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abstract
Trapping and levitation of micrometric objects in strongly focused light beams

(optical tweezers) was introduced in the pioneering works by Arthur Ashkin in
the early 1970s, and the major impact of such techniques in a multidisciplinary
environment earned him the Nobel Prize in Physics 2018. In most applications,
optical trapping occurs in a strongly damping background.

The idea of operating in a high vacuum, thus reducing the interaction with the
environment, and bringing levitating and oscillating nano-particles into the quan-
tum regime was boosted about 10 years ago and has since developed into a fruitful
research topic. Optically levitating nanoparticles in high vacuum offer a quite
natural platform for the study of quantum mechanical features in all three spa-
tial dimensions and the achievement of quantum coherent control of their motion,
with applications ranging from quantum foundations and information processing
to directional quantum sensing.

In this thesis we have demonstrated the experimental realization of a quantum
platform based on a levitating silica nanoparticle coupled to a mode of a high
finesse optical cavity in a room temperature environment. The optical potential
experienced by the nano-particle is proportional to the light intensity. As a con-
sequence, its oscillatory motion is characterized by a lower frequency along the
tweezer propagation axis, where the characteristic length is the Rayleigh range,
with respect to the transverse plane, where the characteristic length is the beam
waist. The two-dimensional motion on the plane orthogonal to the tweezer axis
and the optical cavity mode define an optomechanical system with three degrees
of freedom.

With the protocol developed at the early stage of the doctoral work, based
on the transfer of a levitated particle between two optical tweezers, we have been
able to systematically levitate the particle in high vacuum on the axis of a high
Finesse optical cavity and observe strong non classical signatures in the motional
spectrum. Thanks to the coherent scattering setup, the oscillatory motion was
strongly coupled to the cavity field thus leading to the observation of the hybrid
optomechanical states, whose signature is a double avoided crossing between the
eigenfrequencies of the three-body system.

In high vacuum, where the mechanical oscillator is weakly coupled to the envi-
ronment, the energy flows coherently between the optomechanical components and
the collective excitations are described in terms of polaritonic modes. Here we have
explored the two dimensional motion of the nanoparticle close to its minimum un-
certainty state, characterised by peculiar non classical features. We have reached
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the mean phononic occupation number along the coldest motional direction below
unity, thus achieving the 1D ground state cooling. Rotating the polarization of the
trapping beam with respect to the cavity optical axis, we have strongly cooled the
2D motion achieving an effective occupancy below 1.5 along any motional direc-
tion. Moreover, the strongly broadened mechanical transfer function has allowed
the observation of the quantum asymmetry on a bandwidth larger than the cavity
linewidth, thus resolving the cavity mediated quantum back action noise, showing
a distinctive modification due to the cavity mediated interference between the two
mechanical oscillators.
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1 Introduction 1

1 Introduction
According to Newtonian laws, the motion of an object is fully predicted if its
motional state is known at a certain time. The classical theory describes a deter-
ministic world, where every phenomenon can be described with infinite precision.
Since the late 19th century, its application together with the classical theory of
electromegnetism (James Clerk Maxwell, 1865) failed to explain phenomena such
as the black body radiation (ultraviolet catastrophe), the atomic stability (the
Rutherford planetary atom) and cutting edge experimental observations as the
photoelectric effect observed by H.Hertz or the X-ray scattering pattern studied
by Compton. These discrepancies led to the fundation of the quantum theory
between 1925 and 1930. According to it, a consistent description of matter on the
microscopic scale is provided assuming that both radiation and matter could be
described as either a particle or a wave. Such counter intuitive interpretation of
the nature, formalized with the Heisenberg uncertainty principle, depicts a world
where the deterministic trajectories of objects give way to the deterministic evolu-
tion of a probability density function, that describes the state of the system. The
point is that the classical theory, which is a good approximation for the macro-
scopic world, fails on the atomic scales, where the quantum theory gives a good
understanding. However, the two theories have not been continuously merged at
present.

In this context, the field of optomechanics explores the nature at halfway be-
tween the macroscopic and microscopic scale. Here the radiation field interacts
with a macroscopic mechanical oscillator to control its motion at the level where
non classical effects are unveiled. In pioneering experiments [9, 10] it was shown
that the radiation pressure force could be exploited to either damp or excite the
mechanical motion of an harmonically suspended mirror. Thence, experiments
showing mechanical control over masses ranging from the gram to the zeptogram
have been shown. The engineering of these macroscopic mechanical oscillators has
played a fundamental role and technical advances have allowed to fabricate a large
variety of optomechanical devices. An ubiquitous issue that an experimentalist
faces with this kind of devices is related to how well they can be decoupled from
the external environment. In fact, quantum optomechanics is a branch of quan-
tum statistical mechanics: here the probabilistic interpretation of the mechanical
motion is not only related to the quantum properties of the oscillator, but also
to the - necessarily - incomplete knowledge of the environment state which can
be described only by means of statistical tools. As long as the oscillator is bound
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to some kind of mechanical support, cryogeny is required to limit the amount the
energy that enters the system from the environment, inducing decoherence in the
mechanical motion. Here comes into play optical levitation.

Trapping and levitation of micrometric objects in strongly focused light beams
(optical tweezers) was introduced in the pioneering works by Arthur Ashkin in the
early 1970s [2], and the major impact of such techniques in a multidisciplinary
environment earned him the Nobel Prize in Physics 2018. In most applications,
optical trapping occurs in a strongly damping background. The idea of operating
in a high vacuum, thus reducing the interaction with the environment, and bring-
ing levitating and oscillating nano-particles into the quantum regime was boosted
about 10 years ago [12, 4, 54, 35] and has since developed into a fruitful research
topic [43]. The optical potential experienced by the nano-particle is proportional
to the light intensity. As a consequence, its oscillatory motion is characterized
by a lower frequency along the tweezer propagation axis, where the characteris-
tic length is the Rayleigh range, with respect to the transverse plane, where the
characteristic length is the beam waist. Optically levitating nanoparticles in high
vacuum offer a quite natural platform for the study of quantum mechanical fea-
tures in all three spatial dimensions and the achievement of quantum coherent
control of their motion, with applications ranging from quantum foundations and
information processing to directional quantum sensing. The goal of cooling the
oscillations down to a mean phononic occupation number below unity has been
recently achieved: by means of electrostatic feedback cooling on charged particles
the motion was frozen along the tweezer propagation axis [37, 63], while cavity
cooling produced similar results for the oscillation along an axis in the transverse
plane [15]. Recently [48] the simultaneous ground-state cooling of two mechan-
ical modes of a levitated nanoparticle has been achieved in the weak coupling
regime. Cavity cooling for levitated particles, initially implemented with standard
optomechanical methods [32], has become much more efficient with the introduc-
tion of the coherent scattering technique [16, 75, 22] imported from atomic physics
experiments [71].

This thesis reports on the development of an experimental platform in high
vacuum composed of a levitated silica nanoparticle strongly coupled to the field
of a high finesse optical cavity in a room-temperature environment. The optome-
chanical cooling, combined with the high decoupling from the thermal bath, has
allowed the exploration of the two-dimensional quantum motion of the particle on
the plane orthogonal to the optical tweezer propagation axis. The strong optome-
chanical coupling raises collective excitations, the polaritonic modes, which may
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be used in the future as a tool for quantum information protocols.
The doctoral work is presented as follows:

Chapter 1 reviews the fundamental concepts of levitodynamics. Starting from
the basics of optical trapping and the description of the Brownian motion of
a levitated nanoparticle, the chapter continues with an introduction to cavity
optomechanics, in particular focusing on the differences between weak and
strong coupling regime and between the 1D and 2D mechanical systems.
Here is introduced and analysed the concept of polaritonic modes for our
optomechanical platform.

Chapter 2 reports on the transfer of a levitated nanoparticle between two op-
tical tweezers, an experimental protocol that we have developed to prepare
cavity optomechanics experiments. The core of the experimental setup -
experimental vacuum chamber and the optical tweezer - is described.

In the 3rd Chapter is described the configuration used to perform the measure-
ments. Here the properties of the optical cavity, of fundamental importance
for the experiment, are reported together with the full analysis of the de-
tection setup, necessary to resolve the mechanical motion at the quantum
level.

Chapter 4 reports on the experimental observation of the 1D and 2D quantum
motion of a levitated nanosphere. The full model that has been developed
during the thesis, essential to catch the features of the optomechanical sys-
tem, is described together with the experimental data. The main observa-
tions reported are:

• hybrid optomechanical states in the classical regime: we observe
collective optomechanical excitations that raise in the strong coupling
regime;

• vectorial polaritons: basically, the hybrid states in the quantum co-
herent regime, where the energy flows between the three oscillators (two
mechanical - one optical) within the decoherence time;

• 1D ground state cooling in the strong coupling regime and
quantum coherent regime: we report on the observation of the me-
chanical motion with mean phononic occupation number below unity.
Particular attention here is paid to the definition of phononic excitation
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and a novel and general approach is introduced to quantify the motional
energy;

• spatial asymmetry of the dipole scattering heating rate: we re-
solve the spatial anisotropy in the heating rate induced by the quantum
shot noise of the trapping laser field that is scattered by the particle;

• strong cooling of the motion in the plane: we report here on
the minimum motional energy achieved along the warmest motional
direction on the 2-D plane;

• quantum asymmetry in the strong coupling regime: the basic
concepts of sideband-asymmetry is here introduced for the weak op-
tomechanical coupling regime and then extended in the case of strong
coupling, whose peculiar features are both theoretically and experimen-
tally investigated.

The results shown in this thesis are reported in the following references:

• M.Calamai, A.Ranfagni, and F.Marin, Transfer of a levitating nanoparticle
between optical tweezers, AIP Advances 11, 025246 (2021);

• A. Ranfagni, P. Vezio, M. Calamai, A. Chowdhury, F.Marino, and F.Marin
Vectorial polaritons in the quantum motion of a levitated nanosphere, Na-
ture Physics 17, 1120-1124 (2021).

• A. Ranfagni, K. Børkje, F.Marino, and F.Marin, Two-dimensional quan-
tum motion of a levitated nanosphere, Phys. Rev. Research 4, 033051
(2022).
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2 Basics of cavity optomechanics with a levi-
tated nanoparticle
I present an introduction to the the basic concepts of levitodynamics

- optomechanics with levitated nanoparticles - starting from the opti-
cal trapping and continuing with the basics of cavity optomechanics.
With these tools available, will follow an introductory analysis on hy-
brid light-mechanical states that raise when the optomechanical interac-
tion is strong. In the end is introduced the concept of vectorial polariton
for our platform, which is the central topic of the experimental work
presented in this thesis.

2.1 Optical trapping
As observed in the pioneering work of Arthur Ashkin [2], a tightly focused light
beam enables the confinement of the motion of a dielectric particle. If the dimen-
sion of the particle is much smaller than the optical wavelength - the Rayleigh
regime - the physics is quite simple. Namely, the interaction of the dielectric with
the trapping field is fully described by the complex polarizability:

α (ω) = 3ε0V
ε (ω)− 1
ε (ω) + 2 ,

where ε0 is the vacuum dielectric constant, V is the particle volume and ε (ω) is
the frequency dependent permittivity. It can be shown [46] that the overall optical
force exerted on the particle is:

〈F〉 = Re [α]
4 ∇E2 + Im [α]

2 E2 (r)∇Φ (r) ,

where the electrical field is E (r) = E (r) eiΦ(r)n, with E the real amplitude. The
first term describes a conservative force, responsible for the trapping. The second
term, proportional to the imaginary part of the polarizability, describes the optical
absorption. As the conservative force is proportional to the light intensity, the
particle is pulled toward the optical focus, resulting in a spatial confinement.

For a Gaussian trapping beam and the particle close to intensity maximum (if
compared to the waist and the Rayleigh length of the beam) the optical potential



2.1 Optical trapping 6

Figure 1: A particle trapped in the vacuum chamber of our lab by means of optical
levitation.
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can be Taylor expanded. At the first order, the trapping force reads:

Fj = −mΩ2
jqj, qj ∈ x, y, z

i.e. it behaves as an harmonic restoring force. The resonance frequencies of the
three dimensional oscillator are defined in terms of both the trapping beam and
the particle properties. For a linearly polarized beam focused on a waist smaller
than the wavelength, the shape of the waist at the focus is elliptical [46], elongated
along the polarization axis. Defining z as the propagation axis of the beam and
Wx(y) = WtAx(y) the waist along the x (y) direction, with the Rayleigh length
ZR = πW 2

t /λ, the frequencies read:
Ωx

Ωy

Ωz

 =

√√√√ε0εcε2tw
2ρW 2

t


√

2/Ax√
2/Ay

λ/πWt


where εc = Re [α] /ε0V , ρ is the particle density, εtw =

√
4P

πε0cWxWy
with P the

optical power and c the light velocity.
Experimentally, to deliver a particle in the optical tweezer, we introduce dust

of nanoparticles into pure nitrogen in a chamber with a tightly focused laser beam.
The particles in the chamber undergo a Brownian motion because of their colli-
sions with the molecules of the surrounding gas. As a particle approaches the
beam waist, it loses energy because of the gas damping. If the thermal energy of
the Brownian motion is smaller than the optical trap depth, the particle can be
spatially confined. Figure (1) is a picture of a nanometric particle levitating in the
optical potential in the vacuum chamber of our experimental setup.

2.2 Motion of a levitated nanoparticle
In general the particle evolution in non coherent, because of its interaction with the
environment. Therefore the open dynamics of the oscillator, which can be modelled
via the Langevin equations formalism, has to be analysed. In the configuration
described above, the classical motion of the particle along any of the three spatial
directions defined by the tweezer reads:

q̈ + γq̇ +mΩ2q = F th/m, (2.1)
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where γ and F th are respectively the damping and the stochastic force due to gas
collisions. For an oscillator in thermal equilibrium with a bath at temperature T ,
the power spectral density (PSD) of the thermal force and the damping are related
by the fluctuation dissipation theorem:

SFF (ω) = 2γmkBT,

where kB is the Boltzmann constant.
The quantum description of the macroscopic system is given quantising the

oscillator degrees of freedom, i.e. setting q → q̂, where the usual commutation
rule between position and momentum

[q̂, p̂] = i~

holds.
The oscillator evolution is often represented in terms of the ladder operators,

defined as
q̂ = qzpf

(
b̂+ b̂†

)
,

where qzpf =
√
~/2mΩ represents the quantum of oscillation. The equation (2.1)

can be restated in its quantum version and, in the high Q limit (Ω/γ � 1) reads:

˙̂
b = (−iΩ− γ/2) b̂+√γb̂IN, (2.2)

with the input white thermal noise that obeys:〈
b̂IN (t) b̂†IN (t′)

〉
= (n̄+ 1) δ (t− t′) ,〈

b̂†IN (t) b̂IN (t′)
〉

= n̄δ (t− t′) ,

where n̄ is the mean phononic occupation number at thermal equilibrium for the
mode at frequency Ω defined by the Bose Einstein distribution:

n̄ = 1
e

~Ω
kBT − 1

.

The mechanical motion is often analysed in frequency space (when the system
has stable stationary solutions). The quantum PSD (see Appendix A) of the



2.3 Cavity Optomechanics 9

motion at the equilibrium reads:

Sqq (ω) = q2
zpfγ

[
|χm (ω)|2 n̄+ |χm (−ω)|2 (n̄+ 1)

]
,

where χm (ω) = 1/ [i (ω − Ω) + γ/2] is the mechanical susceptibility.
It is newsworthy that the quantum PSD is asymmetric in the frequency, in

contrast with the classical theory where the PSD of a real variable is always sym-
metric. The asymmetry here comes out from the fact that a quantum force is
acting on the oscillator, driving transitions between the Fock states with probabil-
ities depending upon the occupation number of the initial and final states. This
feature will be further described in chapter 5. For now, it is sufficient to underline
that in the classical, high temperature limit, (n̄+ 1) /n̄ → 1 and the asymmetry
vanishes.

In the end, the variance of the noisy motion is obtained integrating the PSD:〈
q2
〉

= q2
zpf (2n̄+ 1) . (2.3)

In the quantum theory, the minimum RMS displacement for the oscillator is qzpf ,
and in the high temperature limit the classical equipartition theorem is recovered:

mΩ2
〈
q2
〉

= kBT.

2.3 Cavity Optomechanics
As stated above, the dynamics of a levitated nanoparticle is equivalent (for small
displacements) to the Brownian motion of a three dimensional quantum harmonic
oscillator. The purpose of optomechanics consists in the full control of the mechan-
ical motion by means of optical forces. In cavity optomechanics such forces are
exerted via the momentum transfer between the cavity photons and the mechanical
oscillator.

The basic theory of cavity optomechanics has been extensively studied and
a complete overview is [3]. Here I’ll just report the main concepts that serve
as a preamble to the physics that has been explored during the thesis, which
will be introduced in the next sections and extensively discussed along with the
presentation of the results. Basically, the optomechanical dynamics is that of two
coupled oscillators:

H/~ = ωcâ
†
câc + Ωb̂†b̂− gâ†câc

(
b̂+ b̂†

)
,
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where b̂ (âc) is the ladder operator for the mechanical (optical) mode with fre-
quency Ω(ωc) and g is the optomechanical coupling strength. In the linearised
approximation, the cavity field is split into an average coherent ampltude < âc >

and a fluctuating term â, i.e. âc =< âc > +â (with < â >∈ Re WLOG). Express-
ing the Hamiltonian in the frame rotating 1 at the laser frequency and retaining
only the terms of the first order in the fluctuations:

H/~ = −∆â†â+ Ωb̂†b̂− g
(
â+ â†

) (
b̂+ b̂†

)
,

where ∆ = ωl − ωc is the difference between the laser (ωl) and the cavity mode
frequency. The evolution of the oscillator operators2 in the Heisenberg picture,
with the approximation of high quality oscillators, reads

˙̂a = (i∆− κ/2) â+ ig
(
b̂+ b̂†

)
+
√
κâIN, (2.4)

˙̂
b = (−iΩ− γ/2) b̂+ ig

(
â+ â†

)
+√γb̂IN, (2.5)

where γ(κ) is the mechanical (optical) damping, and b̂IN (âIN) is the noise term
that drives the Brownian motion. This system of coupled equations enclose the
whole physics of linear cavity optomechancs.

