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We analyze the translational and rotational motion of an ellipsoidal Brownian particle from the viewpoint of
stochastic thermodynamics. The particle’s Brownian motion is driven by external forces and torques and takes
place in an heterogeneous thermal environment where friction coefficients and (local) temperature depend on
space and time. Our analysis of the particle’s stochastic thermodynamics is based on the entropy production
associated with single particle trajectories. It is motivated by the recent discovery that the overdamped limit
of vanishing inertia effects (as compared to viscous fricion) produces a so-called “anomalous” contribution
to the entropy production, which has no counterpart in the overdamped approximation, when inertia effects
are simply discarded. Here we show that rotational Brownian motion in the overdamped limit generates an
additional contribution to the “anomalous” entropy. We calculate its specific form by performing a systematic
singular perturbation analysis for the generating function of the entropy production. As a side result, we also
obtain the (well-known) equations of motion in the overdamped limit. We furthermore investigate the effects of
particle shape and give explicit expressions of the “anomalous entropy” for prolate and oblate spheroids and for
near-spherical Brownian particles.
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I. INTRODUCTION

The theory of Brownian motion [1–3], developed in
different formulations by Einstein [4], Smoluchowski [5], and
Langevin [6] around 1905 and 1906, describes the dynamics
of a particle suspended in a fluid. A prototypical example
is a small colloidal object, e.g., a polystyrene bead about a
micrometer in size, floating in water at room temperature. Even
without the action of externally applied forces, the particle
is in an animated and erratic state of motion, generated on
microscopic scales by collisions with the water molecules and
visible on mesoscopic scales as irregular diffusive movement.
Based upon the works mentioned above, this Brownian
motion is most successfully modeled (on the mesoscopic
scales) by stochastic differential equations [7–9], augmenting
the Newtonian equations of motion for the particle by the
forces from the surrounding liquid, namely, Stokesian friction
proportional to the particle velocity and thermal fluctuations
related to the fluid temperature. Both originate from the
surrounding fluid bath as their source, and the strengths of these
two forces are related by the fluctuation-dissipation theorem
[4,7,8].

Typically, this set of equations of motion for particle
position and velocity can be simplified by adopting the
so-called overdamped approximation, where one completely
neglects inertia effects in the particle dynamics. This procedure
is justified because for micrometer-sized objects suspended
in water friction forces are by orders of magnitude larger
than inertial forces [10,11], so that on time and length scales
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accessible under typical experimental conditions only the
overdamped behavior is observable. Indeed, it takes a delicate
experimental effort to actually measure the velocity of a
micrometer-sized Brownian particle in a liquid [12,13].

In recent years it has been demonstrated that the stochastic
equations of motion not only describe the irregular particle
dynamics to high accuracy but are also a valid starting point
for a consistent theory of thermodynamic quantities which are
associated with the particle movement, such as heat, work, or
entropy production [14–17], even if the particle is driven away
from thermal equilibrium conditions with the heat bath. In
this newly emerging field called stochastic thermodynamics,
central results of surprising generality have been discovered
in the form of fluctuation relations; a recent summary is
provided in Ref. [16]. The entropy production (rate) plays a
particularly important role, because it constitutes a measure of
irreversibility by relating probabilities of particle trajectories
to their time-reversed counterparts [18].

In the present context of a colloidal particle whose stochas-
tic dynamics is well described by overdamped equations of
motion, the fact that the definition of such a central concept
as entropy production (rate) is based on single trajectories
immediately raises the question of how neglecting the velocity
degrees of freedom may affect the particle’s stochastic ther-
modynamics. Investigating this question, it has been shown in
Ref. [19] that the overdamped approximation does not fully
capture the entropy production rate if the thermal environment
is inhomogeneous (but in equilibrium locally). Rather, there
is a contribution to the entropy production in addition to
those predicted from the overdamped approximation, which
cannot be obtained from the statistics of the overdamped
trajectories. Being connected to the breaking of time and
velocity reversal symmetry, this phenomenon has been dubbed
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“entropic anomaly” [19], in analogy with similar anomalies
encountered in physics.

