇jvj,tϕ = −vj

4 + vj,t + (θ̈j − θ̇j)(isqϕ + δjvj,ϕ) − δj θ̇
2
j isqϕϕ︸ ︷︷ ︸

=:Fj

(5.2.11)
Observe that the left hand side is an elliptic operator with a uniform bound on the ellipticity
constants and a uniform bound on the C 1

2 −ε norm of the coefficients, for all ε ∈ (0, ε̂).
Thanks to the uniform W 1,q bound on θj and vj for every q < ∞, we infer a uniform bound
on ∥Fj∥Lq((0,2π)×(0,3)) for every q < ∞.

In addition, as vj = 0 on {0, 2π} × (0, 3), using elliptic regularity we conclude a uniform
bound for ∥vj∥W 2,q((0,2π)×(σ,3−σ)). We now can use Morrey’s embedding to get a uniform
estimate on ∥vj∥C1,α([0,2π]×[2σ,3−2σ]) for every α < 1. We now turn again to (5.2.10), to
conclude that the right hand side has a uniform Cα bound in [2σ, 3 − 2σ] for every α > 0.
This gives uniform C1,α bounds on the coefficient of the elliptic operator in the left hand
side of (5.2.11) and uniform Cα bounds on the right hand side of (5.2.11). We can thus
infer a uniform C2,α bound in [0, 2π] × [3σ, 3 − 3σ] on vj from elliptic regularity.

It thus remains to prove (5.2.5). The latter will come from (5.0.6). First of all, we fix
t ∈ (0, 3), set tj := e−t−j and observe that ∂Btj ∩Kj consists of a single point pj. We can
thus apply Corollary 5.0.2. Hence using the relation between harmonic conjugates, we
rewrite (5.0.6) as

0 =
ˆ
∂Btj \{pj}

(
|∇wj|2n · τ(pj) − 2∂wj

∂τ
∇wj · (n− n(pj))

)
dH1 .

Next, we assume without loss of generality that pj = (tj, 0) and rewrite the latter equality
using polar coordinates:

tj

ˆ 2π

0

(
tjw

2
j,r − 1

tj
w2
j,ϕ

)
(ϕ, tj) sinϕ dϕ︸ ︷︷ ︸

=:A1,j

− 2
ˆ 2π

0
(wj,rwj,ϕ) (ϕ, tj)(1 − cosϕ) dϕ︸ ︷︷ ︸

=:A2,j

= 0 (5.2.12)
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We next write wj in terms of vj, γj and θj as

wj(ϕ, r) = r
1/2isq(ϕ− δjθj(− ln r − j)) + δjr

1/2vj(ϕ− δjθj(− ln r − j),− ln r − j) ,

Note that, having normalized so that pj = (tj, 0), we conclude that θj(− ln tj) = θj(t+j) = 0.
Using the latter we compute:

∂wj
∂r

(ϕ, tj) = t
−1/2
j

isq(ϕ)
2︸ ︷︷ ︸

=:aj(ϕ)

+δj t−
1/2

j

(
θ̇j(t)√

2π
cos ϕ2 + vj(ϕ, t)

2 − vj,t(ϕ, t)
)

︸ ︷︷ ︸
=:bj(ϕ)

+o(δj) (5.2.13)

∂wj
∂ϕ

(ϕ, tj) = t
1/2
j

rsq(ϕ)
2︸ ︷︷ ︸

=:cj(ϕ)

+δj t
1/2
j vj,ϕ(ϕ, t)︸ ︷︷ ︸

=:dj(ϕ)

. (5.2.14)

Note now that the function a2
j − 1

tj
c2
j is even. Since sinϕ is odd, we thus conclude

A1,j = 2δj
ˆ 2π

0

(
tjaj(ϕ)bj(ϕ) − t−1

j cj(ϕ)dj(ϕ)
)

sinϕ dϕ + o(δj) .

Letting j → ∞ we obtain

lim
j→∞

δ−1
j A1,j =

√
2
π

ˆ 2π

0

(
θ̇(t)√

2π
cos ϕ2 + v(ϕ, t)

2 − vt(ϕ, t)
)

sin ϕ2 sinϕ dϕ

−
√

2
π

ˆ 2π

0
vϕ(ϕ, t) cos ϕ2 sinϕ dϕ . (5.2.15)

By direct computation it follows that
ˆ 2π

0
aj(ϕ)cj(ϕ)(1 − cosϕ) dϕ = 1

8

ˆ 2π

0
sinϕ(1 − cosϕ) dϕ = 0 ,

from which we conclude

A2,j = 2δj
ˆ 2π

0
(aj(ϕ)dj(ϕ) + bj(ϕ)cj(ϕ))(1 − cosϕ) dϕ+ o(δj) .

Hence

lim
j→∞

δ−1
j A2,j =

√
2
π

ˆ 2π

0
vϕ(ϕ, t) sin ϕ2 (1 − cosϕ) dϕ

+
√

2
π

ˆ 2π

0

(
θ̇(t)√

2π
cos ϕ2 + v(ϕ, t)

2 − vt(ϕ, t)
)

cos ϕ2 (1 − cosϕ) dϕ . (5.2.16)
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Combining (5.2.15) and (5.2.16) with (5.2.12) we conclude

0 = θ̇(t)2π

ˆ 2π

0

(
sin2 ϕ− 2 cos2 ϕ

2 (1 − cosϕ)
)
dϕ

+
√

2
π

ˆ 2π

0

(
v(ϕ, t)

2 − vt(ϕ, t)
)(

sin ϕ2 sinϕ− cos ϕ2 (1 − cosϕ)
)
dϕ

−
√

2
π

ˆ 2π

0
vϕ(ϕ, t)

(
cos ϕ2 sinϕ+ sin ϕ2 (1 − cosϕ)

)
dϕ .

Using the identities

sin2 ϕ− 2 cos2 ϕ

2 (1 − cosϕ) = sin2 ϕ− (1 + cosϕ)(1 − cosϕ) = 0 ,

sin ϕ2 sinϕ− cos ϕ2 (1 − cosϕ) = sin ϕ2 sinϕ+ cos ϕ2 cosϕ− cos ϕ2 = 0 ,

cos ϕ2 sinϕ+ sin ϕ2 (1 − cosϕ) = cos ϕ2 sinϕ− sin ϕ2 cosϕ+ sin ϕ2 = 2 sin ϕ2 ,

we conclude (5.2.5).
Case λ > 0. We rewrite the equation in (5.2.6) above in the following way:

vj,ϕϕ + vj,tt = −vj
4 + vj,t + (θ̈j − θ̇j)(isqϕ + δjvj,ϕ) − δj θ̇

2
j isqϕϕ − δ2

j θ̇
2
jvj,ϕϕ + 2δj θ̇jvj,tϕ︸ ︷︷ ︸

=:Fj

,

(5.2.17)
and observe that, as before in case λ = 0, we can now get a uniform bound on the norms
∥Fj∥Lq((0,2π)×(0,3)) for every q < ∞.

With fixed σ ∈ (0, 3
2) consider a domain Λ diffeomorphic to the circle such that

(0, 2π)× (0, 3) ⊂ Λ ⊂ (0, 2π)× (−σ, 3+σ), and extend it to Λ with C1,1−ε(∂Λ) and H3/2(∂Λ)
norms bounded by a multiple of the corresponding one for δ−1

j H1(· + j). Denote by H̃j

the extended function, and define the auxiliary functions v(1)
j and v

(2)
j to be the solutions

respectively of 
v

(1)
j,ϕϕ + v

(1)
j,tt = 0 on Λ

v
(1)
j = H̃j on ∂Λ ,

and of 
v

(2)
j,ϕϕ + v

(2)
j,tt = Fjχ(0,2π)×(0,3) on Λ

v
(2)
j = 0 on ∂Λ .

[30, Corollary 8.36, Theorems 8.29 and 8.16] imply that v(1)
j ∈ C1,1−ε(Λ) with

∥v(1)
j ∥C1,1−ε(Λ) ≤ c∥δ−1

j H1(· + j)∥C1,1−ε([0,3]) ,
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where the constant c depends on Λ. In particular, from (5.2.8) we infer that v(1)
j converges

strongly to zero in C1,1−ε(Λ). Moreover, [36, Theorem 5.1] imply that v(1)
j ∈ H2(Λ) with

∥v(1)
j ∥H2(Λ) ≤ c∥δ−1

j H1(· + j)∥H3/2([0,3]) ,

where the constant c depends on Λ. Thus, from (5.2.9) we infer that v(1)
j converges to zero

strongly in H2((0, 2π) × (0, 3)), as well. In addition, [30, Theorems 9.13 and 9.15] implies
that v(2)

j ∈ W 2,p((0, 2π) × (σ, 3 − σ)) for all p > 2.
The function vj − v

(1)
j − v

(2)
j is then harmonic on (0, 2π) × (0, 3) with null Dirichlet

boundary conditions on {0, 2π}×(0, 3). By odd reflection with respect to those segments we
find an harmonic function on (−2π, 4π)×(0, 3). By interior estimates for harmonic functions
(see for instance [30, Theorem 2.10]) we conclude that vj−v(1)

j −v(2)
j ∈ C∞([0, 2π]×[σ, 3−σ])

with

∥Dβ(vj − v
(1)
j − v

(2)
j )∥C0([0,2π]×[σ,3−σ]) ≤ (n|β|σ−1)|β|∥vj − v

(1)
j − v

(2)
j ∥C0([0,2π]×[σ,3−σ]) ,

for any multi-index β, where |β| denotes the length of β. From this we conclude item (d).
Hence, vj turns out to converge in C1,1−ε([0, 2π]× [σ, 3−σ]) and strongly in H2((0, 2π)×

(σ, 3−σ)). Finally, from (5.2.10) we then conclude that θj converge strongly in H2((σ, 3−σ)).
Let us now turn to the proof of (5.2.5). Assume pj = (rj, 0)) where rj := e−t−j for

some t ∈ (0, 3). Then we rewrite (5.0.6) by taking advantage of (5.0.13), recalling that
∇⊥(uj + uj,a) = ∇wj we conclude

ˆ
∂Brj \{pj}

(
|∇wj|2n · τ(pj) − 2∂wj

∂τ
∇wj · (n− n(pj))

)
dH1

︸ ︷︷ ︸
=:Bj

= C1,j + C2,j + C3,j

where

C1,j = 2
ˆ
∂Brj \{pj}

(
(∇wj · ∇⊥uj,a)n · τ(pj) + ∂wj

∂τ
∇uj,a · (τ − τ(pj))

− ∂uj,a
∂n

∇wj · (n− n(pj))
)
dH1

C2,j = 2λ
ˆ
Brj \Kj

(uj − gj)∇wj · (n− n(pj)) − 2
ˆ
Brj

∇Tuj,a ·Dτ∇uj,a

C3,j = −2λ
ˆ
Brj ∩Kj

(
|u+
j − gj,Kj

|2 − |u−
j − gj,Kj

|2
)
τ(pj) · ν dH1 .

Since the term Bj equals the sum of the terms A1,j and A2,j already discussed in the proof
of the analogous identity when λ = 0, we immediately conclude that

lim
j→+∞

δ−1
j Bj = −2

√
2
π

ˆ 2π

0
vϕ(ϕ, t) sin ϕ2 dϕ . (5.2.18)
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Next, recall that ∇uj,a(0) = 0 while uj,a ∈ C1,1− , so that in particular we can achieve
∥∇uj,a∥L∞(Br) ≤ Cr1−ε̂/2, where ε̂ > 0 has been chosen in the definition of δj (cf. (5.2.1)).
Since |∇wj(x)| ≤ C|x|−1/2, we thus can estimate

|C1,j| ≤ C∥∇wj∥L∞(Brj )∥∇uj,a∥L∞(Brj )rj ≤ Cr
3/2−ε̂/2
j

where C is a universal constant. On the other hand, δj ≥ Cr
3/2−ε̂
j for some positive constant

C and so
lim

j→+∞
δ−1
j C1,j = 0 . (5.2.19)

As for C2,j we write

|C2,j| ≤

∣∣∣∣∣∣
ˆ
Brj \K

(uj − gj)∇wj · (n− n(pj))

∣∣∣∣∣∣+
∣∣∣∣∣∣2
ˆ
Brj

∇Tuj,a ·Dτ∇uj,a

∣∣∣∣∣∣
≤ C

ˆ
Brj

|x|−1/2 ≤ Cr
3/2
j .

Likewise,∣∣∣∣∣∣
ˆ
Brj ∩K

(
|u+
j − gj,Kj

|2 − |u−
j − gj,Kj

|2
)
τ(pj) · ν dH1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ˆ
Brj ∩K

(
|u+
j |2 − |u−

j |2 − 2(u+
j − u−

j )gj,Kj

)
τ(pj) · ν dH1

∣∣∣∣∣∣ ≤ C∥gj∥∞r
3/2
j ≤ Cr

3/2
j ,

where we have used that |u±
j (x)| ≤ C|x|1/2 (cf. (5.0.1)), the estimate ∥gj,Kj

∥L∞(Ω.H1 Kj) ≤
∥gj∥∞, and the density upper bound in (1.4.1)). Therefore, thanks to the very definition of
δj in (5.2.1) we conclude that

lim
j→+∞

δ−1
j (C2,j + C3,j) = 0 . (5.2.20)

Collecting (5.2.18)-(5.2.20) we deduce again (5.2.5). □

5.3. Spectral analysis

In this section we will find a suitable representation of solutions to (5.2.4) on [0, 2π] ×
(0, 3), based on the spectral analysis of a closely related linear PDE.

To this aim we introduce the following terminology: a function h on (0, 2π) × (0, 3) will
be called even if h(ϕ, t) = h(2π − ϕ, t) and odd if h(ϕ, t) = −h(2π − ϕ, t). Moreover, a
general h can be split into the sum of its odd part hoj(ϕ, t) := h(ϕ,t)−h(2π−ϕ,t)

2 and its even
part hej(ϕ, t) = h(ϕ,t)+h(2π−ϕ,t)

2 . Note finally that, if h is even (resp. odd), then ∂jϕ∂kt h is odd
(resp. even) for j odd, and even (resp. odd) for j even for every k.

In what follows it will be convenient to consider the change of variables

ζ(ϕ, t) := vo(ϕ, t) − θ(t)isqϕ(t) = vo(ϕ, t) − θ(t)√
2π

cos ϕ2 . (5.3.1)
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Lemma 5.3.1. The pair (v, θ) ∈ H2((0, 2π) × (0, 3)) ×H3((0, 2π)) solves (5.2.4) if and
only if ve, ζ ∈ H2((0, 2π) × (0, 3)) are such that ve(·, t) is even for every t ∈ (0, 3) and it
solves the partial differential equation with homogeneous boundary conditions

vett + veϕϕ + ve

4 − vet = 0

ve(0, t) = ve(2π, t) = 0 ,
(5.3.2)

ζ(·, t) is odd for every for t ∈ (0, 3), ζ(0, 0) = 0, ζ(0, t) = − θ(t)√
2π , and ζ solves the partial

differential equation with Ventsel boundary conditions
ζtt + ζϕϕ + ζ

4 − ζt = 0

ζϕ(0, t) + π
2

(
ζ
4(0, t) + ζϕϕ(0, t)

)
= 0 ,

(5.3.3)

and in addition θ ∈ H3((0, 2π)) solves
θ̇(t) − θ̈(t) = 2

√
2
π
ζϕ(0, t)

θ(0) = 0 .
(5.3.4)

Taking into account standard regularity theory, the lemma is reduced to elementary
computations which are left to the reader.

From (5.3.4) it is evident that the decay properties of θ are related only to the odd part
vo of the solution v to (5.2.4) (cf. (5.3.1)). The analysis of the latter would suffice in case
λ = 0. Instead, for λ > 0 it is necessary to discuss the spectral property of the even part ve
of the solutions to the linearized system, as well.

We aim at a representation for ve and ζ, i.e. a representation as a series of functions in
ϕ with coefficients depending on t, for which we can reduce (5.3.2), (5.3.3), respectively, to
an independent system of ODEs for the coefficients. To that aim we introduce the spaces

E := {ψ ∈ H1((0, 2π)) : ψ(ϕ) = ψ(2π − ϕ)} , (5.3.5)
and

O := {ψ ∈ H1((0, 2π)) : ψ(ϕ) = −ψ(2π − ϕ)} . (5.3.6)
We start off discussing the spectral analysis for the even part which is standard. Instead,
that for the odd part is more subtle in view of the Ventsel boundary conditions.

5.3.1. Spectral analysis of the even part. The representation for ve is given in the
next proposition.

Proposition 5.3.2. If ve ∈ H2((0, 2π) × (0, 3)) is even and ve(0, t) = 0 for every
t ∈ (0, 3) then

ve(ϕ, t) =
∞∑
k=0

ak(t)√
π

sin
(
(k + 1

2)ϕ
)

(5.3.7)

where:
(a) C−1∑

k k
2a2
k(t) ≤ ∥ve(·, t)∥2

H1 ≤ C
∑
k k

2a2
k(t) for a universal constant C;
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(b) For k ≥ 0, the coefficients ak satisfy ak(t) = ⟨ve(·, t), 1√
π

sin((k + 1
2)·)⟩L2.

If additionally ve solves (5.3.2) then ve ∈ C∞([0, 2π] × (0, 3)) and for every k ≥ 0 the
coefficients ak(t) in the expansion satisfy

äk(t) − ȧk(t) − (k2 + k)ak(t) = 0 . (5.3.8)

From (5.3.8) it follows in particular that, for every k ≥ 0

ak(t) = Ck e
(k+1)t +Dk e

−kt (5.3.9)

for some Ck, Dk ∈ R.

Remark 5.3.3. Observe that, as a consequence of the regularity of ve, the coefficients
Ck and Dk will satisfy appropriate decay estimates in k as k ↑ ∞, even though this is not
explicitly stated.

Proof. Consider for h ∈ E the eigenvalue problem
hϕϕ = βh

h(0) = 0 .

By solving the ODE and imposing the Dirichlet boundary condition it is easy to show that
β = −ν2 < 0 and that 2ν is odd. From this one finds that necessarily h(ϕ) = A sin

(
(k+ 1

2)ϕ
)

for some k ∈ N and A ∈ R \ {0}, and that ak are as in item (b).
The rest of the statement follows easily from standard Fourier analysis, and explicit

calculations. □

5.3.2. Spectral analysis of the odd part. The representation for ζ is detailed in
the following

Proposition 5.3.4. If ζ ∈ H2((0, 2π) × (0, 3)) is odd then

ζ(ϕ, t) =
∞∑
k=0

ak(t)ζk(ϕ) (5.3.10)

where:
(a) C−1∑

k ν
2
ka

2
k(t) ≤ ∥ζ(·, t)∥2

H1((0,2π)) ≤ C
∑
k ν

2
ka

2
k(t) for a universal constant C;

(b) The functions ζk are defined in Section 5.3.4 (cf. (5.3.20)-(5.3.22));
(c) For k ≥ 2, the coefficients ak satisfy ak(t) = ⟨ζ(·, t), ζk⟩ for the bilinear symmetric

form ⟨·, ·⟩ defined in Section 5.3.3 (cf. (5.3.15)),
(d) the coefficients a0(t) and a1(t) are given by a0(t) = L0(ζ(·, t)) and a1(t) = L1(ζ(·, t))

for appropriately defined linear bounded functionals L0,L1 : O → R.
Next, if additionally ζ solves (5.3.3) then ζ ∈ C∞([0, 2π] × (0, 3)) and for every k ≥ 2 the
coefficients ak(t) in the expansion satisfy

äk(t) − ȧk(t) − (ν2
k − 1

4)ak(t) = 0 (5.3.11)
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where the number νk’s are given in Lemma 5.3.7 (cf. (5.3.18)). In particular, for every
k ≥ 2

ak(t) = Cke
µk,−t +Dke

µk,+t (5.3.12)
where the Ck and Dk are constants and,

µk,± = 1
2 ± νk .

The proof is an obvious consequence of Proposition 5.3.8 below, which will be the main
focus of the rest of this section.

5.3.3. The Ventsel boundary condition. For every ψ ∈ O we look for solutions
h ∈ O of the following equation:

hϕϕ = ψ

hϕ(0) = −π

2

(
h(0)

4 + hϕϕ(0)
)
.

(5.3.13)

The following is an elementary fact of which we include the proof for the reader’s convenience.

Lemma 5.3.5. For every ψ ∈ O there is a unique solution h := K (ψ) ∈ O of (5.3.13).
In fact the linear operator K : O → O is compact.

Proof. h ∈ O solves the first equation in (5.3.13) if and only if

h(ϕ) = hϕ(π)(ϕ− π) +
ˆ ϕ

π

ˆ τ

π

ψ(s) ds dτ︸ ︷︷ ︸
=:Ψ(ϕ)

. (5.3.14)

On the other hand the initial condition holds if and only if

hϕ(π)
(
π2

8 − 1
)

= Ψ′(0) + π

2

(
Ψ(0)

4 + Ψ′′(0)
)
.

Since Ψ is determined by ψ, the latter determines uniquely hϕ(π) and thus shows that there
is one and only one solution h = K (ψ) ∈ O of (5.3.13). Moreover, we obviously have

∥K (ψ)∥H3 ≤ C∥ψ∥H1 ,

which shows that the operator is compact. □

We next introduce in O a continuous bilinear map

⟨u, v⟩ :=
ˆ 2π

0
uϕvϕ − 1

4

ˆ 2π

0
uv . (5.3.15)

If ⟨·, ·⟩ were a scalar product on O , K would be a self-adjoint operator on O with respect
to it and we would conclude that there is an orthonormal base made by eigenfunctions
of K . Unfortunately ⟨·, ·⟩ is not positive definite, it has a one dimensional radical. This
causes some technical complications.
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Lemma 5.3.6. The bilinear map ⟨·, ·⟩ satisfies the following properties:
(a) ⟨v, v⟩ ≥ 0 for every v ∈ O;
(b) ⟨v, v⟩ = 0 if and only if v(ϕ) = µ cos ϕ

2 for some constant µ;
(c) ⟨v, cos ϕ

2 ⟩ = 0 for every v ∈ O;
(d) ⟨K (v), w⟩ = ⟨v,K (w)⟩ for every v, w ∈ O.

Proof. (a) & (b) First observe that (a) is equivalent to

1
4

ˆ 2π

0
v2 ≤

ˆ 2π

0
v2
ϕ . (5.3.16)

If we write v using the Fourier series expansion v(ϕ) = ∑∞
k=1 αk cos kϕ

2 , the inequality
becomes obvious and it is also clear that equality holds if and only if αk = 0 for every
k ≥ 2.

(c) Let z(ϕ) := cos ϕ
2 and observe that z

4 + zϕϕ = 0 and that zϕ(0) = zϕ(2π) = 0. We
therefore compute

⟨w, z⟩ =
ˆ 2π

0
wϕzϕ − 1

4

ˆ 2π

0
zw = wzϕ

∣∣∣∣2π
0

−
ˆ 2π

0
w
(
zϕϕ + z

4

)
= 0 .

(d) Consider z = K (v) and u = K (w). We then compute

⟨K (v), w⟩ =⟨z, uϕϕ⟩ =
ˆ 2π

0
zϕuϕϕϕ − 1

4

ˆ 2π

0
zuϕϕ

=zϕuϕϕ
∣∣∣∣2π
0

−
ˆ 2π

0
zϕϕuϕϕ − 1

4zuϕ
∣∣∣∣2π
0

+ 1
4

ˆ 2π

0
zϕuϕ

=zϕuϕϕ
∣∣∣∣2π
0

− zϕϕuϕ

∣∣∣∣2π
0

+
ˆ 2π

0
zϕϕϕuϕ − 1

4zuϕ
∣∣∣∣2π
0

+ 1
4zϕu

∣∣∣∣2π
0

− 1
4

ˆ 2π

0
zϕϕu

= zϕ

(
uϕϕ + u

4

)∣∣∣∣2π
0

− uϕ

(
zϕϕ + z

4

)∣∣∣∣2π
0

+ ⟨zϕϕ, u⟩

= − 2
π
zϕuϕ

∣∣∣∣2π
0

+ 2
π
zϕuϕ

∣∣∣∣2π
0

+ ⟨v,K (w)⟩ = ⟨v,K (w)⟩ . □

5.3.4. Spectral decomposition. We are now ready to prove the following spectral
analysis. First of all we start with the following

Lemma 5.3.7. If β is a real number and h ∈ O a solution of the following eigenvalue
problem 

hϕϕ = βh

hϕ(0) = −π
2

(
h(0)

4 + hϕϕ(0)
) (5.3.17)

then
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(a) β < 0 and if we set β = −ν2 for ν > 0, then ν is a positive solution of

ν cos νπ = π

2

(1
4 − ν2

)
sin νπ . (5.3.18)

(b) h is a constant multiple of sin(ν(ϕ− π)).
(c) The positive solutions of (5.3.18) are given by an increasing sequence {νk}k ∈ N in

which ν1 = 1
2 , ν2 >

3
2 and

lim
k→∞

νk
k

= 1 (5.3.19)

We will postpone the proof of the lemma and introduce instead the following notation.
For k = 1 we set

ζ1(ϕ) = cos ϕ2 , (5.3.20)

while for k > 1 we let
ζk(ϕ) := ck sin(νk(ϕ− π)) , (5.3.21)

where ck is chosen so that ⟨ζk, ζk⟩ = 1. Furthermore, we set

ζ0(ϕ) := (ϕ− π) sin ϕ2 , (5.3.22)

the relevance of the latter function is that it solves
ζϕϕ = − ζ

4 + ζ1

ζϕ(0) = −π
2

(
ζ(0)

4 + ζϕϕ(0)
)
.

(5.3.23)

In particular, if we restrict the second derivative operator on the 2-dimensional vector space
generated by ζ1 and ζ0, its matrix representation is given by(

−1/4 0
1 −1/4

)
.

Consequently, the operator K is not diagonalizable in O, which is the reason why its
spectral analysis is somewhat complicated.

Proposition 5.3.8. The set {ζk} ⊂ O is an Hilbert basis for O, namely for every
ζ ∈ O there is a unique choice of coefficients {ak} such that

ζ =
∞∑
k=0

akζk , (5.3.24)

where the series converges in H1. The coefficients ak in (5.3.24) are determined by

ak = ⟨ζ, ζk⟩ for all k ≥ 2, (5.3.25)

while a0 and a1 are continuous linear functionals on O.
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Proof of Lemma 5.3.7. First of all, consider β = 0. An odd solution of (5.3.17)
must then take necessarily the form c(ϕ − π) and the boundary condition would imply
c = 0. If β > 0 observe that a nontrivial function ζ ∈ O solving (5.3.17) would also satisfy
K (ζ) = ζ

β
. If β = ν2 > 0 for ν > 0, then h(ϕ) = c(eν(ϕ−π) − e−ν(ϕ−π)) for some constant c.

If c ̸= 0 the boundary condition becomes

ν
(
e−νπ + eνπ

)
= −π

2

(1
4 + ν2

) (
e−νπ − eνπ

)
. (5.3.26)

The latter identity is equivalent to
e2πν(π + 4πν2 − 8ν) = π + 4πν2 + 8ν . (5.3.27)

If we make the substitution x = 2πν, we then are seeking for zeros of the function
Φ(x) = ex(π2 + x2 − 4x) − π2 − x2 − 4x = 0 .

The derivative is given by
Φ′(x) = ex(x2 − 2x+ π2 − 4) − 2(2 + x) ,

the second derivative by
Φ′′(x) = ex(x2 + π2 − 6) − 2 ≥ 3ex − 2 > 0 .

In particular Φ is convex and Φ′(0) = π2 − 8 > 0. Thus Φ is strictly increasing and, since
Φ(0) = 0, it cannot have positive zeros.

Consider now µ = −β2 for ν > 0. A solution of the PDE in (5.3.17) must then be a
linear combination of sin ν(ϕ− π) and cos ν(ϕ− π): the requirement that h ∈ O excludes
the multiples of cos ν(ϕ− π) in the linear combination.

For h(ϕ) = sin ν(ϕ− π) the boundary condition becomes

ν cos(−νπ) = −π

2

(1
4 − ν2

)
sin(−νπ) , (5.3.28)

which is equivalent to (5.3.18). If we introduce the unknown x = πν, then the equation
becomes

Ψ(x) := 8x cosx−
(
π2 − 4x2

)
sin x = 0 .

Since Ψ′(x) = (4x2 + 8 − π2) cosx, Ψ′ has a single zero in the open interval (0, π2 ). Since
Ψ(0) = Ψ(π2 ) = 0, we infer that there is no zero of Ψ in the open interval (0, π2 ), i.e. any
positive ν satisfying (5.3.28) cannot be smaller than 1

2 . Moreover, as Ψ′ is strictly negative
on (π2 ,

3
2π) and Ψ(3

2π) < 0 < Ψ(2π), the next solution ν lies in (3
2 , 2).