To find the stationary solutions, the equations can be readily solved in the
Fourier domain where they represent a system of first order equations:

ã (ω) = 1
κ/2− i (ω + ∆)

[
ig
(
b̃ (ω) + b̃† (ω)

)
+
√
κãIN

]
, (2.6)

b̃ (ω) = 1
γ/2− i (ω − Ω)

[
ig
(
ã (ω) + ã† (ω)

)
+√γb̃IN

]
. (2.7)

These equations can be interpreted together with the interaction energy

Hint = ~g
(
â+ â†

) (
b̂+ b̂†

)
, (2.8)

considering that for a high quality oscillator b̃ (ω) is peaked at Ω (see Eq.(2.7)),
while b̃† (ω) is peaked at −Ω. In the good cavity regime (κ � Ω) if ∆ = −Ω

1Moving to the frame rotating at the frequency ωR consists in the transformations: â →
âRe−iωRt and H− > HR−~ωRâ†RâR. For clarity the superscript R on the operators is dropped
in the text

2The evolution of an operator Ô, whose dynamic is set by the Hamiltonian Ĥ, is ˙̂
O = i

~

[
Ĥ, Ô

]
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the cavity filtering couples â to b̂ (see Eq.(2.6)), giving ã (Ω) ' 2ig
κ
b̃ (Ω). In this

case the resonant terms in the interaction energy Eq.(2.8) are those proportional
to
(
â†b̂+ âb̂†

)
. On the other hand, if ∆ = Ω, â† ∼ b̂ and the resonant interaction

terms are proportional to
(
â†b̂† + âb̂

)
.

In the first case, the optical and mechanical oscillators exchange energy through
the so called beam splitter interaction, which describes events where quanta of
energy flow between the two oscillators. It describes the physics of optical cooling:
the warm mechanical oscillator reaches the a stationary state at the equilibrium
with a cold optical mode which, namely, acts as a reservoir. This kind of interaction
is also suitable to set up quantum state transfer between light and mechanics.

The second term, called two mode squeezing interaction, is associated to events
where photons and phonons are generated/annihilated in pairs. The optical and
mechanical excitations could show, in principle, high correlations (squeezing). This
kind of interaction is at the heart of the parametric amplification.

In case of optical resonance, the two terms are equally enhanced and the inter-
action is optimal for optomechanical displacement detection.

Experimentally, one can choose between these configurations setting the optical
frequency.

2.3.1 Setting up the optomechanical interaction for a levitated nanopar-
ticle

The optomechanical interaction is determined by several experimental parameters.
It is always proportional to the coupling strength, g, whose value is determined by
the basic physical mechanisms that couple optical and mechanical fluctuations.

Namely, the optomechanical interaction energy for a levitated nanoparticle
raises from the coupling between the induced dipole, d, and the optical field that
polarizes the dielectric:

Hint = −d · E (r) ,

where here E is the total electrical field at the nanoparticle position. In the
Rayleigh approximation, d = αE and the interaction term reads:

Hint = −αE2 (r) .

In the experimental configuration the particle is trapped with an optical tweezer
and placed on the cavity optical axis, where the total field is the sum of the tweezer
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(Etw) and cavity (Ec) fields.

Hint = −α
(
E2

c + 2EcEtw + E2
tw

)
.

A detailed analysis of these terms is reported in [22].
In a nutshell, these field operators must be evaluated at the particle position

and only the terms containing the cavity field describe the cavity optomechanical
interaction. Their Taylor expansion for small mechanical displacements around
the equilibrium position gives different optomechanical terms:

• the Dispersive coupling raises from the term −αE2
c , which can be ex-

pressed as
Hd = −~δω (r) â†â,

where δω = δω0 |f (r)|2, with δω0 = αωcav
2Vcavε0

, f (r) the spatial profile of the
cavity mode with volume Vcav. The particle here acts as a dielectric per-
turbation of the cavity mode, shifting its resonance frequency by δω (r).
Wishing to assess a physical picture of the coupling mechanism, the particle
motion displaces the optical mode resonance, thus inducing fluctuations in
the intracavity field. These in return, act back on the particle via radiation
pressure.
Taylor expanding the energy for the particle placed on the cavity axis, the
linearised interaction Hamiltonian is:

Hd = ~gd
∂f 2

∂x2

(
â+ â†

) (
b̂+ b̂†

)
,

where gd = 〈âc〉δω0kxzpf is the dispersive coupling strength and b̂ the ladder
operator for the motion along the cavity axis (x). The coupling is propor-
tional to the gradient of the field intensity profile and only the motion along
the cavity axis is optomechanically coupled. The interaction is enhanced by
the number of cavity photons.

• The Coherent coupling raises from the term −αEcavEtw, that can be writ-
ten as:

Hcoh = −~gx
∂f

∂x

1
k

(
â+ â†

) (
b̂+ b̂†

)
+ igzf (r)

(
â− â†

) (
b̂z + b̂†z

)
where gx = Edkxzpf , with Ed = αεcεtw

2~ and εc =
√

~ωc
2ε0Vc

. Here the particle acts
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as an input mirror and the way that the photons scattered by the particle
are filtered by the cavity determines the optomechanical interaction. This
configuration has been recently exploited and introduced in optomechanics
experiments [16, 75]. In the coherent scattering configuration both the mo-
tion along the cavity axis (x) and orthogonal to it (z) are naturally coupled
to the field fluctuations. Since f (x) ∼ sin (kx), the coupling is maximum at
the node for the x motion and at the antinode for the z motion.
In our experimental configuration the particle is placed as close as possible to
the node, exploiting the coherent scattering coupling. It should be noted that
the average cavity photon number is nominally null. As such, technical limits
related to classical fluctuations of the laser that would optomechanically
couple to the particle motion are highly suppressed.

2.3.2 Noise terms driving the motion

As reported in Eq.(2.3) the particle motion never stops because of quantum con-
straints formalized in the Heisenberg uncertainty principle. The minimum rms
displacement for our nanoparticle is on the order of qzpf ∼ 10−12 m.

Actually, there are several experimental/fundamental constraints that prevent
the system from being so close to the quantum ground state. In fact, the particle
is mechanically and optically coupled to external reservoirs, respectively via col-
lisions and radiation pressure. The evolution of these external baths is random
and, as such, randomness enters the particle dynamics washing away the motional
coherence. In a quantum treatment, the action of a random force on the oscillator
can be characterized through the heating rate, i.e. the rate at which - on average
- the noise source contributes to the increase of the phononic occupation number
of the oscillator. In other words, the mean phononic occupancy at the equilibrium
is set by the ratio between the overall heating rate and the damping:

n̄eq = Γheat

Γdamp
.

Here are reported the fundamental noise sources that drive the mechanical motion
for the experimental configuration of our apparatus.

• Thermal motion: since the particle collides with the gas molecules of the
thermal environment, its dynamics can be modelled via the Langevin equa-
tions for open systems (Eq.(2.1)).
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As such, the thermal heating rate is

Γth = n̄thγ,

with n̄th the Bose-Einstein occupancy at the oscillator frequency and γ the
thermal damping. In the regime of interest (high vacuum, where the mean
free path of the gas molecules is much larger than the diameter of the
nanosphere), the expected collisional damping rate is proportional to the
pressure P in the experimental chamber, and is given by [19, 5]

γ = 8
√
π

3
R2

m

√
mgas

2kBT

(
2 + π

4

)
P (2.9)

where R is the radius of the nanosphere, m is its mass, and mgas is the mass
of the gas molecules.
So, the particle motion can be decoupled by the thermal environment in an
experimental platform realized in high vacuum.

• Dipole scattering: the trapping beam drives the Brownian motion of the
particle via its shot noise fluctuations. The calculation to evaluate the corre-
sponding heating rate [58] can be derived in the semiclassical approximation
starting from the momentum conservation for a scattering event between an
incident photon and the particle. Taking into account the angular probabil-
ity distribution for the dipole scattering pattern, it is possible to evaluate
the amount of energy delivered to each mechanical degree of freedom. In
particular, for a linearly polarized trapping beam, the heating rate for the
three oscillation directions is:

Γxdip
Γydip
Γzdip

 = ωPscatt

10mc2


2/Ωx

1/Ωy

7/Ωz

 , (2.10)

where Pscatt is the scattered power, the light is polarized along the y axis and
propagates along the z axis.

• Vacuum shot noise: the Langevin equation that governs the evolution of
the optical cavity oscillator is exactly like Eq.(2.2), but with the substitutions
b̂ → â, Ω → −∆ and γ → κ. As such, the optical oscillator undergoes a
Brownian motion, driven by the optical input term

√
κâIN. However, since
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the Bose - Einstein phononic occupation number at the optical frequencies
is negligible, the optical cavity mode can be assimilated to a high quality
factor harmonic oscillator that undergoes a Brownian motion at the zero
point fluctuations.
Because of the optomechanical interaction, the noisy vacuum field that res-
onates into the cavity exerts a random force on the mechanical oscillator via
radiation pressure.
It can be shown, solving the system of equations (2.6) and (2.7), that effective
input term acting on the mechanical oscillator is:

g
√
κχc (ω) ãIN (ω) ,

where χc = 1/ [κ/2− i (ω + ∆)] is the optical susceptibility. So, the heat-
ing depends on the optomechanical configuration (the detuning of the laser
beam, the coupling strength and the linewidth of the cavity). In the re-
solved sideband regime (Ω � κ), for the optimal detuning ∆ = −Ω the
corresponding heating rate is:

Γvac ' κg2

4Ω2 .

It is worth noting that this noise term is expected only in a quantum theory
of the electromagnetic field.

2.3.3 Cooling the mechanical motion

In the experimental configuration, the laser light is always set on the red side of
the cavity resonance. As stated above, this configuration leads to the beam splitter
interaction, where the mechanical motion loses energy via the cold optical channel.
Because of its importance for the understanding of experimental results, here is
reported an overview of this optomechanical interaction.

The analysis starts from the solution of the system of Langevin equations (2.4)
and (2.5), which leads to a modified mechanical susceptibility with Ω → Ω + δΩ
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Figure 2: Squared modulus of the mechanical susceptibility in the positive fre-
quency range for negligible mechanical damping, from the weak to the strong
coupling regime. For g/κ ∼ 0.05 (green curve) it has a Lorentzian shape. As
the coupling strength is increased, at g = κ/4 (red curve), the Lorentzian shape
is broader, with a FWHM of κ. For g = κ/2 (blue curve) the system is in the
strong coupling regime. The two peaks, broad κ each, are ∼ 2g far apart. The
three curves are evaluated for common experimental parameters Ω/2π = 130 kHz,
∆ = −Ω, κ/2π = 57 kHz.

and γ → γ + Γopt:

δΩ (ω) = g2
[

∆ + ω

(∆ + ω)2 + (κ/2)2 + ∆− ω
(∆− ω)2 + (κ/2)2

]
,

Γopt (ω) = g2
[

κ

(∆ + ω)2 + (κ/2)2 −
κ

(∆− ω)2 + (κ/2)2

]
. (2.11)

Care must be taken in the interpretation of the modified susceptibility. Since the
factors in 2.11 are frequency dependent, their intuitive interpretation as frequency
shift and optical damping is valid only within certain approximations. For exam-
ple, if the coupling strength goes to infinity, Γopt grows to infinity too. An a priori
interpretation of Γopt as optical damping is clearly unphysical, since the upper
limit to the mechanical losses is set by the optical losses (κ).

In Fig.(2) is reported the modulus squared of the modified mechanical suscepti-
bility for different coupling strength values. Long story short, as long as g � κ the
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optomechanical interaction is weak and the modified susceptibility resembles the
usual susceptibility of an oscillator with two Lorentzian peaks around ±(Ω + δΩ)
and FWHM equal to γ + Γopt. As g = κ/4, Γopt = κ and the system enters the so
called strong coupling regime. From there, increasing the coupling strength value,
the modified susceptibility is composed of two couples of peaks, at frequencies
±(Ω± g) and broad κ/2 (assuming the mechanical damping negligible).

After this brief introduction, we specialize now on the cooling performances in
the two regimes:

• Optomechanical cooling in the weak coupling regime: for g � κ, the
equations (2.11) can be approximated to:

δΩ = g2
[

∆ + Ω
(∆ + Ω)2 + (κ/2)2 + ∆− Ω

(∆− Ω)2 + (κ/2)2

]
,

Γopt = g2
[

κ

(∆ + Ω)2 + (κ/2)2 −
κ

(∆− Ω)2 + (κ/2)2

]
. (2.12)

In the resolved-sideband regime the optimal cooling configuration is for
∆ ' −Ω, where Γopt = 4g2/κ. The equation of motion for the mechan-
ics expressed in the Fourier domain reads:

b̃ (ω) = χeff
m b̃IN,

where b̃IN is the combination of the thermal, optical and dipole scatter-
ing contribution and χeff

m the mechanical effective susceptibility. Evaluating
the corresponding PSD and integrating on the frequency axis, gives a mean
phononic occupation number

n̄wc = Γoptn̄opt + γn̄th + Γdip

Γopt + γ
,

where n̄opt = (κ/4Ω)2.
Ideally, the particle thermal coupling in high vacuum is negligible and the
minimum occupation number achievable is:

n̄wc = n̄opt + Γdip/Γopt,

which for the experimental parameters would be n̄wc = 0.014+0.05
(

2π 30kHz
g

)2
.
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• Optomechanical cooling in the strong coupling regime : the core of
the experimental work is about the observation of the mechanical motion
with the optomechanical system in the strong coupling regime. When the
coupling rate g exceeds the damping (namely, 4g ≥ γ, κ), the optical and
mechanical modes can no longer be treated as separate entities and form
hybrid optomechanical states [24, 65, 53, 70, 64, 76, 49, 38] and only the
exact solutions of the optomechanical equations provide a proper description
of the system.
An introduction that catches the main concepts in reported in [3]. Basi-
cally, close to the optimal red detuning (∆ ' −Ω) the system can be easily
described within the rotating wave approximation (RWA). As such, the equa-
tions of motion simplify and the optomechanical system can be described by
a 2 X 2 - rather than 4 X 4 - matrix: ˙̂a

˙̂
b

 =
(
i∆− κ/2 −g
−g −iΩ− γ/2

)(
â

b̂

)

The square matrix (usually defined as drift matrix) encodes the dynamical
properties of the system: its eigenvectors correspond to the normal modes
and the real (imaginary) part of the eigenvalues represent the corresponding
damping (frequency)

λ± = Ω− iκ/2±
√
g2 − (κ/4)2,

where the mechanical damping contribution is supposed negligible for the
sake of simplicity.
Now, as long as g < κ/4 the square root is imaginary and the two eigenvectors
are degenerate but with different damping terms. It will be shown that the
two eigenvectors are either optical or mechanical. On the other hand, as
g > κ/4, the square root displaces the two eigenfrequencies and the optical
and mechanical components mix in the eigenvectors. The system enters the
strong coupling regime and hybrid optomechanical excitations raise.
It is worth noting that, unlike in the weak coupling regime, here a mechanical
oscillator cannot be defined: the mechanical spectrum shows two broad peaks
which correspond to the projection along the motional axis of the two normal
modes of the optomechanical space.
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Wishing to compare the mechanical cooling performance in the strong cou-
pling regime with the results of the weak coupling, it should be clearly stated
how the mechanical excitation in quantified: a definition of a mean phononic
occupancy requires a definition of a frequency which, here, is not available.
This point, that shouldn’t be overlooked for a proper analysis and interpre-
tation of the system, leads to small discrepancies with the results reported in
literature [38], where the mechanical excitation is quantified in terms of the
phononic occupation. A precise analysis of the mechanical excitation defini-
tion is given later and here we report the standard results for the minimum
occupation in the strong coupling regime (for negligible thermal coupling):

n̄min = n̄wc + Γdip/κ+ 2n̄wc (2g/κ)2 .

In the weak coupling regime the minimum occupation number decreases as
the coupling strength increases. Here, on the contrary, the cooling is less
efficient. In fact, the optical damping saturates to the value set by the
optical losses, and a further increase of the coupling leads to a higher cavity
mediated back action.

These are the main concepts regarding the optomechanical cooling performances.
However, little insight is gained about the dynamical description of the system,
which is encoded in the eigenvalue/eigenvector structure of the complete Drift
matrix of the system, that is analysed in Fig.(3).

In the upper panel is reported the trend of the eigenfrequencies of the system for
typical parameters (Ω/2π = 130 kHz, κ/2π = 57 kHz and negligible mechanical
damping) as the laser frequency is swept on the red side of the cavity resonance.
In the weak coupling regime, g/κ ' 0.05, the two branches (green curves) cross at
∆ = −Ω and are almost two straight lines with the bare optical and mechanical
frequency values. Increasing the coupling strength to g = κ/4, the two branches (in
red) show the optomechanical shift for ∆ ' −Ω. In the strong coupling regime,
for g = κ/2, the system shows an avoided crossing (blue branches) reminiscent
of what is expected for the coupled system illustrated by the Jaynes-Cummings
Hamiltonian [30].

The lower panel shows the mechanical (dashed line) and optical (solid line)
energy contribution to the eigenvectors for the frequency branches plotted with
dark hue in the upper panel.

In the weak coupling regime, the selected branch is mainly mechanical and a
little increase of the optical component is visible close to ∆ ' −Ω.
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Figure 3: Upper panel: eigenfrequencies of the optomechanical system composed
of a mechanical oscillator (with a frequency of 130 kHz) coupled to an optical
oscillator (with optical losses κ = 2π 57 kHz) as a function of the detuning. The
green branches are evaluated for g ' 0.05κ, in the weak coupling regime. The
red curves at the threshold value of g = κ/4 and the blue in the strong coupling
regime, for g = κ/2. Lower panel: distribution of energy between the optical (solid
line) and mechanical (dashed line) component in the eigenmodes.
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At the threshold value between the strong and the weak coupling regime (g =
κ/4), the eigenvector is mainly mechanical when the optical oscillator is far from
the mechanical resonance. As the detuning gets close to −Ω, the optical and
mechanical components equally contribute to the eigenmode.