Perhaps the best known such anomaly is the viscous
dissipative anomaly in turbulence: the energy dissipation rate
in the fluid remains finite in the limit of vanishing viscosity,
while it vanishes for the viscosity being set to exactly zero
[20]. This anomaly is caused by the breaking of time-reversal
symmetry; time-reversal symmetry is present under strictly
inviscid conditions, but not for finite, yet arbitrarily small
viscosity. Similarly, in quantum physics an anomaly is related
to a symmetry operative on the classical level (Planck’s
constant set to zero), which is broken in the corresponding
quantum theory [21,22].

The occurrence of the “anomalous entropy production” in
the overdamped limit has been discovered in Ref. [19] for
purely translational motion of a spherical Brownian particle
through an inhomogeneous thermal environment; see also Ref.
[23]. It has been further analyzed in Ref. [24] and shown
to occur in general classes of stochastic systems, including
discrete stochastic processes; a related analysis of discrete
processes is presented in Ref. [25]. The influence of a gradient
flow on the “entropic anomaly” has been studied in Ref.
[26], where also effects of particle rotation have been taken
into account. Moreover, the “entropic anomaly” has been
demonstrated to affect optimal stochastic transport, i.e., driven
processes which optimize entropy production [27], to induce
an efficiency loss in microscopic stochastic heat engines [28],
and even to play a nontrivial role in microevolution [29].
Finally, the “entropic anomaly” can be seen as an explicit
example of the general observation that the entropy production
may depend on the scale of description [25,30,31]; i.e., coarse
graining the dynamical equations of a physical system by
integrating out a subset of degrees of freedom typically reduces
entropy production [30,31]. Further concrete systems with
such scale-dependent entropy production are a harmonic chain
of two Brownian particles in contact with two different heat
baths, having finite entropy production which is reduced to
zero when one of the Brownian oscillators is integrated out
[32], and a dimer consisting of two Brownian particles at
different temperatures with a harmonic (but stiff) versus a
rigid coupling [33].

In the present paper, we analyze in detail the Brownian
motion of a nonspherical particle, especially the contributions
of rotational degrees of freedom to the stochastic entropy
production and to the appearance of “anomalous entropy”
in the overdamped limit. We restrict ourselves to the case
where there is no hydrodynamic coupling between rotational
and translational degrees of freedom. Our theory is thus valid
for any particle with three mutually perpendicular symmetry
planes [34], including, in particular, the large class of spheroids
and ellipsoids, but also rods and other rodlike shaped objects.

This paper is organized as follows. In Sec. II we describe
the model, provide the fundamental governing equations for
translational and rotational Brownian motion, and introduce
the basic pathwise thermodynamic quantities, such as heat
and entropy production, following the approach of stochastic
thermodynamics. Section III presents the derivation of the
overdamped limit for the concepts introduced in Sec. II.
Sections IV and V discuss the resulting overdamped dynamics
and overdamped entropy production, including the anomalous

contribution. In Sec. VI the anomalous entropy production is
explicitly calculated for prolate and oblate spheroids, Sec. VII
treats the case of slightly deformed spherical particles. We
conclude with a short summary and discussion in Sec. VIII.
Appendices A–C contain additional information and details of
the calculations.

II. DYNAMICS AND ENTROPY PRODUCTION

The dynamics of the particle is governed by external forces
and torques, thermal fluctuations, and viscous friction. Our
starting point is to take into account inertia effects as well,
so that we describe such driven Brownian motion by a set
of Langevin-Kramers equations [7–9] for the particle’s trans-
lational and rotational degrees of freedom. The translational
motion of the center of mass x = (x1,x2,x3) of the particle
(with mass m) and its velocity v = (v1,v2,v3) is modeled in
the laboratory frame,

ẋ = v, (1a)

mv̇ = −γ v + f +
√

2kBT γ 1/2ξ (t), (1b)

where f = (f1,f2,f3) summarizes all deterministic external
forces, T is the temperature (kB Boltzmann’s constant), and
ξ (t) = (ξ1(t),ξ2(t),ξ3(t)) are unbiased Gaussian noise sources
with correlations 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′). Finally, γ is the
translational viscous friction tensor of the ellipsoid. This 3 × 3
tensor is positive definite and symmetric, so that it has a
unique square root, which we represent by γ 1/2, meaning
(γ 1/2)Tγ 1/2 = γ 1/2γ 1/2 = γ (the symbol T labels the matrix
transpose).