Next, there is a unique solution νk ∈ (k − 1, k), for every k ≥ 3. Indeed, Ψ((k − 1)π) ·
Ψ(k π) < 0 and Ψ′ has a single zero in the open interval ((k − 1) π, kπ). Therefore (νk)k
satisfies (5.3.19). □

Proof of Proposition 5.3.8. Let Y be the closure in H1 of the vector space V
generated by {ζk}k≥2. First of all observe that, for some constant C independent of k,

1 = ⟨ζk, ζk⟩ ≥ C−1∥ζk∥2
H1 ∀k ≥ 2 . (5.3.29)
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Indeed set gk := sin νk(ϕ− π): (5.3.29) is then equivalent to say that the gk’s satisfy the
same inequality. An explicit computation shows that this is equivalent toˆ 2π

0
cos2 νk(ϕ− π) dϕ− 1

4ν2
k

ˆ 2π

0
sin2 νk(ϕ− π) dϕ

≥ C−1
(ˆ 2π

0
cos2 νk(ϕ− π) dϕ+ 1

ν2
k

ˆ 2π

0
sin2 νk(ϕ− π) dϕ

)
.

For each fixed νk the fact that the inequality holds for a sufficiently large constant is an
easy consequence of the fact that

´
cos2 νk(ϕ− π) is positive while

´
sin2 νk(ϕ− π) is finite,

and νk ≥ ν2 >
3
2 for k ≥ 2. On the other hand by (5.3.19) both integrals converge to π as

k ↑ ∞ and thus for a sufficiently large k the inequality holds for C ≥ 2. Now, for k ̸= j we
have

⟨ζk, ζj⟩ = −ν2
k⟨K (ζk), ζj⟩ = −ν2

k⟨ζk,K (ζj)⟩ = ν2
k

ν2
j

⟨ζk, ζj⟩

implying that ⟨ζk, ζj⟩ = 0.
We next claim that ζ1(ϕ) = cos ϕ

2 ̸∈ Y . Otherwise there is a sequence {vn} ⊂ V such
that vn → ζ1 strongly in H1. vn takes therefore the form vn = ∑N(n)

k=2 an,kζk. Using that
⟨vn, vn⟩ converges to ⟨ζ1, ζ1⟩ = 0. Thus we have

lim
n→∞

N(n)∑
k=2

a2
n,k = 0 . (5.3.30)

Now, given that the operator K is compact we also have that zn := K (vn)
4 converges

strongly in H1 to K (ζ1)
4 = − cos ϕ

2 . On the other hand

zn = −
N(n)∑
k=2

1
4ν2

k

an,kζk .

We then would have by item (c) of Lemma 5.3.7 and (5.3.29)

0 <∥ζ1∥2
H1 = lim

n→∞
∥zn∥2

H1 ≤ lim
n→∞

N(n)∑
k,j=2

|an,j||an,k|
16ν2

j ν
2
k

∥ζk∥H1∥ζj∥H1

≤C lim sup
n→∞

N(n)∑
k=2

|an,j|
j2

2

≤ C lim sup
n→∞

N(n)∑
k=2

1
k4

N(n)∑
j=2

a2
n,j ≤ C lim sup

n→∞

N(n)∑
j=2

a2
n,j

(5.3.30)= 0 ,

Consider now the standard H1 scalar product (·, ·) on O and for every ζ ∈ Y let ζ = ζ⊥ +ζ∥

be the decomposition of ζ into a multiple of ζ1 and an element ζ⊥ orthogonal in the scalar
product (·, ·) to ζ1. Since ζ1 ̸∈ Y and Y is closed in H1, there is a constant α > 0 such that
∥ζ⊥∥2

H1 ≥ α∥ζ∥2
H1 . On the other hand using the Fourier expansion of ζ we easily see that

⟨ζ, ζ⟩ = ⟨ζ⊥, ζ⊥⟩ ≥ C−1∥ζ⊥∥2
H1 for some universal constant C > 0. In particular K is a

compact self-adjoint operator on Y , which implies that {ζk}k≥2 is an orthonormal basis on
the Hilbert space Y (endowed with the scalar product ⟨·, ·⟩).
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Consider now the 2-dimensional vector space Z := {a0ζ0+a1ζ1 : ai ∈ R}. If a0ζ0+a1ζ1 =
z ∈ Z∩Y , using Lemma 5.3.6 and the fact that ⟨y, ζ1⟩ = 0 for every y ∈ Y , we can compute

⟨z, ζj⟩ = a0⟨ζ0, ζj⟩ = −ν2
j ⟨a0ζ0,K (ζj)⟩ = −ν2

j ⟨a0K (ζ0), ζj⟩ = 4ν2
j ⟨a0ζ0, ζj⟩ = 4ν2

j ⟨z, ζj⟩

for every j ≥ 2. Since νj > 3
2 we infer that ⟨z, ζj⟩ = 0, i.e. that z = 0, since {ζj}j≥2 is

an orthonormal Hilbert basis of Y with respect to the scalar product ⟨·, ·⟩. We have thus
concluded that Z ∩ Y = {0}. The proof of the proposition will be completed once we show
that Z + Y = O. Consider an element ζ ∈ O and define

ζ̄ := ⟨ζ0, ζ⟩
⟨ζ0, ζ0⟩

ζ0 +
∑
j≥2

⟨ζj, ζ⟩ζj .

It turns out that ζ̄ ∈ Z + Y and that ζ̂ := ζ − ζ̄ satisfies the condition ⟨ζ̂ , z⟩ = 0 for
every element z ∈ Z + Y =: X. We claim that the latter condition implies that ζ̂ is a
constant multiple of cos ϕ

2 . Indeed set X⊥ := {v : ⟨v, w⟩ = 0 ∀w ∈ X}. Then clearly
K (X⊥) ⊂ X⊥. Moreover K on X⊥ has only one eigenvalue, namely −4. Consider now
X⊥ ∋ v 7→ Q(v, v) = ⟨K (v),K (v)⟩ = ⟨K 2(v), v⟩ and set

m := sup{Q(v, v) : v ∈ X⊥ and ⟨v, v⟩ = 1} , (5.3.31)

where at the moment m is allowed to be ∞ as well. If m = 0 we then have that K (v)
is a multiple of ζ1 for every v and this would imply that v itself is a multiple of ζ1. We
therefore assume that m is nonzero. Using the fact that Q(v, ζ1) = 0 for every v, we can
find a maximizing sequence with Fourier expansion

vk :=
∑
j≥1

ck,j cos
(
(j + 1

2)ϕ
)

for which we easily see that ⟨vk, vk⟩ ≥ C−1∥vk∥2
H1 . We can thus extract a subsequence

converging weakly to some v. v clearly belongs to X⊥ and, by the compactness of the
operator K is actually a maximizer of (5.3.31). The Euler-Lagrange condition implies
then that K 2(v) = mv + bζ1 for some real coefficients b. Consider now the vector space
W generated by ζ1, v and K (v). W is then either 2-dimensional or 3-dimensional and K
maps it onto itself. If W were three-dimensional, then the matrix representation of K |W
in the basis ζ1, v and K (v) would be −4 0 0

0 1 0
α 0 m


Since the characteristic polynomial of the latter matrix is (x− 1)(x−m)(x+ 4), K would
have an eigenvalue different from −4 on W ⊂ X⊥, which is not possible. On the other hand
if W were 2-dimensional, then v and cos ϕ

2 would be a basis and the matrix representation
of K |W in that basis would be (

−4 0
α β

)
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Since K |W cannot have an eigenvalue different than −4 this would force β = −4. We
then would have K (v) = −4v + αζ0. This would imply that v is an odd solution of
vϕϕ + v

4 = α cos ϕ
2 . The general solution of the latter equation is given by c1 cos ϕ

2 + c2 sin ϕ
2 +

α(ϕ− π) sin ϕ
2 , for real coefficients c1 and c2. The fact that v is odd implies c2 = 0, namely

c1ζ1 + αζ0. The fact that v is not colinear with ζ1 implies that α ̸= 0, but on the other
hand since v ∈ X⊥, ⟨v, ζ1⟩ = 0, which implies α = 0. We have reached a contradiction: X⊥

was thus the line generated by ζ1, proving that indeed X = O. □

5.4. The linear three annuli property

We now define a functional which will be instrumental in proving a suitable decay
property for the coefficients of solutions to (5.2.4) and hence to (5.1.16). The latter called
three annuli property, is a way to encode the presence of positive exponentials among the
coefficients ak defined by (5.3.9), (5.3.11) in the representations of ve, vo, respectively.

We separate the behaviour of the even and odd parts. We start off with the former.

Definition 5.4.1. Consider any 0 < σ < s < 3 real numbers and functions v such that
v is even, v ∈ H2((0, 2π) × (σ, s)) and v(0, t) = v(2π, t) = 0 for every t.

We then define the functional

Ge(v, σ, s) :=
ˆ s

σ

∥vϕϕ(·, t)∥2
L2((0,2π)) dt (5.4.1)

Proposition 5.4.2. There is a constant C > 0 such that for all v ∈ H2((0, 2π) × (0, 3))
even with v(0, t) = 0

C−1
ˆ s

σ

∥v(·, t)∥2
H2((0,2π)) dt ≤ Ge(v, σ, s) ≤ C

ˆ s

σ

∥v(·, t)∥2
H2((0,2π)) dt . (5.4.2)

Moreover, there is a constant η ∈ (0, 1) such that the following property holds
If Ge(v, 1, 2) ≥ (1 − η)Ge(v, 0, 1) then Ge(v, 2, 3) ≥ (1 + η)Ge(v, 1, 2), (5.4.3)

for every even solution v ∈ H2((0, 2π) × (0, 3)) of (5.2.4) satisfying:ˆ 2π

0
v(ϕ, t) sin ϕ2dϕ = 0 . (5.4.4)

Proof. Since v(0, t) = v(2π, t) = 0, we have by the Poincaré inequality
∥v(·, t)∥L2((0,2π)) ≤ C∥vϕ(·, t)∥L2((0,2π)) .

Moreover, using that vϕ(π, t) = 0, we conclude
∥v(·, t)∥H2((0,2π)) ≤ C∥vϕϕ(·, t)∥L2((0,2π)) ,

which clearly implies (5.4.2).
We now establish (5.4.3). Recall that, since v is even and satisfies (5.4.4), the Fourier

decomposition of v reads as (cf. (5.3.7))

v(ϕ, t) =
∞∑
k=1

ak(t)√
π

sin
(
(k + 1

2)ϕ
)
,
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where by (5.3.9) the coefficients ak’s satisfy for all k ∈ N with k ≥ 1
ak(t) = Ck e

(k+1)t +Dk e
−kt

for some Ck, Dk ∈ R. A simple calculation then gives for all k ≥ 1
d2

dt2
(a2
k(t)) ≥ a2

k(t) ≥ 0, (5.4.5)

establishing the convexity of each a2
k for k ≥ 1. Moreover, note that

Ge(v, σ, s) =
ˆ s

σ

∞∑
k=1

(k + 1
2)4a2

k(t)︸ ︷︷ ︸
h(t):=

dt.

We now want to argue that, there is a constant η > 0 with the following property. If h ≥ 0
is a nontrivial L1 function such that ḧ ≥ h on (0, 3), in particular h is convex, thenˆ 2

1
h(t) dt ≥ (1 − η)

ˆ 1

0
h(t) dt =⇒

ˆ 3

2
h(t) dt ≥ (1 + η)

ˆ 2

1
h(t) dt .

Indeed, assume by contradiction this were not true and let hj be a sequence of nontrivial
functions such that ḧj ≥ hj ≥ 0 andˆ 2

1
hj(t) dt ≥ max

{
(1 − 1/j)

ˆ 1

0
hj(t) dt, (1 + 1/j)−1

ˆ 3

2
hj(t) dt

}
.

After multiplying by a suitable constant we can then assumeˆ 2

1
hj(t) dt = 1 .

The convexity of the hj and the uniform bound on ∥hj∥L1((0,3)) implies easily a uniform
bound on ∥hj∥L∞((σ,s)) for any 0 < σ < s < 3 and therefore (again by convexity) a uniform
Lipschitz bound on any compact subset of (0, 3). This ensures the local uniform convergence
of a subsequence of hj (not relabeled) to a nonnegative convex function h, which is L1 (and
thus locally finite) on the open interval (0, 3). In particular,

´ 2
1 h(t) dt = 1. On the other

hand it is also easy to see thatˆ 1

0
h(t) dt ≤ 1, and

ˆ 3

2
h(t) dt ≤ 1 .

By the mean-value theorem this implies the existence of three points 0 < t1 < 1 < t2 < 2 <
t3 < 3 where h(t2) ≥ 1 ≥ max{h(t1), h(t3)}. But then the convexity of h implies that h
must be constantly equal to 1 on [t1, t3]. Since the inequality ḧ ≥ h is verified in the limit
in the sense of distributions, this is a contradiction. □

Next we consider the odd part.

Definition 5.4.3. Fix a constant c0 > 0 appropriately small (whose choice will be
specified in Proposition 5.4.4 below). Consider now any couple of real numbers 0 ≤ σ < s ≤ 3
and a pair of functions (v, θ) such that
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(i) v is odd, v ∈ H2((0, 2π) × (σ, s)) and v(0, t) = v(2π, t) = 0 for every t;
(ii) θ ∈ H2([σ, s]).

Define ζ as in (5.3.1) and let ak(t) be the coefficients in the representation (5.3.10) and νk
the numbers in Lemma 5.3.7. We then define the functionals

E(v, θ, σ, s) :=
∞∑
k=2

ˆ s

σ

(ν4
ka

2
k(t) + ä2

k(t)) dt (5.4.6)

F(v, θ, σ, s) :=
ˆ s

σ

(θ̇2(t) + θ̈2(t) + a2
0(t) + a2

1(t) + ä2
0(t) + ä2

1(t)) dt (5.4.7)

Go(v, θ, σ, s) := max{E(v, θ, σ, s), c0F(v, θ, σ, s)} (5.4.8)

Proposition 5.4.4. There is a constant η ∈ (0, 1) such that the following property
holds for every solution (v, θ) ∈ H2((0, 2π) × (0, 3)) ×H3((0, 2π)) of (5.2.4) with v odd:

(a) If E(v, θ, 1, 2) ≥ (1 − η)E(v, θ, 0, 1) then E(v, θ, 2, 3) ≥ (1 + η)E(v, θ, 1, 2).
Furthermore, there are positive constants C and c0 such that the following properties hold
for every solution (v, θ) of (5.2.4) with v odd which satisfies in addition (5.2.5):

(b) If Go(v, θ, 1, 2) ≥ (1 − η)Go(v, θ, 0, 1) then Go(v, θ, 2, 3) ≥ (1 + η)Go(v, θ, 1, 2).
and

C−1(∥v∥2
H2((0,2π)×(σ,s)) + ∥θ̇∥2

H1((σ,s))) ≤ Go(v, θ, σ, s) ≤ C(∥v∥2
H2((0,2π)×(σ,s)) + ∥θ̇∥2

H1((σ,s))) ,
(5.4.9)

for all 0 ≤ σ < s ≤ 3.

Proof. In order to prove claim (a) consider any of the functions ak(t) and äk(t) and
call it ω(t), and observe we know k ≥ 2 by assumption. From Proposition 5.3.4 and
Lemma 5.3.7 it follows that ω solves then the ODE

ω̈(t) − ω̇(t) − c ω(t) = 0 ,

where c is a constant which depends on k, but it satisfies the bound c ≥ c̄ > 0 for some
positive c̄ independent of k. The polynomial x2 − x− c has then a positive and a negative
solution α+ and −α− (also depending on k) with α± ≥ α0 > 0. The function ω(t) is then
given by Deα+t + Ce−α−t. A simple computations shows that

d2

dt2
(ω2(t)) ≥ ĉ ω2(t) ,

where the positive constant ĉ can be chosen to depend on α0 and in particular independent
of k. Summing the square of all the coefficients involved in the computation of E we find a
non negative function h(t) with the property that ḧ(t) ≥ ĉ h(t) and E(v, θ, s, σ) =

´ σ
s
h(t) dt.

The rest of the argument follows the lines of that employed for proving the analogous
property for Ge in Proposition 5.4.2, to which we refer.

Having shown (a) we now turn to (b). We claim that (b) holds for c0 sufficiently small.
Observe that if E(v, θ, 1, 2) ≥ c0F(v, θ, 1, 2), then (b) is simply implied by (a). Thus we
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may assume Go(v, θ, 1, 2) = c0F(v, θ, 1, 2). We argue by contradiction: for c0 = 1/j choose
(vj, θj) such that

Go(vj, θj, 1, 2) ≥ max{(1 − η)Go(vj, θj, 0, 1), (1 + η)−1Go(vj, θ,2, 3)} .
Using the linearity we can normalize it so that F(vj, θj, 1, 2) = 1. Observe that we have
the inequalities

1 = F(vj, θj, 1, 2) ≥ max{(1 − η)F(vj, θj, 0, 1), (1 + η)−1F(vj, θj, 2, 3)} (5.4.10)
1 = F(vj, θj, 1, 2) ≥ jmax{E(vj, θj, 1, 2), (1 − η)E(vj, θj, 0, 1), (1 + η)−1E(vj, θj, 2, 3)} .

(5.4.11)

From Proposition 5.3.4 we gain a uniform bound on ∥vj∥H2([0,2π)×(0,3)) and ∥θ̇j∥H1((0,3)) and
consequently (since θj(0) = 0) on ∥θj∥H2((0,3)). We then extract a sequence converging
weakly to (v, θ) ∈ H2 which satisfies (5.2.4) and (5.2.5). Consider the functions v and ζ,
which are the limit of the corresponding maps constructed from vj. From (5.4.11) and
(5.4.6) we conclude that ζ(ϕ, t) = a0(t)ζ0(ϕ) + a1(t)ζ1(ϕ). Unraveling the definition of ζ we
infer

v(ϕ, t) = a0(t)(ϕ− π) sin ϕ2 + ā1(t) cos ϕ2 ,

where ā1(t) = a1(t) + θ(t)√
2π . However the boundary conditions v(0, t) = v(2π, t) = 0 imply

ā1 ≡ 0. We are thus left with the formula v(ϕ, t) = a0(t)(ϕ− π) sin ϕ
2 . Inserting in (5.2.4)

we get: 
ä0(t) − ȧ0(t) = 0
θ̇(t) − θ̈(t) = −

√
2πa0(t)

θ(0) = 0 .
(5.4.12)

From the first equation we find a0(t) = c1 + c2e
t, while from the second we find θ(t) =

d1 −
√

2πc1t + d2e
t − c2

√
2πtet, i.e. θ(t) = −

√
2πta0(t) + d1 + d2e

t. Using θ(0) = 0 we
thus get θ(t) = −

√
2πta0(t) + d(et − 1). We next use (5.2.5) to derive that a0 is actually

identically null. Indeed, the latter reads as

a0(t)
ˆ 2π

0

(
sin ϕ2 + ϕ− π

2 cos ϕ2

)
sin ϕ2 dϕ︸ ︷︷ ︸

=:I

= 0 .

We compute the integral I as

I =
ˆ 2π

0

(
sin2 ϕ

2 + ϕ− π

2 cos ϕ2 sin ϕ2

)
dϕ

=
ˆ 2π

0

(
1
2(1 − cosϕ) + ϕ− π

4 sinϕ
)
dϕ

= π − ϕ− π

4 cosϕ
∣∣∣∣∣
2π

0
+ 1

4

ˆ 2π

0
cosϕ dϕ = π

2 .

So we actually infer a0(t) = 0, which in turn implies θ(t) = d(et − 1).
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Using the convergences established for (vj, θj) and passing to the limit into (5.4.10) we
find

1 = F(v, θ, 1, 2) ≥ max{(1 − η)F(v, θ, 0, 1), (1 + η)−1F(v, θ, 2, 3)} ,
to get by an explicit computation

1 = 2d2
ˆ 2

1
e2t dt ≥ 2d2 max

{
(1 − η)

ˆ 1

0
e2t dt, (1 + η)−1

ˆ 3

2
e2t dt

}
.

Thus, d ̸= 0 and the latter inequality is equivalent to
e4 − e2 ≥ max{(1 − η)(e2 − 1), (1 + η)−1(e6 − e4)} ,

which in turn is equivalent to
e2 ≥ max{(1 − η), (1 + η)−1e4} .

Since 0 < η < 1, the latter would imply e2 ≥ e4

2 , which is clearly a contradiction.
The growth conditions in (5.4.9) easily follow from Proposition 5.3.4 by taking into

account that (v, θ) solves (5.2.4). □

5.5. Second linearization and proof of Theorem 5.0.1

The three annuli property of the previous section allows us to improve upon Proposi-
tion 5.2.1.

Proposition 5.5.1. Let vj and θj be as in Proposition 5.2.1. Then, there is a pair
(v, θ) ∈ C2

loc([0, 2π] × [0,∞)) and a subsequence, not relabeled, such that (vj, θj) converges
in C2([0, 2π] × [0, T )) to (v, θ) for every T > 0. Moreover, (v, θ) solves (5.2.4), satisfies
(5.2.5) and there are positive constants ϖ and C such that:

∥ve − isq∥C2((0,2π)×[k,k+1]) + ∥vo∥C2((0,2π)×[k,k+1]) + ∥θ̇∥C1([k,k+1]) ≤ Ce−ϖk

for all k ∈ N \ {0} if λ = 0, while
∥ve − isq∥H2((0,2π)×(k,k+1)) + ∥vo∥H2((0,2π)×(k,k+1)) + ∥θ̇∥H1((k,k+1)) ≤ Ce−ϖk

for all k ∈ N \ {0} if λ > 0.

Proof. We prove the estimates claimed above separately for the odd and even parts
by showing in both cases a nonlinear three annuli property.

We start with the case λ > 0 by observing that by Proposition 5.2.1 and by Proposi-
tion 5.4.4 we can prove: given β > ln 2 (to be chosen suitably in what follows), if ε0 in
Theorem 5.0.1 is sufficiently small and (u,K) satisfies the assumptions of Theorem 5.0.1,
for every k ∈ N we have that if

max{Go(f o(·, · + k), ϑ(· + k), 1, 2), λe−β(1+k)}
≥ (1 − η

2) max{Go(f o(·, · + k), ϑ(· + k), 0, 1), λe−βk}
=⇒ max{Go(f o(·, · + k), ϑ(· + k), 2, 3), λe−β(2+k)}

≥ (1 + η
2) max{Go(f o(·, · + k), ϑ(· + k), 1, 2), λe−β(1+k)} . (5.5.1)
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where Go is the functional defined in (5.4.8), ϑ, f are given by (5.1.11) and (5.1.13), respec-
tively.

Indeed, assume the claim is false, no matter how small ε0 in Theorem 5.0.1 is chosen,
and let thus f oj , ϑj be a sequence which violates it for some kj ∈ N when we choose ε0 = 1

j
.

By rescaling the time variable t (which just implies a rescaling of the variable r in the
original problem), we can assume kj = j. Furthermore, by adding a rotation we can assume
that ϑj(0) = 0, so that we can apply Proposition 5.2.1. Assume by contradiction that

max{Go(f oj (·, · + j), ϑj(· + j), 1, 2), λe−β(1+j)}

≥ max
{(

1 − η
2

)
max{Go(f oj (·, · + j), ϑj(· + j), 0, 1), λe−βj},(

1 + η
2

)−1
max{Go(f oj (·, · + j), ϑj(· + j), 2, 3), λe−β(2+j)}

}
. (5.5.2)

Note that if λ > 0 and β > ln 2, then necessarily

Go(f oj (·, · + j), ϑj(· + j), (1, 2)) ≥ λe−β(1+j) (5.5.3)

for all j ≥ 0, since otherwise from (5.5.2) we would conclude for some i ≥ 0 that

e−β(1+i) ≥ max
{(

1 − η
2

)
e−βi,

(
1 + η

2

)−1
e−β(2+i)

}
,

which is equivalent to (
1 + η

2

)−1
≤ eβ ≤

(
1 − η

2

)−1
,

in turn implying eβ ∈ (2/3, 2), as η ∈ (0, 1). Clearly, this is a contradiction in view of the
choice β > ln 2.

Therefore, from this observation, from the definition of vj in (5.2.3), from (5.5.2), and
since the functional Go is quadratic, we immediately obtain that

Go(voj , θj, 1, 2) ≥ max
{(

1 − η
2

)
Go(voj , θj, 0, 1),

(
1 + η

2

)−1
Go(voj , θj, 2, 3)

}
. (5.5.4)

Upon choosing β > 3/2− ε̂(> ln 2), where ε̂ has been fixed in the definition of δj (cf. (5.2.1)),
from (5.5.3) we conclude that lim infj ∥voj∥H2((0,2π)×[1,2]) > 0, because of (5.4.9).

Thus, we can apply Proposition 5.2.1 (d) (recall that θj(0) = 0) to extract a subsequence
converging to some (v, θ) strongly in H2((0, 2π) × (σ, 3 − σ)) × H2((σ, 3 − σ)) for all
σ ∈ (0, 3/2). Therefore, we have that

Go(vo, θ, 1, 2) = lim
j

Go(voj , θj, 1, 2) ,

and in particular we conclude that the pair (vo, θ) is nontrivial. On the other hand, the
functional Go is lower semicontinuous with respect to the mentioned convergences, and we
thus infer from (5.5.4)

Go(vo, θ, 1, 2) ≥ max
{(

1 − η
2

)
Go(vo, θ, 0, 1),

(
1 + η

2

)−1
Go(vo, θ, 2, 3)

}
,

contradicting Proposition 5.4.4 (b) being (vo, θ) nontrivial.
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Therefore, having completed the proof of (5.5.1), if for some k0 ∈ N we were to have
max{Go(f o(·, · + k0), ϑ(· + k0), 1, 2), λe−β(1+k0)}

≥
(
1 − η

2

)
max{Go(f o(·, · + k0), ϑ(· + k0), 0, 1), λe−βk0} ,

then from (5.5.1) itself, and the choice β > ln 2, we would infer that for all j ≥ k0 + 1

Go(f o(·, · + j), ϑ, 0, 1) ≥
(
1 + η

2

)j−(k0+1)
Go(f o(·, · + k0), ϑ(· + k0), 0, 1) .

However the latter contradicts the fact that f o(·, · + j) and ϑ̇(· + j) converge smoothly to 0
for j → ∞.

We thus conclude that for every k ∈ N
max{Go(f o(·, · + k), ϑ(· + k), 1, 2), λe−β(k+1)}

≤
(
1 − η

2

)
max{Go(f o(·, · + k), ϑ(· + k), 0, 1), λe−βk} ,

in turn implying, by iteration and by (5.4.9), the existence of constants C > 0 and
ϖ ∈ (0, ln 2) such that

∥f o∥2
H2((0,2π)×(k,k+1)) + ∥ϑ̇∥2

H1((k,k+1)) ≤ Ce−ϖk
(
∥f o∥2

H2((0,2π)×(0,1)) + ∥ϑ̇∥2
H1((0,1)) + λ

)
.

In turn, if (vj, θj) are as in the statement of the proposition, we infer
∥voj∥2

H2((0,2π)×(k,k+1)) + ∥θ̇j∥2
H1((k,k+1))

≤Ce−ϖk
(
∥voj∥2

H2((0,2π)×(0,1)) + ∥θ̇j∥2
H1((0,1)) + λ

)
= Ce−ϖk . (5.5.5)

The estimate for the even part follows analogously. Indeed, one first shows the nonlinear
three annuli property for

ge(ϕ, t+ k) := f e(ϕ, t+ k) − ⟨f e(·, t+ k), 1√
π

sin(ϕ2 )⟩L2
1√
π

sin(ϕ2 ) .

Note that ge(·, · + j) is still even and rescaled by δj is converging to an even solution to
(5.2.4) satisfying (5.4.4). Hence, by using Proposition 5.3.2 and by arguing as above one
deduces that if

max{Ge(ge(·, · + k), 1, 2), λe−β(1+k)} ≥ (1 − η
2) max{Ge(ge(·, · + k), λe−βk}

then
max{Ge(ge(·, · + k), 2, 3), λe−β(2+k)} ≥ (1 + η

2) max{Ge(ge(·, · + k), 1, 2), λe−β(1+k)} .
where Ge is the functional defined in (5.4.1).

By assumption f e(·, · + j) converges smoothly to isq for j → ∞, so that for every k ∈ N

max{Ge(ge(·, · + k), 1, 2), λe−β(k+1)} ≤
(
1 − η

2

)
max{Ge(ge(·, · + k), ϑ(· + k), 0, 1), λe−βk} .