In the end, in the strong coupling regime, the avoided crossing leads to the swap
in the components of the eigenvectors: when the optical field is far red detuned
the mode is mainly mechanical. When the detuning is close to the mechanical
frequency the energy, again, is equally split between the optical and the mechanical
component and the excitations are hybrid optomechanical states [24, 65, 53, 70,
64, 76, 49, 38]. When the laser light gets closer to the optical resonance, the
eigenmode turns optical.

The behaviour of the eigenvectors for the light coloured branches, which is not
reported in the plots, is specular.

2.3.4 Cavity optomechanics with a 2D mechanical oscillator

In our experiment the particle is placed along the cavity axis on the node of the
standing wave, exploiting the coherent scattering configuration. Only the dynam-
ics that occurs on the plane orthogonal to the tweezer axis is optomechanically
coupled.

The motion can be decomposed into two independent mechanical modes os-
cillating along perpendicular directions defined by the linear polarization of the
tweezer field.

For the particle close to the cavity node and an angle θ between the tweezer
polarization and the cavity optical axis, the optomechanical couplings for the x
and y motion reads:

gx = Edk sin2 θxzpf ,

gy = Edk sin θ cos θyzpf .

The Hamiltonian of the isolated system is:

H/~ = −∆â†â+ Ωxb̂
†
xb̂x + Ωy b̂

†
y b̂y +

(
â† + â

) [
gx
(
b̂†x + b̂x

)
+ gy

(
b̂†y + b̂y

)]
.

The complete solutions that derive from this Hamiltonian, adding the dissipative
terms in the Langevin equations, fully describe the system. However, following
this path would give little insights at this stage.

Wishing to have a qualitative picture of the physics, it results useful the study
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Figure 4: Scheme of the experimental system. A silica nanosphere levitates on the
optical potential created by the light of an optical tweezer, propagating along the
Z axis, with the electric field along the Y axis. The nanosphere is positioned on the
axis of an optical cavity (which defines the direction XC), in correspondence of a
node of the field of a cavity mode. Graphic: coupling strength as a function of the
polarization angle for the x (solid line) and y (dashed line) for strong (dark hue)
and weak (light hue) coupling. The upper horizontal line marks the κ/4 threshold
for the 1D strong coupling regime. The lower horizontal line is the threshold to
enter the 2D strong coupling regime when gx ∼ gy.
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of the system in the frame defined by the cavity axis, i.e.:(
xc

yc

)
=
(

sin θ cos θ
− cos θ sin θ

)(
x

y

)
.

The particle motion is decomposed in its xc (yc) component along (orthogonal to)
the cavity axis, that is conventionally called the geometrical bright mode, GBM
(dark mode, GDM). The Hamiltonian expressed in terms of the GBM and GDM
modes is :

H/~ = −∆â†â+ Ωbb̂
†
bb̂b + Ωdb̂

†
db̂d + gb

(
â† + â

) (
b̂†b + b̂b

)
+ gbd

(
b̂†b + b̂b

) (
b̂†d + b̂d

)
,

with the frequencies defined as [69]:

Ω2
b = Ω2

x sin2 θ + Ω2
y cos2 θ, (2.13)

Ω2
d = Ω2

x cos2 θ + Ω2
y sin2 θ, (2.14)

and the coupling strength values:

gb = gx

√
Ωx

Ωb
sin θ + gy

√
Ωy

Ωb
cos θ. (2.15)

gbd =
sin θ cos θ

(
Ω2
y − Ω2

x

)
2
√

ΩbΩd
. (2.16)

The GBM mode couples directly to the cavity field, while the GDM is only coupled
to the GBM. It is noteworthy that if the two bare mechanical frequencies are
degenerate, the GDM is totally decoupled from the system and the GDM/GBM
structure describes the mechanical components of the system eigenvectors. On
the other hand, if the mechanical frequencies are different, the GDM and GBM
mix in the eigenvectors of the system. Conventionally, the eigenvectors with the
mechanical component of the motion primarily along the cavity axis is called bright
mode (BM), and the other is defined as the dark mode (DM).

It should be emphasized that while the GBM directly cools down via a red
detuned laser field, the GDM sympathetically cools down through its interaction
with the cold GBM (that in turn heats up).

With these two descriptions - the tweezer and the cavity system - it is useful
to point out as a rule of thumb where they’re preferentially used:

• Two non-degenerate oscillators in the very weak optomechanical
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coupling ∨ in the strong coupling but with the tweezer radiation
far from resonance: the motion in the transverse plane is better described
in the framework defined by the tweezer. However, that’s not true when
the cavity mediated fluctuations couple the two oscillator. Owing to the
optical spring effect, two non degenerate oscillators might be shifted towards
degeneracy and become correlated even for weak optomechanical coupling
[68, 69]. In this case, the system can be conveniently represented in terms
of the GBM/GDM structure in the cavity reference. [20, 39, 59].

• Detuning close to the mechanical frequencies ∧ strong coupling :
now, the optomechanical coupling is more important than the frequency dif-
ference between the modes in determining the system’s dynamical behaviour,
and it is more appropriate to use the cavity axes as framework for describing
the 2D motion.

To get a better understanding of the dynamics of the system, the eigenval-
ues/eigenvectors structure here is analysed as a function of the tilt angle θ. In
Fig.(5), panels b),c) and d), is reported the amount of energy for the optical compo-
nent (solid line) and the mechanical component along/orthogonal to (dashed/dot-
dashed line) the cavity axis for the three eigenvectors of the system as a function
of the angle between tweezer linear polarization and the cavity axis. Panel a)
reports on the corresponding eigenfrequencies of the system. The simulation is
evaluated for typical experimental parameters: the two mechanical frequencies of
120 kHz and 130 kHz and the optical mode of 125 kHz, with a decay rate of
57 kHz. The dark coloured curves represent the system for a maximal coupling
strength

√
g2
x + g2

y ∼ 2π 30kHz, while the light coloured curves are evaluated for√
g2
x + g2

y ∼ 2π 3 kHz. The dependence of the coupling strength on the polarization
axes is plotted in Fig.(4).

In the low coupling case the system is always in the weak coupling regime and
the interpretation of the dynamics is quite simple. In fact, the frequencies of the
system show little dependence on the angle and the eigenvectors are either optical
or mechanical. As stated before, the preferred framework to describe the plots here
would be that defined on the tweezer polarization. As such, since the plots here
are referred to the cavity framework, the mechanical eigenvectors simply swap - as
the angle goes from 0◦ to 90◦ - according to the projection of the tweezer defined
modes along the cavity-defined axes (panels c) and b)).

On the other hand, in the high coupling configuration, the system passes across
three different regimes.
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For a tilt angle between 0◦ and ∼ 35◦ the optomechanical system is in the
weak coupling: the eigenfrequencies in the upper panel are nearly constant at
the beginning and start shifting appreciably from θ ∼ 25◦. In this region the
description fits with the one of the low coupling configuration (and the curves
overlap indeed).

Between ∼ 35◦ and ∼ 70◦ the system enters the 2 dimensional strong coupling:
the eigenfrequency curves as a function of the detuning would show a double
avoided crossing. It is worth noting that threshold for the two dimensional strong
coupling is less stringent than the κ/4 value for the 1D mechanical system, as will
be shown in the next section. Here we see the formation of the bright modes (dark
blue and dark green curves, panel a)) and dark mode (dark red curve, panel a))
structure. The hybrid modes are roughly half optical and half mechanical, with
the mechanical excitation along the cavity axis that is mainly coupled to the cavity
field (i.e. mainly contributes to the bright modes eigenvectors, as shown in panels
b) and d)). On the contrary, the dark eigenmode is mainly composed of the motion
orthogonal to the cavity axis, with a small optical component. Here it’s clear why
the cavity-based coordinate system is preferred to describe the system dynamics,
since the mechanical component of the bright modes (dark mode) is roughly the
GBM (GDM).

In the end, for an angle close to 90◦, only the x motion is in the strong coupling
regime. The eigenvector previously associated to the dark mode is composed of the
mechanical excitation along the tweezer polarization axis that is weakly coupled
to the cavity field. The mechanical component of the bright mode here is mainly
the x motion.

2.3.5 From hybrid optomechanical states to polaritonic modes

Starting from the basics of cavity optomechanics, it has been introduced the
physics of the strong coupling regime for a three partite system composed of two
mechanical oscillators and one optical.

However, few words have been spent about the potential application of this
experimental platform as a tool for quantum experiments.

The strong coupling between photons and bosonic excitations in matter pro-
duces hybrid quasi-particle states known as polaritons [67, 27, 26]. It has been
observed in quantum electrodynamics experiments based on atoms [66, 14], ions
[45], excitons [74, 52, 77], spin ensembles [28, 61] and superconducting qubits [72].

While these systems are intrinsically quantum and the strong coupling allows
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a) b)

c) d)

Figure 5: Panel a): eigenfrequencies of the system composed of two mechanical
oscillators (with frequencies 130 kHz and 120 kHz) coupled to an optical oscillator
(of frequency 125 kHz) for a maximal coupling strength of 30 kHz(dark coloured
lines) and 3 kHz (light coloured lines) as a function of the angle between the
polarization axis of the optical tweezer and the cavity axis. Panels b),c) and
d): distribution of energy between the three oscillators within each normal mode,
related respectively to the green, red and blue curve of panel a). The solid line is
for the optical excitation, while the dashed (dot dashed) line is for the mechanical
motion along (orthogonal to) the cavity axis.
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Figure 6: Free evolution of the optomechanical excitations for the three partite
optomechanical system. At time t = 0 the amplitude of the three oscillators (â
for the optical, b̂ and ĉ for the two mechanical) is set equal to 1. Upper panel:
evolution of the optical amplitude (â) in the rotating frame. As the system evolves,
the optical excitation (red line) is replaced by the two mechanical excitations
(green and blue lines, that overlap) at time t̄ = π/2

√
2g. After a time t = 2t̄

the optical oscillator goes back to the initial state. Lower panel: evolution of
the mechanical amplitude (b̂) in the rotating frame. Here, at time t̄, the optical
excitation component reaches its maximum. At time t = 2t̄ the two mechanical
excitations swap their state. The evolution of the mechanical amplitude ĉ, which
is not reported here, is specular to the evolution of b̂.
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for quantum state transfer between the system components, in our platform the
evidence of hybrid optomechanical state doesn’t necessarily imply quantumness,
i.e. the avoided crossing raises even in the classical regime.

In a nutshell, the hybrid states can be called polaritonic modes only if the Rabi
oscillation can set up.

That said, here a pedagogic introduction to the 2-D vectorial polariton is given
by solving the dynamics for the isolated system of the coupled oscillators, similarly
to the approach in [8]. In the simplest case of equal optical and mechanical fre-
quencies and the optomechanical interaction equally split between the oscillators,
the equation of motion is (in the RWA):

ẋ = −i


Ω −g 0
−g Ω −g
0 −g Ω

x,
where xT =

(
b̂, â, ĉ

)
, with b̂ and ĉ for the mechanical modes, and â for the optical.

The eigenvalues and eigenvectors of the matrix are
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The first eigenstate is composed only by mechanical excitations and represents
the dark mode, which is decoupled from the optical mode. The other two modes
represent mixed states, the bright modes, in which optical and mechanical degrees
of freedom hybridize. In this particular configuration we see that the energy is
equally distributed between the optical and the mechanical excitations in each
bright mode, and the overall mechanical excitation is equally split between the
two mechanical oscillators.

Rotating back to the original basis we find:
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where xR is the vector expressed in the frame rotating a the angular frequency
Ω. The solutions are plotted in Fig.(6). We clearly see that the three oscillators
exchange their excitations at a rate set by

√
2g. Namely, as

√
2gt̄ = π/2, the
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optical excitation is replaced by the mechanical excitation, while for the mechanical
oscillator the optical excitation reaches the maximum.

Now follows a brief review of the optomechanical figure of merits, useful to
introduce the vectorial polaritons:

• the mechanical oscillators (b̂,ĉ) exchange energy with the optical oscillator
(â) at a rate proportional to the coupling strength g;

• the energy decays from the mechanical system into the thermal bath at a
rate γ;

• the excitations driven by the random external force (combination of the noise
terms of Sec.2.3.2) enter the mechanical system at a rate proportional to Γdec

(precisely half an excitation, ~Ω/2 enters the system at a rate 2Γdec and gives
a random kick to mechanical oscillator);

• for the optical mode, the energy decay rate (κ) equals the decoherence rate,
since the phononic occupation number at the optical frequency is null. In the
time domain, 1/κ is the average time that a photon spends into the cavity
before leaving it.

Each mechanical oscillator is coupled to a thermal bath at temperature T. Now,
the dynamics predicted by the equation (2.17) is valid as long as the dissipation
and decoherence mechanisms are not relevant.

If the oscillators swap their states within the optical decay time (only optical,
in a ultra high vacuum where the mechanical coupling vanishes), i.e. t̄κ < 2π -
which means g > κ/4

√
2 - the system enters the so called strong coupling regime.

A more stringent condition is the Quantum coherent regime, in which the
decoherence mechanisms are slow with respect to the swapping time 4

√
2g >

2Γdec, κ.
It is worth noting that the rate at which the energy flows between the oscillators

of the optomechanical system strongly depends upon the configuration. For a
system composed of two degenerate coupled oscillators the energy flows at a rate
of g (rather than

√
2g) between the oscillators. In this way, the condition for

reaching the strong coupling regime is less stringent for a three partite system.
The rate of energy flow depends, moreover, on the frequencies of the oscillators

involved. In practice, if two interacting oscillators have different bare frequen-
cies, the slowest terms in the interaction energy rotate at the frequency difference
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δΩ. These terms average to zero on a time greater than δΩ−1. In practice, the
interaction term vanishes for δΩ� κ, γ.

To conclude, we point out that in most quantum electrodynamics and optome-
chanical systems polaritons are considered as scalar bosons. We remark indeed
that here the two mechanical modes represent the orthogonal components of the
particle motion. Their linear superposition has therefore a clear physical meaning,
representing a position vector that can be associated to a physical vibration di-
rection on a plane [68] thus conferring a peculiar vectorial nature to the polariton
field.
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3 Preparing the optomechanical experiment
To implement cavity optomechanics experiments, it is necessary to

place the levitating particle into the region defined by a field mode of a
high finesse optical cavity with sub-micrometric precision. The position
must be stably and accurately maintained, avoiding excess mechanical
and acoustic vibrations. A prerequisite is loading the dipole trap (opti-
cal tweezer) without spoiling the cavity mirrors, something that easily
occurs due to particle deposition on the surface of mirrors. Finally,
high vacuum conditions must be achieved in reasonable time, main-
taining stable conditions. Even this latter procedure is conditioned by
the relatively high pressure necessary for the initial trapping stage and
often by the presence of solvents used for injecting the particles in the
chamber through a nebulizer. A clean and reproducible method to pre-
pare a levitating nanoparticle for cavity optomechanical experiments is
not straightforward.

3.1 Overview
A possibility is to load the particle on the optical tweezer in a first chamber and
then transfer it to a cleaner environment containing the optical cavity and the
positioner. A movable optical trap is described in [40]. The trap is loaded in the
first chamber using a nebulizer, then the whole tweezer, mounted on micrometric
positioners in an extensible arm, is moved to the second chamber, and the particle
is delivered to the stationary wave of an optical cavity. To stabilize the parti-
cle during the transfer, a cooling scheme acting on the tweezer optical power is
used. A different method to transfer a levitating particle between different vac-
uum chambers is described in [23]. A standing wave is created inside a hollow
fiber connecting the two chambers by means of counter-propagating laser beams.
The particle is trapped on an anti-node of the standing wave and then moved by
slightly shifting the frequencies of the two beams. The collection of the particle in
the second chamber has not yet been reported.

Here [11], similar to [40], the particle is trapped in the first chamber by a
tweezer placed on a movable arm and then translated into the experimental cham-
ber containing the optical cavity. It is then transferred to the second optical
trap that is mounted inside the second chamber on nano-positioners 3. This sec-

3Check out the video of the protocol: https://youtu.be/3yfppTbf2II

https://youtu.be/3yfppTbf2II
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Figure 7: Experimental setup. Nanoparticles are injected in chamber C and then
transported in a gas flux toward chamber A where they are captured by the tightly
focused light of a laser diode delivered by a single-mode fiber. The fiber head with
the focusing system (F1) is mounted on the tip of a rod (R) that can be manually
translated between chambers A and B through the gate G. The second optical
tweezer is formed by the light of a Nd:YAG laser and delivered by a similar optical
system (F2) mounted on a three-axis miniature linear translation stage (MLS).
The focus can be positioned inside the optical cavity (OC) with sub-micrometric
precision.

ond tweezer is used to accurately position the particle inside the optical cavity.
Mounting the nano-positioners on the chamber baseplate that also supports the
optical cavity, instead of placing them on the moving arm, significantly improves
the overall mechanical stability. Moreover, the moving arm is retracted after the
particle transfer, and the vacuum chambers are isolated. As a consequence, the
environment in the experiment chamber is suitable for a rapid evacuation down to
very low pressure. Now follows a description of the transfer protocol.

3.2 Transfer of a levitated nanoparticle between optical
tweezers

The setup is shown in Fig.(7). Nanoparticles are caught in chamber A and then
transferred to the second trap in chamber B. The optical tweezer in the first
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chamber is realized with a fibered 976 nm laser diode (LD). The light delivered by a
single−mode fiber is collimated and focused using an optical system (F1) composed
of two aspheric lenses, having a nominal focal length and a numerical aperture of
15.4 mm (N.A. 0.16) and 3.1 mm (N.A. 0.68), respectively. The two lenses are
screwed on the fiber head connector. The beam at the focus is elliptical with
waists of 0.96µm and 0.92µm, as deduced from the particle oscillation frequencies
at the typical output power of 250 mW[46]. The fiber head with the optics is
mounted at the end of a 500 mm long, X−shape aluminum rod screwed on the
moving flange of a bellowed sealed linear shift mechanism (HV Design) that allows
us to manually translate it between chambers A and B. We note that this support
is sensitive to mechanical vibrations, making this trap unsuitable for stable cavity
optomechanics experiments.