While the translational dynamics is represented in the
laboratory frame, it turns out to be more convenient to write
the rotational motion in a body-fixed frame (with origin in
the particle’s center of mass), because then the inertia tensor
I is independent of particle orientation and thus constant
in time. The rotational Langevin-Kramers equation for the
angular velocity ω = (ω1,ω2,ω3) of the ellipsoid is then given
by Euler’s equation of rigid body dynamics [35] with a total
torque including not only externally applied torques but also
viscous friction and thermal noise:

I ω̇ + ω × (Iω) = −ηω + M +
√

2kBT η1/2ζ (t). (2a)

Here η is the 3 × 3 symmetric and positive definite rota-
tional friction tensor with a unique square root η1/2, M =
(M1,M2,M3) represents the deterministic torques acting on the
particle, and ζ (t) = (ζ1(t),ζ2(t),ζ3(t)) are unbiased and delta-
correlated Gaussian noise sources, which are independent of
the translational ones ξ (t).

In order to specify the orientational position of the ellip-
soid uniquely we choose two orthogonal unit vectors n =
(n1,n2,n3) and m = (m1,m2,m3), which are rigidly attached
to the particle (see Fig. 1). Their movement is dictated by the
angular velocity according to the kinematic equations

ṅ = ω × n, ṁ = ω × m. (2b)

Since the lengths of these two vectors are set to unity, and
their relative orientation is kept fixed (we choose n · m = 0),
this representation of the particle orientation has three free
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FIG. 1. Sketch of an ellipsoidal Brownian particle. The two
vectors n and m are attached to the particle to parametrize its
rotational position; see also main text, in particular Eqs. (2b).

parameters, as expected for a representation of rotation in
three dimensions. The results we derive in this paper are
of course independent of the specific representation of the
particle rotation. Instead of (2b) one could choose a quaternion
representation [36], an Euler angle representation [26,35],
and a differential geometric representation in terms of local
charts, as discussed in Ref. [26]. For the calculation we are
going to perform it turns out, however, that among the global
representations the one in (2b) is the most convenient.

We emphasize again that translational motion (1) is written
in the laboratory frame, while rotational dynamics (2) is
given in a reference frame fixed to the particle with the
origin being located at the center of mass of the particle.
We do not distinguish quantities in the different reference
frames by explicit labels, though, in order to keep notation as
simple as possible. In other words, throughout this paper we
follow the rule that all quantities associated with translation
are represented in the laboratory system, while quantities
associated with rotation are represented in the body fixed
coordinate system.

A central property of our setup is the presence of an
inhomogeneous thermal environment; i.e., we allow the
temperature T to depend on space and time, but with thermal
equilibrium being valid locally. Likewise, the friction tensors
γ and η are assumed to be functions of space and time, for
instance, because the fluid viscosity changes with the spatial
variations of temperature or due to hydrodynamic effects close
to boundaries [37]. Moreover, since translation is considered in
the laboratory frame, the translational friction tensor depends
on the particle orientation, while the body-fixed rotational
friction tensor does not. Concerning the external deterministic
forces and torques, we allow for the most general case and
take into account variations on position, orientation, and time.
Therefore, we have the following functional dependencies for
the quantities appearing in (1) and (2):

T = T (x,t), (3a)

γ = γ (x,n,m,t), (3b)

η = η(x,t), (3c)

f = f (x,n,m,t), (3d)

M = M(x,n,m,t). (3e)

The equations of motion (1) and (2) generate, for given
initial position and orientation of the ellipsoid, stochastic

trajectories in translational and orientational configuration
space. According to stochastic thermodynamics [15,16], an
entropy production �S is associated with such stochastic
trajectories, which involves contributions from the change of
particle entropy �Sp and from the entropy production in the
environment �Senv:

�S = �Sp + �Senv. (4)

We briefly summarize the well-known results for translational
Brownian motion [38] and extend them to include rotational
stochastic dynamics.