In turn implying, by iteration and by (5.4.2), the existence of constants C > 0 and
ϖ ∈ (0, ln 2) such that

∥ge∥2
H2((0,2π)×(k,k+1)) ≤ Ce−ϖk

(
∥ge∥2

H2((0,2π)×(0,1)) + λ
)
.
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Therefore, we conclude that
∥vej − ⟨vej , 1√

π
sin(ϕ2 )⟩L2

1√
π

sin(ϕ2 )∥2
H2((0,2π)×(k,k+1))

≤ Ce−ϖk
(
∥vej − ⟨vej , 1√

π
sin(ϕ2 )⟩L2

1√
π

sin(ϕ2 )∥2
H2((0,2π)×(0,1)) + λ

)
. (5.5.6)

Having fixed k ∈ N, in view of (5.5.5) and (5.5.6), the conclusion of the proposition
is then a simple application of Proposition 5.2.1 with [0, 1] replaced by [k, k + 1], that is
equivalently by applying it to f(·, · + k + j) and ϑ(· + k + j) on [0, 1], together with a
diagonal argument over k and j.

The proof of the case λ = 0 proceeds similarly: the inequality analogous to (5.5.1)
in this setting is obtained by revisiting the argument outlined above, upon normalizing
Go(voj , θj, 1, 2) = 1 for every j. Then, the conclusion follows by taking advantage of (5.5.5),
of elliptic regularity and of the stronger convergences described in Proposition 5.2.1 (c). □

Using the second linearization procedure in Proposition 5.5.1 and again the spectral
analysis for solutions of (5.2.4) we will then conclude the decay for the curvature at the tip
when λ = 0.

Corollary 5.5.2. There is a constant δ0 with the following property. Assume (u,K) is
as in Theorem 5.0.1 and ϑ as in (5.1.11). Then there are constants C, δ0 > 0 and δ1 ∈ (0, 1)
such that, if λ = 0,

∥f o(·, t)∥C2([0,2π]) + |ϑ̇(t)| + |ϑ̈(t)| ≤ Ce−(1+δ0)t , (5.5.7)
∥f e(·, t) − isq∥C2([0,2π]) ≤ Ce−(1−δ1)t , (5.5.8)

while, if λ > 0 for every ε ∈ (0, 1) there is a constant Cε > 0 such that

∥f o(·, t)∥C1,1−ε([0,2π]) + |ϑ̇(t)| ≤ Cεe
−δ0t , (5.5.9)

∥f e(·, t) − isq∥C1,1−ε([0,2π]) ≤ Cεe
−δ0t . (5.5.10)

In particular, in case λ = 0 we also have∣∣∣∣∣ ϑ̈(t) − ϑ̇(t) − ϑ̇3(t)
(1 + ϑ̇2(t))5/2

∣∣∣∣∣ ≤ Ce−(1+δ0)t . (5.5.11)

Proof. First of all consider any limit (v, θ) as in Proposition 5.5.1. We discuss
separately the behavior of the odd and even parts of v. Let ζ be as in (5.3.1). Recalling
that v satisfies (5.2.5), Proposition 5.3.4 yields the expansion

ζ(ϕ, t) = ā1(t) cos ϕ2 +
∞∑
k=2

(āk,−eµk,−t + āk,+e
µk,+t)ζk(ϕ) ,

where ζk(ϕ) = ck sin(νk(ϕ− π)), ck is such that ⟨ζk, ζk⟩ = 1 for every k ≥ 2 (cf. (5.3.21)),
where the āk,±’s are constants, and µk,± is the positive/negative zero of the quadratic
polynomial x2 − x− (ν2

k − 1
4), i.e. (cf. (5.3.11))

µk,± = 1
2 ± νk .
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Recalling item (c) in Lemma 5.3.7, we have νk ≥ ν2 >
3
2 when k ≥ 2 and thus we conclude

that µk,+ ≥ µ2,+ > 2 and µk,− ≤ µ2,− < −1 for all k ≥ 2. Therefore, by the decay properties
of vo and θ̇ in Proposition 5.5.1, we easily infer that āk,+ = 0 for every k ≥ 2, so that

vo(ϕ, t) = ζ(ϕ, t) + θ(t)√
2π

cos ϕ2 = a1(t) cos ϕ2 +
∞∑
k=2

āke
−µktζk(ϕ) ,

where we have set µk = |µ−
k | > 1, āk := āk,−, and a1(t) := ā1(t) + θ(t)√

2π . In particular, note
that µ2

k + µk = ν2
k − 1

4 . From the boundary conditions vo(0, t) = vo(2π, t) = 0 we conclude
that

a1(t) = −
∞∑
k=2

ākζk(0)e−µkt . (5.5.12)

An elementary computation together with the Ventsel boundary condition satisfied by the
ζk’s (cf. (5.3.17)) and the definition of νk (cf. Lemma 5.3.7 (a)) imply that

voϕ(0, t) = π

2

∞∑
k=2

āk(ν2
k − 1

4)ζk(0)e−µkt . (5.5.13)

Thus, using the ODE in (5.3.4) and µ2
k + µk = ν2

k − 1
4 we get that

θ(t) = A+Bet −
√

2π
∞∑
k=2

ākζk(0)e−µkt .

As limt→+∞ θ(t) ∈ R we infer that B = 0, in turn implying A = limt→+∞ θ(t). Finally, as
θ(0) = 0 we deduce that

θ(t) =
√

2π
∞∑
k=2

ākζk(0)(1 − e−µkt) . (5.5.14)

Note that the latter together with (5.5.12) easily imply that ā1(t) = − A√
2π .

We argue similarly for the even part. Namely, Proposition 5.3.2 yields the expansion

ve(ϕ, t) =
∞∑
k=0

(Cke(k+1)t +Dke
−kt) 1√

π
sin((k + 1

2)ϕ) ,

and by the decay properties of ve in Proposition 5.5.1, we infer that Ck = 0 for all k ≥ 0,
and moreover that D0 =

√
2, namely

ve(ϕ, t) = isq(ϕ) + 1√
π

∞∑
k=1

Dke
−kt sin((k + 1

2)ϕ) . (5.5.15)

Case λ = 0. From (5.5.12), (5.5.13), (5.5.14) and (5.5.15) it is then easy to check that
for every T > 0 we have the estimate

∥vo∥C2([0,2π]×[T,2T ]) + ∥θ̇∥C1([T,2T ]) ≤ Ce−µ2T
(
∥vo∥H2([0,2π]×[0,1]) + ∥θ̇∥H1([0,1])

)
,

and
∥ve−isq∥C2([0,2π]×[T,2T ]) ≤ Ce−T∥ve − isq∥H2([0,2π]×[0,1]) ,
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where C is a constant independent of T . Fix now T , whose choice will be specified a few
paragraphs below. Using the conclusions of Proposition 5.5.1 if λ = 0 we then conclude
that, if u is as in Theorem 5.0.1 and ϑ and f as in Lemma 5.1.3 and ε0 sufficiently small
(depending on T ), then

∥f o∥C2([0,2π]×[T,2T ]) + ∥ϑ̇∥C1([T,2T ]) ≤ 2Ce−µ2T
(
∥f o∥H2([0,2π]×[0,1]) + ∥ϑ̇∥H1([0,1])

)
≤ C̄e−µ2T

(
∥f o∥C2([0,2π]×[0,T ]) + ∥ϑ̇∥C1([0,T ])

)
,

and

∥f e−isq∥C2([0,2π]×[T,2T ]) ≤ 2Ce−T∥f e − isq∥H2([0,2π]×[0,1]) ≤ C̄e−T∥f e − isq∥C2([0,2π]×[0,T ]) ,

where the constant C̄ is independent of T . By a simple rescaling argument, this actually
implies that for all k ∈ N

∥f o∥C2([0,2π]×[(k+1)T,(k+2)T ] + ∥ϑ̇∥C1([(k+1)T,(k+2)T ])

≤C̄e−µ2T
(
∥f o∥C2([0,2π]×[kT,(k+1)T ]) + ∥ϑ̇∥C1([kT,(k+1)T ])

)
.

and

∥f e − isq∥C2([0,2π]×[(k+1)T,(k+2)T ]) ≤ C̄e−T∥f e − isq∥C2([0,2π]×[kT,(k+1)T ]) .

We stress that the constant C̄ is independent of T . On the other hand, recalling that µ2 > 1
(because µ2 = ν2 − 1

2 > 1, cf. (c) Lemma 5.3.7), while given δ0 ∈ (0, µ2 − 1) and δ1 ∈ (0, 1),
we can choose T itself large enough so that

C̄e−µ2T ≤ e−(1+δ0)T , C̄e−T ≤ e−(1−δ1)T .

We then can iterate the latter inequalities to infer

∥f o∥C2([0,2π]×[(k+1)T,(k+2)T ])+∥ϑ̇∥C1([(k+1)T,(k+2)T ])

≤e−(1+δ0)kT
(
∥f o∥C2([0,2π]×[0,T ]) + ∥ϑ̇∥C1([0,T ])

)
,

and

∥f e − isq∥C2([0,2π]×[(k+1)T,(k+2)T ]) ≤ e−(1−δ1)kT∥f e − isq∥C2([0,2π]×[0,T ]) .

This easily gives the conclusions (5.5.7), (5.5.8) and, in particular, (5.5.11).

Case λ > 0.
The proof of the estimates in (5.5.9) and (5.5.10) follows as in the previous case by

using the conclusions of Proposition 5.5.1 for λ > 0 rather than those for λ = 0 there. □

The latter Corollary 5.5.2 implies easily Theorem 5.0.1.
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5.5.1. Proof of Theorem 5.0.1. Corollary 5.5.2 gives a C2,δ0 estimate for the
parametrization of K ∩ B2 if λ = 0 and a C1,δ0 estimate if λ > 0. More precisely,
the unit tangent τ(r) to K ∩ B2 at the point γ(r) = r(cosα(r), sinα(r)) (cf. (5.0.5)) is
given by the expression

τ(r) = 1√
1 + r2α′(r)2

(
(cosα(r), sinα(r)) + r α′(r) (− sinα(r), cosα(r))

)
.

using the relation r = e−t and α(r) = ϑ(| ln r|) (cf. (5.1.11)) and (5.5.7) if λ = 0, respectively
(5.5.9) if λ > 0, we easily check that |τ ′′(r)| ≤ Crδ0−1, respectively |τ ′(r)| ≤ Crδ0−1.
Integrating the latter inequalities between r1 and r2 we reach the estimates

|τ ′(r2) − τ ′(r1)| ≤ C(r2 − r1)δ0 ∀ 0 < r1 < r2 < 1/2 ,

for λ = 0, and for λ > 0
|τ(r2) − τ(r1)| ≤ C(r2 − r1)δ0 ∀ 0 < r1 < r2 < 1/2 .

In turn, the latters imply respectively C1,δ0 and C0,δ0 estimates on the tangent τ(r) to K
at the point γ(r), and moreover that τ(r) has a limit τ0 ∈ S1 as r → 0+ in both cases.

In addition, we get a decay estimate for the curvature when λ = 0. Indeed, using
(5.1.36), namely

κ(r) = r−1 ϑ̇(| ln r|) + ϑ̇3(| ln r|) − ϑ̈(| ln r|)
(1 + ϑ̇2(| ln r|))3/2

,

from estimate (5.5.11) in Corollary 5.5.2 we conclude that
|κ(r)| ≤ Crδ0

when λ = 0. Note that the denimonator of the quantity estimated in (5.5.11) differs from
the denominator appearing in the formula of the curvature by a multiplicative factor which
is 1 + θ̇2(| ln r|): the latter however converges to 1 as r → 0, and in fact according to our
estimates is bounded above by an absolute constant on the interval of interest.

Moreover, it follows easily that there is an η > 0, depending only upon C and ϖ, such
that Bη ∩K is a graph {t τ0 + ψ(t) τ⊥

0 } ∩Bη for some function ψ : [0, η] → R. If λ = 0 the
latter is C2,δ0 smooth, with ψ(0) = ψ′(0) = ψ′′(0) = 0 and ∥ψ∥C2,δ0 ≤ C̄. When λ > 0, ψ in
C1,δ0 with ψ(0) = ψ′(0) = 0 and ∥ψ∥C1,δ0 ≤ C̄.

On the other hand, if ε0 is sufficiently small, since |α′(r)| ≤ ε0/η for r ∈ (η, 1/2) (recall
that γ ∈ C1,1((0, 2))), we conclude that K ∩ B1/4 is a graph in the coordinates induced
by the orthonormal base {τ0, τ

⊥
0 }. Finally, since such graph will have to be sufficiently

close to the line {(s, 0) : s ≥ 0} by assumption (iv), we conclude that τ0 must be close to
(1, 0). Therefore, K ∩ B1/4 is in fact a graph in the standard coordinates, as claimed in
Theorem 5.0.1.



CHAPTER 6

Some consequences of the epsilon-regularity theory

6.1. Main statements

In this chapter, we use the ε-regularity theory and some more ideas to prove several
structural results about the set K and a more refined analysis of the behavior of K around
some particular points.

More precisely, consider the subset K(j) ⊂ K of points p such that K is a regular
arc in a neighborhood of p and p is not an endpoint of the arc. This is in fact the set of
pure jumps, also called in what follows jump points. Through the ϵ-regularity criterion of
Theorem 3.1.1 we can characterize its complement K \K(j) in K according to whether the
scaled Dirichlet energy or the scaled mean flatness or none of them is infinitesimal. In this
respect, we shall show that triple junctions are the only points where the scaled Dirichlet
energy decays while the scaled mean flatness does not, and regular loose ends (or cracktips)
are the only points where the scaled mean flatness decays but the scaled Dirichlet energy
does not. On the remaining set, which turns out to coincide with K(i), both the scaled
mean flatness and the scaled Dirichlet energy are above some positive thresholds at all
scales.

The Mumford-Shah conjecture is thus equivalent to showing that K(i) is indeed the
empty set. While this is still open, it is possible to estimate the size of the latter set in
Section 6.1.2 assuming that some Lp norm of ∇u is finite, following the approach introduced
by Ambrosio, Fusco, and Hutchinson in [2]. Indeed a suitable implementation of the latter
idea shows that the Mumford Shah conjecture is equivalent to a sharp integrability property
of ∇u, namely that it belongs to the weak L4 space.

That ∇u is higher integrable (namely in L2+ε) was in fact conjectured by De Giorgi for
minimizers in all dimensions. We shall give two proofs of this fact. In Section 6.4 we show
how it follows from a suitable reverse Hölder inequality, which can be inferred from the
ε-regularity theory and the compactness result of Theorem 2.2.3. The validity of the latter
argument has not been explored in higher dimensions. A second proof, due to De Philippis
and Figalli and which can be extended to higher dimensions, establishes first the porosity
of K, in the spirit of David, again as a consequence of the ε-regularity at jump points, cf.
Section 6.5. It then shows the higher integrability of ∇u leveraging the latter property.

The final Section 6.6 is dedicated to proving that the Mumford-Shah conjecture holds
when the number of connected components of K is limited apriori. This follows a classical
argument of Bonnet, who proved in [9] that each connected components is formed by finitely
many arcs whose common endpoints are triple junctions. Note however that the ε-regularity
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theorem for cracktips was missing at the time and therefore Bonnet could not exclude that
such arcs could form slowly rotating spirals at an endpoint which is not in common with
another arc.

6.1.1. Structure of K. We consider the set K(j) of pure jump points and as discussed
above note that, according to Theorem 3.1.1, they can be characterized as those points
where the scaled Dirichlet energy and the flatness of K both converge to 0. Its complement
Σ := K \K(j), usually called in the literature the singular set, can then be decomposed as
follows as the disjoint union of K(t), K(c), and Σ \ (K(t) ∪K(c)), where

K(t) := {x ∈ Σ : lim inf
r↓0

d(x, r) = 0},

K(c) := {x ∈ Σ : lim inf
r↓0

β(x, r) = 0},

Σ \ (K(t) ∪K(c)) := {x ∈ Σ : lim sup
r↓0

d(x, r) > 0, and lim sup
r↓0

β(x, r) > 0}.

According to the Mumford-Shah conjecture, we should have Σ \ (K(t) ∪ K(c)) = ∅. Note
also that the set K♯ of high energy points is in fact given by Σ \K(t).

We will use this subdivision to prove Theorem 1.5.2. A starting point will be the
following one.

Theorem 6.1.1. Let (u,K) be an absolute, or generalized global minimizer of Eλ in Ω.
Then the following holds:

(i) K(t) consists of the triple junctions of K and is discrete.
(ii) K(c) consists of the regular loose ends of K and is discrete.
(iii) Σ \ (K(t) ∪K(c)) consists of those connected components of K which are singletons

and of irregular terminal points of connected components with positive length. Every
Σ \ (K(t) ∪K(c)) can also be characterized as an accumulation point of infinitely
many connected components of K.

In particular, we conclude that Σ \ (K(t) ∪K(c)) is the set of irregular points K(i) and
coincides with the set K♯ \K(c), i.e. those high energy points which are not regular loose
ends. In view of the above theorem we will refer to K(t) as the set of triple junctions and
to K(c) as the set of cracktips, or regular loose ends. Observe that the discreteness of the
sets immediately implies their countability. Note also that the case of restricted minimizers
is not covered in Theorem 6.1.1 for the following reason:

• If the number of connected components of a minimizer is infinite, then the “restrict-
edness” is in fact an empty condition, and the minimizer is actually an absolute
minimizer;

• If the number of connected components is finite, it follows from the theory exposed
so far that the conclusion of the Mumford-Shah conjecture holds since any blow-up
at a point of K is either a global pure jump, or a global triple junction, or a
cracktip (this is the content of Bonnet’s theorem).
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Remark 6.1.2. Finally, we remark that the conclusions of the structure theorem can be
slightly strengthened, in the sense that K(t) (resp. K(c)) can be also characterized as those
points in K \K(j) where the liminf of d(x, r) (resp. of β(x, r)) is below a certain universal
threshold ε, cf. Proposition 6.3.2 below.

6.1.2. Higher integrability of the gradient and the size of the singular set.
As already remarked, the Mumford-Shah conjecture is equivalent to proving that the
set K(i) is empty for an absolute minimizer. An obvious consequence of the identity
K(i) = Σ \ (K(t) ∪K(c)) = K♯ \K(c) is the following

Corollary 6.1.3. H1(K(i)) = H1(K♯) = 0.

Using a porosity argument it was first shown by David [14] that indeed the Hausdorff
dimension of K♯ must be strictly smaller than 1. We will show the latter theorem differently.
Following the approach of Ambrosio, Fusco, and Hutchinson in [2], we relate a higher
integrability estimate of ∇u to a suitable dimension estimate for K♯. More precisely, using
again K(i) = K♯ \K(c) we can immediately conclude the following

Corollary 6.1.4. If ∇u ∈ Lp, then H2− p
2 (K(i)) = 0.

It was indeed conjectured by De Giorgi (in all space dimensions) that ∇u ∈ Lploc for
all p < 4 (cf. with [20, conjecture 1]). So far only a first step into this direction has been
established.

Theorem 6.1.5. There is p > 2 such that ∇u ∈ Lploc(Ω) for all (u,K) either absolute
minimizers of Eλ in Ω, and for all open sets Ω ⊆ R2. The same conclusion holds for
generalized global minimizers in R2.

Theorem 6.1.5 has been proven first by the authors in [24] using a reverse Hölder
inequality (cf. Section 6.4). Shortly after De Philippis and Figalli established the result
without any dimensional limitation in [26], as a more direct application of the ε-regularity
theory at pure jumps (cf. Section 6.5). In this chapter we will present both proofs.

6.1.3. An equivalent formulation of the Mumford-Shah conjecture. Note that,
because cracktip is indeed a minimizer, we certainly cannot expect ∇u ∈ L4, while on the
other hand the Mumford-Shah conjecture would easily imply ∇u ∈ Lploc for every p < 4.
Introducing a finer scale of spaces, it is in fact possible to characterize the conjecture in
terms of a sharp integrability result for ∇u. The relevant statement was given in the
introduction in Theorem 1.5.4, which for the reader convenience we recall here.

Theorem 6.1.6. Let (u,K) be an absolute, or generalized global minimizer of Eλ in Ω.
The set K(i) is empty if and only if ∇u ∈ L4,∞

loc , namely if and only if for every compact set
U ⊂ Ω there is a constant C = C(U) such that

|{x ∈ U : |∇u(x)|4 ≤ M}| ≤ C

M
∀M ≥ 1 . (6.1.1)
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6.1.4. The case of finitely many connected components. Finally, we recall the
statement of Corollary 1.3.4, namely that the Mumford-Shah conjecture holds when K has
finitely many connected components, even for reduced minimizers.

Corollary 6.1.7. Conjecture 1.3.1 hold for restricted minimizers (u,K) such that K
has a finite number of connected components.

It is in fact a consequence of the work of Bonnet [9] that Theorem 1.3.3 is applicable at
all points of K under the latter assumption and we include a proof in Section 6.6.

6.2. Proof of Theorem 6.1.1

By the ε-regularity theory, in order to show (i) and (ii) it suffices to show, respectively,
that:

(i’) If x ∈ K(t), then there is one blow-up (u∞,Σ∞) at x which is a triple junction
centered at the origin.

(ii’) If x ∈ K(c), then there is one blow-up (u∞,Σ∞) at x which is a cracktip centered
at the origin.

In fact, in both cases it would follow that K is regular in some punctured disk Bρ(x) \ {x},
implying that both K(t) and K(c) are discrete sets.

In both cases, we will assume, without loss of generality, that x = 0. We start with (i’).
Hence, we fix a sequence of radii rj ↓ 0 with the property that

lim
j→∞

1
rj

ˆ
Brj

|∇u|2 = 0

and assume, upon extraction of a subsequence, that the corresponding rescaled functions
and sets as in Theorem 2.2.3 converge to a generalized global minimizer (u∞, K∞). By
Theorem 2.2.3(i) we know that the Dirichlet energy of u∞ vanishes identically, and so by
Theorem 2.4.1 we know that (u∞, K∞) is either a constant, or a global pure jump, or a
global triple junction. On the other hand, by the Hausdorff convergence of the rescaled
sets K0,rj

to K∞, K∞ must contain the origin, hence the constant is excluded. If it were a
global pure jump, then the ε-regularity theory would imply that 0 ∈ K(j), a contradiction
to the assumption 0 ∈ Σ. Hence, (u∞, K∞) must be a global triple junction. Now, if 0 were
not the meeting point of the three half lines forming K∞, then it would be a pure jump
point of K∞, and a simple diagonal argument would imply the existence of a blow-up of
(u,K) at 0 which is a pure jump, a possibility which has already been excluded.

In case (ii’) we choose our sequence so that β(rk) converges to 0 and we see immediately
that the corresponding blow-up (u∞, K∞) has the property that K∞ is contained in a line.
As above observe also that K∞ contains the origin. A result by Léger, cf. [32], implies then
that K∞ is either the whole line or a half-line. In Chapter 4 (cf. Theorems 4.1.1 and 4.4.1)
we already saw the arguments leading to the conclusion that in the first case, we have a
pure jump and in the second we have a cracktip. On the other hand, the pure jump case is
excluded because the ε-regularity theory would imply that 0 is a pure jump of (u,K).
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For completeness, we give a simple self-contained argument that K∞ is either a line or
a half-line. Even though we follow Léger’s ideas, rather than relying on his “magic formula”
in Proposition 2.5.7, we give a direct elementary derivation from the inner variations.

Without loss of generality we assume that K∞ ⊂ {x : x2 = 0}. We will show below that
(Cl) any nontrivial connected component of K∞ is infinite.

Taking (Cl) for granted, observe that, since the ε-regularity theory implies that regular
pure jumps are dense in K∞, the existence of a connected component of K∞ which is a
singleton implies the existence of infinitely many connected components of K∞ which are
closed intervals of bounded positive length. Therefore, (Cl) implies that K∞ is either a line
or a half-line or the union of two half-lines. We then just need to exclude the possibility
that K∞ contains two connected components which are half-lines. To exclude the latter,
observe that we can use Theorem 2.3.2 to “blow-down” the pair (u∞, K∞) introducing

K ′
R := {R−1x : x ∈ K∞} u′

R(x) := R−1/2u(Rx)
and letting R ↑ ∞. For an appropriate sequence Rk the pair (u′

Rk
, K ′

Rk
) converges then to a

global minimizer (v∞, J∞) for which J∞ is a full line, which implies that the global minimizer
is a pure jump. But then the ε-regularity theory would imply that for all sufficiently large
k the set K ′

Rk
∩B1 is connected, which is a contradiction.

We now come to the core of the argument for (ii’), which is the proof of (Cl). Consider
a connected component K ′ of K∞ with positive length: it is either a closed interval or
a closed half-line or the full line. By symmetry, it suffices to show that, if K ′ has a left
extremum, which we will denote by a, then it cannot have a right extremum. Observe that
any point p = (x1, 0) ∈ K ′ which is not an extremum is necessarily a regular jump point
(since any blow-up at such points would be a global pure jump) and we define

u±
∞(p) = lim

t↓0
u∞(x1,±t) .

It is also the case that, since we are assuming that K ′ is not the full line, K does not
disconnect R2. It then follows from Proposition 4.6.1 that u∞ is continuous at a. Recall
that ∂u±

∞
∂x2

= 0 at all p ∈ K ′ which are not extrema, while (since the curvature of K∞ is 0),∣∣∣∣∣∂u+
∞

∂x1
(p)
∣∣∣∣∣ =

∣∣∣∣∣∂u−
∞

∂x1
(p)
∣∣∣∣∣ .

The above derivatives can only vanish at isolated points: if the zeros were to accumulate to
a point q which is not an extremum, the classical theory of harmonic functions would imply
that both u± would be constant in a neighborhood of q. But then unique continuation
would imply that u∞ is actually constant on R2 \K. If we next fix a point p where

∂u+
∞

∂x1
(p) ̸= 0 ,

then in a neighborhood of it, we either have
∂u+

∞
∂x1

= ∂u−
∞

∂x1
(6.2.1)
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or we have
∂u+

∞
∂x1

= −∂u−
∞

∂x1
. (6.2.2)

But then, again the unique continuation theory for harmonic function would tell that one
of the two alternatives holds on K ′ with the exception of its extrema. However, if the
first alternative were to hold, integrating it starting from the left extremum a we would
conclude that u+

∞ = u−
∞ on K ′: we could then remove it and decrease the energy, violating

the minimality. We must therefore have (6.2.2). We next claim that ∂u+
∞

∂x1
never vanishes in

the interior of K ′: that, and (6.2.2) would imply that there cannot be a right extremum of
K ′, because at such extremum u∞ would be continuous, and hence u+

∞ and u−
∞ would have

to coincide, while integrating (6.2.2) from a to b we would conclude that u+
∞(b) ̸= u−

∞(b).
We thus are left to show that, if (x1, 0) is an interior point of K∞, then ∂u+

∞
∂x1

(x1, 0) ̸= 0.
By translation we can assume that (x1, 0) = (0, 0) and we will then show that

2π
(
∂u+

∞
∂x1

)2

(0) =
ˆ

{(t,0)∈(R×{0})\K∞}

dt

t2
. (6.2.3)

Léger in [32] derives (6.2.3) directly from his “magic formula” (2.5.18), while here we will
show how it follows immediately from the inner variation formula (1.6.3), using the same
test of the proof of Proposition 2.5.7.

We fix positive radii ρ < R and consider the vector field ψ(x, y) = φ(|(x, y)|)(x,−y)
where

φ(t) =


ρ−2 −R−2 if t ≤ ρ
t−2 −R−2 if ρ ≤ t ≤ R
0 otherwise .

Strictly speaking, the latter is not a valid test in the inner variation formula, which in our
case would read

ˆ
R2\K

(2∇Tu∞ ·Dψ∇u∞ − |∇u∞|2divψ) =
ˆ
K∞

eT ·Dψ e dH1 , (6.2.4)

because ψ is not C1. However, if we assume that H1(K∞ ∩ (∂Bρ ∪ ∂BR)) = 0, it is easily
seen that the left hand side (6.2.4) makes sense because ψ is H1-a.e. differentiable on
K∞, while a standard regularization argument shows the validity of the formula. Next we
compute Dψ in the two relevant domains where it does not vanish:

Dψ =
(

1
ρ2 − 1

R2

)(
1 0
0 −1

)
on Bρ (6.2.5)

Dψ = − 1
R2

(
1 0
0 −1

)
+ 1

(x2 + y2)2

(
y2 − x2 2xy
−2xy y2 − x2

)
on BR \ B̄ρ . (6.2.6)
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Inserting on (6.2.4) we immediately get

2
ρ2

ˆ
Bρ\K∞

(∂u∞

∂x1

)2

−
(
∂u∞

∂x2

)2
− 2

R2

ˆ
BR\K∞

(∂u∞

∂x1

)2

−
(
∂u∞

∂x2

)2


= 1
ρ2 H1(K∞ ∩Bρ) − 1

R2 H1(K∞ ∩BR) −
ˆ

{(t,0)∈(BR\Bρ)∩K∞}

dt

t2
.