3.2.1 Trapping a particle

A drop of aqueous solution of silica nanospheres (9 % of particles, in mass) with
mean diameter 125nm (measured by photon correlation imaging [18]) is injected
inside chamber C that is filled with clean nitrogen, while chamber A is evacuated.
The valve separating the two chambers is opened, and the dust of nanoparticles is
introduced in chamber A, carried by the gas turbulence produced by the pressure
unbalance. Trapping by the optical tweezer occurs when a pressure of ∼100 mbar
is achieved in chamber A, typically within few minutes. With a particle trapped,
before opening the gate G, residual wandering nanoparticles are pumped out from
chamber A, whose pressure is gently decreased down to the mbar level. The
chamber is then slowly refilled with pure nitrogen up to ∼30 mbar, and the gate is
opened to equilibrate the pressure between chambers A and B (which was initially
in high vacuum).

3.2.2 Moving the particle in the experimental chamber

The optical tweezer is translated to chamber B and positioned in front of the second
optical trap. We remark that, at this pressure, the nanoparticle motion is over
damped, and we can keep the levitating particle during the translation without
using any active feedback. The second tweezer is formed by the 1064 nm radiation
of a Nd:YAG laser and delivered into chamber B by a polarization maintaining
fiber. The focusing optical system screwed on the fiber head (F2) is the same of
the first tweezer and is positioned on a three-dimensional miniature linear stage
(PI Q− 522). The beam waists at the focus are 1.02 µm and 0.93 µm, and the
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typical optical power is 200 mW. Fibered beam − splitters allow us to collect part
of the light arriving from the fiber heads. With the help of dichroic mirrors, we
can thus measure the transmitted and back−scattered light of both sources.

3.2.3 Position optimization

To transfer the particle between the two tweezers, we have to superpose the posi-
tions of their intensity maxima with submicrometric precision. This procedure is
performed by moving the second fiber head. Its transverse position with respect
to the optical axis is optimized by maximizing the light transmission between the
two fibers, while the distance between the two fiber heads must take into account
the chromatic aberration, as sketched in Fig.(8b). We remark that the light of
the second tweezer remains off during the whole procedure to avoid the acciden-
tal formation of an unstable potential by the superposition of the two intensity
profiles.

To define the optimization procedure, we have performed a preliminary char-
acterization of the optical coupling between the two fibers at the two used wave-
lengths. The transmitted power of the Nd:YAG light through the first fiber and
that of the LD light through the second fiber are reported in Fig.(8a). The trans-
verse position of the fiber head is kept optimized during the measurement, while
the two fiber heads are moved closer at ∼ 1.1µm steps. The solid line, for each of
the two wavelengths, is given by the overlap integral of the two counter-propagating
modes, fitted to the experimental data. We find a distance of 9.8 µm between the
positions of the foci for the two wavelengths. As shown in the scheme of Fig.(8b),
assuming two identical focusing systems, the optimal distance to transfer the par-
ticle between the tweezers is halfway between the transmission maxima at the two
wavelengths [this position is labeled as P2 in Fig.(8b)]. The operative procedure
is then the following: we optimize the transmission of the LD light through the
second fiber by moving the fiber head in the three directions, and afterward, we
increase the distance of the fiber heads by ∼ 10µm.

3.2.4 Particle transfer

To load the second trap, we boost the Nd:YAG power and slowly turn off the LD.
With the described protocol, we can reliably transfer the particle between the two
traps. In Fig.(9), we show a photo of the two optical systems and the levitating
nanoparticle before and after the transfer. The power spectra of the light collected
by the fibers in the back and forward directions, also shown in Fig.(9), exhibit the
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Figure 8: (a) Transmitted power of the laser light from the two sources through the
two optical fibers and the corresponding F1 and F2 optical systems. Green dots:
Nd:YAG light. Orange squares: LD light. Data are recorded approaching the
two fiber heads at 1.1µm per step and normalized to the maximum transmitted
power for each wavelength. Abscissa represents the variation of the distance of
the fiber heads with the origin set halfway between the two maxima. Solid lines:
overlap integral between the propagating field modes, fitted to the experimental
data. (b) Schematic diagram of the two focusing systems during the measurement.
Green (orange) rays represent the Nd:YAG (LD) beam propagation with arrows
indicating the direction. P2 indicates the optimal position to transfer the particle
as the two focuses are spatially overlapped. At relative position P1(P3), the two
focusing systems are optimally placed to couple the Nd:YAG (LD) optical power.
In that case, the distance between the two traps is 9.8 µm.
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Figure 9: Left panel: The light back scattered (B.S.) from the particle is collected
from the trapping fibers during the transfer between the LD and the Nd:YAG
tweezers. Orange: LD light signal (scale on the bottom axis). Green: Nd:YAG
light signal (scale on the top axis). Central panel: images of the Nanoparticle
trapped by the LD (bottom picture) and the Nd:YAG (top picture) optical tweez-
ers. Bright spots, also shown in the enlarged insets, are due to the particle dipole
emission, and scattered light allows us to identify the edges of the focusing lenses.
The brightness difference between the two traps is due to the different camera
sensitivity at the two wavelengths. Right panel: spectra of the back and forward
scattered light, collected by the fibers and acquired at a background pressure of 2
mbar, exhibiting spectral peaks corresponding to the three eigenfrequencies of the
particle motion. Bottom graph: spectra of the forward scattering (upper trace)
and back scattering (lower trace) of the LD light with the particle on the first
tweezer. Top graph: spectrum of the forward scattering of the Nd:YAG light with
the particle trapped by the Nd:YAG tweezer. Vertical dashed lines display the
particle oscillation frequencies.
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peaks associated with the nanoparticle motion in the three orthogonal directions
defined by the trap geometry. In both cases, the background pressure is reduced
down to 2 mbar to show such clear signatures of the under-damped motion.

3.3 Protocol reliability
We often observe that the particle scattered light changes suddenly during the
transfer. On the other hand, a transfer between potential wells having the same
minimal point should be characterized by a continuous change in the apparent
particle brightness, following the varying light intensity. The observed abrupt
changes indicate that the nanoparticle jumps between two potential minima, which
are not perfectly superimposed due to an uncertainty in the positioning of the order
of few hundred nanometers and to the optics mechanical vibrations. While turning
off the LD, the potential barrier from the first to the second trap as well as the
depth of the first trap becomes vanishingly small. To obtain a reliable transfer,
the jump rate (favored by the lowering barrier) must be higher enough than the
loss rate (increased by the lowering well depth). Moreover, the gas damping must
be strong enough to allow the particle losing its kinetic energy during the transfer.

At the purpose of providing useful information for the reproduction of our
method, we describe in the following a semi-quantitative investigation of the pres-
sure and misalignment ranges that allow a reliable transfer. We first characterize
the relative mechanical vibrations of the two trapping optics on the plane perpen-
dicular to the optical axis. The two focusing systems are first placed at the position
that maximizes the transmitted Nd:YAG power through the two fibers. The trans-
mitted signal is then recorded while moving the second fiber head in the vertical
direction. Hence, the fiber head is set at the position that halves the transmitted
power, and the time trace of the transmitted signal is acquired and calibrated
in terms of displacement fluctuations using the previously recorded transmission
curve (as illustrated in the right inset of Fig.(10)). The same procedure is repeated
for the horizontal displacement. In Fig.(10), we show the calculated displacement
noise spectra. The main spectral feature is a double peak at ∼50 Hz for the ver-
tical direction, whose area corresponds to a displacement of ∼ 50 nm (root mean
square), much smaller than the beam waists. A simulation with a finite element
model shows that the two peaks are due to flexural modes of the rod that sustains
the first fiber head. In order to define the pressure range that allows a reliable
transfer, we have repeated at least three times the transfer back and forth between
the two traps at the pressure values of 100 mbar, 75 mbar, 50 mbar, 25 mbar, and
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Figure 10: Spectra of the relative position between the two fiber heads, on the
plane perpendicular to the tweezer axis, along the vertical (green) and horizontal
(yellow) directions. Left inset: dominant vibrational modes at 44 Hz and 49 Hz
in the vertical direction. Right inset: transmitted power of the Nd:YAG light
through the two optical fibers, as the second fiber head is translated in the vertical
direction. This curve is used to convert into displacement spectra the acquired
transmission spectra, as illustrated in the picture.
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Figure 11: Transmitted power of a probe Nd:YAG laser through the high finesse
optical cavity. Sidebands at ±250 kHz are produced by laser phase modulation for
calibrating the frequency scan. The blue squares and red diamonds correspond to
acquisitions recorded before the nanoparticle capture and transfer and after ten
complete operations, respectively. The solid line shows a fit to the latter dataset.

15 mbar. We actually lost the particle during the fourth attempt at 10 mbar. We
notice that at 10 mbar the damping rate is about Γ ' 2π 10kHz ; thus, the particle
motion is weakly damped. At 50 mbar, we have then evaluated the tolerance in the
misalignment between the two fiber heads. Starting from the optimal position, we
could transfer the particle three times back and forth in different relative positions
until the two focuses were misplaced by ∼ 3µm on the plane perpendicular to the
optical axes or ∼ 10µm along the optical axes. For the latter case, we show in
Fig.(9), on the left panel, the time evolution of the backscattered light during a
transfer from the LD to the Nd:YAG tweezers. The visible steps indicate a jump
between the two potential wells occurring in a time shorter than 0.1 ms.

3.4 Final remarks
After having defined the above described transfer protocol, we have placed a ∼ 50
mm long optical cavity (Finesse 54 000) inside chamber B. The cavity spacer has
a 20 mm diameter radial hole that allows us to place on the cavity optical axis the
nanoparticle trapped by the Nd:YAG tweezer. We have captured and transferred
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several particles from the LD to the Nd:YAG trap at a background pressure of 30
mbar and eventually positioned them inside the cavity standing wave. In Fig.(11)
we report two recordings of the cavity transmission function, acquired before the
first and after the tenth transfer operation, where the measured width is 57 ± 1
kHz and 56 ± 1.5 kHz, respectively (the description of the cavity is postponed to
the next chapter). As of now, even after ∼ 70 complete cycles, we could appreciate
no degradation of the cavity finesse.

After the transfer, the arm is moved back, and the science chamber is isolated
from the loading chamber and is pumped down to a pressure below 10−6 mbar in
half an hour.
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Figure 12: Scheme of the experimental setup. PDH: Pound-Drever-Hall detection,
HBD: heterodyne balanced detection, FR: Faraday rotator, H: half-wave plate,
FSR: sinusoidal wave generator at frequency corresponding to ∼ 1 cavity free-
spectral-range.

4 The experimental setup
This section reports on the experimental setup that has been imple-
mented for the cavity optomechanical experiment. Particular attention
is paid to the full description of the detection apparatus, that has al-
lowed to sense the motion at the quantum level.

4.1 The optical table
A simplified scheme of the experimental setup is shown in Fig.(12). From a first
Nd:YAG laser we derive three beams, all of them frequency shifted by acousto-
optic modulators and sent to the experimental bench by polarization-maintaining
optical fibers. The first beam (reference) is phase modulated at 13.3 MHz, mode-
matched to the cavity and used to frequency lock the laser to a cavity resonance
by means of the Pound-Drever-Hall technique. The second beam is used for phase
locking the second Nd:YAG laser (Nd:YAG2). At this purpose, it is mixed in a
fibered beam-splitter with the radiation derived from Nd:YAG2, and detected by a
fast photodiode. The beat note is down-converted in a mixer by a local oscillator
at ∼ 3 GHz (one cavity free-spectral-range), and the IF output of the mixer is
used in a servo loop acting on Nd:YAG2 for phase locking. The third beam is
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superposed to the main tweezer light (supplied by Nd:YAG2), red detuned from
a cavity resonance and used for stabilization purposes during the pumping down.
The presence of two fields in the tweezer, red detuned from consecutive cavity
resonances, provides indeed cooling along all the three directions for any position
of the nanosphere, thanks to the two shifted standing waves. This third beam is
blocked during the measurements.

Two weak beams are derived from Nd:YAG2. The first one is launched into
an optical fiber and used for phase locking, as just described, the second one
is frequency shifted by 1.1 MHz using a cascade of two acousto-optic modula-
tors working on opposite orders, and it provides the local oscillator in a balanced
heterodyne detection. The light transmitted by the cavity is mode-matched and
overlapped to the local oscillator with orthogonal polarization, in a first polarizing
beam-splitter. The resulting beam is then directed to the balanced detection setup,
composed of a half-wave plate, a second polarizing beamsplitter, and a couple of
photodetectors, whose signals are electronically subtracted.

Most of the Nd:YAG2 power is launched into a polarization maintaining fiber
and used for the optical tweezer. The fiber is delivered into the experimental
vacuum chamber, where its output is collimated and re-focused by the doublet of
aspheric lenses mounted on the fiber FC connector.

4.2 Optical cavity
The optical cavity (depicted in Fig.(13)) is monolithic, built on a 48.8 mm long
invar spacing cylinder with a radial hole allowing the inset of the tweezer. The two
equal spheric mirrors (nominal curvature radius 25 mm) have measured transmis-
sion coefficient of 4.8× 10−5.

To analyse the transmission lineshape of the empty cavity, we overlap the ref-
erence laser beam and a fraction of the beam used for the tweezer, with orthogonal
polarizations, before sending them to the cavity input. The reference beam is then
locked to a cavity resonance, and the second laser, offset phase-locked to the refer-
ence, is scanned over the resonance of the subsequent longitudinal mode using the
acousto-optic modulators. The transmission of the second beam is recorded and
fitted to a Lorentzian function, as shown in Fig.(14), deriving the cavity width
κ/2π = 57.0± 0.2 kHz (Finesse 54000).

To estimate the birefringence, the procedure is repeated swapping the two po-
larizations. The distance between the two peak centers corresponds to twice the
cavity birefringence (that results to be 28.4± 0.4 kHz), their mean value allows to
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Figure 13: Rendering of the vertical cross section of the cavity, with the particle
levitating in the optical potential on the cavity axis.
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Figure 14: Detected intensity of the scanning Nd:YAG2 light transmitted by the
cavity, when the reference laser is locked at resonance, as a function of the scanning
frequency Ω (with an offset subtracted). Red (blue) symbols refer to p (s) polarized
Nd:YAG2 light when the reference laser is s (p) polarized. Dashed lines show the
fitting Lorentzian functions.
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extract the cavity free-spectral-range. The tilt angle between the cavity vertical
axis and the vertical axis of the optical table is 2◦. Since the tweezer polariza-
tion lays nominally on the plane orthogonal to the optical table, we estimate a
misalignment between the tweezer and the cavity axis on the order of a couple of
degrees.

4.3 Heterodyne detection

BD
Figure 15: Heterodyne detection. The signal field transmitted by the cavity âs is
mixed at the beam splitter with the local oscillator âLO. At the optimal config-
uration the output intensity is equally split between the two ports of the beam
splitter. The heterodyne signal obtained subtracting electronically the photocur-
rents generated at the two detectors.

If the signal leaks out from the cavity at a rate κ, the output field is:

âs (t) =
√
κâ− âv,

where â (âv) is the ladder operator of the cavity (vacuum) field. In the heterodyne
detection setup, we make âs interfere with a strong local oscillator (âLO) at the
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beam splitter. The field at the output ports of the beam splitter is:(
â1

â2

)
=
(
i
√

R
√

T√
T i

√
R

)(
âs

âLO

)
,

where the relation R+T = 1 for the reflectance and the transmittance of the beam
splitter holds.

The photocurrent generated by the impinging photons at the j detector can be
described as:

Îj (t) = dj
[
f̂j (t)

]
,

where the detectors response is represented by the function dj and f̂j = â†j âj is the
optical flux:

f̂1 = Rf̂s + Tf̂LO + i
√

RT
[
eiΩLOtâsâ

†
LO − e−iΩLOtâ†sâLO

]
,

f̂2 = Tf̂s + Rf̂LO − i
√

RT
[
eiΩLOtâsâ

†
LO − e−iΩLOtâ†sâLO

]
,

with the field operators expressed in the rotating frame and ΩLO = ωLO − ωs the
frequency difference between the local oscillator and cavity field.

The current generated at the two detectors can be electronically summed or
subtracted. The AC signal in the Fourier domain for a linear response of the
electronics reads:

δĨ∓ (ω) = F̃ (ω)
[
δf̃1 (ω)∓ ξ (ω) δf̃2 (ω)

]
,

where F̃ (ω) is the overall response function of the electronics, ξ (ω) takes into
account slight differences in the response of the two detectors and δf̂i the ith flux
fluctuations. Expanding the field operators around their mean value, âi = αi+ δâi
with αi = 〈âi〉, the difference/sum signal reads:

δĨ∓ (ω) = αLOF̃ (ω)
{

(T∓ ξR)
[
δãLO (ω) + δã†LO (−ω)

]
+

+ i
√

RT (ξ ± 1)
[
δãs (ω + ΩLO)− δã†s (ω − ΩLO)

]}
, (4.1)

with the approximation αLO � αs, assuming αLO ∈ R and neglecting the second
order fluctuating terms.
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For R ' T the sum signal PSD reads:

S+|R'T ≡ SLO = lim
τ→∞

1
τ
〈δ
(
Ĩ+
)†

(ω) δ
(
Ĩ+
)

(ω)〉,

while the difference signal gives the heterodyne spectrum:

S−|R'T ≡ Shet = lim
τ→∞

1
τ
〈δ
(
Ĩ−
)†

(ω) δ
(
Ĩ−
)

(ω)〉.

Since the signal field fluctuations depend on the mechanical motion δãs ∼ x̃, the
heterodyne detection gives the PSD of the mechanical motion Shet ∼ Sxx (ω + ΩLO)+
Sxx (−ω + ΩLO), where the fast rotating terms have been neglected.

4.3.1 Detection efficiency

As for the inefficiencies of the system, can be treated considering that the signal
field impinges on a two port beams splitter, so that:

âexp
s = √ηâs +

√
1− ηâv,

where âv is the vacuum field that enters from the port of the BS that represents
the loss channel, characterized by a transimission coefficient η. The experimentally
measured signal is:

Sexp
het = ηShet + (1− η).