The particle entropy is defined as the state function [38]

Sp = −kB ln p(x,v,n,m,ω,t), (5)

where p(x,v,n,m,ω,t) is the solution of the Fokker-Planck
equation associated with (1) and (2). In our case, Sp does
not only depend on translational degrees of freedom but also
includes particle orientation, parametrized by n, m, and ω. The
change of particle entropy along a trajectory which starts at a
point (x0,v0,n0,m0,ω0) in configuration space at time t0 and
is located at a point (x(t),v(t),n(t),m(t),ω(t)) at a later time t

is given by

�Sp = kB ln p(x0,v0,n0,m0,ω0,t0)

− kB ln p(x(t),v(t),n(t),m(t),ω(t),t). (6)

The entropy production in the environment dSenv for an
infinitesimal displacement of the particle is related to the heat
δQ released to the thermal bath during this displacement:

dSenv = δQ

T
. (7)

Following Sekimoto’s stochastic energetics approach [39], the
heat is identified with the work done by the particle on the
thermal environment [40]. This work results from the forces
the particle exerts on the environment during its movement
as reaction forces to viscous friction and thermal fluctuations,
such that

δQ = −[−γ v +
√

2kBT γ 1/2ξ (t)] ◦ v dt

− [−ηω +
√

2kBT η1/2ζ (t)] ◦ ω dt (8)

for a total particle displacement consisting of a translational
increment dx = v dt and a rotational increment ωdt during the
time step dt . The symbol ◦ denotes the scalar product evaluated
according to the Stratonovich rule (midpoint regularization)
[39]. Note that the heat δQ as well as its two additive
contributions from translation and rotation are scalar quantities
and thus invariant under rotation of reference frame, a property
which we exploited in (8) by representing the translational
part in laboratory coordinates and the rotational part in the
body-fixed frame. The entropy produced by the particle in the
environment along a stochastic trajectory is the integral of (7)
over that path with δQ given by (8). Using (1b) and (2a), and
the identity [ω × (I · ω)] · ω = 0 we find

�Senv =
∫ t

t0

1

T
[ f · v dt ′ + M · ω dt ′ − mv ◦ dv(t ′)

− (Iω) ◦ dω(t ′)]. (9)
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In Appendix A we verify that this entropy production in the
environment can be interpreted as a measure of irreversibility
[17,18], by relating it to the ratio of probabilities of forward
and time-reversed paths for the combined translational and
rotational motion. We also verify that the total entropy
production �S, given by (4) with (6) and (9), fulfills the usual
fluctuation theorem [38],

〈e−�S/kB〉 = 1, (10)

when averaged over the path ensemble with fixed initial
configuration, denoted by 〈. . .〉. Its average is therefore always
positive (by Jensen’s inequality)

〈�S〉 � 0, (11)

in accordance with the second law.

III. OVERDAMPED LIMIT

As described in the Introduction, the typical system we want
to study with our model (1) and (2) is a colloidal ellipsoidal
particle of micrometer-size (or nanometer-size) suspended in
water with an inhomogeneous temperature distribution around
room temperature. It is well known that in such systems the
effects of the fluid bath in form of thermal fluctuations and
viscous friction have a significant influence on the particle
dynamics. Indeed, viscous friction effects are by orders of
magnitude larger than inertia effects [10,11], so that one
typically disregards inertia completely and adopts the so-called
overdamped approximation by simply putting mass equal to
zero, m = 0. In a strict mathematical sense, however, this is
generally not a valid procedure as it changes the order of the
differential equations of motion (1) and (2), so that small inertia
effects (as compared to friction forces) actually correspond to a
singular perturbation. Therefore, the overdamped limit should
be performed with some care in a genuine perturbative way.
Although the overdamped approximation and the overdamped
limit give identical results in many cases, this cannot be taken
for granted, in particular for stochastic differential equations
like (1) and (2) [41–48], involving heterogeneous heat baths,
or for functionals along stochastic trajectories generated by
(1) and (2), like heat [19,49] or the entropy production (9)
[19,24,26].

A. Multiple time scales

A standard tool for the rigorous derivation of singular limits
is the so-called multiple time-scale technique [50], which
exploits that the singular limit is tied to the appearance of
various well-separated dynamical time scales in the system. In
our case, the dominance of viscous friction over inertia effects
is related to the existence of two distinct time scales in the
equations of motion (1) and (2). The first one is the time over
which the velocity degrees of freedom relax and reach their
stationary distribution and is given by

τv = m

γ0
, (12)

where γ0 is the “typical” friction coefficient of the particle;
e.g., for a spherical particle of radius a it corresponds to Stokes
friction γ0 = 6πνa (ν is the dynamic viscosity of the medium

the particle is suspended in). For a micrometer-sized particle
in water, τv is of the order of microseconds [10]. The second
time scale is the time after which one can observe the diffusive
motion of the particle over a detectable distance, typically
about the particle size a,