We choose ρ sufficiently small so that Bρ ∩K∞ = Bρ ∩ (R × {0}). Then we let R ↑ ∞ and
use ˆ

BR\K∞

|∇u∞|2 + H1(BR ∩K∞) ≤ 2πR ,

to conclude

2
ρ2

ˆ
Bρ\K∞

(∂u∞

∂x1

)2

−
(
∂u∞

∂x2

)2
 = 2

ρ
−
ˆ

{(t,0)∈K∞\Bρ}

dt

t2
.

Since, however, the choice of ρ yields

2
ρ

=
ˆ

{(t,0)∈(R×{0})\Bρ}

dt

t2
,

we arrive to

2
ρ2

ˆ
Bρ\K∞

(∂u∞

∂x1

)2

−
(
∂u∞

∂x2

)2
 =

ˆ
{(t,0)∈(R×{0})\K∞}

dt

t2
. (6.2.7)

We now observe that, because 0 is a regular jump point, the function
(
∂u∞
∂x1

)2
−
(
∂u∞
∂x2

)2
is

actually continuous over Bρ and its value at 0 is
(
∂u+

∞
∂x1

)2
(0). So, letting ρ ↓ 0 in (6.2.7), we

obtain (6.2.3).
It finally remains to show (iii). It is however a straightforward consequence of the

material in Chapter 4 that, if a point p ∈ K is not the accumulation point of infinitely
many connected components of K, then the blow-ups at K are either cracktips or global
pure jumps or triple junctions, while it is a straightforward consequence of the ε-regularity
theory that if one of the blow-ups belong to these subsets, then K ∩Bρ(p) is connected for
all sufficiently small radii ρ.

Remark 6.2.1. Along the proof of the previous result we have given a different argument
for a rigidity property originally due to Léger [32]: if the jump set of a global generalized
minimizer is contained in a line, then necessarily it is either a cracktip or a pure jump. An
analogous rigidity property in higher dimensions is not yet known as it is pointed out at
the end of David’s book [15], though some interesting results in this direction have been
obtained by Lemenant in [34].
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6.3. Proofs of Corollary 6.1.4 and Theorem 6.1.6

Corollary 6.1.4 is a simple consequence of the structure theorem and standard results in
measure theory.

Proof of Corollary 6.1.4. Suppose that |∇u| ∈ Lploc(Ω) for some p > 2. For every
s ∈ [0, 2] consider the set

Λs :=
{
x ∈ Ω : lim sup

r→0
r−s

ˆ
Br(x)

|∇u|p > 0
}
,

then Λs is a subset of K. Choose s := 2 − p
2 , then Hölder’s inequality, yields that

lim
r↓0

1
r

ˆ
Br(x)\K

|∇u|2 = 0

for every x ∈ K \ Λs. In particular, Theorem 6.1.1 implies that every point x ∈ K \ Λs is
either a pure jump point or a triple junction. We thus conclude that K(i) ⊂ Λs. Consider
the Radon measure defined on any subset E ⊆ Ω by

µ(E) :=
ˆ
E

|∇u|p .

As Λs ⊂ K, then µ(Λs) = 0. We can employ [5, Theorem 2.56] to infer that Hs(Λs) = 0,
which concludes the proof. □

For the proof of Theorem 6.1.6 we first make the following preliminary observation.

Lemma 6.3.1. Let f ∈ L4,∞
loc (Ω), Ω ⊆ R2, then for all ε > 0 the set

Dε :=
{
x ∈ Ω : lim inf

r

1
r

ˆ
Br(x)

f 2(y) ≥ ε

}
(6.3.1)

is locally finite.

Proof. We shall show in what follows that if f ∈ L4,∞(Ω) then Dε is finite. An obvious
localization argument then gives the general case.

Let ε > 0 and consider the set Dε in (6.3.1) above. First note that for any Br(x) ⊂ Ω
and any λ > 0 we have the estimateˆ

{y∈Br(x): |f(y)|≥λ}
f 2(y) ≤

ˆ
{y∈Ω: |f(y)|≥λ}

f 2(y)

= 2
ˆ ∞

λ

t |{y ∈ Ω : |f(y)| ≥ t}| dt ≤
ˆ ∞

λ

2C
t3
dt = C

λ2 , (6.3.2)

where C > 0 is the constant introduced in (6.1.1). If x ∈ Dε and r > 0 satisfyˆ
Br(x)

f 2(y) ≥ ε

2r, (6.3.3)
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by choosing λ = 2(C/rε)1/2 in (6.3.2) we concludeˆ
{y∈Br(x): |f(y)|< 2( C

rε
)1/2}

f 2(y) ≥ ε

4r. (6.3.4)

Furthermore, the trivial estimateˆ
{y∈Br(x): |f(y)|<λ}

f 2(y) < πλ2r2,

implies for λ = (ε/8πr)1/2 ˆ
{y∈Br(x): |f(y)|<( ε

8πr
)1/2}

f 2(y) < ε

8r. (6.3.5)

By collecting (6.3.4) and (6.3.5) we inferˆ
{y∈Br(x): ( ε

8πr
)1/2≤|f(y)|< 2( C

rε
)1/2}

f 2(y) ≥ ε

8r,

that in turn implies ∣∣∣{y ∈ Br(x) : |f(y)| ≥ ( ε

8πr )1/2}
∣∣∣ ≥ ε2r2

32C . (6.3.6)
Let {x1, . . . , xN} ⊆ Dε and r > 0 be a radius such that the balls Br(xi) ⊆ Ω are disjoint
and (6.3.3) holds for each xi. Then, from (6.3.6) and the fact that f ∈ L4,∞(Ω), we infer

N
ε2r2

32C ≤
∣∣∣∣{y ∈ Ω : |f(y)| ≥ ( ε

8πr )1/2}
∣∣∣∣ ≤ C(8πr)2

ε2 =⇒ N ≤ 211C2π2

ε4 ,

and the conclusion follows at once. □

Another ingredient in the proof of Theorem 6.1.6 is the following strengthened version
of the first conclusion in Theorem 6.1.1. We in fact only need (6.3.7), but for completeness
we also prove statement (6.3.8), which has its own independent interest.

Proposition 6.3.2. There is a universal constant ε > 0 with the following property. If
(u,K) is an absolute or generalized minimizer of Eλ, then

K(t) ∪K(j) =
{
x ∈ K : lim inf

r↓0
d(x, r) < ε

}
(6.3.7)

K(c) ∪K(j) =
{
x ∈ K : lim inf

r↓0
β(x, r) < ε

}
. (6.3.8)

Proof. We start by addressing (6.3.7). We first of all observe that there is an absolute
constant ε̄ > 0 such that, if (u,K) is a generalized global minimizer with 0 ∈ K and´
B8\K |∇u|2 < ε̄, then eitherB1∩K is diffeomorphic to a pure jump orB4∩K is diffeomorphic

to a triple junction. This can be done using the compactness Theorem 2.3.2 and the ε-
regularity theory. Indeed, assume by contradiction (uj, Kj) is a sequence of generalized
global minimizers which satisfy ˆ

B8\Kj

|∇uj|2 <
1
j
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but violate our claim. Then up to subsequences they converge to a global generalized
minimizer (u∞, K∞) with 0 ∈ K∞ and such thatˆ

B8\K∞

|∇u∞|2 = 0 .

It follows from the theory of Chapter 5 that u∞ is an elementary global minimizer. If it is a
pure jump, then it would follow from the ε-regularity theory that Kj ∩B1 is diffeomorphic
to a line for a sufficiently large j. If it is a triple junction, but the meeting point of the
three half-lines is not contained in B2, then the very same conclusion can again be drawn.
If on the other hand, it is a triple junction with a meeting point at x ∈ B2, then we can
use the ε-regularity theory to say that B6(x) ∩Kj is diffeomorphic to a triple junction for
a sufficiently large j.

Given the first part, consider now ε := ε̄
8 and fix a point where lim infr↓0 d(x, r) < ε for

some absolute minimizer or generalized global minimizer (u,K). Then we draw from the
above argument that there is at least one blow-up (u∞, K∞) at x with the property that
0 ∈ K∞ is either a pure jump point or a triple junction. A further blow-up with a simple
diagonal argument implies then that there is a blow-up of (u,K) at x which is either a pure
jump or a triple junction. This concludes the proof.

The argument for the second statement is analogous with a slight twist. We claim that,
for an appropriate choice of ε > 0 sufficiently small, if β(0, 1) < ε4 and 0 ∈ K, then one of
the following (non-exclusive) alternatives holds:

(i) K ∩Bε is a C1 arc with both endpoints contained in ∂Bε;
(ii) K ∩B5ε is a C1 arc with one endpoint in ∂B5ε and the other endpoint in B3ε.

Obviously this is enough to prove (6.3.8).
We again argue by contradiction and assume to have a sequence (uj, Kj) which goes

against the latter statement but where each pair satisfies the assumption with η = 1
j
. Let

(vj, K̃j) be suitable rescalings of the pairs by a factor η−1 and note that, looking at the
definition of β, we find a sequence of affine lines ℓj with the property thatˆ

B−1
η ∩K̃j

dist2(x, ℓj)dH1(x) ≤ 1
j
.

In particular, since 0 ∈ ℓj and using the density lower bound, dist(0, ℓj) converges to
0. Extracting suitable subsequences, we can assume that (vj, K̃j) converges to a global
generalized minimizer (u∞, K∞) with the property that K∞ is a subset of a line ℓ∞. The
latter line must, moreover, pass through 0, which is also an element of K. However by
Remark 6.2.1 this implies that either K∞ = ℓ∞, and hence the global minimizer is a pure
jump, or that the global minimizer is a cracktip ending at some point p0, in particular K∞
is an half-line originating at p0 and containing the origin.

If we are in the first case, or we are in the second case but the point p0 ̸∈ B3, then
clearly the sets K̃j ∩B2 converge, in the Haudorff distance, to ℓ∞ ∩B2. But then, from the
ε-regularity theory it follows that, for j sufficiently large, the sets K̃j ∩ B3/2 are C1 arcs
converging in C1 to the segment ℓ∞ ∩B3/2, in particular Kj ∩B1/j is a C1 arc with both
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endpoints in ∂B1/j, falling in alternative (i). If we are in the second alternative and the
point p0 ∈ B3, we now conclude that K̃j ∩B20(p0) is converging in the Hausdorff distance to
a segment [p0, p1] containing the origin and with p1 ∈ ∂B20(p0). In particular, again by the
ε regularity theorem, the sets K̃j ∩B10(p0) are, for j sufficiently large, C1 arcs converging
in C1 to [p0, p1] ∩B10(p0). This implies that K̃j ∩B5 is, for j large enough, a C1 arc with
one endpoint in B4 and the other endpoint in ∂B5. Scaling back, K̃j falls under case (ii)
above. This provides a contradiction and completes the proof. □

Proof of Theorem 6.1.6. First of all assume that (u,K) is an absolute minimizer
of Eλ (or a generalized minimizer of E) in some Ω and that ∇u ∈ L4,∞

loc (Ω). Without loss
of generality we can assume that Ω is the unit ball B1 and that ∇u ∈ L4,∞(B1). Let ε be
the positive number of Proposition 6.3.2 and define

Dε :=
{
x : lim inf

r↓0

1
r

ˆ
Br(x)\K

|∇u|2 ≥ ε

}
.

By Lemma 6.3.1 Dε is a finite set, which we enumerate as {p1, . . . , pN} and by Proposi-
tion 6.3.2 any point p ∈ K \ {p1, . . . , pN} is either a pure jump or a triple junction. It then
turns out that, if p ∈ K \ {p1, . . . , pN} there are only two possible alternatives: either there
is a Lipschitz curve γ ⊂ K connecting p with a point q ∈ ∂B1, or there is a Lipschitz curve
γ ⊂ K connecting p to one of the pi’s. So, we can partition K into a collection of those
finitely many connected components which contain at least one of the pi’s and a countable
number of connected components which do not, but whose closure must contain a point of
∂B1. A point q ∈ ∂B1 cannot be the accumulation point of an infinite number of the latter,
because otherwise, we would have H1(K) = ∞. It follows therefore from Theorem 6.1.1
that each pi is necessarily a regular loose end of K.

Consider on the contrary an absolute minimizer (u,K) in Ω for which the Mumford-Shah
conjecture holds. Let U ⊂⊂ Ω. Then there is a finite subset {p1, . . . , pN} ⊂ U ∩ K of
regular loose ends, while all the other points of K ∩ U are regular jump points or triple
junctions. From the regularity theorem at regular loose ends, we infer the existence of balls
Bri

(pi) and of an absolute constant C with the properties that |∇u(x)| ≤ C|x− pi|−1/2. On
the other hand by the regularity theory at triple junctions and regular jump points, |∇u| is
bounded on U \ ⋃iBri

(pi). Hence, we conclude that there is a constant C(U) such that

|∇u(x)| ≤ C max
{
|x− pi|−

1/2
}
.

Since the function on the right-hand side belongs to L4,∞(U), this completes the proof. □

6.4. Reverse Hölder inequality for ∇u

Following a classical path, the key ingredient used in [24, Theorem 1.3] to establish
Theorem 6.1.5 (for E0) is a reverse Hölder inequality for the gradient, which we state
independently.

Theorem 6.4.1. For all q ∈ (1, 2) there exist C0 > 0, r0 ∈ (0, 1) such that if (u,K) is
either a restricted, or an absolute, or a generalized global minimizer of Eλ(·, ·, B1, g), with
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λ ≤ 1, ∥g∥∞ ≤ M0 (we use the notation introduced in Assumption 2.2.1), then for every
x ∈ B1/2 and r ∈ (0, r0)( 

Br(x)\K
|∇u|2

)1/2

≤ C0

( 
B2r(x)\K

|∇u|q
)1/q

+ C0∥g∥∞ . (6.4.1)

Theorem 6.1.5 is then a consequence of a by now classical result by Giaquinta and
Modica [29].

Theorem 6.4.2. Let v ∈ Lqloc(Ω), q > 1, be nonnegative such that for some constants
β > 0, t ≥ 1 and R0 > 0 ( 

Br(z)
vq
)1/q

≤ β

 
Bt r(z)

v +
 
Bt r(z)

h

for all z ∈ Ω, r ∈ (0, R0 ∧ dist(z, ∂Ω)), and with h ∈ Ls(Ω) for some s > 1.
Then v ∈ Lploc(Ω) for some p > q and there is C = C(β, n, q, p, λ) > 0 such that( 

Br(z)
vp
)1/p

≤ C

( 
B2r(z)

vq
)1/q

+ C

( 
B2r(z)

hq
)1/q

.

We provide here a new proof of Theorem 6.4.1 relying on the compactness properties
established in Theorem 2.2.3 rather than on the theory of Caccioppoli partitions as originally
done in [24]. Nevertheless, the overall strategy is the same.

Proof of Theorem 6.4.1. Assume by contradiction that there is q ∈ (1, 2) such that
for every j ∈ N one can find (uj, Kj) either restricted, or absolute, or generalized global
minimizer of Eλj

(·, ·, B1, gj) with λj ≤ 1 and ∥gj∥∞ ≤ M0, radii rj ↓ 0, and points xj ∈ B1/2

such that

j

 
B2rj

(xj)\Kj

|∇uj|q
1/q

+ j∥gj∥∞ ≤

 
Brj (xj)\Kj

|∇uj|2
1/2

(6.4.2)

Consider the rescalings (ũj, K̃j) := ((uj)xj ,rj
, (Kj)xj ,rj

), the conditions in Assumption 2.2.1
are satisfied, then by Theorem 2.2.3 (ũj, K̃j) converge up to a subsequence to a blow-up
limit (u∞, K∞) which is a global generalized (restricted) minimizer of E0 (in case (uj, Kj)
are restricted minimizers). Moreover, by (6.4.2) and the density upper bound (1.4.1) we get( 

B2\K̃j

|∇ũj|q
)1/q

≤ j−1
( 

B1\K̃j

|∇ũj|2
)1/2

≤ j−1(2π + λjπM
2
0 rj)

1/2 .

The latter inequality and Theorem 2.2.3 yield that

lim
j

ˆ
B2\K̃j

|∇ũj|2 =
ˆ
B2\K∞

|∇u∞|2 = 0.
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Therefore, Corollary 4.4.4 implies that (u∞, K∞) is an elementary global minimizer; in turn,
this and Theorem 2.2.3 imply that for every R > 0

lim
j

ˆ
BR\K̃j

|∇ũj|2 = 0 . (6.4.3)

In particular, (u∞, K∞) is either a constant, or a global pure jump or a global triple junction
(cf. Theorem 2.4.1). In any case, for all R > 0

H0(K∞ ∩ ∂BR) ≤ 3, H1(K∞ ∩BR) ≤ 3R .
With fixed R > 0 we shall now choose a radius ρ ∈ [R4 , R] conveniently as outlined in what
follows

(a1) if H0(K∞ ∩ ∂BR) = 0 choose ρ = R;
(a2) if H0(K∞ ∩∂BR) = 2 then K∞ ∩BR is a segment and ∂BR \K∞ is the union of two

arcs. Then, either each of them has a length less or equal to 4π
3 R or K ∩BR

2
= ∅.

In the first instance set ρ = R, in the second ρ = R
2 ;

(a3) if H0(K∞ ∩ ∂BR) = 3, then K∞ ∩ BR is a (possibly off-centered) propeller and
∂BR \ K∞ is the union of three arcs. Then, either each of them has length less
or equal to (2π − 1

8)R, in this case set ρ = R, or H0(K∞ ∩ ∂BR
2
) = 2. In the last

event, we are back to the setting of item (a2) with the radius R
2 playing the role

of R. Thus, K∞ ∩BR
2

is a segment, and ∂BR
2

\K∞ is the union of two arcs, and
either each of them has a length less or equal to 2π

3 R or K ∩BR
4

= ∅. In the first
instance set ρ = R

2 , in the second ρ = R
4 .

By (6.4.3) and Theorem 2.2.3 we may select j0 ∈ N such that for all j ≥ j0ˆ
Bρ\K̃j

|∇ũj|2 + dist2
H(K̃j ∩Bρ, K∞ ∩Bρ) ≤ ερ .

Therefore, thanks to Theorem 3.1.1 and Theorem 3.1.2 for all j ≥ j0 and for some β ∈ (0, 1
3)

one of the following alternatives is true
(b1) K̃j ∩Bρ = ∅;
(b2) For each t ∈ ((1 − β)ρ, ρ), ∂Bt \ K̃j is the union of two arcs γj1 and γj2 each with

length < (2π− 1
9)t, whereas K̃j ∩Bt is connected and divides Bt in two components

Bj
1, Bj

2 with ∂Bj
i = γji ∪ (K̃j ∩Bt);

(b3) For each t ∈ ((1 − β)ρ, ρ), ∂Bt \ K̃j is the union of three arcs γj1, γj2 and γj3 each
with length < (2π − 1

9)t, whereas Bt ∩ K̃j is connected and divides Bt in three
connected components Bj

1, Bj
2 and Bj

3 with ∂Bj
i ⊂ γji ∪ (K̃j ∩Bt).

We finally choose r ∈ ((1 − β)ρ, ρ) and a subsequence, not relabeled, such that
(A) hj := ũj|∂Br belongs to W 1,2(γ) for any connected component γ of ∂Br \ K̃j;
(B) hj satisfies ˆ

∂Br\K̃j

|h′
j|qdH1 ≤ 1

βρ

ˆ
Bρ

|∇ũj|q .
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Let us conclude our argument by showing that (6.4.2) is violated for j sufficiently big. To
this aim, we note first that the choice β < 1

3 yields that r > 2
3ρ.

In case (b1) holds, ∂Br ∩ K̃j = ∅ and ũj is the harmonic extension of its boundary
trace hj. Hence, the embedding W 1,q(∂Br) → H

1/2(∂Br) implies for some constant C > 0
(independent of j)

ˆ
B 2

3 ρ

|∇ũj|2 ≤
ˆ
Br

|∇ũj|2 ≤ C min
c∈R

∥hj − c∥2
H1/2(∂Br)

≤ C

(ˆ
∂Br

|h′
j|q dH1

)2/q (B)
≤ C

(
1
βρ

ˆ
Bρ

|∇ũj|q
)2/q

.

Choosing R = ρ ∈ [3
2 , 2] and scaling back, we get a contradiction to (6.4.2).

In case (b2) or (b3) hold the construction is similar. Denote by Jj a minimal connection
relative to K̃j ∩∂Br, i.e. a closed and connected set in Br containing K̃j ∩∂Br with shortest
length (cf. [7, Theorem 4.4.20]). Then Jj splits Br into two (case (b2)) or three (case
(b3)) regions denoted by Bi

r. Let γi be the arc of ∂Br contained in the boundary of Bi
r.

The ensuing Lemma 6.4.3 provides a function wij ∈ W 1,2(Br) with boundary trace hj and
satisfying for some absolute constant C > 0

ˆ
Br

|∇wij|2 ≤ C

(ˆ
γi

|h′
j|q dH1

)2/q

. (6.4.4)

Denote by wj the function equal to wij on Bi
j , equal to ũj on Br−1

j
(−xj) \ ∪iB

i
j , and extend

Jj as Jj \Br = K̃j \Br. Clearly, wj ∈ H1(Br−1
j

(−xj) \ Jj). Scaling back (wj, Jj) to B1 we
obtain a pair admissible to test the minimality of (uj, Kj). On setting g̃j := r

−1/2
j gj(xj + rj·),

for some constant C > 0 we then deduce thatˆ
B 2

3 ρ
\K̃j

|∇ũj|2 ≤
ˆ
Br\Jj

|∇ũj|2

≤
ˆ
Br\Jj

|∇wj|2 + H1(Jj ∩Br) − H1(K̃j ∩Br)︸ ︷︷ ︸
≤0

+ λr2
j

ˆ
Br\Jj

|wj − g̃j|2 − λr2
j

ˆ
Br\K̃j

|ũj − g̃j|2

≤
ˆ
Br\Jj

|∇wj|2 + C∥g̃j∥2
∞ρ

2 r2
j

(6.4.4)
≤ C

(ˆ
∂Br\K̃j

|h′
j|q dH1

)2/q

+ C∥gj∥2
∞ρ

2rj

(B)
≤ C

(
1
βρ

ˆ
Bρ\K̃j

|∇ũj|q
)2/q

+ C∥gj∥2
∞ρ

2rj .

Choosing ρ ∈ [3
2 , 2] and R accordingly, scaling back we find a contradiction to (6.4.2). □
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In the proof above we have used an elementary extension result that we prove in what
follows.

Lemma 6.4.3. For any q ∈ (1, 2) there exists C = C(q) > 0 such that the following
holds. For any arc γ ⊆ ∂B1 and any h ∈ W 1,q(γ), there exists w ∈ W 1,2(B1) with trace g
on γ and

∥∇u∞∥L2(B1) ≤ C

(2π − H1(γ))1− 1
q

∥h′∥Lq(γ). (6.4.5)

In addition, if h ∈ L∞(γ), then ∥w∥L∞(B1) ≤ 2∥h∥L∞(γ).

Proof. Let α, β ∈ ∂B1 denote the extreme points of γ. By the Hölder inequality

|h(α) − h(β)| =
∣∣∣∣∣
ˆ
γ

h′dH1
∣∣∣∣∣ ≤ (H1(γ))1− 1

q ∥h′∥Lq(γ) .

Linearly interpolating h on ∂B1 \ γ, we get an extension h̃ ∈ W 1,q(∂B1) of h satisfying the
estimate

∥h̃′∥qLq(∂B1\γ) = (2π − H1(γ))1−q|h(α) − h(β)|q ≤
(

H1(γ)
2π − H1(γ)

)q−1

∥h′∥qLq(γ) . (6.4.6)

In turn, if we set ĥ := h̃−
ffl
∂B1

h̃, the Poincaré inequality and (6.4.6) yield

∥ĥ∥qLq(∂B1) ≤ C∥h̃′∥qLq(∂B1) ≤ C

(
2π

2π − H1(γ)

)q−1

∥h′∥qLq(γ) . (6.4.7)

The embedding W 1,q(∂B1) → H
1/2(∂B1) provides us with a function v ∈ W 1,2(B1) with

boundary trace ĥ and such that

∥∇v∥L2(B1) ≤ C∥ĥ∥H1/2(∂B1) ≤ C∥ĥ∥W 1,q(∂B1)
(6.4.7)

≤ C

(2π − H1(γ))1− 1
q

∥h′∥Lq(γ).

By the latter inequality the function w := v+
ffl
∂B1

h̃ fulfills the assertions of the Lemma. □

6.5. Higher integrability of ∇u via the porosity of K

A central role in the approach by De Philippis and Figalli [26] to establish the higher
integrability of the gradient in any dimension is played by the ensuing improvement of
Theorem 3.1.1 due to David [14], and in higher dimension to Rigot [40], and Maddalena
and Solimini [37]. Here, we provide a proof in the two-dimensional setting using again
Theorem 2.2.3.

Theorem 6.5.1. There are constants C1, r1, ε1 > 0 such that for every ε ∈ (0, ε1)
there exists tε ∈ (0, 1

2) with the following property. If (u,K) is either a restricted, or an
absolute, or a generalized global minimizer of Eλ(·, ·, B2, g), with λ ≤ 1, ∥g∥∞ ≤ M0 (we
use the notation introduced in Assumption 2.2.1), then for every x ∈ K ∩B1/2 and for every
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r ∈ (0, r1) there exist y ∈ K ∩ Br(x) and ρ ∈ (tεr, r) such that Bρ(y) ⊂ Br(x) and the
assumptions of Theorem 3.1.1 are satisfied in Bρ(y), namely for some θ ∈ [0, 2π]

Ωj(θ, y, ρ) + λ∥g∥2
∞ρ

1
2 < ε0

(ε0 > 0 being the constant in Theorem 3.1.1).
In addition, it is true that

(i) K ∩Bρ(y) is a C1,α graph;
(ii) and,

ρ∥∇u∥2
L∞(Bρ(y)) ≤ C1 ε. (6.5.1)

Proof. Assume by contradiction that we can find sequences εj ↓ 0, rj ↓ 0, (uj, Kj)
of either restricted, or absolute, or generalized global minimizers of Eλj

(·, ·, B2, gj), with
λj ≤ 1, ∥gj∥∞ ≤ M0, points xj ∈ Kj ∩ B1/2, and scalars tj ∈ (0, 1

2) such that for every
y ∈ Kj ∩Brj

(xj) and ρ ∈ (tjrj, rj) with Bρ(y) ⊂ Brj
(xj), then

ρ−2dist2
H(Kj ∩B2ρ(y),Rθ(V0)) ∩B2ρ(y)) + ρ−1

ˆ
B2ρ(y)\Kj

|∇uj|2 + λj∥gj∥2
∞ρ

1
2 ≥ ε0 (6.5.2)

for every θ ∈ [0, 2π] (we are using the notation introduced at the beginning of Section 3.1).
Consider the rescalings (ũj, K̃j) := ((uj)xj ,rj

, (Kj)xj ,rj
), being the conditions in Assump-

tion 2.2.1 satisfied, by Theorem 2.2.3 (ũj, K̃j) converge up to a subsequence to a blow-up
limit (u∞, K∞) which is a global generalized (restricted) minimizer of E0 (in case (uj, Kj)
are restricted minimizers). Moreover, Corollary 3.1.5 yields that the subset of K∞ of pure
jump points is relatively open and has full H1 measure. Let z ∈ K∞ be one such point,
then necessarily Theorem 3.1.1 implies that

t−2dist2
H(K∞ ∩B2t(z),Rθz(V0)) ∩B2t(z)) + t−1

ˆ
B2t(z)\K∞

|∇u∞|2 < ε0

for some θz ∈ [0, 2π] and for every t > 0 sufficiently small. In turn, Theorem 2.2.3 implies
the existence of points zj ∈ Kj ∩Brj

(xj) such that

(trj)−2dist2
H(Kj ∩B2trj

(zj),Rθz(V0)) ∩B2trj
(zj))

+ (trj)−1
ˆ
B2trj

(zj)\Kj

|∇uj|2 + λj∥gj∥2
∞(trj)

1
2 < ε0

contradicting (6.5.2).
Item (i) follows directly from Theorem 3.1.1; instead estimate (6.5.1) is a consequence

of item (i) and classical elliptic regularity results for the Neumann problem since u satisfies
(2.5.3) and (2.5.4) (cf. [5, Theorem 7.53]). □

Theorem 6.5.1 can be rephrased by asserting that the set K \K(j) is (tε, 1)-porous in K
(cf. for instance [38]). Hence, following the papers by David [14], Rigot [40] and Maddalena
and Solimini [37], one can estimate the Minkowski dimension (and thus the Hausdorff
dimension) of the set K \K(i) using Theorem 6.5.1, a by now classical result by David and
Semmes [18], and the Alfohrs regularity of K (cf. Lemma 2.1.2 and Theorem 2.1.3), which
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we restate for convenience: if (u,K) is either an absolute or a restricted, or a generalized
minimizer of Eλ on B2 then

ϵ r ≤ H1(K ∩Br(x)) ≤ ελr (6.5.3)

for some constant ϵ > 0, for ελ := (2 + λ∥g∥2
∞)π, for every x ∈ K, and for every r ∈

(0, 1 ∧ dist(x, ∂Ω)).
Instead, in Proposition 6.5.4 below, an estimate of the Minkowski dimension will

be obtained directly. The key technical results to prove the higher integrability of ∇u
are contained in Proposition 6.5.4 for which we need two preparatory lemmas. The
first one provides the selection of suitable families of radii obtained via the De Giorgi’s
slicing/averaging principle.