The efficiency of the heterodyne detection is determined by:

• Cavity efficiency: ηcav = κout/κ. Its value of 0.41 is evaluated measuring the
ratio between the input (PIN) and output (POUT) optical power at resonance.
Assuming symmetric mirrors:

POUT

PIN
= T 2ηmc

(F
π

)2
,

where ηmc is the mode matching of the cavity, T is the transmission coefficient
of the mirrors and F is the cavity Finesse.

• Collection efficiency: ηcol = Pdet/POUT. It is readily estimated measuring
amount of the power that leaks out the cavity POUT that is collected at the
detectors Pdet.
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• Spatial matching between the local oscillator and the signal field : ηm. Its
value is determined by the beat note between the local oscillator and the
cavity output field at the heterodyne detectors:

Sig = 2I [1 + ηm cos (Ωt)] ,

where the intensities of both beams is equal to I, their frequency difference is
set to Ω and ηm =

∫∫+∞
−∞ dx dyfLOfsig is the overlap integral on the detector

surface between the spatial profile amplitudes of the two beams. Defining
Ī = 2I and Ipp the peak to peak amplitude of the beat note, the efficiency
is ηm = Ipp

2Ī .

• Photodiodes quantum efficiency: ηPD ' 1.

So, the overall detection efficiency is the product of these terms:

η = ηcavηcolηmηPD.

4.3.2 Intensity noise calibration

We have measured the amplitude fluctuations value using the shot level for cali-
bration: sending only the local oscillator to the heterodyne detection, the ratio in
the PSD between the sum and the difference signal is:

S+

S−
= SXLO

SXv
,

where the quadrature operator is defined as X = δâ+δâ†

2 . Since the spectrum of
the relative amplitude fluctuations is Sε = 4SXLO/αLO, we get

Sε = 4SXv

S+

S−
~ωLO

PLO

The measured RIN (Relative Intensity Noise) of the tweezer laser is Sε =
2.3 × 10−14 Hz−1 in the spectral region of interest. The intensity noise spectrum
at twice the oscillation frequency causes parametric heating of the nanosphere
motion. The heating rate, calculated as ΓRIN = 0.25 Ω2Sε [56], is below 1 Hz, and
it is therefore negligible.
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4.3.3 Optimal rejection

Ideally ξ = 1 and the heterodyne signal can be totally decoupled form the local
oscillator fluctuations. In the real world, however, response unbalances for the
two detectors are always present and the amount of LO noise in the signal at the
optimal configuration has to be quantified.

We have determined the configuration of R and T that minimizes in the spec-
trum of the difference signal an externally driven amplitude fluctuation in the
frequency region of interest by rotating the half wave plate of the balanced detec-
tion.

The common mode rejection ratio at 1 MHz and the spectral power integrated
between 0.7 and 1.5 MHz are shown in Fig.(16) as a function of the linear polariza-
tion angle at the input of the polarizing beam-splitter of the balanced detection,
varied by tuning the angle of the half-wave plate and monitoring the DC output
of the balanced detection. This angle is then kept at 0.3◦ ± 0.1◦ during all the
measurements. In this range, the common mode rejection is 40 dB, i.e.∣∣∣∣∣T + ξR

T− ξR

∣∣∣∣∣
2

' 4
|1− ξ|2

= 40dB.

4.3.4 Quantum noise calibration

In Fig.(17) we show the spectrum recorded by the balanced detection with just
the local oscillator, i.e., with vacuum noise as input signal and the local oscillator
power of 4.5 mW . The spectrum nominally corresponds to the reference shot
noise, filtered by the overall transfer function of the detectors and the following
electronics. Its polynomial fitting function, shown in the figure, is indeed used to
normalize the heterodyne spectra to vacuum noise.

Considering the RIN and the power of the local oscillator, we calculate that the
residual amplitude noise at the output of the balanced detection is ∼ 3% of the
shot noise level. This is in agreement with the directly measured spectral power,
shown in Fig.(18) for increasing detected power.
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Figure 16: Spectral power of the local oscillator, measured at the output of the
balanced detection and integrated between 0.7 and 1.5 MHz (upper panel), and
amplitude of an intensity modulation peak at 1 MHz (lower panel), as a function
of the angle of the input linear polarization in the balanced detection. Both signals
are normalized to their minimum value. Red solid lines show the sinusoidal fitting
functions.
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Figure 17: Red trace: spectrum of the local oscillator at the output of the balanced
detection. The solid line shows the fitting polynomial curve, the fitting relative
residuals are shown in the lower panel. Black trace: electronic noise.
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Figure 18: Spectral power of the local oscillator, measured at the output of the
balanced detection and integrated between 0.7 and 1.5 MHz, as a function of the
dc signal in the photodiodes. The red solid line shows the linear interpolation to
the data, the dashed line the parabolic fit that indicates an excess noise equivalent
to 3% of the shot noise, at the maximum detected power that corresponds to 4.5
mW.
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Figure 19: Cavity locking via the PDH technique. The laser light is modulated
at the frequency Ω by means of the EOM. The back reflected beam, deflected
by the optical isolator (OI), is detected at the photodiode (PDH). The electronic
signal, downconverted via the mixer, is sent to the lock-box, which controls the
laser driver.

4.4 Locking schemes
4.4.1 Cavity locking

The laser frequency is stabilized through the Pound-Drever-Hall (PHD) technique
[17]. For a symmetric cavity, i.e. two equal mirrors, if the laser light impinging
at the input cavity mirror is written as Ein = E0e

iωt, the field that comes back
leaking through the input cavity mirror reads:

Eref = EinF (ω) = Ein
r

1− r2eiω/FSR

(
eiω/FSR − 1

)
, (4.2)

where r is the mirrors reflectivity. By means of an electro optic modulator (EOM)
the phase of the impinging field is modulated at the frequency Ω. Expressing the
modulated field with the Bessel functions (Ji) and retaining only the slow rotating
terms, the impinging field can be re-expressed as:

Ein = E0e
i(ωt+β sin Ωt) ' E0e

iωt
(
J0(β) + J1(β)eiΩt − J1(β)e−iΩt

)
.
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Figure 20: Simulated PDH signal.

As such, the reflected beam (Eq.(4.2)) reads

Eref ' E0e
iωt
(
F (ω)J0(β) + F (ω + Ω)J1(β)eiΩt − F (ω − Ω)J1(β)e−iΩt

)
.

The back reflected field is detected, giving a signal

Sig ∝ Ip |F (ω)|2 + Is
(
|F (ω + Ω)|2 + |F (ω − Ω)|2

)
+

+ 2
√
IpIsRe [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cos Ωt+

+ 2
√
IpIsIm [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sin Ωt,

with Ip(s) the intensity of the main (secondary) band. The fast oscillating terms
have been neglected.

Demodulating this signal at the drive frequency Ω with the proper phase, we
can retain only the term

Im [F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] ,

that is plotted in Fig.(20). In the vicinity of the cavity resonance the frequency
difference between the cavity resonance and the laser light is linearly converted
into an electronic signal which is processed via the electronic circuit reported in
appendix C. and fed back to the driver of the laser, thus stabilizing the emitted
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Figure 21: Bandwidth of the cavity locking: a modulation signal is sent to the
Fast controller of the laser. The recorded PDH error signal is down converted at
the modulation frequency. The cut-off frequency is estimated at ∼ 900Hz, where
the amplitude decreases of a factor

√
2 with respect to the value on the plateau

(dashed lines).

frequency. In Fig.(21) is reported the measurement of the lock bandwidth.

4.4.2 Phase and frequency locking

The schematic is represented in Fig.(22). The light of the two Mephisto lasers
(ML1 ML2) interfere at the fast detector FPD, generating the electrical signal:

Vb = V0 sin [δφ (t)] ,

where δφ (t) is the phase difference between the two lasers, which includes a linear
drift due to the different frequencies.

To set up the locking scheme, this signal is mixed with a reference oscillator of
frequency FSR− 10MHz. The output is split by means of the power splitter (PS)
and sent either to the phase lock or frequency lock control loop:

• phase lock: to get the error signal for the phase lock, the signal is down
converted to DC by means of a second mixer, driven by a 10MHz oscillator:

eφ = e0 sin [δφ (t)− 2π FRS t] .
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Figure 22: Phase and Frequency locking scheme: the optical beating between the
two lasers is detected and down converted by mean of on oscillator of frequency
FSR-10 MHz. The down converted signal is sent to the power splitter (PS). For the
phase locking, the beating is down converted again by means of a second oscillator
of frequency 10 MHz and sent to the Lock Box. at the fast detector. For the
frequency locking, the PS output is sent to the Lock Box via an interferometer.
The interferometer thermal drifts is monitored by means of a frequency meter of a
spectrum analyser (SA) and corrected with a dc signal sent to the auxiliary input
of the Lock Box.

• frequency lock: to get the error signal proportional to the frequency dif-
ference between the two lasers, an interferometric measurement of the PS
output has been realized: the signal is split between two transmission lines
with a relative time lag of ∼ 50ns. The low frequency signal at the IF output
of the mixer reads:

sin [2πν/ν̃] ,

where ν is the beat note frequency at the output of the PS, ν̃ = v/L is the
characteristic frequency of the interferometer, L is the length difference be-
tween the two arms and v the propagation velocity of the RF signal through
the interferometer. Because of thermal drifts, ν̃ fluctuates around the ideal
set point ν̂ = 10MHz. Taylor expanding the reference frequency around ν̂,
the error signal is:

eν = sin
[
2πν
ν̂

]
− 2πν

ν̂

δν̂ (T)
ν̂

.

To counteract the slow thermal drifts, δν̂ (T), the beating is continuously
monitored with a frequency meter and an offset is added to the error signal
to correct it.
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The PI electronic scheme (lock box) is reported in appendix B.
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5 Quantum motion of a levitated nanosphere on
the plane
This chapter reports on the experimental observations with the optome-
chanical system that has been developed during the thesis. As stated in
the introductory section, in cavity optomechanics polariton modes orig-
inate from the quantum-coherent coupling of a macroscopic mechanical
vibration to the cavity radiation field [70, 41]. Here, we investigate po-
laritonic modes in the motion of an optically-levitated nanosphere [2,
12, 4, 54, 35, 21, 44] in the regime of coherent quantum coupling. The
particle is trapped in high vacuum by an optical tweezer and strongly
coupled to a single cavity mode by coherent scattering of the tweezer
photons [16, 75, 22, 15, 53]. The two-dimensional motion and the op-
tical cavity mode define an optomechanical system with three degrees
of freedom. In the strong coupling regime, we observe hybrid light-
mechanical states with a vectorial nature. Rather than just focussing
on the non classical signatures of the mechanical oscillator, care should
be taken to the optomechanical platform as a whole. In fact, it may be
exploitable for quantum information experiments performed at room
temperature.

5.1 Overview
The results presented here concern the research work reported in [51, 50] and more
recent observations. Because of the complementarity of the topics the observations
could be, in principle, the output of an individual experimental run. As such, they
are presented as the story of a single, ideal, experiment. Let’s suppose that the
particle has just been delivered to the tweezer in the experimental chamber, the
experimental run would go like this:

• positioning of the particle on the cavity axis;

• data acquisition in mid vacuum to observe the hybrid optomechanical states
in the classical regime;

• evacuation of the chamber to reach high vacuum;

• exploration of the optomechanical system physics in the quantum coherent
regime.
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For the seek of clarity the theory is presented when necessary, along with the
experimental results.

As final remark, the different measurements were realized on different nanopar-
ticles, thus leading to slight variations in the coupling strength values. These dis-
crepancies are attributed to the imprecision in the positioning procedure of the
particle on the cavity axis.

5.2 Placing the particle on the cavity axis
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Figure 23: Amplitude of the beat note at 1.1 MHz between the tweezer light,
scattered by the nanosphere and transmitted through the cavity output mirror,
and the local oscillator. The nanosphere is moved through the cavity standing
wave using the tweezer positioner.

The optical system of the trap is movable along three axes using nanometric
vacuum positioners. Its displacement along the cavity is calibrated by observing
the beat note between the light scattered by the nanosphere on the cavity mode and
transmitted through the output mirror, and the local oscillator. The amplitude
of such beat note is proportional to the field amplitude of the standing wave at
the nanosphere position. An example of the beat note amplitude recorded while
moving the positioner, nominally along the tweezer axis, is shown in Fig.(23). We
see the Gaussian envelop with a width given by the cavity waist, and a modulation
reflecting the sinusoidal standing wave, due to a slight misalignment between the
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axis of the positioner and the cavity transverse plane. The particle is placed on
the axis when the beat note is at the center of the gaussian envelope along the
two orthogonal directions on the plane perpendicular to the cavity axis. Once
there, the particle is placed on the node and the auxiliary laser beam, a fraction
of light coming from the laser used for the cavity locking, is unblocked. The
particle motion is now optomechanically damped along the three directions and
the chamber is gently evacuated starting from the initial pressure of 1mbar.

5.3 theoretical model
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Figure 24: Scheme of the experimental system. A silica nanosphere levitates on
the optical potential created by the light of an optical tweezer, propagating along
the Z axis, with the electric field along the Y axis. The nanosphere is positioned
on the axis of an optical cavity (which defines the direction XC), in correspondence
of a node of the field of a cavity mode. The angle φ defines a generic direction in
the transverse plane X − Y .

Even if the (approximated) analytical expressions are obviously useful to un-
derstand the system behaviour and guide the experiments, a correct quantitative
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study requires the comparison of the experimental spectra with those generated by
a full model, the consequent extraction of the system parameters, and finally the
inference of the characteristics of the motion (in particular, the effective thermal
occupancy) from the model.

For the purpose of reproducing the experimental results, the oscillation of the
nanosphere in the optical potential created by the tweezer and its interaction with
the mode of the cavity field, that is close to resonance with the tweezer light, can
be described by a standard quantum Langevin model.

The Hamiltonian of the three interacting oscillators (one optical and two me-
chanical) is

H = −~∆â†câc+~Ω1b
†
XbX+~Ω2b

†
Y bY +~gX(â†c+âc)(b†X+bX)+~gY (â†c+âc)(b†Y +bY ) .

where âc (bi, i = X, Y ) are the bosonic operators of the optical (mechanical) oscil-
lators, Ωi the mechanical angular frequencies and gi the optomechanical coupling
rates.

The quantum Langevin model is derived from the Hamiltonian by adding the
input terms. The linearised evolution equations for the motion in the plane or-
thogonal to the tweezer axis, expressed in the frame rotating at the laser frequency
ΩL, can be written as

˙̂ac =
(
i∆− κ

2

)
âc + igX(b̂X + b̂†X) + igY (b̂Y + b̂†Y ) +

√
κ âIN

˙̂
bj =

(
−iΩj −

γj
2

)
b̂j + igj(âc + â†c) +

√
Γj b̂n,j (5.1)

where Γj is the overall mechanical heating rate. The b̂j are linked to the operators
describing the displacements (x, y) and the momenta (px, py) along the X and Y

directions by the relations

x = xzpf(b̂X + b̂†X) (5.2)
px = ipxzpf(b̂†X − b̂X) (5.3)

where xzpf =
√

~
2mΩX

and pxzpf =
√

~mΩX

2 are the zero-point position and momen-
tum fluctuations of the free oscillators, and by equivalent expressions for y and
py.

We note that while the operators b̂j can be thought of as phonon annihilation
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operators in the limit of weak optomechanical coupling, such an interpretation is
not straightforward in the strong coupling regime.

The input noise operators are characterized by the correlation functions

〈âIN(t)â†IN(t′)〉 = δ(t− t′)
〈â†IN(t)âIN(t′)〉 = 0

〈b̂†n,j(t)b̂n,j(t′)〉 = 〈b̂n,j(t)b̂†n,j(t′)〉 = δ(t− t′)

The total decoherence rates can be written as

Γj = kBT

~Ωj

γj + Γnj (5.4)

where the first contribution is due to scattering with the background gas molecules
which damps the motion at a rate γj, and Γnj accounts for the shot noise in
the dipole scattering (which adds negligible damping), as well as for additional
technical noise sources. We note that in Eq.(5.4) we are dealing with noise in a
classical way, justified by the fact that kBT � ~Ωj.

As discussed, the XC-YC framework can be more appropriate to understand
the physics of the system and to describe it by means of approximated analytical
expressions. However, we remark that in the X-Y framework the input noise
sources are uncorrelated and easily evaluated, and it is therefore more suitable for
exact numerical calculations.

From the Langevin model and the input/output relation for the transmitted
field we calculate the heterodyne spectra, that are shown in the next sections and
display an excellent agreement with the experimental data.

In the parameters range that assures the system stability, the stationary evo-
lution equations can be written in the Fourier space in the compact matrix form
as

(−iΩ I + D) V = VIN (5.5)

where I is the identity matrix of order 6, the drift matrix is

D =



−i∆ + κ/2 0 −igX −igX −igY −igY

0 i∆ + κ/2 igX igX igY igY

−igX −igX iΩX + γx/2 0 0 0
igX igX 0 −iΩX + γx/2 0 0
−igY −igY 0 0 iΩY + γy/2 0
igY igY 0 0 0 −iΩY + γy/2


,
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the intracavity vector is V = (ãc, ã
†
c, b̃X, b̃

†
X, b̃Y , b̃

†
Y ) where Õ(Ω) is the Fourier trans-

formed of the operator Ô(t) and Õ†(Ω) =
(
Õ(−Ω)

)†
is the Fourier transformed of

Ô†(t). The input noise vector VIN is defined as

VIN = (
√
κ ãIN,

√
κ ã†IN,

√
ΓX b̃n,X ,

√
ΓX b̃†n,X ,

√
ΓY b̃n,Y ,

√
ΓY b̃†n,Y ),

and V is found by inverting Eq.(5.5), i.e., V = (−iΩ I + D)−1 VIN. The total
cavity output field is â =

√
κâc − âIN, from which:

ã =
(

κ

−iΩ− i∆ + κ/2 − 1
)
ãIN + i

√
κ
gX(b̃X + b̃†X) + gY (b̃Y + b̃†Y )

−iΩ− i∆ + κ/2 . (5.6)

The full model is necessary to correctly derive the output spectra, and the behavior
of single components of the system (such as the nanoparticle motion) can just be
extracted from the model, provided that it accurately describe the experimental
observations [68].