τx = a2γ0

kBT0
, (13)

with T0 being the average temperature of the bath. Under
identical conditions, i.e., for a micrometer-sized particle in
water, τx is of the order of seconds. Note that although we
have based our definitions of τv and τx on translational motion,
the time scales for rotation are basically the same, because the
“rotational mass” (i.e., moment of inertia) scales as I ∼ ma2

and the rotational viscous friction as η ∼ γ a2.
Based on this separation of time scales, we calculate the

overdamped limit of the entropy production (4) [with (6) and
(9)] using the multiple time-scale method. It is convenient to
perform this limit for the generating function of the entropy
production in the environment (9) [19]. As side results, we then
find the well-known overdamped versions of the equations of
motion (1) and (2), as well as the relation connecting the
probability density p in (5) with its overdamped counterpart.
The latter is needed to deduce the overdamped limit of the
change in particle entropy (6) and from that the full entropy
production (4).

B. Generating function

In order to define the generating function of the
entropy production in the environment �Senv, we
first rewrite (9) as an integral in dt ′ only. Observ-
ing that kB d[(Iω) · ω/2kBT ] = kB d[ωTIω/2kBT ] = (Iω) ◦
dω/T − [ωTIω/2T 2] dT and that kB d[ωTIω/2kBT ] =
−kB d ln wω − (3kB/2T ) dT with the Maxwell-Boltzmann
distribution for the angular velocity

wω =
√

det(I )

(2πkBT )3/2
exp

[
− ωTIω

2kBT

]
, (14a)

we can write −(Iω) ◦ dω/T in (9) as kB d ln wω + [(3kBT −
ωTIω)/2T 2] dT . The term −mv ◦ dv can be recast in a similar
way as kB d ln wv + [(3kBT − mv2)/2T 2] dT by making use
of the Maxwell-Boltzmann distribution for the translational
velocity:

wv =
(

m

2πkBT

)3/2

exp

[
− mv2

2kBT

]
. (14b)

The dT contributions are a consequence of the inhomogeneity
of the thermal environment leading to temperature variations
along the particle trajectory, which are given as dT =
(∂T /∂t + v · ∂T /∂x) dt according to (3a), where ∂T /∂x =
(∂T /∂x1,∂T /∂x2,∂T /∂x3).

Collecting all these pieces together, we rearrange the
resulting stochastic integral into three parts [19], �Sreg, �Stime,
and �Sanom, related to the regular entropy production, an
entropy production due to time changes of T , and a part of the
entropy production related to spatial temperature variations,
which we show to yield an anomalous contribution in the
overdamped limit. The final result for �Senv from (9) thus
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reads

�Senv = −kB ln wv(t0)wω(t0) + kB ln wv(t)wω(t)

+�Sreg + �Stime + �Sanom (15)

with

�Sreg =
∫ t

t0

(
f · v

T
− v

T
· ∂kBT

∂x
+ M · ω

T

)
dt ′, (16a)

�Stime =
∫ t

t0

(
3kBT − mv2

2T 2
+ 3kBT − ωTIω

2T 2

)
∂T

∂t
dt ′,

(16b)

�Sanom =
∫ t

t0

(
5kBT − mv2

2T 2
+ 3kBT − ωTIω

2T 2

)
v · ∂T

∂x
dt ′.

(16c)

By splitting the entropy production into these three con-
tributions we can essentially separate the effects of time and
spatial variations of temperature, (16b) and (16c), from the

usual “regular” contribution (16a). We point out though that
the regular part (16a) contains a temperature-gradient term,
which is compensated by the factor 5/2 (instead of 3/2) in
the first term of (16c). The appearance of the temperature-
gradient is inspired by the (a posteriori) observation that the
entropy production in the overdamped approximation, when
inertia effects are simply disregarded, exactly corresponds
to the expression (16a). This can be verified by calculating
path probability ratios; see Ref. [18] and the Supplementary
Material of Ref. [19].