Lemma 6.5.2. There are positive constants M1, C1 such that if M ≥ M1 for every
(u,K) (absolute, restricted, generalized, or generalized restricted) minimizer of Eλ on B2
we can find three decreasing sequences of radii such that

(i) 1 ≥ Rh > Sh > Th > Rh+1;
(ii) 8M−(h+1) ≤ Rh −Rh+1 ≤ M− (h+1)

2 , and Sh − Th = Th −Rh+1 = 4M−(h+1);
(iii) H1(K ∩ (BSh

\BRh+1)) ≤ C1M
− (h+1)

2 ;
(iv) R∞ = S∞ = T∞ ≥ 1/2.

Proof. Let R1 = 1, given Rh we construct Sh, Th and Rh+1 as follows.
Set Nh := ⌊M

h+1
2

8 ⌋ ∈ N and fix M1 ∈ N such that Nh ≥ ⌊M
h+1

2
16 ⌋ for M ≥ M1. Here, ⌊t⌋

denotes the integer part of t ∈ R.
The annulus BRh

\B
Rh−8M− h+1

2
contains the Nh disjoint sub annuli BRh−8(i−1)M−(h+1) \

BRh−8iM−(h+1) , i ∈ {1, . . . , Nh}, of equal width 8M−(h+1). By averaging we can find an
index ih ∈ {1, . . . , Nh} such that

H1
(
K ∩ (B

Rh−8(ih−1)M− h+1
2

\B
Rh−8ih M− h+1

2
)
)

≤ 1
Nh

H1
(
K ∩ (BRh

\B
Rh−8M− h+1

2
)
) (6.5.3)

≤ ελ
Rh

Nh

≤ 8ελM− h+1
2 ,

so that (iii) is established with C1 := 8ελ. Finally, set

Sh := Rh − 8(ih − 1)M−(h+1), Rh+1 := Rh − 8ihM−(h+1), Th := 1
2(Sh +Rh+1),

then items (i) and (ii) follow by the very definition, and item (iv) from (ii) if M1 is sufficiently
big. □

The second lemma has a geometric flavor.

Lemma 6.5.3. Let f : Rn−1 → R be Lipschitz with

f(0) = 0, ∥∇f∥L∞(Rn−1,Rn−1) ≤ η. (6.5.4)
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If G := graph(f) ∩B2 and η ∈ (0, 1/15], then for all δ ∈ (0, 1/2) and x ∈ (B1+δ \B1) ∩G

dist(x, (B1+2δ \B1+δ) ∩G) ≤ 3
2δ.

Proof. Clearly by (6.5.4) we get
∥f∥W 1,∞(B2) ≤ 3η.

Let x = (y, f(y)) ∈ (B1+δ \ B1) ∩ G and x̂ := (λ y, f(λ y)), with λ to be chosen suitably.
Note that as |x| ≥ 1 we have

|f(λ y) − λ f(y)| ≤ |f(λ y) − f(y)| + |λ− 1| |f(y)|
≤ |λ− 1| (∥∇f∥L∞(Rn−1,Rn−1) |y| + ∥f∥L∞(Rn−1)) ≤ 3η|λ− 1| |x|.

Hence,
|x̂− x| ≤ |x̂− λx| + |λ− 1||x| ≤ (3η + 1)|λ− 1| |x|.

It is easy to check that the choice λ = 1 + 5
4δ|x|−1 gives the conclusion. □

Following De Philippis and Figalli [26], we prove next a version of the mentioned porosity
result by David and Semmes [18] that is suitable for our purposes. In what follows, (E)r
denotes the open r-neighborhood of a given set E, i.e. (E)r = {x ∈ R2 : dist(x,E) < r}.

Proposition 6.5.4. There exist constants C2, M2 > 0 and α, β ∈ (0, 1/4) such that for
every M ≥ M2, for every (u,K) (absolute, restricted, generalized, or generalized restricted)
minimizer of Eλ on B2, we can find families Fj of disjoint balls

Fj = {BαM−j (yi) : yi ∈ K, 1 ≤ i ≤ Nj}
such that for all h ∈ N

(i) if B, B′ ∈ ∪h
j=1Fj are distinct balls, then (B)4M−(h+1) ∩ (B′)4M−(h+1) = ∅;

(ii) if BαM−j (yi) ∈ Fj, then K ∩B2αM−j (yi) is a C1,γ graph, γ ∈ (0, 1), containing yi,

inf
θ

Ωj(θ, yi, 2αM−j) + λ∥g∥2
∞(αM−j) 1

2 < ε0 ,

∥∇u∥L∞(B2αM−j (yi)) < M j+1; (6.5.5)
(iii) let {Rh}h∈N, {Sh}h∈N, {Th}h∈N be the sequences of radii in Lemma 6.5.2, and let

Kh := (K ∩BSh
) \

(
∪h
j=1 ∪Fj

B
)
,

(by construction Kh+1 ⊂ Kh \ ∪Fh+1B), and

K̃h := (K ∩BTh
) \

(
∪h
j=1 ∪Fj

(B)2M−(h+1)

)
⊂ Kh. (6.5.6)

Then, there exists a finite set of points Ch := {xi}i∈Ih
⊂ K̃h such that

|xj − xk| ≥ 3M−(h+1) ∀j, k ∈ Ih, j ̸= k; (6.5.7)
(Kh ∩BRh+1)M−(h+1) ⊂ ∪i∈Ih

B8M−(h+1)(xi); (6.5.8)
H1(Kh) ≤ C1 hM

−2hβ; (6.5.9)∣∣∣(Kh ∩BRh+1)M−(h+1)

∣∣∣ ≤ C2 hM
−h(1+2β)−1. (6.5.10)
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(iv) Σ ∩B1/2 ⊂ Kh for all h ∈ N and∣∣∣(Σ ∩B1/2)r
∣∣∣ ≤ C2 r

1+β ∀r ∈ (0, 1/2]. (6.5.11)

In particular, dimM(Σ ∩B1/2) ≤ 1 − β.

Proof. In what follows we shall repeatedly use Theorem 6.5.1 with ε ∈ (0, 1) fixed
and sufficiently small. We split the proof into several steps.

In addition, consider the constants ϵ, C1, M1 introduced in (6.5.3) and Lemma 6.5.2,
respectively.
Step 1. Inductive definition of the families Fh.

For h = 1 we define

F1 := ∅, K1 = K ∩BS1 , K̃1 = K ∩BT1 ,

and choose C1 to be a maximal family of points in K̃1 at distance 3M−2 from each other.
Of course, properties in items (i) and (ii) and in (6.5.7) are satisfied. To check the others,
one can argue as in the verification below.

Suppose that we have built the families {Fj}hj=1 as in the statement, to construct Fh+1

we argue as follows. Let Ch = {xi}i∈Ih
⊂ K̃h be a maximal family of points satisfying

(6.5.7), i.e. |xi − xk| ≥ 3M−(h+1) for all j, k ∈ Ih with j ̸= k. Consider

Gh+1 := {BM−(h+1)(xi)}i∈Ih
.

For every ball BM−(h+1)(xi) ∈ Gh+1 we can find a sub-ball B2αM−(h+1)(yi) ⊂ BM−(h+1)(xi),
α ∈ (0, 1/4) for which the theses of Theorem 6.5.1 are satisfied. Then, define for M ≥ M1

Fh+1 := {BαM−(h+1)(yi)}i∈Ih
.

By condition (6.5.7), the balls B 3
2M

−(h+1)(xi) are disjoint and do not intersect

∪h
j=1 ∪Fj

(B) 1
2M

−(h+1)

by the very definition of K̃h in (6.5.6). Thus, item (i) and (ii) are satisfied for M2 sufficiently
large. Hence, we can define Kh+1, K̃h+1 and Ch+1 as in the statement.

We verify next the rest of the conclusions.
Step 2. Proof of (6.5.8).

Let x ∈ (Kh+1∩BRh+2)M−(h+2) and let z be a point of minimal distance from Kh+1∩BRh+2 .
In case z ∈ K̃h+1, by maximality of Ch+1 there is some point xi ∈ Ch+1 such that |z − xi| <
3M−(h+2) and thus we conclude x ∈ B4M−(h+2)(xi). Instead, if z ∈ (Kh+1 ∩BRh+2) \ K̃h+1,
the definitions of Kh+1 and K̃h+1 yield the existence of a ball B̃ ∈ ∪h+1

j=1 Fj for which
z ∈ (K ∩ (B̃)2M−(h+2)) \ B̃. Item (ii) and a scaled version of Lemma 6.5.3 (applied with
δ = 2M−(h+2), and radii ρ (that of B̃) and ρ + 2M−(h+2) in place of 1 and 1 + δ) give a
point y satisfying

y ∈
(
K ∩ (B̃)4M−(h+2)

)
\ (B̃)2M−(h+2) , and |z − y| ≤ 3M−(h+2).



174 6. SOME CONSEQUENCES OF THE EPSILON-REGULARITY THEORY

Therefore, as z ∈ BRh+2 and Th+1 = Rh+2 + 4M−(h+2) we get by property (i) and the
definition of K̃h+1

y ∈
(
K ∩BTh+1 ∩ (B̃)3M−(h+2)

)
\ (B̃)2M−(h+2) ⊂ K̃h+1.

Finally, by maximality of Ch+1 we may find xi ∈ Ch+1 such that |y − xi| < 3M−(h+2). In
conclusion, we have

|x− xi| ≤ |x− z| + |z − y| + |y − xi| ≤ 7M−(h+2),

so that (6.5.8) follows at once.
Step 3. For every h ∈ N and for every xi ∈ Ch

Kh ∩BM−(h+1)(xi) = K ∩BM−(h+1)(xi) . (6.5.12)

Indeed, assume by contradiction that we can find xi ∈ Ch and x ∈ (K \Kh) ∩BM−(h+1)(xi).
As xi ∈ K̃h then xi ∈ BTh

, in turn implying x ∈ BSh
since Sh − Th = 4M−(h+1). Therefore

x ∈ (K \Kh) ∩ BSh
, and by definition of Kh we can find a ball B ∈ Fj, j ≤ h, such that

x ∈ B. We conclude that

dist(xi, B) ≤ |x− xi| ≤ M−(h+1),

contradicting the assumption that xi ∈ K̃h.
Step 4. Proof of (6.5.9).

We get first a lower bound for H0(Ih): use (6.5.8) and the density upper bound in (6.5.3)
to get

H1(Kh ∩BRh+1) = H1(Kh ∩BRh+1 ∩ ∪i∈Ih
B8M−(h+1)(xi)) ≤ ελ8M−(h+1) H0(Ih)

where we recall that ελ = (2 + λ∥g∥2
∞)π. Equivalently, we have that

H0(Ih)M−(h+1) ≥ 1
8ελ

H1(Kh ∩BRh+1). (6.5.13)

Thus, we estimate as follows by taking into account that by item (i) the balls in the family
Fh+1 are disjoint

H1(Kh+1) ≤ H1
(
Kh \ ∪Fh+1B

)
= H1(Kh) −

∑
Fh+1

H1(Kh ∩B)

(6.5.3), (6.5.12)
≤ H1(Kh) − ϵαM−(h+1)H0(Ih)

(6.5.13)
≤ H1(Kh) − ϵ

8ελ
αH1(Kh ∩BRh+1)

= (1 − η)H1(Kh) + η
(
H1(Kh) − H1(Kh ∩BRh+1)

)
≤ (1 − η)H1(Kh) + ηH1(K ∩ (BSh

\BRh+1)) ≤ (1 − η)H1(Kh) + C1M
− h+1

2 ,
(6.5.14)

where we have set η := ϵ
8ελ
α ∈ (0, 1), and we have used the very definition of Kh in the last

but one inequality, and item of (iii) Lemma 6.5.2 in the last one. By taking into account
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(iii) in Lemma 6.5.2 and (6.5.13), an iteration of (6.5.14) implies

H1(Kh) ≤ C1

h∑
i=1

(1 − η)h−iM−i/2 ≤ C1 h (max{1 − η,M−1/2})h.

Choose β ∈ (0, 1/4) such that (1 − η) ≤ M−2β, the previous estimate then yields (6.5.9),

H1(Kh) ≤ C1 h max{M−2hβ,M−h/2} = C1 hM
−2hβ.

Step 5. Proof of (6.5.10).
We use (6.5.8) to get for some dimensional constant C∣∣∣(Kh+1 ∩BRh+2)M−(h+2)

∣∣∣ ≤
∣∣∣∪i∈Ih+1B8M−(h+2)(xi)

∣∣∣ ≤ CM−2(h+2)H0(Ih+1)
(6.5.3), (6.5.12)

≤ CϵM−(h+2) ∑
i∈Ih+1

H1(Kh+1 ∩BM−(h+2)(xi))

≤ CϵM−(h+2)H1(Kh+1)
(6.5.9)

≤ CϵC1 (h+ 1)M−2(h+1)β−(h+2).

where in the last but one inequality we have used that the balls BM−(h+2)(xi) are disjoint
by construction.
Step 6. Proof of (6.5.11)

By construction we have that Σ∩B1/2 ⊆ Kh. Therefore, (6.5.10) gives as Rh ≥ R∞ ≥ 1/2∣∣∣(Σ ∩B1/2)M−(h+1)

∣∣∣ ≤
∣∣∣(Kh ∩BRh+1)M−(h+1)

∣∣∣ ≤ C2 hM
−h(1+2β)−1.

Hence, if r ∈ (M−(h+2),M−(h+1)] we get∣∣∣(Σ ∩B1/2)r
∣∣∣ ≤ C2 hM

−h(1+2β)−1 ≤ C2 M
−h(1+β)−1 ≤ C2 r

1+β. □

We are now ready to establish the higher integrability of the gradient.

Theorem 6.5.5. There is p > 2 such that for all open sets Ω ⊆ R2 and for all (u,K)
either a restricted, or an absolute, or a generalized global minimizer of Eλ(·, ·,Ω, g) then
∇u ∈ Lploc(Ω \K) .

Proof. Clearly, it is sufficient for our purposes to prove a localized estimate. Hence,
for the sake of simplicity, we suppose that Ω = B2.

We keep the notation of Proposition 6.5.4 and furthermore denote for all h ∈ N

Ah := {x ∈ B2 \K : |∇u(x)|2 > Mh+1} . (6.5.15)

We claim that
Ah+2 ∩BRh+2 ⊂ (Kh ∩BRh+1)M−(h+1) . (6.5.16)

Given this, for granted we conclude as follows: we use (6.5.10) to deduce that

|Ah+2 ∩BRh+2 | ≤
∣∣∣(Kh ∩BRh+1)M−(h+1)

∣∣∣ ≤ C2 hM
−h(1+2β)−1. (6.5.17)
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Therefore, recalling that 1
2 ≤ R∞ ≤ Rh, in view of (6.5.17) and Cavalieri’s formula for q > 1

we get thatˆ
B 1

2

|∇u|2q = q

ˆ ∞

0
tq−1|{x ∈ B1/2 \K : |∇u(x)|2 > t}| dt

≤ q
∑
h≥3

ˆ Mh+1

Mh

tq−1|{x ∈ B1/2 \K : |∇u(x)|2 > t}| dt+M3q|B1/2|

≤
∑
h≥0

M (h+4)q|Ah+2 ∩B 1
2
| +M3q|B 1

2
|

≤ C2
∑
h≥0

hM (h+4)q−h(1+2β)−1 +M3q|B 1
2
|.

The conclusion follows at once by taking q ∈ (1, 1 + 2β) and p = 2q.
To conclude we prove formula (6.5.16) in two steps.

Step 1. For every M > 0 large enough, for every h ∈ N and for every R ∈ (0, 1] we have
that

Ah ∩BR−2M−h ⊂ (K ∩BR)M−h . (6.5.18)
Indeed, for x ∈ Ah∩BR−2M−h let z ∈ K be such that dist(x,K) = |x− z|. If |x− z| > M−h

then BM−h(x) ∩K = ∅ so that u solves (2.5.2), i.e. △u = λ(u− g), on BM−h(x). Therefore,
being the right-hand side of the PDE in L∞, by standard Lipschitz bounds in elliptic
regularity [30, estimate (4.45)] and the density upper bound in (6.5.3), as x ∈ Ah we infer
that

Mh+1 ≤ |∇u(x)|2 ≤ CMh

with C depending on ∥g∥∞. The latter estimate is clearly impossible for M large enough.
Furthermore, as x ∈ BR−2M−h and |x− z| ≤ M−h we conclude that z ∈ BR.
Step 2. Proof of (6.5.16).

Since Rh+1 − Rh+2 ≥ 8M−(h+2) (cf. (i) Lemma 6.5.2), we apply Step 1 to Ah+2 and
R = Rh+1 and then (6.5.18) implies that

Ah+2 ∩BRh+2 ⊂
(
K ∩BRh+1

)
M−(h+1)

.

Let x ∈ Ah+2 ∩ BRh+2 , z ∈ K ∩ BRh+1 be a point of minimal distance, and suppose that
z ∈ K \Kh. Being Rh+1 ≤ Sh, by the very definition of Kh there is a ball B ∈ ∪h

j=1Fj such
that z ∈ B. In turn, since B = Bρ(y) for some y and radius ρ ≥ tM−h, then x ∈ B2t(y) as
|x− z| ≤ M−(h+1) for M sufficiently large. Thus, estimate |∇u(x)|2 < Mh+1 follows from
(6.5.5) in item (ii) of Proposition 6.5.4. This is in contradiction with x ∈ Ah+2. □

6.6. Proof of Corollary 6.1.7

Consider a pair (u,K) which is a restricted minimizer in some open set Ω. We wish
to show that at every point x0 ∈ K any possible blow up (v, J) is either an elementary
minimizer, or a cracktip. Fix such an x0 and, without loss of generality, assume that it is the
origin. We select the connected component K0 of K which contains 0 and observe that, since
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K consists of finitely many connected components, we find r0 such that Br0 ∩K = Br0 ∩K0.
By the monotonicity formula of Proposition 2.6.1, r 7→ 1

r

´
Br\K |∇u|2 is then monotone

nondecreasing for r ∈ (0, r0]. In particular, the function has a limit as r ↓ 0, which in turn
is the constant value of the function r 7→ 1

r

´
Br\J |∇v|2. If we can argue that J is itself

connected, we can then apply Proposition 2.6.1 again and conclude, from its analysis of the
equality case, that either ∇v = 0 (and hence (v, J) is an elementary minimizer) or (v, J) is
a cracktip.

We thus focus on proving the connectedness of J , which is the limit, in the local
Hausdorff topology, of the rescaled sets (K0)0,rj

for some sequence rj ↓ 0. The argument
follows closely that of [9, Lemma 2.8].

Recall the classical fact that closed connected sets with finite H1 measure are arcwise
connected (see Lemma C.0.2). In particular, for every pair of points x, y ∈ K0 we can
introduce the intrinsic distance d(x, y), defined as the length of a shortest path in K0

connecting x and y. We wish to show the following chord-arc property:
(Ch) There are r̄ > 0 and C > 0 such that d(x, 0) ≤ C|x| for every x ∈ K0 ∩Br̄.

With the latter property at hand we conclude immediately that J is connected: if we fix
any y ∈ J \ {0}, we know it is the limit of points yj ∈ (K0)0,rj

. It turn this means that
there are ȳj ∈ K0 such that yj = ȳj

rj
. In particular |ȳj| ≤ 2|y|rj for sufficiently large j. We

then find arcs γ̄j ⊂ K0 connecting 0 and ȳj, with length bounded by 2C|y|rj. In turn this
means that we find arcs γj ⊂ (K0)0,rj

connecting 0 and yj of length bounded by 2C|y|. In
particular, by extraction of a converging subsequence, we find an arc γ ⊂ J connecting 0
and y.

To prove (Ch) we argue by contradiction and assume that there is a sequence of points
{yj} ⊂ K0 with yj → 0 and such that |yj|−1d(0, yj) → ∞. We then distinguish two cases,
to which we can restrict after extraction of a subsequence:

(a) d(0, yj) ↓ 0
(b) lim infj d(0, yj) > 0.

Case (a). We let γj ⊂ K0 be an arc connecting 0 and yj with minimal length. Because
of the minimality, γj is an injective arc. Let zj ∈ γj be a point which is furthest away from
the origin and note that it therefore subdvides γj in two arcs γ1

j and γ2
j , one connecting

0 and zj, and the other connecting zj and yj, with no other point in common except for
zj. Since |yj|−1d(0, yj) → ∞ and H1(Br ∩ γj) ≤ H1(Br ∩ K) for r > 0 sufficiently small,
by the energy upper bound |zj |

|yj | must converge to infinity. Let ρj := |zj| and consider the
rescaled maps (u0,ρj

, K0,ρj
), the rescaled points z̄j = zj

ρj
and ȳj := yj

ρj
, and the rescaled arcs

γ̄1
j and γ̄2

j . Without loss of generality, we can extract a subsequence and assume that
• (u0,ρj

, K0,ρj
) converges to a global generalized restricted minimizer (ū, K̄);

• γ̄1
j and γ̄2

j converge to two arcs, γ̄1 and γ̄2, included in K̄ and connecting 0 with
some point z̄ ∈ ∂B1.

There are then two possibilities:
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(i) K̄ contains a Jordan curve. The latter would however bound a “pocket”, i.e. a
bounded connected component of R2 \ K̄. One could then argue as in Lemma 4.3.1
to get a contradiction. Note that the argument in there, which is written for
an absolute minimizer, is, strictly speaking, not applicable to (ū, K̄) which is a
restricted minimizer: however it is easy to see that the idea leads to the construction
of a competitor which does not increase the number of connected components of
K̄.

(ii) γ̄1 and γ̄2 are the same arc γ̄. In this case we know that γ̄ must contain a regular
jump point y′ with 0 < |y′| < 1. In a sufficiently small ball Bτ (y′) the set K̄ is then
a single smooth arc. But then, by case (a) of Theorem 1.3.3, for a sufficiently large
j and a sufficiently small σ, K0,ρj

∩ Bσ(y′) is also a single smooth arc. However,
this is not possible since, for a sufficiently large j, the two arcs γ̄1

j and γ̄2
j both

intersect Bσ(y′).

Case (b) Again we let γj ⊂ K0 be an arc connecting 0 and yj with minimal length,
concluding that γj is an injective arc. Parametrize it by arclength so that γj(0) = yj , fix an
arbitrary positive ε and focus on the arc γj([0, ε]). γj converges to a map γ : [0, ε] → K with
γ(0) = 0, which however cannot be the constant map, because otherwise γj([0, ε]) ⊂ Bδj

for
some sequence δj ↓ 0, contradicting the energy upper bound. Hence H1(γ([0, ε])) > 0 and
so there must be a regular jump point y′ ∈ γ([0, ε]) with the property that, in a sufficiently
small ball Bσ(y′), K ∩ Bσ(y′) is a smooth arc and K ∩ Bσ(y′) ⊂ γ([0, ε]). But then for j
sufficiently large we must necessarily have that K ∩Bσ/2(y′) ⊂ γj([0, ε]). In other words,
the arcs γ([0, ε]) and γj([0, ε]) share a point, for j sufficiently large. But then there is an
arc in K connecting 0 and yj and whose length is at most 2ε. Since ε is arbitrary and
lim infj d(0, yj) > 0, this would contradict the minimality of γj.



APPENDIX A

Variational identities

We give here the proofs of Proposition 2.5.1 and Proposition 2.5.2. We recall that
ν denotes the counterclockwise rotation by 90 degrees of a C0 unit tangent vector e
locally orienting K, while κ is the curvature of the curve, namely γ̈ · ν, for an arclength
parametrization γ such that γ̇ = e. Finally, w+ and w− are the one-sided traces of the
relevant function w on K (following the obvious convention that w+ is the trace on the
side which ν is pointing to).

Proof of Proposition 2.5.1. The proofs of the outer variations formula (1.6.2) is
standard, and we leave it to the reader.

Let ψ ∈ C1
c (Ω,R2), and consider the Cauchy problems (parametrized in terms of the

initial condition x ∈ Ω)


∂

∂t
Φt(x) = ψ(Φt(x))

Φ0(x) = x ,

then the map Φt(x) is a diffeomorphism of Ω onto itself for t ∈ (−t0, t0), t0 > 0 suf-
ficiently small. We recall the notation (ut, Kt(x)) = (Φt(K), u(Φ−1

t (x))), and define
f(t) := E0(ut, Kt). We claim that f is differentiable on (−t0, t0) with

f ′(t) =
ˆ

Ω\Φt(K)

(
|∇ut|2divψ − 2∇uTt ·Dψ∇ut

)
+
ˆ

Φt(K)
eTt ·Dψ et dH1 , (A.0.1)

where et : Φt(K) → S1 is a Borel vector field tangent to the rectifiable set Φt(K). Given
this, if (u,K) is either an absolute or a restricted or a generalized minimizer of E0 we get
(1.6.4) (for λ = 0) as necessarily f ′(0) = 0.

First, note that for all ε small

∇Φ−1
ε (Φε(x)) = [Id + εDψ(x)]−1 = Id − εDψ(x) + o(ε)

det ∇Φε(x) = det[Id + εDψ(x)] = 1 + ε divψ(x) + o(ε),

179
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o(ε) uniform with respect to x ∈ Ω. Thus, by changing variables as ut+ε = ut(Φ−1
ε ), for

t ∈ (−t0, t0) and ε ∈ R sufficiently small, we getˆ
Ω\Φt+ε(K)

|∇ut+ε|2 =
ˆ

Ω\Φt(K)
|∇ut ·DΦ−1

ε (Φε)|2| detDΦε|

=
ˆ

Ω\Φt(K)
|∇ut − ε∇ut ·Dψ|2(1 + ε divψ) + o(ε)

=
ˆ

Ω\Φt(K)
|∇ut|2 + ε

ˆ
Ω\Φt(K)

(
|∇ut|2divψ − 2∇uTt ·Dψ∇ut

)
+ o(ε) . (A.0.2)

In addition, as Φt+ε(K) = Φt(Φε(K)), from the coarea formula [5, Theorem 2.93] we infer
that

H1(Φt+ε(K)) = H1(Φt(K)) + εeTt ·Dψ et + o(ε) (A.0.3)

In conclusion, we deduce from (A.0.2) and (A.0.3) that f is differentiable in t ∈ (−t0, t0)
and that (A.0.1) holds.

To prove (1.6.4) in the general case we need to consider further the fidelity term. To
this aim, for t ∈ (−t0, t0) set

hg(t) :=
ˆ

Ω\Φt(K)
|ut − g|2 .

Let us first assume that g ∈ C1(Ω), and prove that hg is differentiable on (−t0, t0) with

h′
g(t) = −2

ˆ
Ω
(ut − g)ψ · ∇ut −

ˆ
Φt(K)

(|u+
t − g|2 − |u−

t − g|2)ψ · νΦt(K)dH1 , (A.0.4)

where νΦt(K) denotes the counterclockwise rotation by 90 degrees of the Borel unit tangent
vector et to Φt(K).

Indeed, by changing variables, the fact that g ∈ C1(Ω) implies that, for some function
o(ε) that is uniform with respect to x ∈ Ω,

hg(t+ ε) =
ˆ

Ω\Φt+ε(K)
|ut+ε − g|2 =

ˆ
Ω\Φt(K)

|ut − g(Φε)|2| detDΦε|

=
ˆ

Ω\Φt(K)
|ut − g − ε∇g · ψ + o(ε)|2(1 + ε divψ) + o(ε)

= hg(t) + ε

ˆ
Ω\Φt(K)

(
|ut − g|2divψ − 2(ut − g)∇g · ψ

)
+ o(ε).