We can define an output vector VOUT = (ã, ã†, b̃X, b̃
†
X, b̃Y , b̃

†
Y ) that is linked to

the input noise vector by the equation VOUT = O VIN where the final output
matrix is

O =



√
κ 0 0 0 0 0

0
√
κ 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(−iΩ I + D)−1 −



1/
√
κ 0 0 0 0 0

0 1/
√
κ 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

The output spectra are calculated by taking just the coefficients of the few non-null
terms in the input noise correlation functions. By calling O±[i, j] the (i,j) element
of O(±Ω), a generic output spectrum can be written in the form

Si,j = κO−[i, 1]O+[j, 2]
+ ΓX

(
O−[i, 3]O+[j, 4] +O−[i, 4]O+[j, 3]

)
+ ΓY

(
O−[i, 5]O+[j, 6] +O−[i, 6]O+[j, 5]

)
.
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For the output field we obtain

Saa = 1
2π 〈ã

†(−Ω)ã(Ω)〉 ≡ S2,1

Sa†a† ≡ S1,2

and the heterodyne spectrum, normalized to shot noise, is

Sout =
(
Saa(Ω− ΩLO) + Sa†a†(Ω + ΩLO)

)
η + (1− η) (5.7)

where ΩLO is the angular frequency of the local oscillator, and η is the detection
efficiency.

5.3.1 Strong coupling regime for the 2D motion

The essential information on the system dynamical behavior is encoded in the
eigenvalues and eigenvectors of the drift matrix. The formers are three couples of
complex conjugate parameters, where the absolute values of the imaginary parts
give the three eigenfrequencies, and the corresponding real parts gives the widths
of the resonances.

As anticipated in equations (2.12), for weak coupling (gX, gY � κ/4) and well
separated mechanical frequencies (|ΩX − ΩY | � 4g2

X,Y/κ) the optical eigenvalues
are ∼ κ/2± i∆ and the mechanical resonances are given approximately by [3]

Ωeff ' Ω0 + g2
(

∆− Ω0

(∆− Ω0)2 + κ2/4 + ∆ + Ω0

(∆ + Ω0)2 + κ2/4

)
(5.8)

Γeff ' γ + g2
(

κ

(∆ + Ω0)2 + κ2/4 −
κ

(∆− Ω0)2 + κ2/4

)
(5.9)

where we have omitted the subscripts X,Y (Fig.(25a)).
When the optical spring effect is strong enough, and the two natural mechanical

frequencies close enough, that the effective frequencies of the two oscillators get
closer than their effective widths, the two mechanical modes hybridize, and two
linear combinations exhibit the highest and lowest coupling to the optical field.
They are, respectively, the geometrical bright and dark mode: bbright ∝ gY b̂X +
gX b̂Y and bdark ∝ gX b̂Y − gY b̂X [20, 39, 59, 68, 69]. Such modes are not exact
eigenvectors of the systems, therefore the dark mode resonance is broadened by
the coupling with the bright mode (and actually with the optical field), however
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Figure 25: Solid lines: eigenfrequencies derived from the imaginary part of the
eigenvalues of the drift matrix, as a function of the detuning. Colored dashed lines:
effective frequencies calculated in the weak coupling approximation (Eq.(5.8)).
Black dashed lines: mechanical frequencies of the uncoupled oscillators. Common
parameters are κ/2π = 57 kHz, Γm/2π = 0.1 Hz, ΩX/2π = 132 kHz, ΩY /2π = 117
kHz. The optomechanical coupling rates are gX = gY = 2π×9 kHz (a), gX = 2π×16
kHz; gY = 2π × 5 kHz (b), gX = 2π × 29 kHz; gY = 2π × 9 kHz (c).

a narrow resonance remains the signature of the hybridization. A drawback of
the hybridization is that the optical cooling of the bright mode is hindered by its
coupling to the hot, dark mode, therefore reaching the quantum regime is more
difficult [20, 68, 69]. On the other hand, hybridization allows the transfer of energy
and information between the two mechanical modes, as well as two dimensional
cooling.

If the two mechanical frequencies are well separated, when one mode has a
coupling strength g > κ/4 it enters the strong optomechanical coupling regime [3,
8], characterized by an avoided crossing between the eigenfrequencies of the optical
mode (that significantly departs from ∆) and of the mechanical mode (Fig.(25b)).
The width of the latter does not increase as much as predicted by Eq.(5.9), and it
is upper limited to κ/2. Like the mechanical hybridization, also this effect hinders
the attainment of the mechanical quantum regime, even if a phononic occupation
number below unity has been achieved even in the strong coupling regime in ultra-
cryogenic experiments with a microwave coupled to an aluminum drum oscillator
[76, 49].

Finally, in the strong coupling regime involving both mechanical modes, full
development of the system into vectorial polaritons occurs (Fig.(25c)). The thresh-
old to reach two-dimensional strong coupling, marked by a double avoided crossing
in the spectral curves, is lowered with respect to the single-mode case. It depends
on the difference between the resonance frequencies of the uncoupled mechanical
modes, approaching g2

X + g2
Y > κ2/16 for ΩX ' ΩY .
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5.4 Data analysis
The output signal of the heterodyne balanced detection is low-pass filtered at 1.9
MHz and sampled at 5 MS/s. Spectra are typically obtained with a resolution
of 40 Hz, by segmenting the time series into 25 ms long intervals and calculating
the Fourier transform. Before averaging, we apply a post-selection of the inter-
vals, keeping those exhibiting the lowest amplitude of the beat note at 1.1 MHz
between the scattered light and the local oscillator, i.e., the signals acquired with
the nanosphere closer to the node of the cavity mode. This selection allows to
reduce the effect of frequency noise in the spectra. In appendix D is reported the
Mathematica script with the full theoretical model as well as the fitting procedure
by means of Eq.(5.7).

5.5 Evidence of hybrid optomechanical states
In Fig.(26) we show the spectra (high frequency sideband) of the transmitted
field when the pressure in the experimental chamber is about 6 × 10−3 Pa, for
varying detuning ∆ of the tweezer light with respect to the cavity resonance. The
photonic component becomes evident for −∆/2π = 160 kHz, where the spectrum
shows three peaks for the optical and the two mechanical resonances. The X and
Y mode peaks merge, forming the dark and bright modes and, at slightly smaller
detuning, the bright mode strongly mixes with the photon field, forming hybrid
modes that, in a quantum formalism, are identified as polaritons (we will use in
the following this description even if the quantum coherent coupling is just reached
at lower pressure). At −∆/2π ' 140 kHz we clearly distinguish the photon-like
polariton (on the high frequency side of the dark mode peak), and the phonon-
like polariton (on the opposite side). For −∆/2π ' 120 kHz both polaritons are
almost equally composed of phononic and photonic components and, as we will
see, the minimum occupation number is achieved. The corresponding resonances
have width ∼ κ/2 and are separated by ∼ 2g. Between them we see the narrow
resonance originated by the dark mode. For smaller detuning, the relative position
of the photon-like and phonon-like polariton peaks are swapped.

The corresponding spectral curves are reported in Fig.(27). The polaritonic
branches are separated by an energy gap, originated by an upper and a lower
avoided-crossing, and asymptotically approach the correspondent free mechanical
frequencies. This situation is strongly reminiscent of phonon-polaritons in ionic
crystals, where the asymptotic frequencies are those of the longitudinal and trans-
verse optical phonons [27]. Inside the gap the curve of the dark mode takes place,
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Figure 26: High frequency sideband of the heterodyne spectra, for a background
pressure of ∼ 6× 10−3 Pa. The detuning of the tweezer light from the cavity reso-
nance is −∆/2π = 260 kHz (a), 210 kHz (b), 160 kHz (c), 140 kHz (d), 120 kHz (e),
100 kHz (f), 80 kHz (g), 60 kHz (h). Red solid lines show the theoretical spectra,
calculated with the following, independently measured, parameters: κ/2π = 57
kHz, η = 0.32. The mechanical frequencies and optomechanical coupling rates are
slightly adjusted for each spectrum, to account for slow variations of the mean
nanosphere position and tweezer light power and polarization. Their mean val-
ues (standard deviations) are ΩX/2π = 131.6 (0.9) kHz, ΩY /2π = 117.3 (0.2) kHz,
gX/2π = 26.7 (0.3) kHz, gY /2π = 9.4 (0.5) kHz.
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Figure 27: Dispersion curves obtained, as a function of ∆, from the imaginary part
of the eigenvalues of the drift matrix (solid lines). The experimental heterodyne
spectra do not provide a direct access to such eigenvalues, however the spectral
shape can be approximated as a sum of three Lorentzian functions multiplied by
the cavity susceptibility, whose centers, obtained from a fit, are shown with dots
in the figure (26). Dashed lines show the eigenfrequencies of the uncoupled system
(i.e., with gX = gY = 0).
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similarly to what is observed in the spectra of two-qubit states interacting with
microwave photons [60, 1].

The optomechanical coupling rates for the oscillations parallel (Y direction)
and perpendicular (X direction) to the tweezer polarization are gX/2π = 28.5 kHz
and gY /2π = 9 kHz.

The phonon occupation numbers for the X and Y mechanical modes are cal-
culated from the integral of the respective displacement spectra, produced by the
model. The minimal values are achieved for a detuning of 120 kHz and are re-
spectively around 200 and 1500. We notice that single-mode occupation numbers
do not fully describe the thermal state of the system, that requires instead the
complete correlation matrix.

5.6 Measurement of the dipole heating rate anisotropy
After the observation of the hybrid optomechanical states in the classical regime,
the vacuum chamber is evacuated to high vacuum to decouple the mechanical
motion from the thermal environment. It is essential here the characterization of
the noise sources acting on the particle to check that no technical excess noise is
heating the mechanical motion, thus limiting the cooling results. The force noise
that determines the motion of the nanosphere can be ascribed to two fundamental
sources, besides the optomechanical coupling: the collisions with the molecules of
background gas, and the recoil due to the shot-noise in the dipole emission of the
nanosphere. At very low pressures, the contribution of dipole scattering becomes
important.

Jain et al. [29] have observed the re-heating of the Y mode, after parametric
feedback cooling down to a phononic occupation number of ∼ 60 in high vacuum.
Their measured rate agrees with the theory within 10− 30%.

We can deduce the total decoherence rates for the X and Y motion from the
spectrum of the field transmitted by the cavity. These rates mainly determine the
area of the spectral peaks generated by the motion of the nanosphere, while their
width is dominated by the optical cooling. We have acquired the time series of
the heterodyne detection signal during the evacuation of the experimental cham-
ber, maintaining a relatively large detuning of the tweezer radiation from cavity
resonance (namely, ∆/2π = −220 kHz). An example of a derived spectrum (anti-
Stokes motional sideband) is shown in Fig.(28a). The spectra are calculated by
Fourier transforming consecutive time intervals, and are fitted to the theoretical
model of Eq.(5.7). For each spectrum the resonance frequencies ΩX and ΩY , the
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a) b)

Figure 28: (a) Typical heterodyne spectrum (anti-Stokes sideband, power spec-
tral density PSD normalized to shot noise) showing the resonances of the X
and Y modes, acquired at the pressure of P ' 3 × 10−5 Pa for a detuning of
−∆/2π = 220 kHz. The red solid line is the fit with the theoretical model. (b)
Total decoherence rates for the X and Y motion (blue and red dots respectively),
measured for a tweezer light detuning of −∆/2π = 220 kHz as a function of back-
ground pressure. The error bars represent the standard error, calculated on several
consecutive time intervals. The solid lines show linear fits and the dashed lines
have the slopes extracted from the fits, but null constant terms. The inset is an
enlarged view of the region at lowest pressure.

optomechanical coupling rates gX and gY , and the decoherence rates ΓX and ΓY
are derived from the fits, while the detuning ∆, the cavity width κ and the detec-
tion efficiency η are measured independently and kept as fixed parameters in the
fitting procedure.

The decoherence rates vs pressure can be fitted by a straight line, according to
Γj/2π = aj +bj P (Fig.(28b)). The parameters derived from this fitting procedure
are slopes bx = (7.05 ± 0.02) × 108 Hz/Pa and by = (7.64 ± 0.03) × 108 Hz/Pa,
and constant terms ax = 2.79 ± 0.06 kHz and ay = 1.97 ± 0.15 kHz. In these
expressions, the quoted errors represent the statistical uncertainty of the fits (one
standard deviation). However, the main error is due to the evaluation of the
detection efficiency, measured to be η = 0.295±0.03, which produces an additional
uncertainty of 10% in the aj and bj parameters.

We have calculated the gas damping rate from the slopes of Γj, according to
γj = P bj

~Ωj

kBT
(see Eq.(5.4)), obtaining γ/2πP = 14.4 Hz/Pa for the X mode, and
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14.0 Hz/Pa for the Y mode, in good relative agreement. With the parameters of our
nanosphere in nitrogen atmosphere, the theoretical value given by the expression
(2.9) is γ/2πP = 9.7 Hz/Pa. Even considering the 30% nominal accuracy of
the pressure gauge quoted by its manufacturer, the agreement is not very good.
This discrepancy can be explained by the heating of the sphere caused by laser
absorption, which eventually warms up the background gas, as pointed out in Ref.
[42] and analysed in Ref. [25].

The decoherence rates due to the photon recoil in the dipole radiation, cal-
culated for our nanosphere using expression (2.10), are Γxdip/2π = 3.0 kHz and
Γydip/2π = 1.7 kHz, with a 20% uncertainty derived from the knowledge of the
nanosphere mass and of the tweezer intensity. The agreement with the fitted con-
stant terms ax,y is excellent, indicating that no significant extra noise is present,
i.e., the Γnj introduced in Eq.(5.4) coincide with the Γjdip. The calculated fluc-
tuations due to the laser intensity and frequency noise are indeed negligible [51],
and the measured decoherence rate shows that even parametric heating due to
mechanical vibrations, whose relevance was pointed out in other works [75, 22], do
not play an evident role in our case. We also remark that we can distinguish the
dipole scattering rates in the two modes, whose ratio (weakly dependent on the
detection efficiency) we found to be ax/ay = 1.42±0.14. To our knowledge, this is
the first time that such spatial variation of the shot noise in the photon recoil due
to dipole scattering is shown in the motion of a mesoscopic object. The residual
discrepancy with the calculated ratio of 1.8 can be attributed to the imperfectly
linear polarization of the light at the output of the optical fiber.

From the measured optomechanical gains of the two modes, we derive a maxi-
mum gain gmax/2π = 25.7± 1.7 kHz , and an angle θ that varies between 78◦ and
69◦ during the chamber evacuation.

5.7 Vectorial polaritons
In high vacuum, the pressure-independent decoherence terms become relevant, in
particular the shot-noise in the dipole scattering [29]. In Fig.(29a,b) are reported
the Stokes and anti-Stokes motional sidebands of the heterodyne signal for a par-
ticle at the pressure P = 4.4 × 10−6 Pa. Here, as demonstrated in the simulation
of Fig.(29c), the particle is well above the 2D strong coupling threshold. At this
point, the optomechanical coupling rates gX/2π = 20.5 kHz and gY /2π = 9.3 kHz
well exceed the total decoherence rate ΓX,Y /2π ' 5 kHz, in spite of the room-
temperature operation.
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Figure 29: Anti-Stokes a) and Stokes b) motional sideband of the heterodyne
power spectral density for the optomechanical system in the quantum coherent
regime for a tweezer light detuning of −∆/2π = 130 kHz, at a background pressure
of P = 4.4 × 10−6 Pa. The spectra are normalized to the shot noise, that was
then subtracted. The red solid line is the fit with the theoretical model. The
inferred values of the optomechanical coupling factors are gX/2π = 20.5 kHz and
gY /2π = 9.5 kHz and the mechanical frequencies are ΩX/2π = 131 kHz, ΩY /2π =
118 kHz. Panel c): Optomechanical coupling rate threshold to achieve the two-
dimensional strong coupling regime. The blue solid line, calculated for κ/2π = 57
kHz, γ/2π = 0.1 Hz, ΩX/2π = 131 kHz, ΩY /2π = 118 kHz, is obtained by a
numerical study of the eigenvalues of the drift matrix. Double avoided crossing
is observed above this line (in the light red region). Black solid lines show the
threshold for a system with a single mechanical mode (i.e., gX,Y > κ/4). The red
star corresponds to the particle analysed in this section.
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The system has fully entered the quantum coherent strong-coupling regime.
As such, the broad peaks on the two sides of the spectra are associated to the
polaritonic modes. The phonon-like and photon-like components in each Polari-
ton have similar strengths. The sharper peak in the middle is associated to the
geometrical dark mode that couples to the geometrical bright mode because of the
non-degeneracy of the two mechanical oscillators.

5.8 How far from the quantum ground state?
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Figure 30: Effective occupancy as a function of the angle between the motional
direction and the cavity axis evaluated by means of Eq.(5.10) for the spectrum
reported in sec. 5.11, where gX/2π = 14 kHz, gY /2π = 11 kHz and the mechanical
frequencies are ΩX/2π = 131 kHz, ΩY /2π = 120 kHz, with ΓX = 2π 5.7 kHz and
ΓY = 2π 5.4 kHz.

Here is discussed the definition of occupancy for the mechanical motion. Let’s
start with an oscillator linearly and weakly coupled to the cavity field. The ex-
ternal noisy bath, with the thermal (gas collisions) and optical (dipole scattering
and cavity noise) components, drives transitions between the energy levels of the
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oscillator at a rate[13]

Γn→n+1 = (n+ 1) Γ↑,
Γn→n−1 = nΓ↓,

where Γ↑ ∼ SFF (−Ω) and Γ↓ ∼ SFF (Ω) with SFF the PSD of the overall noise
force acting on the oscillator of frequency Ω.

The time evolution of the occupancy probability for a Fock state is:

ṗn (t) = [nΓ↑pn−1 + (n+ 1) Γ↓pn+1]− [nΓ↓ + (n+ 1) Γ↑] pn.