The joint generating function of the three contributions (16)
to the entropy production is [19]

Gs1s2s3 (x,v,n,m,ω,t |x0,v0,n0,m0,ω0,t0)

= 〈exp(−s1�Sreg − s2�Stime − s3�Sanom)δ(x(t) − x)

δ(v(t) − v)δ(n(t) − n)δ(m(t) − m)δ(ω(t) − ω)〉, (17)

where the average is taken over paths with fixed initial
conditions x0, v0, n0, m0, ω0 at time t0, as before. It can
be shown to obey the forward Feynman-Kac formula [1,19]

∂Gs1s2s3

∂t
− A†Gs1s2s3 = −

[
s1

(
f · v

T
− v

T
· ∂kBT

∂x
+ M · ω

T

)
+ s2

(
3kBT − mv2

2T 2
+ 3kBT − ωTIω

2T 2

)
∂T

∂t

+ s3

(
5kBT − mv2

2T 2
+ 3kBT − ωTIω

2T 2

)
v · ∂T

∂x

]
Gs1s2s3 . (18)

Note that for s1 = 0, s2 = 0, and s3 = 0, the generating function represents the probability density p used in (5):

G000(x,v,n,m,ω,t |x0,v0,n0,m0,ω0,t0) = 〈δ(x(t) − x)δ(v(t) − v)δ(n(t) − n)δ(m(t) − m)δ(ω(t) − ω)〉
= p(x,v,n,m,ω,t). (19)

Accordingly, the operator A† is the generator of the combined
diffusion process for translation and rotation associated with
(1) and (2); its specific expression is given below in Eq. (24)
(in dimensionless form).

C. Dimensionless representation

Since inertial effects in (1) and (2) are orders of magnitude
smaller than friction and other forces, the various terms in
(18) may be of considerably different magnitude as well. For a
detailed analysis, we rewrite all quantities appearing in (18) by
introducing dimensionless representations of order one, so that
the different magnitudes of terms show up as dimensionless
small (or large) prefactors, which we expect to be related to
the ratio of the two distinct time scales τv and τx [see (12)
and (13)]. Our choice is guided by physical intuition and by
the characteristics of the systems we intend to model with
(1) and (2). Most importantly, due to the separation of time
scales τv � τx , we expect the (translational and rotational)
velocity degrees of freedom to equilibrate “instantaneously”
and become of the order the thermal velocity. In contrast,
positional degrees of freedom change significantly only on the
“large” scales a and τx , so that we measure length and time
using these units. External forces and torques are assumed to
be of about the same size as the thermal fluctuating forces. We

therefore make the following ansatz for relating dimensionful
and dimensionless quantities (denoted by a tilde):

t = τx t̃ , (20a)

v =
√

kBT0

m
ṽ, ω =

√
kBT0

ma2
ω̃, (20b)

x = a x̃, n = ñ, m = m̃, (20c)

f = kBT0

a
f̃ , M = kBT0 M̃. (20d)

We furthermore express I in terms of m and the length scale
a,

I = ma2Ĩ , (20e)

the friction tensors in terms of the “typical” friction coefficient
γ0,

γ = γ0γ̃ , η = γ0a
2η̃, (20f)

and the temperature field by the average temperature T0,

kBT = kBT0 T̃ . (20g)

Plugging the relations (20) into (18) and defin-
ing the dimensionless variable s̃i = kBsi , we obtain
the dimensionless form of the forward Feynman-Kac
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equation (
∂

∂t̃
− ε−1L̃† − ε−2M̃† − Ñ †

)
Gs̃1 s̃2 s̃3 = 0, (21)

with

L̃† = −ṽi

∂

∂x̃i

− f̃i

∂

∂ṽi

− εijkω̃j

(
∂

∂ñi

ñk + ∂

∂m̃i

m̃k

)
− (Ĩ−1)ij M̃j

∂

∂ω̃i

+ (Ĩ−1)ij Ĩlmεjkl

∂

∂ω̃i

ω̃kω̃m

− s̃1

[
f̃i ṽi

T̃
− ṽi

T̃

(
∂T̃

∂x̃i

)
+ M̃iω̃i

T̃

]
− s̃3

(
5T̃ ṽi − ṽj ṽj ṽi

2T̃ 2
+ 3T̃ ṽi − Ĩjkω̃j ω̃kṽi

2T̃ 2

)(
∂T̃

∂x̃i

)
, (22a)

M̃† = γ̃ij

∂

∂ṽi

ṽj + T̃ γ̃ij

∂

∂ṽi

∂

∂ṽj

+ (Ĩ−1)ij η̃jk

∂

∂ω̃i

ω̃k + T̃ (Ĩ−1)il(Ĩ
−1)kj η̃lk

∂

∂ω̃i

∂

∂ω̃j

, (22b)