Therefore,

h′
g(t) =

ˆ
Ω\Φt(K)

(
|ut − g|2divψ − 2(ut − g)∇g · ψ

)
,

and the identity in (A.0.4) follows from an integration by parts by taking into account that,
under the standing assumptions, |u− g|2 ∈ BVloc ∩ L∞

loc(Ω).
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If g ∈ L∞(Ω), let gε ∈ C1 ∩ L∞(Ω) be such that gε → g in L2(Ω). Consider therefore
the functions

fε(t) := f(t) + λhgε(t)
and observe that, by the above formulas |f ′

ε(t)| is uniformly bounded. Thus fε(t) converge
uniformly to the Lipschitz function f0(t) = f(t) + λhg(t), which has a minimum in 0. We
rewrite formula (A.0.4) for the derivative of hgε as follows

h′
gε

(t) := −2
ˆ

Ω\Φt(K)
(ut − gε)ψ · ∇ut︸ ︷︷ ︸

=:Λε(t)

−
ˆ

Φt(K)
((u+

t )2 − (u−
t )2)ψ · νΦt(K)dH1

︸ ︷︷ ︸
=:Γ(t)

+ 2
ˆ

Φt(K)
(u+

t − u−
t )gε ψ · νΦt(K)dH1

︸ ︷︷ ︸
=:Lt,ε(ψ)

.

Note that Λε(t) converge uniformly as ε → 0 to

Λ(t) = −2
ˆ

Ω\Φt(K)
(ut − g)ψ · ∇ut ,

while Γ ∈ C0((−t0, t0)), because u ∈ W 1,2(Ω \ K) and we can use the Generalized Area
Formula [5, Theorem 2.91]. We use the Generalized Area Formula also to rewrite

Lt,ε(ψ) = 2
ˆ
K

(u+ − u−)gε(Φt)ψ(Φt) · νΦt(K)(Φt) Jt dH1 ,

where Jt(x) = |DΦt(x)(e(x))|, and e(x) is the unit tangent to K at x.
If we consider the vector-valued measures

µt := 2(u+ − u−) νΦt(K) ◦ Φt Jt H1 K ,

and the pushforward αt := (Φt)♯µt, we can then write

Lt,ε(ψ) =
ˆ
gε ψ · dαt .

Next, consider the measures gεdαt ⊗dt on Ω × (−t0, t0) and, given the uniform boundedness
of gε (in a pointwise sense), we can assume that a suitable subsequence, not relabeled,
converges to a measure of the form

ḡdαt ⊗ dt ,

for some Borel function ḡ with ∥ḡ∥L∞(Ω×(−t0,t0),dαt⊗dt) ≤ ∥g∥∞. So we can rewrite

f0(t) = f0(0) +
ˆ t

0
f ′(s) ds+ λ

ˆ t

0
(Λ(s) + Γ(s)) ds+ λ

ˆ t

0

ˆ
ḡψ · dαs ds .

Since f0 is Lipschitz and has a minimum in 0, while f ′, Λ, and Γ are continuous, we conclude
that, for every positive s0

|f ′(0) + λ(Λ(0) + Γ(0))| ≤ λ∥g∥∞ sup
|s|≤s0

∣∣∣∣∣
ˆ
ψ · dαs

∣∣∣∣∣
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We now use the fact that ψ is continuous and that so are the maps t 7→ νΦt(K)(Φt(x)) =
DΦt(ν(x))

|DΦt(ν(x))| and t 7→ Jt(x) to conclude that

lim inf
s0↓0

sup
|s|≤s0

∣∣∣∣∣
ˆ
ψ · dαs

∣∣∣∣∣ ≤ 2
ˆ
K

|u+ − u−||ψ · ν|dH1 .

Since the map ψ 7→ (f ′(0) + λ(Λ(0) + Γ(0))) is linear in ψ, we conclude from the
Riesz representation theorem that there exists a function gK ∈ L∞(Ω,H1 K) with
∥gK∥L∞(Ω,H1 K) ≤ ∥g∥∞ such that

f ′(0) + λ(Λ(0) + Γ(0)) = 2λ
ˆ
K

(u+ − u−)gKψ · ν dH1 .

□

We show next the second form of the Euler-Lagrange conditions together with the higher
regularity of K.

Proof Proposition 2.5.2. Assume that K ∩ A is a graph for some open subset
A ⊆ Ω. Up to a rotation, there are an open interval I ⊂ R and ϕ : I → R such that

K ∩ A = {(t, ϕ(t)) : t ∈ I} .

Let A± := {(t, s) ∈ A : ±s > ϕ(t)}, and let φ ∈ C1(Ā) be such that φ = 0 in a
neighbourhood of ∂A+ \ K. Let v = u on A− and v = u + εφ on A+, then from the
(restricted) minimality of (u,K) for Eλ we inferˆ

A+

(
∇u · ∇φ+ λφ(u− g)

)
= 0 .

Clearly, a similar identity can be obtained on A−. Therefore, u is a weak solution to△u = λ(u− g) A±

∂u
∂ν

= 0 K ∩ A .
(A.0.5)

From elliptic regularity theory we infer that if ϕ ∈ C1,α(I) then u ∈ C1,α(A±) (see [5,
Theorem 7.49]). The conclusions in item (a), in (2.5.2) and in (2.5.3) then follow at once.

We assume next that u ∈ W 2,2(A+ ∪ A−), and moreover that ν is the interior normal
vector to A+. Let ψ ∈ C1

c (A;R2), then integrating twice by parts giveˆ
A±

|∇u|2divψ = −2
ˆ
A±

∇u · ∇2uψ ∓
ˆ
K∩A

|∇u±|2ψ · νdH1

= 2
ˆ
A±

(
△u∇u · ψ + ∇uT ·Dψ∇u

)
∓
ˆ
K∩A

(
(∇u · ψ)∂u

∂ν
+ |∇u±|2ψ · ν

)
dH1

(A.0.5)= 2
ˆ
A±

(
λ(u− g)∇u · ψ + ∇uT ·Dψ∇u

)
∓
ˆ
K∩A

|∇u±|2ψ · νdH1 .
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Therefore, from (1.6.4) we infer thatˆ
K∩A

eT ·Dψ e dH1

=
ˆ
K∩A

(|∇u+|2 + λ|u+ − gK |2 − |∇u−|2 − λ|u− − gK |2)ψ · νdH1 . (A.0.6)

The last formula still holds even if u ∈ W 2,2
loc (A+∪A−), which is actually the known regularity

for u. Indeed, it suffices to deform smoothly K inside A± and to take into account (A.0.5)
and the fact that both u and ∇u are bounded to conclude.

Consider φ ∈ C1
c (A) and let ψ(x) = (0, φ(x)), as K ∩ A = {(t, ϕ(t)) : t ∈ I}, we infer

that
e(t, ϕ(t))T ·Dψ(t, ϕ(t)) e(t, ϕ(t)) = d

dt
(φ(t, ϕ(t))) ϕ′(t)

1 + |ϕ′(t)|2 ,

and thus ˆ
K∩A

eT ·Dψ e dH1 =
ˆ
I

d

dt
(φ(t, ϕ(t))) ϕ′(t)√

1 + |ϕ′(t)|2
dt .

Moreover, if φ(t, s) = ζ(t)η(s), where ζ ∈ C1
c (I) and η ∈ C1

c (R) such that η = 1 on
[−2∥ϕ∥L∞(I), 2∥ϕ∥L∞(I)], on setting H := |∇u+|2 + λ|u+ − gK |2 − |∇u−|2 − λ|u− − gK |2 ∈
L∞(K ∩ A), (A.0.6) rewrites asˆ

I

ζ ′(t) ϕ′(t)√
1 + |ϕ′(t)|2

dt =
ˆ
I

H(t, ϕ(t)) ζ(t)dt . (A.0.7)

In particular, ϕ′(t)√
1+|ϕ′(t)|2

∈ W 1,∞(I), and in turn this implies ϕ′ ∈ W 1,∞(I), as ϕ′ ∈ L∞(I).
Item (b) is then established.

Eventually, (A.0.7) yields that the distributional curvature of the graph of ϕ satisfies

d

dt

 ϕ′(t)√
1 + |ϕ′(t)|2

 = −H(t, ϕ(t)) L1 a.e. on I,

(2.5.4) then follows at once. □





APPENDIX B

Equivalence of SBV and classical formulations

In this section, we prove the density lower bound for K, where (u,K) is a minimizer
of Eλ, as well as the same property for the jump set Su of a minimizer u of the SBV
counterpart Ẽλ. The equivalence of the weak and strong formulations of the problem then
follows easily from the latter property. We also add one important consequence on the local
compactness of bounded minimizers which will then be used to prove Theorem 2.2.3.

B.1. Interior density lower bound

This subsection aims at giving a direct simple proof of the density lower bound estimate
valid for (restricted) minimizers of the functionals Eλ, and also for minimizers of the
corresponding SBV relaxed versions. In addition, we prove such property also for minimizers
of Eλ subject to Dirichlet boundary conditions. The latter result will be crucial for the
applications in section B.6, in turn instrumental for the proof of the compactness result
Theorem 2.2.3.

We start with proving the following decay result.

Lemma B.1.1. For every τ > 0 there are constants ε(τ) > 0 and ϑ(τ) ∈ (0, 1) such that
if (u,K) is a (restricted) minimizer of Eλ on Ω then the following property holds.

If H1(K ∩ Bρ(x)) ≤ ερ for some x ∈ Ω and ρ ∈ (0, dist(x, ∂Ω)) with λ ∈ [0, 1] and
∥g∥∞ ≤ M0, then

E0(u,K,Bτρ(x)) ≤ max{τ 3/2E0(u,K,Bρ(x)), 8πλ
ϑ
M2

0ρ
2} . (B.1.1)

Proof. We distinguish the case λ = 0 from the case λ > 0.
Case λ = 0. Assume by contradiction that for some τ > 0 there is a sequence of (restricted)
minimizers (uj, Kj) on Ω, points xj ∈ Ω and radii ρj such that ρ−1

j H1(Kj ∩ Bρj
(xj)) is

infinitesimal and, on setting Ej := E0(uj, Kj, Bρj
(xj)),

E0(uj, Kj, Bτρj
(xj)) > τ

3/2Ej .

Define next vj : B1 → R by vj(x) := E
−1/2
j uj(xj + ρjx) and Hj := B1 ∩ 1

ρj
(Kj − xj). By

scaling we getˆ
B1\Hj

|∇vj|2 = E−1
j

ˆ
Bρj (xj)\Kj

|∇uj|2 ≤ 1, H1(Hj) = ρ−1
j H1(Kj ∩Bρj

(xj)) .

As H1(Hj) is infinitesimal, for a subsequence not relabeled, by the coarea formula [5,
Theorem 2.93] and by the Mean-value theorem we may find a radius r ∈ (τ 1/4, 1) (independent

185
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from j) such that

Hj ∩ ∂Br = ∅ ,
ˆ
∂Br

|∇vj|2 ≤ (1 − τ
1/4)−1 . (B.1.2)

In particular, vj ∈ W 1,2(∂Br) with osc∂Brvj ≤ C (independent from j). Therefore, up to
subtracting the mean value of vj over ∂Br and relabeling the sequence vj , we may conclude
that ∥vj∥L∞(∂Br) ≤ C. In turn, scaling back to uj and using Lemma 2.1.1 yields that
∥vj∥L∞(Br) ≤ C. Define for an admissible pair (w, J) in B1 and for all open subsets A ⊆ B1

Fj(w, J,A) :=
ˆ
A\J

|∇w|2 + ρj
Ej

H1(J ∩ A) . (B.1.3)

Then, the conditions above are rewritten as
Fj(vj, Hj, B1) = 1, Fj(w, J,B1) ≥ Fj(vj, Hj, B1) , (B.1.4)

for all admissible pairs (w, J) such that {vj ̸= w} ∪ (Hj△J) ⊂⊂ B1 (with the number of
connected components less than that of Kj in case uj is a restricted minimizer of E0), and

Fj(vj, Hj, Bτ ) > τ
3/2 . (B.1.5)

Moreover, vj ∈ SBV (B1) with Svj
⊆ Hj being vj harmonic on B1 \ Hj. Hence, thanks

to the first condition in (B.1.4), and the L∞(Br) bound on vj, Ambrosio’s compactness
theorem [5, Theorem 4.8] implies that there exists a subsequence (not relabeled) and a
function v ∈ SBV (Br) such that vj converge to v in L2(Br), and that for all open subsets
A ⊆ Br

H1(Sv ∩ A) ≤ lim inf
j

H1(Svj
∩ A) = 0,

ˆ
A

|∇v|2 ≤ lim inf
j

ˆ
A

|∇vj|2 ≤ 1 . (B.1.6)

In particular, v ∈ W 1,2(Br). Actually, we claim that v turns out to be harmonic on Br and
satisfying for all s ∈ (0, r)

lim
j
Fj(vj, Hj, Bs) = lim

j

ˆ
Bs

|∇vj|2 =
ˆ
Bs

|∇v|2 . (B.1.7)

Given this for granted, we conclude as follows: on one hand from (B.1.5) and the energy
convergence in (B.1.7) and being τ < r4 < r < 1, we infer thatˆ

Bτ

|∇v|2 ≥ τ
3/2 ; (B.1.8)

but on the other hand being v harmonic on Br and using the first condition in (B.1.4), we
conclude that ˆ

Bτ

|∇v|2 ≤ τ 2

r2

ˆ
Br

|∇v|2 ≤ τ 2

r2 ,

therefore we get a contradiction recalling that τ < r4 < r < 1.
We finally establish (B.1.7) together with the harmonicity of v on Br. To this aim let

w ∈ W 1,2(Br) with {v ≠ w} ⊂⊂ Bs, s ∈ (0, r). Let s < t ∈ (0, r) and φ ∈ C∞
c (Bt) be

such that φ = 1 on Bs. Define functions ζj = φw + (1 − φ)vj and sets Jj by Jj ∩Bs = ∅,
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Jj ∩ (Bt \Bs) = Hj ∩ (Bt \Bs). Then, (ζj, Jj) is a pair to test the (restricted) minimality
of (vj, Hj) for Fj (note that the number of connected components of Jj is less than that of
Hj, i.e. of Kj). The locality of the energy leads to

Fj(vj, Hj, Bs) ≤ Fj(vj, Hj, Bt) ≤ Fj(ζj, Jj, Bt)

≤ Fj(w, ∅, Bs) + C Fj(w,Hj, Bt \Bs) + C Fj(vj, Hj, Bt \Bs) + C

(t− s)2

ˆ
Bt\Bs

|vj − w|2

≤
ˆ
Bs

|∇w|2 + C

ˆ
Bt\Bs

|∇v|2 + CFj(vj, Hj, Bt \Bs) + C

(t− s)2

ˆ
Bt\Bs

|vj − v|2 .

As the sequence of Radon measures (Fj(vj, Hj, ·))j∈N is equi-bounded in mass on B1 in view
of (B.1.4), it converges to some Radon measure µ on B1 up to a subsequence not relabeled
for convenience. Assume that µ(∂Bs) = µ(∂Bt) = 0, by passing to the limit as j ↑ ∞ and
by Ambrosio’s lower semicontinuity result we find

ˆ
Bs

|∇v|2 ≤ lim inf
j

Fj(vj, Hj, Bs) ≤ lim sup
j

Fj(vj, Hj, Bs)

≤
ˆ
Bs

|∇w|2 + C

ˆ
Bt\Bs

|∇v|2 + C µ(Bt \Bs) .

Thus, by letting t ↓ s+ along values satisfying µ(∂Bt) = 0 we conclude that for all but a
countable set of radii in (0, r) we have

ˆ
Bs

|∇v|2 ≤ lim inf
j

Fj(vj, Hj, Bs) ≤ lim sup
j

Fj(vj, Hj, Bs) ≤
ˆ
Bs

|∇w|2 . (B.1.9)

Moreover, the latter inequality is extended to all radii s ∈ (0, r) as the Dirichlet energies of
v and of w, as set functions, are the trace of a Radon measure on open sets.

Eventually, equality (B.1.7) follows by taking w = v in (B.1.9), and by taking into
account (B.1.6).

Case λ > 0. The proof of the general case needs a further argument in addition to those
used for λ = 0. We fix λ ∈ (0, 1] and we claim that

E0(u,K,Bτρ(x)) ≤ τ
3/2E0(u,K,Bρ(x)), (B.1.10)

if in addition
(1 − ϑ)E0(u,K,Bρ(x)) ≤ E0(w, J,Bρ(x)) (B.1.11)

for all (w, J) with {u ̸= w} ∪ (K△J) ⊂⊂ Bρ(x) and ∥w∥∞ ≤ M0 (where ϑ(τ) ∈ (0, 1) is
the parameter in the statement). In case the condition in (B.1.11) is not satisfied for some
admissible pair (w, J) with {u ̸= w} ∪ (K△J) ⊂⊂ Bρ and ∥w∥∞ ≤ M0, then we have

E0(u,K,Bρ(x)) < 1
ϑ
(E0(u,K,Bρ(x)) − E0(w, J,Bρ(x))) .
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Using that (u,K) is a (restricted) minimizer of Eλ on Ω and that ∥w∥∞ ≤ M0, we get from
the latter inequality

E0(u,K,Bτρ(x)) ≤ E0(u,K,Bρ(x)) ≤ 1
ϑ
(E0(u,K,Bρ(x)) − E0(w, J,Bρ(x))

≤ 1
ϑ
(Eλ(u,K,Bρ(x)) − Eλ(w, J,Bρ(x))) + λ

ϑ

ˆ
Bρ(x)

|w − g|2 ≤ 8πλ
ϑ
M2

0ρ
2 .

Thus, to conclude (B.1.1) we are left with proving (B.1.10) under the further condition
(B.1.11). In what follows we highlight only the necessary changes in the argument used
for the case λ = 0. We argue by contradiction and consider τ > 0 for which we can
find (restricted) minimizers (uj, Kj) of Eλj

(·, ·,Ω, gj), with λj ∈ [0, 1] and ∥gj∥∞ ≤ M0 (cf.
Assumption 2.2.1), and infinitesimal sequences εj and ϑj , points xj ∈ Ω and radii ρj so that
H1(Kj ∩Bρj

(xj)) ≤ εjρj and, on setting Ej := E0(uj, Kj, Bρj
(xj)), we have

(1 − ϑj)Ej ≤ E0(w, J,Bρj
(xj)), E0(uj, Kj, Bτρj

(xj)) > τ
3/2Ej . (B.1.12)

for all (w, J) with {uj ̸= w} ∪ (Kj△J) ⊂⊂ Bρj
(xj) and ∥w∥∞ ≤ M0. Consider next the

functions vj(x) := E
−1/2
j uj(xj + ρjx), the sets Hj := B1 ∩ 1

ρj
(Kj − xj), and the functionals

Fj as defined in (B.1.3). By rescaling (B.1.12)

Fj(vj, Hj, B1) = 1 , 1 − ϑj ≤ Fj(w, J,B1) (B.1.13)

for all (w, J) with {vj ̸= w} ∪ (Hj△J) ⊂⊂ B1 and ∥w∥∞ ≤ E
−1/2
j M0, and moreover

Fj(vj, Hj, Bτ ) > τ
3/2 , (B.1.14)

(cf. with (B.1.4) and (B.1.5)). Note that Ej is actually infinitesimal by the energy upper
bound in Lemma 2.1.2 and ρj → 0 as j → ∞. Thus, we may find a radius r ∈ (τ 1/4, 1)
such that (B.1.2) hold, vj ∈ W 1,2(∂Br) with osc∂Brvj ≤ C, and, up to subtracting the
mean value of vj over ∂Br and relabeling the sequence vj, we infer that ∥vj∥L∞(∂Br) ≤ C.
Consider next the function

ṽj :=

min{∥vj∥L∞(∂Br),max{vj,−∥vj∥L∞(∂Br)}} Br

vj B1 \Br

Thus, ṽj ∈ SBV (B1) with H1(Sṽj
\ Svj

) = 0. In particular, H1(Sṽj
) ≤ H1(Svj

) ≤ H1(Hj).
Ambrosio’s compactness theorem implies that there exists a subsequence (not relabeled)
and a function v ∈ SBV (Br) such that ṽj converge to v in L2(Br), and that for all open
subsets A ⊆ Br

H1(Sv ∩ A) ≤ lim inf
j

H1(Sṽj
∩ A) = 0,

ˆ
A

|∇v|2 ≤ lim inf
j

ˆ
A

|∇ṽj|2 ≤ 1 .

Therefore, v ∈ W 1,2(Br). Moreover, for every t ∈ (0, r) we have

lim
j

( ˆ
Bt

|∇vj|2 −
ˆ
Bt

|∇ṽj|2
)

= 0 . (B.1.15)
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Indeed, on one hand being ṽj a truncation of vj, we have for every Borel subset B of B1ˆ
B

|∇ṽj|2 ≤
ˆ
B

|∇vj|2 .

In turn, from this and (B.1.13) applied to the pair (ṽj, Hj), we deduce that for all t ∈ (0, r)ˆ
Bt

|∇vj|2 ≤
ˆ
Bt

|∇ṽj|2 + ϑj .

Therefore, we conclude (B.1.15). In turn, arguing as for the case λ = 0, through (B.1.15)
one can prove that for all s ∈ (0, r)

lim
j
Fj(vj, Hj, Bs) = lim

j

ˆ
Bs

|∇vj|2 =
ˆ
Bs

|∇v|2

together with the fact that v is harmonic on Br by exploiting the (restricted) almost
minimality of vj for Fj on B1, namely the second condition in (B.1.13). Eventually, the
final contradiction follows again from (B.1.14). □

An immediate consequence of Lemma B.1.1 are the density lower bound estimates for
(restricted) minimizers of Eλ. We follow the argument in [5, Theorem 7.21].

Proof of Theorem 2.1.3. We establish the estimates separately in the two cases
λ = 0 and λ > 0. In both cases we denote by ϵ := ε(1/2) the parameter in Lemma B.1.1
having fixed τ = 1/2.
Case λ = 0. Let σ > 0 be such that 2πσ1/2 < ϵ, and consider the set

Ωu := {x ∈ Ω : H1(K ∩Bρ(x)) < ε(σ)ρ for some ρ ∈ (0, dist(x, ∂Ω))}.
Note that if x ∈ Ωu and ρ ∈ (0, dist(x, ∂Ω)) is the corresponding radius, then H1(K ∩
Bρ(x)) < (1 − µ)ε(σ)ρ for some µ ∈ (0, 1). It is then easy to check that B(1−µ/2)ρ(x) ⊂ Ωu,
so that Ωu is an open subset of Ω.

We claim that if x ∈ Ωu, namely H1(K ∩Bρ(x)) < ε(σ)ρ for some ρ ∈ (0, dist(x, ∂Ω)),
then for all j ∈ N

E0(u,K,Bσ2−jρ(x)) ≤ ϵ2−j/2 (σ2−jρ) . (B.1.16)
In particular, given this for granted, we get

lim
j→∞

E0(u,K,Bσ2−jρ(x))
σ21−jρ

= 0,

so that x /∈ K1, where K1 := {x ∈ K : limr
1
2rH

1(K ∩Br(x)) = 1}. As the rectifiability of
K implies that K1 is dense in K, we conclude that K = K1 ⊆ Ω \ Ωu, being Ωu open. On
the other hand, u is harmonic on Ω \K, so that Ω \K ⊆ Ωu, and (2.1.1) thus follows at
once.

Let us now prove (B.1.16) by an induction argument. Indeed, the case j = 0 follows
immediately by from Lemma B.1.1 (applied with τ = σ), the energy upper bound and the
choice of σ

E0(u,K,Bσρ(x)) ≤ σ
3/2E0(u,K,Bρ(x)) ≤ 2πσ3/2ρ < ϵσρ .
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Assume now that (B.1.16) is true for some j ∈ N, we show then that it holds for j + 1.
Indeed, in such a case Lemma B.1.1 (applied with τ = 1/2) and the induction assumption
imply that

E0(u,K,Bσ2−j−1ρ(x)) ≤ 2−3/2E0(u,K,Bσ2−jρ(x)) ≤ ϵ2−(j + 1)/2 (σ2−j−1ρ) .

Case λ > 0. The proof is very similar to that in the case λ = 0, we highlight only the
necessary changes. Moreover, we will prove the estimate, without loss of generality, for
radii smaller than some suitably chosen constant R.

Choose σ ∈ (0, 1) such that 2πσ1/2 < ϵ
2 , and R > 0 such that 8πλ

ϑ(1/2)M
2
0R < ϵσ. Note

that, since ∥g∥∞ ≤ M0, λ ≤ 1 and the parameter ϑ(1/2) is fixed from Lemma B.1.1, R can
be indeed chosen to be an absolute constant.

We claim that if H1(K ∩ Bρ(x)) < ε(σ)ρ for some ρ ∈ (0,min{R, dist(x, ∂Ω)}), then
(B.1.16) holds true. Indeed, if j = 0, Lemma B.1.1, the energy upper bound in Lemma 2.1.2,
and the choices of σ and R give

E0(u,K,Bσρ(x)) ≤ max{σ3/2E0(u,K,Bρ(x)), 8πλ
ϑ(1/2)M

2
0ρ

2}

≤ max{σ3/2Eλ(u,K,Bρ(x)), 8πλ
ϑ(1/2)M

2
0Rρ}

≤ max{σ3/22π(1 + λ∥g∥2
∞R), 8πλ

ϑ(1/2)M
2
0R}ρ < ϵσρ .

Assume now that (B.1.16) is true for some j ∈ N, we show that then it holds for j + 1.
Indeed, in such a case the induction assumption, Lemma B.1.1 and the choices of σ and R
imply that
E0(u,K,Bσ2−j−1ρ(x)) ≤ max{2−3/2E0(u,K,Bσ2−jρ(x)), 8πλ

ϑ(1/2)M
2
0 (σ2−jρ)2}

≤ max{2−3/22−j/2 (σ2−jρ), 8πλ
ϑ(1/2)M

2
0R(σ2−j)2ρ}

≤ max{ϵ2−(j + 1)/2 (σ2−j−1ρ), ϵσ(σ2−j)2ρ} ≤ ϵ2−(j + 1)/2 (σ2−j−1ρ) .
Therefore, (B.1.16) holds. Set now

Ωu := {x ∈ Ω : H1(K ∩Bρ(x)) < ε(σ)ρ for some ρ ∈ (0,min{R, dist(x, ∂Ω))}} .
It is easy to check that Ωu is an open subset of Ω, that together with (B.1.16) give K ⊆ Ω\Ωu.
Eventually, by taking into account that u ∈ W 2,p

loc (Ω \K) by elliptic regularity we conclude
(2.1.2). □

Recall that the density lower bound in Theorem 2.1.3 together with the energy upper
bound in Lemma 2.1.2 establish the Ahlfors-David regularity of K (cf. (2.1.3)).

B.2. Boundary density lower bound

We prove next similar results for minimizers of Eλ subject to Dirichlet boundary
conditions. This fact has been first established by Carriero and Leaci for λ = 0 in [12]
under slightly more general assumptions on the reference set U . More precisely, given
a bounded open set U with C1 boundary, a closed subset Σ of ∂U with H1(Σ) = 0, a
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boundary datum w ∈ C1 ∩ L∞(R2 \ Σ), we assume that there exists (u,K) minimizing
Eλ(·, ·, U, g) over the set of admissible pairs (v, J), J closed and 1-rectifiable in U and
v ∈ C1(U \ J) ∩ C0(U \ (Σ ∪ J)), such that

v = w on ∂U \ (J ∪ Σ) . (B.2.1)
In fact, the existence of such an optimal pair can be inferred from the analogous density
lower bound property for minimizers of the weak formulation of the problem, namely
for minimizers of Ẽλ (the relaxed counterpart of Eλ, cf. (B.3.1)) satisfying the Dirichlet
boundary condition, as will be discussed in Section B.3. In particular, the L∞ assumption
on w is needed to show the existence of a minimizer for Ẽλ.

We start fixing some notation. For any admissible pair (v, J) satisfying (B.2.1) we
extend v to R2 \ U by w and, for simplicity, denote such an extension still by v. With this
agreement, the quantity Eλ(v, J, Br(x), g) is well defined for every x ∈ ∂U and r > 0.

Being U bounded and open with C1 boundary, for every x ∈ ∂U there is a radius ρx > 0
such that ∂U ∩Bρx(x) is the graph of a function φx ∈ C1(R) is some system of coordinates.
In case x ∈ ∂U \ Σ it is not restrictive to assume that Bρx(x) ∩ Σ = ∅, being Σ closed.
Finally, fixed x ∈ ∂U , up to rigid motions, we may always reduce to the following situation:
φx(0) = φ′

x(0) = 0, and
U ∩Bρx(x) = x+ {y = (y1, y2) ∈ Bρx : y2 > φx(y1)} .