The stationary state of the oscillator, that is obtained setting ṗn (t) = 0 ∀n, is
described by the Bose-Einstein probability coefficients:

pn = e−n~Ω/kBT
(
1− e−~Ω/kBT

)
,

where T is the bath effective temperature at the oscillator frequency Ω (kBT ≡
~Ω/ log [SFF (Ω) /SFF (−Ω)]). So, the oscillator is in a thermal state:

ψ = 1
1 + n̄

∞∑
k=0

(
n̄

1 + n̄

)k
|k〉 〈k| ,

where n̄ is the mean occupancy and the sum is over all the Fock states.
The point here is that the energy of the thermal state is fully characterized via

the mean occupancy.
According to the standard definition of optomechanics the oscillator reaches the

ground state when n̄ < 1. This means that is more probable to find the oscillator
in the vacuum Fock state than in any other (k ≥ 1).

What about our system? Without coupling with the cavity field, the 2D motion
of the nanosphere in the plane perpendicular to the tweezer axis is well described
by two harmonic oscillators along orthogonal directions (X and Y ) defined by the
tweezer polarization. In any other direction of the plane, the motion is given by a
weighted sum of the two oscillations, with a spectrum displaying two peaks, and
it cannot be simply reproduced by a single harmonic oscillator. Introducing the
strong coupling with the cavity field, the system is generally described by three
harmonic oscillators associated to the hybridized modes (vectorial polaritons [51]),
defined by the eigenvectors of the drift matrix. Therefore, in this case, in no direc-
tion can the motion be simply associated to a single harmonic oscillator. We can



5.9 Exploring the 2D quantum motion 74

characterize the state of the polaritons by their bosonic occupation number, but
we cannot straightforwardly assign a phononic occupation number to the motion
in any direction. We note in particular that, in the presence of several resonance
peaks in the displacement spectrum, the energy equipartition is not preserved, i.e.,
m2Ω2

0 〈x2〉 6= 〈p2〉 for any physically meaningful choice of Ω0 (here, x and p are the
position and momentum along the considered direction).

The motion of the nanosphere can be meaningfully and uniquely characterized
by specifying how far it is from a minimum uncertainty state, i.e., by quantifying
the parameter 4

~2 〈x2〉〈p2〉. For a quantum mechanical oscillator in a thermal state,
this parameter coincides with (2n̄+ 1)2, where n̄ is the mean phononic occupation
number. It is therefore natural to define an effective thermal occupancy for the
motion along the generic φ direction, as

neff(φ) = 1
2

(2
~

√
〈x2

φ〉〈p2
φ〉 − 1

)
(5.10)

where xφ = x sinφ+ y cosφ, pφ = px sinφ+ py cosφ, and x, y, px, and py are the
physical coordinates and momenta along the X and Y direction. These variables
are derived from the b̂j operators used in the model according to the expressions
(5.3). The variances can be calculated as integrals of the spectra, according to
〈O2〉 =

∫
SOO(Ω)dΩ

2π . An example of the occupancy as a function of the angle
referred to the cavity axis is reported in Fig.(30).

5.9 Exploring the 2D quantum motion
Since we’ve the possibility to rotate the tweezer angle, the next sections report on
the investigation of the system properties in the optimal configuration for the 1D
and 2D cooling.

The spectra shown in the previous section are acquired for a polarization angle
close to 70◦, such that the direction of strongest cooling (the geometrical bright
mode direction) is close to the direction X defined by the optical trap. On the
other hand, the Y direction is close to the geometrical dark mode direction and
thus very weakly coupled to the field.

By rotating the polarization angle θ we increase gY and enter the regime of
true 2D cooling. As shown in Fig.(31), gY matches and then overtakes gX, as
expected. In the region where the two gains are similar, we also observe the
most efficient 2D cooling, i.e., we achieve for this particle the lowest value of
the occupation along the warmest motional direction, which is nmax

eff = 3.4 ± 0.4.
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Figure 31: (a) Effective thermal occupancy along the coldest (dark green), warmest
(light green), X (dark blue) and Y (light blue) direction of oscillation for a tweezer
light detuning of −∆/2π = 130 kHz, at varying tweezer polarization angle. Square,
dark red (diamond, light red) symbols: optomechanical coupling coefficient for the
X (Y ) motion. Solid lines are guides for the eye. In the abscissa, we report the
polarization angle at the input of the tweezer fiber. The shadowed region highlights
the achievement of the strongest 2D confinement. (b) Expected trend of the same
parameters, plotted as a function of the tweezer polarization angle θ, assuming
linear polarization. These theoretical curves are computed using the following
values of the system parameters: −∆/2π = 130 kHz, ΩX/2π = 125 kHz, ΩY /2π =
114.4 kHz, gmax/2π = 31 kHz, ΓX/2π = 12.4 kHz, and ΓY /2π = 12.3 kHz (the
decoherence rates are calculated for a background pressure of P = 1.4 10−5 Pa).
The agreement with the data of the upper panel is good, yet we remark that the
comparison can just be qualitative since the propagation in the tweezer optical
fiber modifies the light polarization, yielding an increasing ellipticity and a poorly
controlled output angle.
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At the same time, the smallest effective thermal occupancy is around 1. This
result has presented a major improvement with respect to previous experiments,
since parametric cooling just allowed to achieve 2D occupation numbers around
100 [29], and strong coherent scattering cooling was previously optimized for the
single X direction, while the occupation number of the Y mode was just estimated
to be below 100 [15]. Recently [48] the simultaneous ground-state cooling of two
mechanical modes of a levitated nanoparticle has been achieved, but in the weak
coupling regime.

Finally, for θ ∼ π/2, the motion along the cavity axis is strongly cooled, thus
falling below unity.

5.9.1 Occupancy as a function of the detuning

First of all, to check that no unmodeled detuning-dependant noise is present, sev-
eral spectra have been acquired for different laser frequencies with θ ∼ π/2. When
tuning the tweezer radiation closer to resonance, the optomechanical interaction is
increased, and the 2D motion is better modeled by a bright mechanical mode and
a dark mode. The former corresponds to the motion in the direction of the cav-
ity axis XC (close to X for small θ), the latter is in the orthogonal direction (i.e.,
along YC). The decoherence rates measured at different detunings, at low pressure,
remain stable as shown in Fig.(32a), in particular for what concerns their mean
value 0.5(ΓX + ΓY ). Indeed, when the two mechanical modes are coupled through
the cavity field and their spectra are superposed, we can hardly distinguish the
contributions of the two decoherence channels from the shape of the heterodyne
spectrum, while the spectral area is determined by their overall effect.

It is worth noting that for ∆ ' −ΩX,Y the occupancy along the coldest motional
direction is well below unity (see Fig.(32b)), thus achieving the 1D ground state
cooling, that will be presented in the next section for a different nanoparticle, for
which we had slight improvement thanks to a further decrease of the pressure.

5.9.2 One dimensional ground state cooling in the strong coupling
regime

For a detuning ∆ ' −ΩX,Y the optomechanical effect is maximum and the ge-
ometrical bright mode is strongly coupled with the optical field, yielding hy-
bridized modes (polaritons) [53, 51]. The lowest occupancy spectrum is shown in
Fig.(33)a,b, for the anti-Stokes (upper spectrum) and Stokes (lowe spectrum) side-
bands. The two polaritonic peaks are centered at ∼ 100 kHz and ∼ 142 kHz (their
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Figure 32: (a) Mean decoherence rate Γ = 0.5 (ΓX +ΓY ) deduced from the exper-
imental spectra at varying detuning. (b) Effective thermal occupancy along the
coldest (dark green), warmest (light green), X (dark blue) and Y (light blue) di-
rection of oscillation, as a function of the detuning of the tweezer light from cavity
resonance. Solid lines are guides for the eye. (c) Expected trend of the same occu-
pation numbers. These theoretical curves are computed using the following values
of the system parameters: ΩX/2π = 125.9 kHz, ΩY /2π = 115.95 kHz, gX/2π =
23.5 kHz, gY/2π = 3.5 kHz, ΓX/2π = 7.85 kHz, and ΓY /2π = 7.45 kHz (these de-
coherence rates are calculated for a background pressure of P = 7.2 10−6 Pa).

frequency splitting is ∼ 2gX/2π) and are wide (full width) respectively ∼ 34 kHz
and ∼ 22 kHz (i.e., close to 0.5κ/2π) as anticipated in Sec.2.3.3. Between the
two polaritonic peaks, a third narrow peak is visible, centered at ∼ 119 kHz and
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Figure 33: Anti-Stokes a) and Stokes b) motional sideband of the heterodyne
power spectral density for the optomechanical system in the quantum coherent
regime for a tweezer light detuning of −∆/2π = 120 kHz, at a background pressure
of P = 4.8 × 10−6 Pa. The red solid line is the fit with the theoretical model.
The inferred values of the optomechanical coupling factors are gX/2π = 23.8 kHz
and gY /2π = 2.5 kHz and the mechanical frequencies are ΩX/2π = 128 kHz,
ΩY /2π = 119 kHz. Panel c): effective occupancy as a function of the angle between
the motional direction and the cavity axis. The occupation in the range ±10◦
around the cavity axis is lower than one, reaching the minimum value of 0.41,
calculated by means of Eq.(5.10).

∼ 40 Hz wide. It originates from the bright mode’s coupling to the dark mode due
to unequal frequencies ΩX 6= ΩY . Here that peak is sharper than the spectrum in
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Fig.(29) because of the strong unbalance between the two optomechanical coupling
strengths.

In Fig.(33c) is plotted the occupation numbers as a function of the angle re-
ferred to the cavity axis. The occupancy along the coldest direction is n̄min

eff =
0.41± 0.04.

5.10 Thermometry? Not so trivial
The radiation scattered by the nanosphere on the cavity mode and transmitted by
the cavity output mirror is the only sensitive probe that we have to analyse the
motion of the nanosphere. Most optomechanical experiments deal with a single
mechanical mode weakly coupled to the probe field, a situation that allows to infer
some properties of the motion in a direct way. The signature of the mechanical
mode is typically a Lorentzian peak in the field spectrum, whose calibrated area
yields the displacement variance and the temperature of the mechanical oscillator,
while the asymmetry between the Stokes and anti-Stokes peaks in the motional
sidebands is a quantum feature allowing a direct measurement - optomechanical
thermometry - of the phononic occupation number [55, 31, 6]. For our configura-
tion of two correlated mechanical oscillators strongly coupled to the cavity field
such a direct analysis in not viable.

These features are analysed in the next two sections, where the expected spec-
tral features in the weak coupling regime and the observed asymmetry in the strong
coupling regime are presented.

5.10.1 Asymmetry in the weak coupling regime

Let’s consider an optomechanical system composed of a mechanical oscillator
weakly coupled to the field of a high finesse optical cavity. As stated in Sec.
2.3.3 the oscillator mechanical response to an external force is described by its
modified susceptibility. As the oscillator reaches the equilibrium with the external
bath, the motional PSD reads:

Sqq (ω) ∼
[∣∣∣χeff

m (ω)
∣∣∣2 SFF (−Ωeff ) +

∣∣∣χeff
m (−ω)

∣∣∣2 SFF (Ωeff )
]
. (5.11)

It can be shown [57] that SFF (Ωeff) ∝ n̄ + 1 and SFF (−Ωeff) ∝ n̄. As such,
the mechanical PSD reads

Sqq (ω) = q2
zpfγeff

[∣∣∣χeff
m (ω)

∣∣∣2 n̄+
∣∣∣χeff

m (−ω)
∣∣∣2 (n̄+ 1)

]
,
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where n̄ is the mean Bose occupancy at the equilibrium temperature of the bath
at the mechanical frequency. Now, since the heterodyne detection gives access
directly to the motional spectrum, it is possible to infer the occupancy the oscilla-
tor via the sideband asymmetry measurement. This procedure is called Sideband
Thermometry. It is noteworthy that such asymmetry is always present, but be-
cause of its weak dependence on n̄, it’s experimentally measurable at low mechan-
ical energies.

As final remark, it is well known that the PSD of a real variable must be
symmetric in frequency. As such, the measurement of a non zero asymmetry
corresponds to the experimental evidence of a non classical effect of the mechanical
motion.

5.10.2 Asymmetry in the strong coupling regime

The bright mode is strongly cooled, eventually entering the quantum regime whose
signature, as already discussed, is the spectral asymmetry.

The optical fluctuations imprinted by the mechanical motion along the cavity
axis are detected via the heterodyne setup and give access to the geometrical bright
mode xb, i.e. considering Eq.(5.6) :

ã = (κχc − 1) ãIN + i
√
κχcgbxb,

where xb = (gXx+ gY y) /gb and gb =
√

(g2
XΩx + g2

Y Ωy) /Ωb (see Sec. 2.3.4). So,
the PSD of the heterodyne signal around the local oscillator frequency reads [8]:

Sout (ΩLO + ω) = 1 + g2
bκ |χc (ω)|2 Sxbxb (ω) .

In the radiation transmitted by the cavity, the motional sidebands are filtered
by the cavity transmission function (optical susceptibility). To recover a more
meaningful indicator, we define a corrected asymmetry as

A(ω) = Sout(ΩLO − ω) − 1
Sout(ΩLO + ω) − 1

(ω −∆)2 + (κ/2)2

(ω + ∆)2 + (κ/2)2 ,

which equals the asymmetry in the geometrical bright mode spectrum.
The solution of the system reported in 5.1 gives the stationary state of the
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b)a)

d)c)

f)e)

Figure 34: Ratio between Stokes and anti-Stokes sidebands for a tweezer light
detuning ranging from −∆/2π = 100 kHz (panel a), to −∆/2π = 150 kHz (panel
f) in steps of 10 kHz, at a background pressure of P = 4× 10−6 Pa. The red solid
line is the theoretical model obtained from the fit. The inferred mean values of
the optomechanical coupling factors are gX/2π = 22 kHz and gY /2π = 4.5 kHz,
hence the system can be described by an oscillator in the strong optomechanical
coupling regime, plus a second weakly coupled oscillator.

geometrical Bright mode. The analytical formulation of the PSD reads:

Sxbxb = Ωb

g2
XΩX + g2

Y ΩY

1∣∣∣1 + χ−c
(
g2
Xχ
−
x + g2

Y χ
−
y

)∣∣∣2 ·[
g2
XΓX

(
|χx (ω)|2 + |χx (−ω)|2

)
+ g2

Y ΓY
(
|χy (ω)|2 + |χy (−ω)|2

)
+

+
∣∣∣g2
Xχ
−
x + g2

Y χ
−
y

∣∣∣2 κ |χc (−ω)|2
]
, (5.12)
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where χ−c = χc (ω) − χ∗c (−ω), χ−x(y) = χx(y) (ω) − χ∗x(y) (−ω) and χx(y) is the
mechanical susceptibility as defined in 2.2. The sideband asymmetry features can
be understood in terms of this analytic solution.

First of all, we can distinguish the contribution of the spectrally flat noise forces
(thermal and dipole scattering) acting on the oscillator, proportional to ΓX,Y , from
that associated to the white optical vacuum noise, filtered by the cavity, which is
proportional to κ |χc (−ω)|2.

For the interpretation of this model, it is instructive to start from its 1-D limit:

Sxx ∼
1

|1 + g2χ−c χ
−
m|

2 ·
[
g2Γ

(
|χm (ω)|2 + |χm (−ω)|2

)
+
∣∣∣√κg2χ−mχc (−ω)

∣∣∣2]

where, for the seek of clarity, xc → x, Γ is the mechanical decoherence rate and
χm is the mechanical susceptibility. Here, the term

|χm (ω)|2 + |χm (−ω)|2

|1 + g2χ−c χ
−
m|

2 =
∣∣∣χeffm

∣∣∣2
is the squared modulus of the optomechanical effective susceptibility (see Sec.
2.3.3) written in its compact form.

In the weak coupling regime (g � κ/4), χeffm is a sharp peak as compared to
the broad cavity resonance and the oscillator probes the noisy bath close to its
resonance frequency:

Sxx (±ω) ∝
∣∣∣χeff

m (±ω)
∣∣∣2 (Γ + g2κ |χc (∓Ωeff)|2

)
.

This equation is analogous to Eq.(5.11), but with the noise force terms explicitly
expressed. We clearly see that a strong asymmetry is achieved when the flat noise
term goes to zero (Γ→ 0) and the optical vacuum noise imprints the cavity shape
onto the mechanical sidebands, which in turn define the mechanical occupancy
[13, 8]

n̄+ 1
n̄

=
∣∣∣∣∣ χc (Ωeff)
χc (−Ωeff)

∣∣∣∣∣
2

.

It should be clearly stated that the oscillator actually probes the coloured noise at
all the frequencies, but it is sensitive to it only close to the mechanical resonance.

In the strong coupling regime, on the other hand, the mechanical modified
susceptibility gets broader and is composed of the two polaritonic peaks of width
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∼ κ/2 (see Sec.2.3.3). Here, the mechanical transfer function probes the noisy
bath on a bandwidth of the order of ∼ 2g + κ/2 > κ around the mechanical bare
frequency on both the positive and negative frequency axes.

In this case, the sideband-asymmetry frequency dependence can be experimen-
tally probed over a wide range and reads (in the limit of Γ→ 0):

Sxx (−ω)
Sxx (ω) =

∣∣∣∣∣ χc (ω)
χc (−ω)

∣∣∣∣∣
2

(5.13)

and reaches its maximum around the detuning value.
Now let’s go back to the general 2-D case. At low pressure the asymmetry

is still defined by the shape of the optical cavity, as in Eq.(5.13) but with the
addiction of a peculiarity that comes out from the presence of the two mechan-
ical susceptibilities. Qualitatively, the mechanical motion of the two oscillators
is imprinted in the optical fluctuations. As such, each of the mechanical oscilla-
tors reacts to a field whose dynamics is set not only by the cavity susceptibility,
but also by the mechanical susceptibility of the other oscillator. In a nutshell, in
the frequency range between the two bare mechanical resonances the optical fluc-
tuations induced by the two mechanical oscillators add with a π relative phase,
thus interfering destructively. In the region where these two contributions have
the same amplitude, the overall optomechanically induced fluctuations cancel out
thus inhibiting the optomechanical dynamical interaction.

The physics of this process is encoded in the term:

g2
Y χ
−
y + g2

Xχ
−
x (5.14)

of Eq.(5.12). The two mechanical susceptibilities are weighted each with the cor-
responding coupling strength.