We prove first a decay result for the energy E0 at boundary points, analogous to the interior
case treated in Lemma B.1.1. We keep the notation introduced there and outline only the
necessary changes in the argument.

Lemma B.2.1. For every τ > 0 and M1 > 0 there are constants ε(τ,M1) > 0 and
ϑ(τ,M1) ∈ (0, 1) such that if (u,K) is a minimizer of Eλ(·, ·, U, g) subject to the Dirichlet
boundary condition (B.2.1), then the following property holds.

If H1(K ∩ Bρ(x)) ≤ ερ and ∥∇w∥L∞(Bρ(x)) ≤ M1 for some x ∈ ∂U \ Σ and ρ ∈
(0,min{1, ρx}), with λ ∈ [0, 1] and ∥g∥∞ ≤ M0, then
E0(u,K,Bτρ(x))

≤ max{τ 3/2E0(u,K,Bρ(x)), τ
3/2

ϑ
∥∇w∥2

L∞(Bρ(x)),
τ

3/2

ϑ
∥φ′

x∥L∞((−ρ/2,ρ/2)),
8πλ
ϑ
M2

0ρ
2} . (B.2.2)

Proof. Case λ = 0. Fixed x ∈ ∂U \ Σ, we proceed with the same proof of Lemma B.1.1
up to (B.1.7), for which now we claim that v minimizes the Dirichlet energy on the set
v +W 1,2

0 (Br ∩ {xn > 0}). Clearly, the claim implies that v is harmonic on Br ∩ {xn > 0}.
To prove such a claim, note first that v is constant on Br ∩ {xn < 0}. Indeed, besides the
conditions in (B.1.4) and (B.1.5), contradicting (B.2.2) gives also

τ
3/2∥∇wj∥2

L∞(Bρj (xj)) + τ
3/2∥φ′

xj
∥L∞((−ρj/2,ρj/2)) ≤ E0(uj, Kj, Bτρj

(xj))ϑj ≤ Ejϑj , (B.2.3)

where we recall that Ej = E0(uj, Kj, Bρj
(xj)). Note that Ej ≤ Cρj, for some constant

independent from j, using ∥∇wj∥L∞(Bρj (xj)) ≤ M1 and arguing as for the energy upper
bound. Thus, since vj = E

−1/2
j wj(xj + ρj·) on B1 \ U−xj

ρj
, ρj ≤ 1 and (B.2.3) yield that
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∥∇vj∥L∞(B1\
U−xj

ϑj
)

= O(ϑj) → 0 as j → ∞. On the other hand, B1 \ U−xj

ρj
= {z ∈ B1 : z2 ≤

ρ−1
j φxj

(ρjz1)}, so that φxj
(0) = 0 and (B.2.3) imply that ρ−1

j φxj
(ρj·) converges uniformly

to 0 on (−1/2, 1/2), and thus we conclude that v is constant on B1 ∩ {z2 < 0}.
Given any function w ∈ v+C∞

c (Br∩{xn > 0}) with {w ≠ v} ⊂⊂ Bs∩{xn ≥ 1
i
} =: Bs,i,

s ∈ (0, r) and i ∈ N such that i > s−1, consider φ ∈ C∞
c (Bt,i+1), t ∈ (s, r), with φ = 1 on

Bs,i. Note that Bs,i ⊂⊂ Bt,i+1 ⊂⊂ U−xj

ρj
for j sufficiently large, therefore the pair (ζj, Jj)

defined by ζj := φw + (1 − φ)vj, Ji ∩ Bs,i := ∅ and Jj ∩ (Br \ Bs,i) = Hj ∩ (Br \ Bs,i), is
admissible to test the minimality of vj for Fj. Thus, inequalities (B.1.7) and (B.1.9) for
w ∈ v + C∞

c (Br ∩ {xn > 0}) follows by arguing as in Lemma B.1.1. A density argument
concludes the proof for every w ∈ v +W 1,2

0 (Br ∩ {xn > 0}). Finally, being v ∈ W 1,2(Br),
harmonic on Br ∩ {xn > 0} and equal to a constant C on Br ∩ {xn < 0}, v ∈ C0(Br) by
elliptic regularity. Therefore, the odd extension ṽ of v − C across Br ∩ {xn = 0} is an
harmonic function on Br satisfying

2τ 3/2 ≤ 2
ˆ
Bτ ∩{xn>0}

|∇v|2 =
ˆ
Bτ

|∇ṽ|2 ≤ 2τ
2

r2

ˆ
Br

|∇v|2 ≤ 2τ
2

r2 ,

thanks to (B.1.4), (B.1.5) and (B.1.7) (cf. (B.1.8)). The contradiction follows by the choice
τ < r4 < r < 1.
Case λ > 0. The proof in this case is completely analogous to that in Lemma B.1.1. The
necessary changes are related to the arguments outlined above for λ = 0. □

We are now ready to establish the density lower bound for minimizers of Eλ with
Dirichlet boundary conditions.

Theorem B.2.2. There exists a geometric constant ϵ > 0 with the following property.
If (u,K) is a minimizer of Eλ(·, ·, U, g) with Dirichlet boundary conditions as in (B.2.1),
then

H1(K ∩Bρx(x)) ≥ ϵρ for all x ∈ K ∩ (∂U \ Σ), ρ ∈ (0,min{1, ρx}) . (B.2.4)
Proof. We follow the proof of Theorem 2.1.3. If λ = 0, let x ∈ K ∩ (∂U \ Σ) and

choose σ > 0 such that
max{σ3/2E0(u,K,Bρ(x)), σ

3/2

ϑ(1/2)∥∇w∥2
L∞(Bρx (x)),

σ
3/2

ϑ(1/2)∥φ
′
x∥L∞((−ρx/2,ρx/2))} < ϵσρ ,

where ϵ := ε(1/2). To this aim, note that arguing as in the energy upper bound, there is
a constant C > 0 depending on U and ∥∇w∥L∞(Bρx (x)) such that E0(u,K,Bρ(x)) ≤ Cρx.
Define the set

Ω̂u := {x ∈ ∂U \ Σ : H1(K ∩Bρ(x)) < ε(σ)ρ for some ρ ∈ (0,min{1, ρx})}
and note that Ω̂u is relatively open in ∂U \ Σ, and K ∩ (∂U \ Σ) ⊂ ∂U \ Ω̂u. Indeed,
if x ∈ Ω̂u one can use Lemma B.2.1 inductively with M1 := ∥∇w∥L∞(Bρx (x)). The first
induction step is a consequence of the definition of Ω̂u itself (Lemma B.2.1 is applied with
τ = σ), the others of the choice of σ (Lemma B.2.1 is applied with τ = 1/2). In addition,
∂U \ (Σ ∪K) ⊂ Ω̂u by elliptic regularity.
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Finally, the proof of the case λ > 0 follows analogously by mimicking that in Theo-
rem 2.1.3 for λ > 0 using Lemma B.2.1 in place of Lemma B.1.1. □

B.3. Density lower bounds for SBV minimizers

Results similar to those in the previous section hold for minimizers of the corresponding
weak formulations of the problem. To this aim we define for every λ ≥ 0, for every Borel
subset B of Ω, and for every v ∈ SBVloc(Ω) the (formal) extensions of the functionals Eλ
as follows:

Ẽλ(v,B) :=
ˆ
B

|∇v|2 + H1(Sv ∩B) + λ

ˆ
B

|v − g|2 . (B.3.1)

We say that a function u ∈ SBV (Ω) is an (absolute) minimizer of Ẽλ on Ω, if Ẽλ(u,A) < ∞
and Ẽλ(u,A) ≤ Ẽλ(v, A) for every v ∈ SBVloc(Ω) with {v ̸= u} ⊂⊂ A ⊂⊂ Ω, A open. We
warn the reader that in literature the terminology local minimizer is rather used (cf. [5]),
we employ the chosen one for the sake of consistency with Definition 1.2.1.

Dirichlet boundary value problems in the SBV setting are introduced as follows: if U
is a bounded open set with C1 boundary in Ω, and if w is the boundary datum in (B.2.1),
we consider any function w̃ in W 1,1 ∩ L∞(R2 \ U) extending w. A function u ∈ SBV (R2)
such that u = w̃ L2-a.e. on R2 \U is an absolute minimizer of Ẽλ on U subject to Dirichlet
boundary conditions if

Ẽλ(u, U) = inf{Ẽλ(v, U) : v ∈ SBV (R2), v = w̃ L2-a.e. on R2 \ U} ,
which is clearly equivalent to minimizingˆ

U

|∇v|2 + H1(Sv) + λ

ˆ
U

|v − g|2

on the same class of functions. The same arguments in Lemma B.1.1 and Theorem 2.1.3
can be used to infer corresponding density lower bound estimates.

Theorem B.3.1. Let u ∈ SBV (Ω). There exists a constant ϵ > 0 such that
(a) if u is an absolute minimizer of Ẽ0 on Ω, then for all x ∈ Su

H1(Su ∩Bρ(x)) ≥ ϵρ for all ρ ∈ (0, dist(x, ∂Ω)). (B.3.2)

(b) if u is an absolute minimizer of Ẽλ on Ω, λ > 0, then for all x ∈ Su

H1(Su ∩Bρ(x)) ≥ ϵρ for all ρ ∈ (0,min{1, dist(x, ∂Ω)}). (B.3.3)

(c) if u is an absolute minimizer of Ẽλ on U with Dirichlet boundary conditions, λ ≥ 0,
with u = w̃ L2-a.e. on R2 \ U , then for all x ∈ Su \ Σ

H1(Su ∩Bρ(x)) ≥ ϵρ for all ρ ∈ (0,min{1, ρx}). (B.3.4)

The conclusions in Theorem B.3.1 and standard density estimates for measures imply
the essential closure of the jump set in the SBV setting (cf. [5, Theorem 2.56]).

Corollary B.3.2. The following properties hold.
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(a) if u ∈ SBV (Ω) is a local minimizer of Ẽλ on Ω, then
H1((Su \ Su) ∩ Ω) = 0 .

(b) if u ∈ SBV (U) is a minimizer of Ẽλ on U subject to Dirichlet boundary conditions,
then

H1((Su \ Su) ∩ U) = 0 .

B.4. Equivalence of SBV and classical formulations

The starting point to compare the strong and weak formulations of the problem is
the following result due to De Giorgi, Carriero, and Leaci [22, Lemma 2.3] (see also [5,
Proposition 4.4], and [12, Lemma 2.3] for the Dirichlet problem).

Lemma B.4.1. Let (v, J) be an admissible pair with v ∈ L∞
loc(Ω). Then, v ∈ SBVloc(Ω)

and Sv ∩ Ω ⊆ J .

Proof. Since J is 1-rectifiable with finite Hausdorff measure, for every j ∈ N there is
a covering of J , either finite or countable, with balls Bj

ρi,j
such that ρi,j ≤ 1/j and

2
∑
i

ρi,j ≤ H1(J) + 1.

Define vj := vχΩ\∪iB
j
ρi,j

, then vj ∈ BVloc(Ω) with

|Dvj|(A) ≤
ˆ
A\K

|∇v| + 2π∥v∥L∞(A)(H1(J) + 1) ,

for every open set A compactly contained in Ω. Moreover, by construction vj → v in
L1

loc(Ω), so that by the lower semicontinuity of the total variation v ∈ BVloc(Ω), and Sv ⊆ J
as v ∈ W 1,2

loc (Ω \ J). In turn, being J closed, this yields that Sv ∩ Ω ⊆ J , and that

|Dv|(A) =
ˆ
A\J

|∇v| + |Dv|(A ∩ J) =
ˆ
A

|∇v| +
ˆ
A∩Sv

|v+ − v−|dH1

≤
ˆ
A

|∇v| +
ˆ
A∩Sv

|v+ − v−|dH1

where in the second equality we have used that |Dv|(A ∩ J \ Sv) = 0. This clearly implies
that v ∈ SBVloc(Ω). □

From the latter lemma and the density lower bound, it is not difficult to derive that,
for bounded open sets and when the L∞ norm of the minimizer can be controlled a-priori,
minimizing over pairs (u,K) in the classical formulation or in the SBV formulation is
equivalent. A subtle point for our purposes is that this equivalence holds even if we impose
Dirichlet boundary conditions on a bounded set U which is sufficiently smooth.

We report next the contributions of De Giorgi, Carriero, and Leaci in [22, Theorem 1.1]
and [12, Remark 4.3].

Proposition B.4.2. Assume that λ ∈ [0, 1] and g ∈ L∞(U), with U open and bounded,
then
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(a) for every λ > 0 there exists u ∈ SBV ∩L∞(U) such that Ẽλ(u, U) = inf
SBV (U)

Ẽλ(·, U),
and

Eλ(u, Su ∩ U,U, g) = inf{Eλ(v, J, U, g) :
v ∈ W 1,2

loc (U \K), K ⊂ U closed, 1-rectifiable} .

(in particular, (u, Su ∩ U) is an absolute minimizer for Eλ).
(b) for every λ > 0, if (u,K), with u ∈ L∞(U), satisfies

Eλ(u,K, U, g) = inf{Eλ(v, J, U, g) :
v ∈ W 1,2

loc (U \K), K ⊂ U closed, 1-rectifiable} ,

then Ẽλ(u, U) = inf
SBV (U)

Ẽλ(·, U), and moreover K = Su ∩ U .
(c) for every λ ≥ 0 analogous conclusions as those in items (a) (and (b)) hold

for minimizers (in L∞) of Eλ(·, ·, U, g) (Ẽλ) on U subject to Dirichlet boundary
conditions, provided U has C1 boundary.

Proof. An elementary truncation argument yields that the L∞(U) norms of minimizing
sequences of Ẽλ are equi-bounded by ∥g∥∞. Next, the lower semicontinuity of the functional
Ẽλ in SBV and the compactness theorem of Ambrosio (cf. [5, Theorems 4.7 and 4.8]) yield
the existence of a minimizer u for Ẽλ on SBV (U). From item (a) in Corollary B.3.2 we
deduce that u ∈ W 1,2

loc (U\Su), in turn implying that u ∈ C1(U\Su). Indeed, u ∈ W 2,p
loc (U\Su)

for every p < ∞ and solves ∆u = λ(u − g) on each open subset U ′ ⊂⊂ U \ Su using
the outer variation equation (1.6.2) and elliptic regularity theory. Finally, item (a) in
Corollary B.3.2 and Lemma B.4.1 imply that (u, Su ∩ U) is a “classical” minimum for Eλ
with Ẽλ(u) = Eλ(u, Su ∩ U). This proves all the conclusions in (a).

For what item (b) is concerned, if ũ ∈ SBV (U) were such that Ẽλ(ũ;U) < Ẽλ(u, U),
then by item (a) we would conclude that

Eλ(ũ, Sũ ∩ U,U, g) = Ẽλ(ũ, U) < Ẽλ(u, U) ≤ Eλ(u,K, U, g) ,

where in the second inequality we have used Lemma B.4.1. This is a contradiction.
We show next that K = Su∩U . Recall that we already noticed that Su∩U ⊆ K. Clearly,

H1(K \ Su) = 0, since otherwise if H1(K \ Su) > 0, we would have Eλ(u, Su) < Eλ(u,K).
Thus, as Su is closed by definition, 1-rectifiable thanks to Corollary B.3.2, and u ∈ C1(U\Su),
arguing as in item (a) we would get a contradiction. Finally, assume that x ∈ K \ Su and
let r ∈ (0, dist(x, ∂U)) be such that Br(x) does not intersect Su. Then, we have

H1(K ∩Br(x)) ≤ H1(K \ Su) + H1(Su ∩Br(x)) = 0,

which is a contradiction because of the density lower bound for K in Theorem 2.1.3.
The proof of the claims in item (c) are completely analogous using item (b) in Corol-

lary B.3.2. □
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We establish next the analogous statement for absolute minimizers of Eλ. This property
will be used in the proof of Corollary B.6.1 below, which, in turn, is a crucial ingredient in
the proof of Theorem 2.2.3.

Theorem B.4.3. Assume (u,K) is an absolute minimizer of Eλ in some open set Ω,
with u ∈ L∞

loc(Ω). Then u ∈ SBVloc(Ω) and for every C1 domain U ⊂⊂ Ω with the property
that H1(K ∩∂U) = 0 and let v ∈ SBVloc(Ω) be a function such that v = u L2-a.e. on Ω \U ,
then ˆ

U

|∇v|2 + H1(Sv ∩ U) + λ

ˆ
U

|v − g|2 ≥ Eλ(u,K, U, g) .

Moreover, (K△Su) ∩ Ω = 0.

Proof. That u ∈ SBVloc(Ω) follows immediately from Lemma B.4.1. Assume now that
the inequality above fails. By Proposition B.4.2 we can find one such v which minimizes
the energy in the space of SBVloc(Ω) functions which coincide with u on L2-a.e. on Ω \ U .

It follows from item (b) in Corollary B.3.2 that H1((Sv \ Sv) ∩ U) = 0, while at the
same time v ∈ C1(U \ Sv) ∩ C0(U \ Sv). Indeed, u ∈ C1(Ω \ K) and by assumption
U ⊂⊂ Ω with H1(K ∩ ∂U) = 0, therefore the conclusions in Proposition B.4.2 hold. If we
let K ′ := (Sv ∩ U) ∪ (K ∩ (Ω \ U)) and u′ := v1U\K′ + u1Ω\(U∪K), we then conclude that
K ′ is closed and u′ is locally Lipschitz on Ω \K ′, while ∇u′ ∈ L2

loc(Ω \K ′). In particular,
the pair (u′, K ′) would contradict the minimizing property of (u,K).

The last property follows from Proposition B.4.2 for an invading sequence of domains
compactly contained in Ω and satisfying the assumptions in the statement. □

B.5. Proof of Corollary 2.1.4

Fix (u,K) as in the first part of the statement. The fact that u ∈ SBV and that
Su ⊂ K follows from Lemma B.4.1. The fact that K△Su = ∅ for absolute minimizers is
established in item (b) of Proposition B.4.2.

Eventually, let (u,K) be a (restricted) minimizer of Eλ with H1(K ∩U) = 0 in an open
set U ⊂⊂ Ω. Then H1(Su∩U) = 0, therefore u ∈ W 1,2

loc (U). Hence, u extends to a harmonic
function when λ = 0, resp. to a function in W 2,p

loc (U) when λ > 0, in view of (1.6.2) and
standard elliptic regularity theory.

B.6. Compactness of bounded minimizers through the SBV formulation

As it is customary in the literature which addresses the Mumford-Shah variational
problem using the “classical” formulation through pairs (u,K), the compactness statements
which are relevant to the purposes of this book could be proved using the “uniform
concentration property” of Dal Maso, Morel, and Solimini, see [13]. A simple corollary of
Theorem B.4.3 is the fact that, on any region where there is a suitable L∞ bound for the
sequence (uj, Kj) in Theorem 2.2.3, it converges in the SBV sense to a minimizer of E0
which at the same time is also a classical minimizer.
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Corollary B.6.1. Assume (uj, Kj) is a sequence as in Theorem 2.2.3, let K be the
(local) Hausdorff limit of Kj, u be the local W 1,2 limit of uj on the complement of K, and
let U be any bounded C2 open set satisfying the following properties:

(a) K ∩ ∂U is finite and the cardinality of Kj ∩ ∂U is uniformly bounded;

(b)
ˆ
∂U\K

|∇u|2 < ∞ and lim supj
ˆ
∂U\Kj

|∇uj|2 < ∞;

(c) ∥uj −mj∥∞ is uniformly bounded for some sequence of constants mj.
Then u is an SBV absolute minimizer of Ẽ0 in U with K ∩ U = Su ∩ U , and moreover
∇uj → ∇u strongly in L2(U), while H1(Kj ∩ U) → H1(K ∩ U).

Proof. We give the proof under the assumption that U is the disk B1, the general
case is a straightforward modification of the idea using a tubular neighborhood of ∂U .
First of all u is certainly an SBV function in U with Su ∩ U ⊂ K. Moreover, passing to
a subsequence we can assume, without loss of generality, that uj −mj converges to u in
L2(∂B1). Using a simple interpolation formula between the functions uj −mj and u on the
disk B1 \B1−ε it is possible to find closed sets Jj and functions wj ∈ W 1,2

loc (B1 \B1−ε) with
the properties that

lim sup
j

H1(Jj) + lim sup
j

ˆ
B1\B1−ε

|∇wj|2 ≤ Cε

and wj = uj on ∂B1 while wj = u + mj on ∂B1−ε. This is achieved using the explicit
formula

wj(x) = 1−|x|
ε

[
u
(
x

|x|

)
+mj

]
+ |x|−(1−ε)

ε
uj
(
x

|x|

)
and letting Jj be the union of the segments {λp : λ ∈ [1 − ε, 1]} where p ranges in the set
Sj := (K ∪Kj) ∩ ∂B1. Note indeed that:

(i) Jj is formed by finitely many segments of length ε, whose number is uniformly
bounded in j by assumption (a).

(ii) The Dirichlet energy of wj on B1 \ (B1−ε ∪ Jj) is estimated by
C0

ε

ˆ
∂B1

|uj − u|2 + C0ε

ˆ
∂B1\Sj

(|∇uj|2 + |∇u|2) ,

where C0 is a geometric constant. Note that the first term converges to 0 as j ↑ ∞,
while the second is bounded by Cε for a constant C independent of j by assumption
(b).

In order to handle the fidelity term, recall that ∥u∥∞ ≤ supj ∥uj−mj∥∞ ≤ C by assumption
(c). On the other hand, |mj| ≤ ∥uj∥∞ + ∥uj − mj∥∞ ≤ C

r
1/2
j

∥uj∥∞ + ∥uj − mj∥∞. Recall

that ∥uj∥∞ is uniformly bounded by the assumptions of Theorem 2.2.3. A simple rescaling
argument shows that uj is a minimizer of the functional

E0(·, ·, B1) + λjr
2
j

ˆ
B1

∣∣∣∣∣· − gj

r
1/2
j

∣∣∣∣∣
2

.
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However, given the above estimates, we immediately see that

λjr
2
j

ˆ
B1

∣∣∣∣∣wj − gj

r
1/2
j

∣∣∣∣∣
2

≤ Cλjrj

vanishes in the limit. In particular, we conclude that u must be an absolute minimum of
Ẽ0: a competitor ũ which gains energy (and does not increase the L∞ norm) would lead to
a competitor ũj for uj by setting ũj = wj on the corona B1 \B1−ε and ũj = ũ( ·

1−ε) in B1−ε.
Tuning the parameter ε appropriately would then show that ũj improves the energy Ẽλj

of
uj for a sufficiently large j, contradicting Theorem B.4.3.

This very argument also implies convergence of the energies Ẽλj
of uj to Ẽ0 of u, which

in turn, using the lower semicontinuity theorem of Ambrosio [5, Theorem 4.7], implies in
addition that

∇uj → ∇u in L2(B1)
and that

lim
j

H1(Suj
∩B1) = H1(Su ∩B1) . (B.6.1)

Theorem B.4.3 also implies that Kj = Suj
∩ U , so it remains to show that K = Su ∩ U .

However, we already noticed that Su ∩ U ⊆ K, so, given the density lower bound, H1((K \
Su) ∩B1) = 0. Assume that x ∈ K \ Su and let r̄ be such that Br̄(x) does not intersect Su.
By the density lower bound in Theorem B.3.1 we have

lim inf
j

H1(Suj
∩Br(x)) > 0

for every r < r̄. On the other hand, the arguments above apply with Br(x) in place of
B1 provided we choose r < r̄ appropriately. Indeed, for L1-a.e. r ∈ (0, dist(x, ∂B1)) the
set Br(x) will satisfy the assumptions (a), (b) and (c) of the lemma. But we then reach a
contradiction to (B.6.1). □



APPENDIX C

Useful results from elementary topology

This section collects some useful elementary results, mostly of topological nature, which
have been used extensively in the notes

Lemma C.0.1. Consider a closed set K ⊂ R2 and let J be a bounded connected component
of K. Then, for every δ > 0 there is a smooth Jordan curve γ such that

(a) dist (y, J) < δ for every y ∈ γ;
(b) γ ∩K = ∅;
(c) J is contained in the bounded connected component of R2 \ γ.

Lemma C.0.2. Let K ⊂ R2 be a closed connected set with locally finite Hausdorff
measure. Then K is arcwise connected. Moreover, for every x, y ∈ K there is an injective
Lipschitz path γ : [0, 1] → K such that γ(0) = x, γ(1) = y, and its length is minimal among
all paths in K connecting x and y.

Proof of Lemma C.0.1. Consider the open set Uη := {y : dist (y,K) < η} and let
Vη be the connected component of Uη which contains J . Clearly, each point y ∈ ∂Vη has
distance η from K. We next claim that for η sufficiently small V η is compact. Indeed first of
all observe that there is an open set Z such that J ⊂ Z and ∂Z ∩K = ∅. Next notice that,
since J is bounded, it is contained in some open ball BR(0). If we take Z ′ := Z ∩ BR(0),
then J ⊂ Z ′ and moreover ∂Z ′ ⊂ (BR(0) ∩ ∂Z) ∪ (Z ∩ ∂BR(0)), hence it does not intersect
K. Since ∂Z ′ is compact, it means that there is some positive constant c0 such that
dist (y,K) ≥ c0 for every y ∈ Z ′. In particular, for η sufficiently small, ∂Uη ∩ ∂Z ′ = ∅.
Thus Z ′ ∩ Uη is an open subset of Uη which contains J , implying that Vη ⊂ Z ′.

Next we claim that, if η is sufficiently small, then we have

Vη ⊂ {z : dist (z, J) < δ

2} . (C.0.1)

Indeed, if the latter were not true, then {V η}η>0 would be a nested family of connected
closed sets, each of which contains a point zδ ∈ K at distance at least δ

2 from J . Moreover,
for η sufficiently small the sets would be bounded and hence compact. Their intersection
K∞ would then be a compact connected subset of K and since it contains J , it must be J .
On the other hand, any accumulation point of {zδ}δ>0 would be an element of K∞ at a
positive distance from J , which is a contradiction.

Consider next η > 0 for which (C.0.1) holds and a standard family of mollifiers φε, the
function ψε := 1Vη ∗φε and the open sets Vε,t := {y : ψε(y) > t}. For ε sufficiently small we
have that:
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• J ⊂ Vε,t for every 1 > t ≥ 0;
• ∂Vε,t ∩K = ∅ for every 1 > t ≥ 1

4 ;
• Vε,t ⊂ {y : dist (y, J) < δ} for every t ≥ 1

4 .
Fix such a small ε use Sard’s theorem to select a t ∈ (1

4 , 1) such that Vε,t has smooth
boundary. Furthermore pick the connected component W of Vε,t which contains J . By
smoothness ∂W consists of a finite number of disjoint smooth Jordan curves and by classical
differential topology there is one which is uttermost, i.e. such that W is contained in the
topological disk bounded by it. The latter is a curve γ which satisfies all the requirements
of the lemma. □

Proof of Lemma C.0.2. Step 1 We prove the first claim of the lemma when K is
compact. In that case H1(K) is finite. Fix now δ > 0 and let C := {Bri

(xi)}i∈N be a
cover of K such that supi ri < δ and ∑i 2ri < H1(K) + δ. By compactness, we can assume,
without loss of generality that C is finite and we can also assume that Bri

(xi) ∩ K ≠ ∅
for all i. A chain of C is given by a choice of balls in C with radii {ri(j)}j∈{1,...N} where
the i(j) are all distinct and Bri(j) ∩ Bri(j+1) ̸= ∅. We say that BrK

(xK) and BrJ
(xJ) are

chain-connected if there is a chain such that K = i(1) and J = i(N). Assume now, without
loss of generality, that Br1(x1) contains x and let C ′ ⊂ C be the set of balls Bri

(xi) which
are chain connected to Br1(x1). C ′ must coincide with C otherwise the two open sets

U :=
⋃
i∈C ′

Bri
(xi) (C.0.2)

V :=
⋃

i∈C \C ′

Bri
(xi) (C.0.3)

would be disjoint and would disconnect K. Upon reindexing our balls we can thus assume
that {Bri

(xi)}i∈{1,...,N} is a chain such that x ∈ Br1(x1) and y ∈ BrN
(xN). Set z0 = x,

zN = y, and choose zi ∈ Bri
(xi) ∩K for every other i. Consider then the piecewise linear

curve consisting of joining the segments [zi, zi+1]. Since |zi+1 − zi| ≤ 2(ri+1 + ri), such curve
has length at most 2H1(K) + 2δ. Observe moreover that, since ri < δ for all i, each point
of the curve has distance at most 2δ from K.

Let now δ := 1/j and let γj : [0, 1] → R2 be a constant speed parametrization of the
latter curve. It turns out that Lip(γj) ≤ 2H1(K) + 2 and thus by Ascoli-Arzelà we can
extract a subsequence converging uniformly to a Lipschitz curve γ : [0, 1] → K such that
γ(0) = x and γ(1) = y.

Step 2 We next prove the first claim for K closed. We fix x, y ∈ K and we seek
for an arc connecting x and y in K. By Step 1 it suffices to show that for a sufficiently
large R > 0 the points x and y must be contained in the same connected component of
K ∩BR. Now, for each N ∈ N with N ≥ max{|x|, |y|} let KN be the connected component
of K ∩ BN which contains x and assume by contradiction that y ̸∈ KN for every N . We
set K̃ := ⋃

N KN . The latter set does not contain y: if we can show that it is at the same
time open and closed in K, we have contradicted the connectedness of K.

First of all observe that, by Step 1, KN ⊂ KN+1, which in turn implies that K̃ is open
in K. We next claim that:
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(S) for every fixed R > |x| + 1 there is N(R) > R such that KN ′ ∩BR = KN(R) ∩BR

for all N ′ > N(R).
This would imply that BR ∩ K̃ = BR ∩KN(R) is closed, in turn implying that K̃ is closed.

If (S) is false for some R, then we can find a monotone sequence Nk ≥ R such that
KNk+1 ∩BR is strictly larger than KNk

∩BR. In particular, there is a point xk+1 ∈ KNk+1 ∩BR

which is not contained in XNk
∩ BR. Let γk : [0, 1] → KNk+1 be a curve which connects

x to xk+1 in KNk+1 . Such curve cannot be contained in BR and cannot intersect KNk
,

otherwise xk+1 would belong to KNk
. Let now sk be the smallest positive number such that

|γk(sk)| = R. It then turns out that the arc γk+1([0, sk]) is contained in KNk+1 ∩BR, but it
has empty intersection with KNk

∩ BR. Since such arc has length at least 1 (recall that
|x| ≤ R − 1), we conclude

H1(Nk+1 ∩BR) ≥ H1(Nk ∩BR) + 1 .
Letting k ↑ ∞ we would conclude H1(K ∩BR) = ∞.

Step 3 To prove the last claim, fix x, y ∈ K. By Step 1 and 2 we know the existence of
a Lipschitz curve γ : [0, 1] → K joining x and y in K. Let L(γ) :=

´
|γ̇(t)| dt and assume

without loss of generality that it is parametrized at constant speed. Consider now the set
S of Lipschitz curves γ : [0, 1] → K joining x and y and parametrized at constant speed
L(γ). If L0 is the infimum of L(γ) for γ ∈ S , then there is indeed a curve γ̄ which attains
it: this follows easily from Ascoli-Arzelà and the fact that every Lipschitz curve can be
reparametrized to constant speed. γ̄ is easily seen to be injective, otherwise it could not be
a minimizer of the functional L. □





APPENDIX D

Proof of Theorem 2.2.3

With the tools in Appendix B at hand, the conclusions of Theorem 2.2.3 would be
immediate as soon as we had at our disposal some apriori L∞ bound. This would be the
case if, for instance, the complement of K were connected. However in many situations
this is certainly not the case. For this reason we include a detailed proof with the necessary
workarounds.

Proof of Theorem 2.2.3. Step 0 Assume (uj, Kj) is as in Theorem 2.2.3 and let
K be the local Hausdorff limit of the sequence Kj. Then

1
C

lim sup
j→∞

H1(Kj ∩Br(x)) ≤ H1(K ∩Br(x)) ≤ C lim inf
j→∞

H1(Kj ∩B2r(x)) (D.0.1)

for every ball Br(x) ⊂ R2, which is a direct consequence of the density lower bound.
Fix a positive δ ∈ (0, r] and consider any covering of disks {Brk

(xk)} of K ∩ Br(x)
with supk rk ≤ δ and xk ∈ K ∩ Br(x). By compactness extract a finite subcover and
using Vitali’s covering Lemma, let {Brℓ

(xℓ)} be a subfamily of pairwise disjoint disks such
that {B5rℓ

(xℓ)} is still a cover. Since the family is finite, for every j large enough we can
find yjℓ ∈ Kj ∩ Brℓ/2(xℓ). In particular, using the density lower bound (which under our
assumption holds with a uniform constant independent of j) we have

H1
δ(K ∩Br(x)) ≤ 10π

∑
ℓ

rℓ ≤ C
∑
ℓ

H1(Kj ∩Brℓ/2(yjℓ))

≤ CH1(Kj ∩B2r(x)) .
Since δ is arbitrary, this implies the right inequality in (D.0.1). Next, fix δ > 0 and let
{Ek} be a family of closed sets covering K ∩Br(x) such that∑

k

diam (Ek) ≤ H1(K ∩Br(x)) + δ .

Let rk := diam (Ek) and consider disks B2rk
(xk) containing Ek. By Hausdorff convergence,

for j large enough Kj ∩Br(x) ⊂ ⋃
ℓB2rℓ

(xℓ). We can thus estimate

H1(Kj ∩Br(x)) ≤
∑
ℓ

H1(Kj ∩Brk
(xk)) ≤ 4π

∑
k

rk ≤ CH1(K ∩Br(x)) + Cδ .

The arbitrariness of δ completes the proof.
Step 1 Our second step is to show that K is rectifiable and we first give the argument

for (uj, Kj) absolute minimizers. Assume that W ⊂⊂ U is an open set whose closure is a
closed topological disk with the property that ∂W ∩K = ∅. By a standard approximation
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theorem there is a second topological disk W ⊂ V ⊂⊂ U with ∂V ∩ K = ∅ and which
has smooth boundary. Then for a sufficiently large j we have as well that ∂V ∩ Kj = ∅.
Set mj := min∂V uj and Mj := max∂V uj and use the PDE ∆uj = λj(uj − gj) in a
neighborhood of ∂V (independent of j) to conclude that Mj − mj is bounded uniformly
independently of j. Moreover, by the maximum principle in Lemma 2.1.1 (b) it turns out
that min{−∥gj∥∞,mj} ≤ uj|V ≤ max{Mj, ∥gj∥∞}. In particular, uj − mj has a uniform
BV bound on V and, up to subsequences, converges to an SBV function ũ by the SBV
closure theorem [5, Theorem 4.7]. We can then use Corollary B.6.1 and conclude that
Sũ = K and coincides with Sũ up to an H1-null set, thus proving rectifiability.

We next argue that in fact all of K is rectifiable. Let K♯ be the union of the connected
components of K which are singletons. If y ∈ K♯, then there is a closed topological disk
D with smooth boundary and containing y in the interior and such that ∂D ∩ K = ∅
(cf. Lemma C.0.1). We can therefore apply the argument above to conclude that K♯ is
rectifiable. Consider now K \ K♯. Then every y ∈ K \ K♯ is contained in a nontrivial
connected component of K: since each such component has positive length, there are
countably distinct ones. As it is well known each connected closed set with finite Hausdorff
measure is rectifiable, this completes the proof of our claim (cf. [7, Theorem 4.4.7]).

In the case of restricted minimizers we consider again the situation in which W ⊂⊂ U is
an open set whose boundary is a closed topological disk with the property that ∂W ∩K = ∅.
Choose V as above and denote by N(j) the number of connected components of V ∩Kj . If
N̄ := lim infj N(j) < ∞, then K ∩ V consists of at most N̄ components and it is therefore
rectifiable. If limj N(j) = ∞, it is not difficult to see that we can apply the same argument
above, i.e. the SBV function ũ is a minimizer. The reason is that any SBV function ũ can
be approximated in the Mumford-Shah energy with an SBV function whose jump set is
closed and has a finite number of connected components, see for instance [13].

Step 2 We next wish to show that

lim inf
j→∞

H1(Kj ∩ A) ≥ H1(K ∩ A)

for every open set A. Consider the measures µj(E) := H1(Kj ∩ E), E Borel, and assume
that, up to subsequences, µj ⇀⋆ µ for some measure µ. Observe that, by Step 1,

C−1H1(K ∩ E) ≤ µ(E) ≤ CH1(K ∩ E) for every Borel E.

We thus have

µ(K ∩ E) =
ˆ
K∩E

θ(x)dH1(x)

for some Borel function θ taking values in [C−1, C]. Our claim is thus equivalent to θ(x) ≥ 1
for H1-a.e. x ∈ K. Assume not, since K is rectifiable we can choose a point x ∈ K where
the approximate tangent to K exists, the 1-dimensional density of K equals 1 and moreover

lim
ρ↓0

µ(Bρ(x))
2ρ = θ(x) < 1 .
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Using the density lower bounds for K, it then follows that the rescaled sets Kx,ρ := {y−x
ρ

:
y ∈ K} converge locally in the Hausdorff distance to a 1-dimensional subspace ℓ of R2.
Without loss of generality we can assume that ℓ = {(x1, 0) : x1 ∈ R}. In addition, by taking
a diagonal sequence, we can assume that K̃j := (Kj)x,ρj

has the following properties:

lim
j

H1(K̃j ∩B1) = 2θ(x) < 2 .

Introducing the appropriate rescalings of the functions uj we then have the following
situation:

• (ũj, K̃j) are minimizers of the Mumford-Shah functional in B2 with appropriate
fidelity functions g̃j and fidelity constants λ̃j;

• K̃j converges in the Hausdorff sense to the line {x2 = 0};
• H1(K̃j ∩B1) ≤ 2θ < 2 for some θ and for all j;
• λ̃j∥g̃j∥2

∞ → 0.
Observe that the following holds:

(R) if we replace the sequence ρj with any sequence ρ̃j such that 0 < lim infj ρj

ρ̃j
≤

lim supj
ρj

ρ̃j
< ∞, then all the properties above remain true.

Now, for each γ sufficiently small compared to 2−2θ, it is easy to see that there is ρ ∈ (γ, 1)
and a subsequence such that

lim
ℓ→∞

ˆ
∂Bρ

|∇ũjℓ |2 < ∞

lim
ℓ→∞

H0(K̃jℓ ∩ ∂Bρ) ≤ 2 .

On the other hand, by possibly changing the sequence ρj to a new sequence ρ̃j satisfying
(R) above, and after extracting a further subsequence, we can assume that ρ ∈ (1 − γ, 1).

Moreover, again by a Fubini argument, if γ is sufficiently small compared to 2 − 2θ, we
can find a t ∈ (−(1 − γ), 1 − γ) such that

lim
ℓ→∞

ˆ 1

−1
|∇ũj(t, x2)|2 dx2 < ∞

K̃jℓ ∩ {(t, x2) : |x2| ≤ 1} = ∅ ∀ℓ .

In particular, from this, it is again simple to see that Mℓ − mℓ := sup∂Bρ
ũjℓ − inf∂Bρ ũjℓ

is uniformly bounded in ℓ. We thus conclude that ũjℓ converges, up to subsequences, to
an SBV function ũ. Again the latter is a minimizer of the Mumford-Shah functional and
K ∩Bρ must be the closure of Jũ and

2(1 − γ) ≤ 2ρ = H1(K ∩Bρ) ≤ lim inf
ℓ→∞

H1(K̃jℓ ∩Bρ) ≤ 2θ .

Since γ is arbitrary, the latter is a contradiction.
In the case of restricted minimizers we again consider the number of connected compo-

nents N(j) of K̃j ∩Bρ. If the latter goes to infinity, we see that, as in the previous step, ũ
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is a minimizer of the Mumford-Shah functional. Otherwise there is a uniform upper bound
on the number of connected components and then the inequality

H1(K ∩Bρ) ≤ lim inf
ℓ→∞

H1(K̃j,ℓ ∩Bρ)

follows from the classical Golab’s theorem (cf. [7, Theorem 4.4.17]).
Step 3 Next observe that

lim
j→∞

ˆ
O

|∇uj|2 =
ˆ
O

|∇v|2

for every open set O ⊂⊂ U \ K. The latter in fact is a consequence of the Hausdorff
convergence of Kj to K and of standard regularity properties of harmonic functions.

Next, if we fix any open set O ⊂ U , choosing a sequence Oℓ ↑ O \K of open sets with
Oℓ ∩K = ∅ we easily concludeˆ

O\K
|∇v|2 = lim

ℓ→∞

ˆ
Oℓ\K

|∇v|2 ≤ lim inf
j→∞

ˆ
O

|∇uj|2 .

In particular, from the last inequality and Step 3, in order to conclude point (i) in the
statement of the theorem we just need to show

lim sup
j→∞

(ˆ
O\Kj

|∇uj|2 + H1(Kj ∩O)
)

≤
ˆ
O\K

|∇v|2 + H1(K ∩O)

under the assumption that H1(∂O ∩ K) = 0. Assume that the inequality fails and fix
a subsequence, not relabeled, for which the limsup on the left is a limit. After possibly
extracting a further subsequence, we can assume that the measures µj defined through

µj(E) :=
ˆ
E\Kj

|∇uj|2 + H1(Kj ∩ E)

converge weakly⋆ to some measure µ and so far we can conclude that

µ(E) =
ˆ
E\K

|∇v|2 if E is Borel and K ∩ E = ∅.

µ(E) ≥ H1(K ∩ E) if E is Borel and E ⊂ K

µ(F ) > H1(K ∩ F ) for some F ⊂ K Borel.
Note however that from the upper bound (1.4.1) we immediately conclude µ(Br(x)) ≤ 2πr
for every disk Br(x) ⊂ U . In particular

µ(E) =
ˆ
E\K

|∇v|2 +
ˆ
K∩E

θ(x) dH1(x) ,

for some density θ with 1 ≤ θ ≤ π, but which must be strictly larger than 1 on a set of
positive H1 measure. Arguing as in the previous step, we pick a Lebesgue point x ∈ K for
θ with respect to the measure H1 and we can assume this is a point where the approximate
tangent to the rectifiable set K exists. We can thus use the procedure in the previous step to
produce a new sequence (ũj, K̃j) in B3 with corresponding limits ṽ and K̃ and corresponding
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measures µ̃j converging to µ̃, with the additional properties that K̃ is a straight segment
and the corresponding density θ̃ is a constant strictly larger than 1. In order to simplify
our notation we drop the ,̃ and we assume that the segment is σ0 := {(x1, 0) : |x1| < 2}.
Next we choose a vanishing sequence εj with the property that

Kj ∩B2 ⊂ {|x2| ≤ εj} (D.0.2)
lim
j→∞

µj((aj, bj) × (−εj, εj)) = θ(b− a) (D.0.3)

for sequences aj → a and bj → b in [−2, 2] defined as follows: for each j choose two points
aj ∈ [−2,−3

2 ] and bj ∈ [3
2 , 2] with the property that, upon setting Lj := ([aj, aj + εj) ∪

(bj − εj, bj]) × [−1, 1], then

µj(Lj) ≤ Cεjµj([−2, 2] × [−1, 1]) ≤ 6Cεj , (D.0.4)

where C is a geometric constant independent of j. Construct then the following Lipschitz
deformation Φj : Qj → Qj, Qj := [aj, bj] × [−1, 1], defined as Φj(x1, x2) := (x1, φj(x1, x2))
where, upon setting fj(x1) := min{|x1 − aj|, |bj −x1|, εj}, the second component is given by

φj(x1, x2) =


0 if x ∈ Σj := {|x2| ≤ fj(x1)}
x2−fj(x1)
1−fj(x1) if x ∈ T+

j := {fj(x1) < x2 ≤ 1}
x2+fj(x1)
1−fj(x1) if x ∈ T−

j := {−1 ≤ x2 < −fj(x1)}
(D.0.5)

(for a similar construction see the definition of the map Φj in the proof of Lemma 3.2.3). Note
that Φj is the identity on ∂Qj . Moreover, if we introduce the regions Q±

j := Qj ∩{±x2 > 0},
then

• Φj is a bi-Lipschitz map of T±
j onto Q±

j , with a uniform bound of the Lipschitz
constant of both the map and its inverse;

• Φj maps the rectangles R±
j := [aj+εj, bj−εj ]×{εj < ±x2 ≤ 1} onto the rectangles

[aj + εj, bj − εj ] × {0 < ±x2 ≤ 1} and in these regions both Lip(Φj) and Lip(Φ−1
j )

are bounded by 1 + Cεj for a universal constant C;
• The restriction of Φj on Σj is the orthogonal projection onto the horizontal axis.

Let thus (vj, Jj) be the pair:
• Jj = ([aj, bj] × {0}) ∪ Φj(Kj \ Σj);
• vj = uj ◦ Φ−1

j on Qj \ Jj.
It easy to estimate the Mumford-Shah energy of (vj, Jj) in the rectangle Qj as

Ej :=
ˆ
Qj\Jj

|∇vj|2 + H1(Jj ∩Qj)

≤ (1 + Cεj)3
ˆ
R+

j ∪R−
j

|∇uj|2 + (bj − aj − 2εj) + Cµj(Lj)

≤ (1 + Cεj)3
ˆ
Qj\Kj

|∇uj|2 + (bj − aj − 2εj) + Cµj(Lj) .
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Then from (D.0.3), (D.0.4) and the convergences bj → b and aj → a, we easily conclude
that

lim
j→∞

(ˆ
Qj\Kj

|∇uj|2 + H1(Kj ∩Qj) − Ej

)
≥ (θ − 1)(b− a)

contradicting the minimality of (uj, Kj) for j large enough, recalling that θ > 1 and
considering that after rescaling the fidelity terms converge to 0 for our competitors.

Note that the competitor does not increase the number of connected components and
therefore the argument remains valid for restricted minimizers.

Step 4 We now prove property (ii) (and come back later to (2.2.5) to complete the
proof of (i)). Fix thus an open set O and a competitor (w, J) as in the statement and
observe that the competitor keeps the same property if we replace O with a larger open
set. In particular, without loss of generality, we can assume that O has a smooth boundary.
Consider now a tubular neighborhood of ∂O where the distance function to ∂O gives a
smooth foliation. By a Fubini-type argument, we can change slightly the set and assume
that for a subsequence, not relabeled, we have

sup
j

(ˆ
∂O\Kj

|∇uj|2 + H0(Kj ∩ ∂O)
)
< ∞

ˆ
∂O\K

|∇v|2 + H0(K ∩ ∂O) < ∞ .

Denote by Oδ the set Oδ := {x ∈ O : dist(x, ∂O) > δ}. We leave as an exercise to the
reader to show that for each δ sufficiently small there is a diffeomorphism Φδ of Oδ onto O
with the property that ∥DΦδ − Id∥C0 +∥DΦ−1

δ − Id∥C0 is infinitesimal as δ → 0. Enumerate
the connected components of U \ K which intersect ∂O and denote them by U1, . . . , UN .
We leave to the reader to prove the simple fact that, by our definition of the vi’s, there is a
choice of constants pik’s with the property that, if we define the map v̂j on each Ui to be
equal to vi + pik, then there is a suitable sequence δj ↓ 0 and a suitable interpolating pair
(zj, Jj) on O \Oδj

such that
• zj = uj on ∂O and Jj ∩ ∂O = Kj ∩ ∂O;
• zj = v̂j ◦ Φδj

on ∂Oδj
and Jj ∩ ∂Oδj

= Φ−1
δj

(∂O ∩ J);
•
´
O\Oδj

|∇zj|2 + H1(Jj ∩ (O \Oδj
)) → 0 as j ↑ ∞.

Now, the technical condition in item (ii) of Definition 2.2.2 on the competitor makes sure
that, if x, y ∈ ∂O belong to two distinct connected components Ωi and Ωk of U \K, then
x, y are in distinct connected components of U \ J . Therefore, given q ∈ U \ J , we define
ŵj(q) := w(q) + pik if the connected component of U \ J containing q intersects ∂O in Ωi,
while we define ŵj(q) := w(q) if the connected component of U \ J does not intersect ∂O.
We are now ready to define (zj, Jj) inside Oδj

as well: we put Jj ∩Oδj
:= Φ−1

δj
(J ∩O) and

we define zj := ŵj ◦ Φδj
. Observe now that, if the energy of (w, J) were smaller than that

of (v,K), then for sufficiently large j the energy of (zj, Jj) in O would be smaller than that
of (uj, Kj), which is a contradiction.
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In the case of restricted minimizers we split again into two situations, one in which
the number of connected components in O converges to infinity (in which case it can be
shown that the limit is an absolute minimizer) or the one in which the number of connected
components stays bounded. Since the number of connected components of the limit is at
most the limit of the number of connected components of the approximating sequence, the
limit is a restricted minimizer.

Step 5 We next prove (iii). To this aim we first draw some conclusions from (ii).
First of all consider an open set O ⊂⊂ U and assume there is a connected component
A of O \ K whose closure does not intersect ∂O. Now observe that, if we change the
value of the constant in A, any topological competitor for the new modified function is an
topological competitor for the old function, and viceversa. We can thus assume without
loss of generality that v is identically equal to 0 on any such connected component, and
ultimately on any bounded connected component of U \ K whose closure does not have
some portion of the boundary in common with ∂U .

Assume now that O intersects K in a finite number of points, that its boundary ∂O is
regular and that the restriction of v on each connected component of ∂O \K belongs to
W 1,2. Observe that all these properties imply the boundedness of v on ∂O \K. If O′ is a
connected component of O \K which is not compactly contained in O, v|O′ minimizes the
Dirichlet energy among all W 1,2 functions which agree with it on O′ ∩∂O. By the maximum
principle we conclude that v is bounded on every such O′. Since we have normalized v to
be 0 on the remaining ones (which do not “touch” ∂O), we conclude that v is bounded in
O. Ultimately, since for every open A ⊂⊂ U we can easily find a slightly larger O with all
the properties above, we conclude that v is locally bounded.

Consider now ΩA as in the statement of point (iii). It then turns out that, for every
A ⊂⊂ ΩA , the function uA is bounded and has bounded variation in A. Using analogous
reasonings, it is not difficult to see that, upon subtraction of a suitable constant cj, we
conclude as well that uj − cj is uniformly bounded and has uniform bound on its BV
norm. Moreover uj − cj converge to v − c for some suitable constant c. In particular the
conclusion of point (iii) that uA is a minimizer in A follows from the SBV existence theory
of minimizers, as already argued in Step 2.

In the case of restricted minimizers we argue similarly.
Step 6 In order to show (2.2.5), and hence complete the proof of (i), consider the

measures αj on P1R × R2 given byˆ
φ(π, x)dαj(π, x) :=

ˆ
Kj

φ(TxKj, x)dH1(x) ,

for every φ ∈ Cc(P1R × U). From now on we use the notation αj = δTxKj
⊗ H1 Kj.

The convergence in (2.2.5) is equivalent to say that αj converges weakly⋆ to the measure
α = δTxK ⊗ H1 K. First of all, up to subsequences we can assume that αj ⇀⋆ β for some
measure β. Secondly, by what proved so far β(P1R × E) = H1(K ∩ E). In particular,
by the classical theorem on disintegration of measures, we can write β = βx ⊗ H1 K,
where βx is a weakly⋆ measurable family of probability measures on P1R. Thus, (2.2.5) is
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equivalent to βx = δTxK for H1-a.e. x ∈ K. If the latter conclusion were false, we could
then find a point x0 where βx0 ̸= δTx0K

, the approximate tangent Tx0K to K at x0 exists,
and where the rescaled measures βx0,r defined byˆ

φ(π, y)dβx0,r(π, y) = 1
r

ˆ
φ
(
π,
y − x0

r

)
dβ(π, y)

converges to the product measure βx0 × H1 Tx0K. Observe moreover that, since

lim
r↓0

1
r

ˆ
Br(x)

|∇u|2 = 0 for H1-a.e. x ∈ K ,

we can assume to have selected x0 ∈ K such that the last condition holds, as well.
We can now extract a diagonal sequence and find a new sequence of minimizers (ũj, K̃j),

with the property that K̃j converges to the line ℓ = Tx0K uniformly on compact subsets,
but the corresponding measures α̃j = δTxK̃j

⊗H1 K̃j converge weakly⋆ to βx0 ×H1 ℓ, with
βx0 ̸= δℓ. Moreover, up to subsequences, (ũj, K̃j) converge to a global generalized minimizer
(ℓ, ũ, p12). Note that necessarily |∇ũ| = 0 vanishes identically. Therefore p12 = ±∞ (as it
follows from Theorem 2.4.1 that the global minimizer is a pure jump).

To fix ideas rotate the coordinates so that ℓ = {(t, 0) : t ∈ R}. For each t ∈ [−2, 2]
consider the segment σt := {(t, s) : −1 ≤ s ≤ 1} and define

Ej := {t ∈ [−2, 2] : σt ∩ K̃j ̸= ∅} .
Since for sufficiently large j the ũj will be harmonic on [−1, 1] × ([−2,−1

2 ] ∪ [1
2 , 2]) and by

Chebyshev there is always a t ∈ [−2, 2] \ Ej such thatˆ
σt

|∇uj|2 ≤ 1
4 − |Ej|

ˆ
[−2,2]2

|∇ũj|2 ,

we must necessarily have |Ej| → 4, otherwise we would conclude p12 = 0.
Next for each x ∈ K̃j let θ(x) be the angle between the lines ℓ and TxK̃j. Recall that,

by the generalised coarea formula [5, Theorem 2.93],

H1(K̃j ∩ [−2, 2]2) =
ˆ
Ej

∑
x∈σt∩K̃j

(cos θ(x))−1 dt , (D.0.6)

while by the conclusions in item (i)
lim
j→∞

H1(K̃j ∩ [−2, 2]2) = 4 . (D.0.7)

Define thus Fj := {t ∈ Ej : ♯(σt ∩ K̃j) = 1} and Gj := K̃j ∩ (Fj × [−2, 2]). Then from
(D.0.6) we have

H1(K̃j ∩ [−2, 2]2) ≥ |Fj| + H1(K̃j ∩ ([−2, 2]2 \Gj)) ≥ |Fj| + 2|Ej \ Fj| .

In particular, from (D.0.7) and |Ej| → 4, we conclude |Fj| → 4 and H1(K̃j ∩ ([−2, 2]2 \
Gj)) → 0. Next, for each δ > 0 consider the set

Hj := {x ∈ Gj : cos θ(x) < 1 − δ}
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and its projection πℓ(Hj) on ℓ. We then have from (D.0.6)

H1(K̃j ∩ [−2, 2]2) ≥ |Fj \ πℓ(Hj)| + H1(Hj) ≥ |Fj \ πℓ(Hj)| + 1
1 − δ

|πℓ(Hj)| .

In particular, we again conclude from (D.0.7) and |Fj| → 4, that |πℓ(Hj)| → 0 and
H1(Hj) → 0. Summarizing, for any positive η > 0 we have

lim
j→∞

H1({x ∈ K̃j ∩ [−2, 2]2 : |TxK̃j − ℓ| > η}) = 0 .

This however easily implies that δTxK̃j
⊗ H1 K̃j converges to δℓ × H1 ℓ on the open set

(−2, 2)2, contradicting our assumption that βx0 ̸= δℓ. □





APPENDIX E

Hirsch’s coarea inequality for Hölder maps

In this section we include an elementary observation by Jonas Hirsch, which leads to
a coarea inequality for Hölder maps. The argument is similar to that of [28, Theorem
2.10.25] and, in fact, what we need could be concluded directly from the very statement of
[28, Theorem 2.10.25] by selecting an appropriate target metric space Y in there. However
the interesting point is not so much in the argument, but rather in the realization that it is
indeed possible to have a coarea inequality for Hölder maps, a fact which we have not seen
anywhere in the literature.

Proposition E.0.1. Le f ∈ Cα(Rm) and A ⊂ Rm closed. For every β ≥ 0 there is
then a constant C(α, β) such thatˆ

Hβ(f−1({t}) ∩ A) dt ≤ C[f ]αHβ+α(A) . (E.0.1)

Proof. Without loss of generality we assume Hα+β(A) < ∞. Fix i ∈ N\{0} an almost
optimal 1

i
cover A with compact sets {Bi

j}, i.e.

diam (Bi
j) ≤ 1

i
(E.0.2)∑

j

(diam (Bi
j))α+β ≤ C(α, β)Hα+β

i−1 (A) + 1
i
. (E.0.3)

The functions
gij(y) := (diam (Bi

j))β1f(Bi
j)(y)

are nonnegative and measurable and so is
gi(y) :=

∑
j

gij(y) .

So ˆ
gi(y) dy =

∑
j

(diam (Bi
j))β|f(Bi

j)| ≤
∑
j

[f ]α(diam (Bi
j))α+β

≤ C[fα](Hα+β
i−1 (A) + 1

i
) .

Note however that
Hβ
i−1(A ∩ f−1({y}) ≤ gi(y) .

Since Hβ
i−1(A ∩ f−1({y}) ↑ Hβ(A ∩ f−1({y}) and Hα+β

i−1 (A) ↑ Hα+β(A) monotonically, the
desired inequality follows from letting i ↑ ∞. □
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