It can be shown that, in the limit of vanishing thermal damping, this term is
null at the geometrical Dark mode frequency Ωd (see Eq.(2.14)), whose value is
constrained between ΩX and ΩY . Looking closer to Eq.(5.12), this means that at
ω = Ωd the optical cavity noise is dynamically inhibited from entering the mechan-
ical system. On the other hand the two mechanical oscillators are directly coupled
to their - uncorrelated - thermal baths via their bare mechanical susceptibilities,
thus probing the - spectrally flat - noisy bath.

The measured corrected asymmetry is shown in Fig.(34) for the detuning rang-
ing from −∆/2π = 100 kHz (panel a) to −∆/2π = 150 kHz (panel f) in steps of
10 kHz for the same particle of section 5.9.2. As anticipated, the motional side-
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band asymmetry that reveals the quantum nature of the dynamics is not limited to
mere scale factors between Stokes and anti-Stokes peaks, as customary in quantum
optomechanics.

In excellent agreement with the model, the maximal asymmetry occurs close
the spectral frequency matching ω ∼ −∆, where it ranges between ∼ 5 and ∼ 9,
denoting a strong non-classical behavior. The asymmetry in correspondence of
the resonance frequencies of the two polaritonic modes, for example in panel d)
for the detuning of 130 kHz, is around 5. In the limit of viewing the polaritons
as independent quantum harmonic oscillators, this would correspond to polariton
occupation numbers 1/(A − 1) = 0.25, but this information is not sufficient to
determine the bright mode’s thermal occupancy.

The dip at ∼ 119 kHz, resulting from the inhibition of the optomechanically
induced dynamic, falls to 1 because of the mechanical coupling to the flat noise
forces in that narrow spectral region.

The theoretical curves, evaluated for an efficiency η = 0.23, show good agree-
ment with the experimental results thus proving that this parameter is properly
estimated. In fact in the classical regime very similar spectra are obtained by
increasing the noise and decreasing the detection efficiency, or vice-versa. The
situation changes close to the quantum regime, where the spectral asymmetry be-
tween the Stokes and anti-Stokes motional sidebands in the electromagnetic field,
that is independent from the detection efficiency, gives a further crucial indication
on the achieved quantum state. The observation of such spectral asymmetry has
the dual purpose of demonstrating the achievement of the quantum regime, and
confirming the accuracy of the noise evaluation.

5.11 Strong two-dimensional cooling
An important step forward on the route towards the ambitious goal of realizing
three-dimensional ground state cooling is the observation and characterization
of the 2D quantum motion on the tweezer transverse plane. An optomechanical
system with two nearly-degenerate mechanical modes was already considered in the
literature [20, 39, 59]. However, here we deal with 2D motion, where its projections
along all the directions (i.e., every linear combination of the two modes that are
arbitrarily chosen as reference frame) have a clear physical meaning. This requires
addressing the problem in a radically different way from what is customary in
optomechanics, both in the description of the system and in the analysis of the
experimental signals and of the information that can be extracted. The problem is
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Figure 35: Occupancy as a function of the the mechanical frequencies and the
tweezer polarization angle. The simulation is evaluated for typical experimental
parameters, with −∆/2π = (ΩX + Ωy) /2(2π) = 124
kHz,

√
(g2
X + g2

Y )/2π = 25 kHz, κ/2π = 57kHz and ΓX = 2π 5.7 kHz and ΓY =
2π 5.4 kHz. The ground state is achieved as gX ∼ gY and the two mechanical
frequencies are far enough.

theoretically analysed in [69] where it is shown that for suitable system parameters
the particle full planar motion can be strongly coupled to the light and efficiently
cooled through coherent scattering. It is observed that the optimal cooling of the
2D motion is achieved when the frequency difference between the two mechanical
oscillators is sufficiently large to couple the GDM to the GBM (see Eq.(2.16))
without involving a strong filtering of the cavity.

The simulation of the occupancy along the warmest motional direction is re-
ported in Fig.(35) as a function of the ratio between the two mechanical frequen-
cies (with mean value of 124kHz) and of the tweezer angle for a laser detuning
∆/2π = −124kHz and a maximum coupling strength gmax/2π = 25kHz. With
realistic experimental parameters the 2D ground state cooling in the Quantum
coherent regime is feasible.

In the strongest two dimensional cooling configuration that has been recently
achieved in our setup, we have derived an occupancy of 1.5 along the warmest
motional direction. In the panels a) and b) of Fig.(36) are reported the Stokes/anti-
Stokes sidebands of the heterodyne PSD, while in panel c) is shown the sideband
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Figure 36: Panels a) and b): heterodyne spectrum (anti-Stokes and Stokes side-
bands) normalized to the detection shot noise and with the same shot noise sub-
tracted, for the polarization angle that minimizes the effective thermal occupancy
in the whole X − Y plane. Red solid line: fit of the theoretical model. Panel c)
asymmetry between the Stokes and anti-Stokes sidebands.

asymmetry.
The measured optomechanical parameters are gX/2π = 14 kHz and gY /2π =

11 kHz and the mechanical frequencies are ΩX/2π = 131 kHz, ΩY /2π = 120 kHz.
The two sidebands have different patterns, with the Stokes band that shows

a dip in the region of the dark mode. According to Eq.(5.12) for ω < ΩY and
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Figure 37: Upper panel: contribution to the normalized PSD from the mechan-
ical (light blue) and optical (red) noise drive for the spectrum in Fig.(36). At
the geometrical dark mode frequency (dashed vertical line) the interference term,
plotted in the lower panel, goes to zero. On the Stokes sideband, close to −Ωd,
the mechanical displacement is mainly due to the cavity back action noise. In
contrast, at the spectral frequency matching −Ωd, the cavity mediated force is
highly suppressed and the motion is driven by the thermal baths acting on the
two mechanical oscillators (here, with thermal bath is considered the white noise
term composed by the sum of the gas collision term and the dipole scattering
heating rate). As such, the dip becomes visible in the PSD which is the sum of
the two components. This feature in not visible in the anti-Stokes sideband, where
the mechanical displacement is mainly determined by the thermal noise.

ω > ΩX the mechanical motion is driven by the sum of both the white noise and
the cavity mediated back action. In the spectral region between the two bare
mechanical resonances, on the other hand, the cavity noise term vanishes and the
mechanical motion is sensitive to the spectrally flat noise via the bare mechanical
susceptibilities of the two oscillators. Moreover, since gX ∼ gY , the interference
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effect is enhanced. So, at sufficiently low pressure where the thermal heating
rate becomes negligible with respect to the optical contribution (see Fig.(37)),
the interference dip is visible in the spectrum. It should be emphasized that the
interference dip would be present even in the Anti-Stokes sideband but it’s not
observed, since in that spectral region the back action heating rate is strongly
suppressed by the cavity filtering and is masked by the large thermal and dipole
scattering noises.

To conclude, the sideband asymmetry has the usual shape of a broad peak
with a dip that reaches the value of 1 close to the dark mode frequency. The dip
is broader compared to Fig.(34) because the weighted susceptibilities of the two
oscillators have similar amplitude on a larger bandwidth, since gX ∼ gY .
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5.12 Conclusions and outlook
In this thesis we have demonstrated the experimental realization of a quantum
platform based on a macroscopic oscillator coupled to a mode of a high finesse
optical cavity. With the protocol developed at the early stage of the doctoral work
[11], based on the transfer of a levitated particle between two optical tweezers,
we have been able to reproducibly levitate the particle in high vacuum and ob-
serve strong non classical signatures in the motional spectrum [51, 50]. Thanks to
the coherent scattering setup, the oscillatory motion was strongly coupled to the
cavity field thus leading to the observation of the hybrid optomechanical states,
whose signature is a double avoided crossing between the three eigenfrequencies
of the three-body system. These collective optical-mechanical excitations were
then characterized in the quantum coherent regime, where the overall decoherence
rate is lower than the system Rabi frequency. Here, we have reached the mean
phononic occupation number along the coldest motional direction below unity,
thus achieving the 1D ground state cooling. Rotating the polarization of the trap-
ping beam with respect to the cavity optical axis, we have strongly cooled the 2D
motion achieving an effective occupancy of 1.5 along the warmest motional direc-
tion. Moreover, the strongly broadened mechanical transfer function has allowed
the observation of the quantum asymmetry on a bandwidth larger than the cavity
linewidth, thus resolving the cavity mediated quantum back action noise.

We finally comment on the perspectives opened by our results. We demon-
strate regimes where quantum polaritons can form. The latter are a pre-requisite
for transferring quantum information between photonic and phononic components.
The dark mode, weakly interacting with both the photonic field and (at low pres-
sure) the thermal bath, is suitable for its long-term storage. The system eigenfre-
quencies, when varying the detuning, display two avoided-crossings, as typically
observed in tripartite quantum systems. Notably, each avoided crossing acts as
a quantum beam splitter of wave functions, driving an input quantum state into
a coherent superposition of two output states evolving independently in time [60,
47]. Beam-splitters are basic components to realize a number of quantum opera-
tions, such as entanglement [62, 33] and teleportation [73]. The realized system
thus paves the way to novel protocols for the quantum coherent control of phononic
and photonic modes and represents a key-step towards the demonstration of op-
tomechanical entangled states at room temperature. Furthermore, the phonon-
polaritons form an useful basis for developing non-linear quantum optomechanics
[36, 34, 7].
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A Mathematical definitions
The Fourier transform of a complex classical variable h (t) and its inverse are
defined as:

h̃ (ω) = F [h (t)] (ω) =
∫ ∞
−∞

h (t) eiωt dt,

h (t) = F−1
[
h̃ (ω)

]
(t) =

∫ ∞
−∞

h̃ (ω) e−iωt dω2π .

The convention h̃∗ (ω) = F [h∗ (t)] (ω) is used. The power spectral density Shh (ω)
is defined as:

Shh (ω) = lim
τ→∞

1
τ
〈h̃∗τ (−ω) h̃τ (ω)〉,

where h̃τ (ω) is the Fourier transform of h (t) sampled over the time period −τ/2 <
t < τ/2. These definitions can be extended to the quantum domain by replacing
the classical variable h with the corresponding quantum operator ĥ.
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B Phase and frequency lock box
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E Pictures of the apparatus

Figure 38: Vacuum chamber, top view.
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Figure 39: Vacuum chamber without the cavity, side view from the window.
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Figure 40: Vacuum chamber, side view showing the tweezer inside the cavity.
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Figure 41: Top view of the cavity and the tweezer.
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Figure 42: Top view of a nanoparticle levitating on the cavity axis in high vacuum.
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Figure 43: Transfer of a levitated nanoparticle between the two optical tweezers.
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[15] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, and M.
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[24] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer. “Observa-
tion of strong coupling between a micromechanical resonator and an optical
cavity field”. In: Nature 460.7256 (2009), pp. 724–727. issn: 1476-4687. doi:
10.1038/nature08171. url: https://doi.org/10.1038/nature08171.

[25] E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny. “Sensing Static
Forces with Free-Falling Nanoparticles”. In: Phys. Rev. Lett. 121.6 (2018),
p. 063602. doi: 10.1103/PhysRevLett.121.063602. url: https://link.
aps.org/doi/10.1103/PhysRevLett.121.063602.

https://doi.org/10.1103/PhysRevLett.102.085702
https://doi.org/10.1103/PhysRevLett.102.085702
https://link.aps.org/doi/10.1103/PhysRevLett.102.085702
https://link.aps.org/doi/10.1103/PhysRevLett.102.085702
https://doi.org/10.1103/PhysRev.23.710
https://doi.org/10.1103/PhysRev.23.710
https://link.aps.org/doi/10.1103/PhysRev.23.710
https://link.aps.org/doi/10.1103/PhysRev.23.710
https://doi.org/10.1088/1367-2630/10/9/095009
https://doi.org/10.1088/1367-2630/10/9/095009
https://doi.org/10.1088/1367-2630/10/9/095009
https://doi.org/10.1103/PhysRevLett.109.103603
https://link.aps.org/doi/10.1103/PhysRevLett.109.103603
https://doi.org/10.1103/PhysRevA.100.013805
https://link.aps.org/doi/10.1103/PhysRevA.100.013805
https://link.aps.org/doi/10.1103/PhysRevA.100.013805
https://doi.org/10.1063/1.4953025
https://doi.org/10.1063/1.4953025
https://doi.org/10.1063/1.4953025
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1103/PhysRevLett.121.063602
https://link.aps.org/doi/10.1103/PhysRevLett.121.063602
https://link.aps.org/doi/10.1103/PhysRevLett.121.063602


REFERENCES 106

[26] J. J. Hopfield. “Theory of the Contribution of Excitons to the Complex
Dielectric Constant of Crystals”. In: Phys. Rev. 112.5 (1958), pp. 1555–1567.
doi: 10.1103/PhysRev.112.1555. url: https://link.aps.org/doi/10.
1103/PhysRev.112.1555.

[27] K. Huang and M. Born. “On the interaction between the radiation field and
ionic crystals”. In: Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 208.1094 (1951), pp. 352–365. doi: 10.
1098/rspa.1951.0166. eprint: https://royalsocietypublishing.org/
doi/pdf/10.1098/rspa.1951.0166. url: https://royalsocietypublishing.
org/doi/abs/10.1098/rspa.1951.0166.

[28] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx,
R. Gross, and S. T. B. Goennenwein. “High Cooperativity in Coupled Mi-
crowave Resonator Ferrimagnetic Insulator Hybrids”. In: Phys. Rev. Lett.
111.12 (2013), p. 127003. doi: 10.1103/PhysRevLett.111.127003. url:
https://link.aps.org/doi/10.1103/PhysRevLett.111.127003.

[29] V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny.
“Direct Measurement of Photon Recoil from a Levitated Nanoparticle”. In:
Phys. Rev. Lett. 116.24 (2016), p. 243601. doi: 10.1103/PhysRevLett.116.
243601. url: https://link.aps.org/doi/10.1103/PhysRevLett.116.
243601.

[30] E. T. Jaynes and F. W. Cummings. “Comparison of quantum and semiclas-
sical radiation theories with application to the beam maser”. In: Proceedings
of the IEEE 51.1 (1963), pp. 89–109. issn: 1558-2256. doi: 10.1109/PROC.
1963.1664.

[31] F. Y. Khalili, H. Miao, H. Yang, A. H. Safavi-Naeini, O. Painter, and Y.
Chen. “Quantum back-action in measurements of zero-point mechanical os-
cillations”. In: Phys. Rev. A 86.3 (2012), p. 033840. doi: 10.1103/PhysRevA.
86.033840. url: https://link.aps.org/doi/10.1103/PhysRevA.86.
033840.

[32] N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer.
“Cavity cooling of an optically levitated submicron particle”. In: Proceedings
of the National Academy of Sciences 110.35 (2013), pp. 14180–14185. issn:
0027-8424. doi: 10.1073/pnas.1309167110. eprint: https://www.pnas.
org/content/110/35/14180.full.pdf. url: https://www.pnas.org/
content/110/35/14180.

https://doi.org/10.1103/PhysRev.112.1555
https://link.aps.org/doi/10.1103/PhysRev.112.1555
https://link.aps.org/doi/10.1103/PhysRev.112.1555
https://doi.org/10.1098/rspa.1951.0166
https://doi.org/10.1098/rspa.1951.0166
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1951.0166
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1951.0166
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1951.0166
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1951.0166
https://doi.org/10.1103/PhysRevLett.111.127003
https://link.aps.org/doi/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevLett.116.243601
https://doi.org/10.1103/PhysRevLett.116.243601
https://link.aps.org/doi/10.1103/PhysRevLett.116.243601
https://link.aps.org/doi/10.1103/PhysRevLett.116.243601
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRevA.86.033840
https://doi.org/10.1103/PhysRevA.86.033840
https://link.aps.org/doi/10.1103/PhysRevA.86.033840
https://link.aps.org/doi/10.1103/PhysRevA.86.033840
https://doi.org/10.1073/pnas.1309167110
https://www.pnas.org/content/110/35/14180.full.pdf
https://www.pnas.org/content/110/35/14180.full.pdf
https://www.pnas.org/content/110/35/14180
https://www.pnas.org/content/110/35/14180


REFERENCES 107

[33] M. S. Kim, W. Son, and P. L. Knight. “Entanglement by a beam splitter:
Nonclassicality as a prerequisite for entanglement”. In: Phys. Rev. A 65.3
(2002), p. 032323. doi: 10.1103/PhysRevA.65.032323. url: https://
link.aps.org/doi/10.1103/PhysRevA.65.032323.

[34] M.-A. Lemonde, N. Didier, and A. A. Clerk. “Nonlinear Interaction Effects
in a Strongly Driven Optomechanical Cavity”. In: Phys. Rev. Lett. 111.5
(2013), p. 053602. doi: 10.1103/PhysRevLett.111.053602. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.111.053602.

[35] T. Li, S. Kheifets, and M. Raizen. “Millikelvin cooling of an optically trapped
microsphere in vacuum”. In: Nature Physics 7.3 (Jan. 2011), p. 032323. doi:
10 . 1038 / nphys1952. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevA.65.032323.

[36] Y.-C. Liu, Y.-F. Xiao, Y.-L. Chen, X.-C. Yu, and Q. Gong. “Parametric
Down-Conversion and Polariton Pair Generation in Optomechanical Sys-
tems”. In: Phys. Rev. Lett. 111.8 (2013), p. 083601. doi: 10.1103/PhysRevLett.
111.083601. url: https://link.aps.org/doi/10.1103/PhysRevLett.
111.083601.

[37] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S.
Hong, N. Kiesel, A. Kugi, and M. Aspelmeyer. “Real-time optimal quantum
control of mechanical motion at room temperature”. In: Nature 595.7867
(2021), pp. 373–377. issn: 1476-4687. doi: 10.1038/s41586-021-03602-3.
url: https://doi.org/10.1038/s41586-021-03602-3.

[38] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin. “Quantum Theory
of Cavity-Assisted Sideband Cooling of Mechanical Motion”. In: Phys. Rev.
Lett. 99.9 (2007), p. 093902. doi: 10.1103/PhysRevLett.99.093902. url:
https://link.aps.org/doi/10.1103/PhysRevLett.99.093902.

[39] F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä,
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