Ñ † = −s̃2

(
3T̃ − ṽi ṽi

2T̃ 2
+ 3T̃ − Ĩij ω̃i ω̃j

2T̃ 2

)(
∂T̃

∂t̃

)
, (22c)

where we switched to index notation for convenience with
summation over repeated indices being understood. In (21),
we defined

ε =
√

τv

τx

� 1 (23)

as a small parameter, expressing the time-scale separation in
the system. Note that the dimensionless version Ã† of the
generator A† of the diffusion process used in (18) is given as

Ã† = [ε−1L̃† + ε−2M̃† + Ñ †]s̃1=0,s̃2=0,s̃3=0

= ε−1L̃†|s̃1=0,s̃3=0 + ε−2M̃†. (24)

D. Perturbation expansion

The dimensionless equation of motion (21) for the generat-
ing function (17) constitutes the starting point of our analysis,
with the goal to derive its overdamped counterpart in the
(singular) limit ε = √

τv/τx → 0. To explicitly account for
the observation that the system exhibits dynamics on different
time scales we apply the following multiscale procedure. First,
we introduce time variables θ and τ corresponding to the scales
given by τv and τx [see (12) and (13)] and a variable ϑ for the
intermediate scale [19,24,52]:

θ = ε−2 t̃ , ϑ = ε−1 t̃ , τ = t̃ . (25)

We assume that the external time changes of temperature,
friction coefficients, forces, and torques occur on the slow
time scale τ only, so that the dimensionless versions of (3)
read

T̃ = T̃ (x̃,τ ), (26a)

γ̃ = γ̃ (x̃,ñ,m̃,τ ), (26b)

η̃ = η̃(x̃,τ ), (26c)

f̃ = f̃ (x̃,ñ,m̃,τ ), (26d)

M̃ = M̃(x̃,ñ,m̃,τ ). (26e)

Then we expand Gs̃1 s̃2 s̃3 in powers of ε,

Gs̃1 s̃2 s̃3 = G(0) + εG(1) + ε2G(2) + · · · , (27)

where all the G(i) are a priori assumed to be functions of
all variables x̃, ṽ, ñ, m̃, ω̃ and of all the three different
times θ , ϑ , τ defined in (25) (of course they also depend
on the parameters s̃1, s̃2, s̃3, but we skip the corresponding
subscripts for notational simplicity). As a consequence, the
time derivative in (21) turns into

∂

∂t̃
= ε−2 ∂

∂θ
+ ε−1 ∂

∂ϑ
+ ∂

∂τ
. (28)

Inserting (27) and (28) into (21) and equating terms of
equal power in ε, we find a hierarchy of coupled equations
with lowest order (order ε−2):

∂G(0)

∂θ
− M̃†G(0) = 0. (29)

From (22b) we see that M̃† is an operator in the fast degrees
of freedom v, ω only, so that their dynamics is indeed tied
to the fast time θ , as expected. Since there are no explicit θ

dependences in M̃† [see (26)], and since we are not interested
in the relaxation processes of the fast degrees of freedom on θ

time scales, we can set ∂G(i)/∂θ = 0 (for all i) in the following.
Then the first three in the hierarchy of equations read

M̃†G(0) = 0, (30a)

M̃†G(1) = ∂G(0)

∂ϑ
− L̃†G(0), (30b)

M̃†G(2) = ∂G(0)

∂τ
− Ñ †G(0) + ∂G(1)

∂ϑ
− L̃†G(1), (30c)

with the first line collecting order ε−2 terms, the second line
order ε−1 terms, and the third line order ε0 terms.

The solution to (30a) is

G(0) = g(0)(x̃,ñ,m̃,ϑ,τ )w̃v(ṽ|x̃,τ )w̃ω(ω̃|x̃,τ ), (31)

where w̃v(ṽ|x̃,τ ) and w̃ω(ω̃|x̃,τ ) are the dimensionless coun-
terparts of the Maxwell-Boltzmann distributions for transla-
tional and rotational velocity (at given position and time)
defined in (14) [51], and where g(0)(x̃,ñ,m̃,ϑ,τ ) is an unknown
function of only the slow degrees of freedom according to the

012132-6



ENTROPY PRODUCTION OF A BROWNIAN ELLIPSOID IN . . . PHYSICAL REVIEW E 93, 012132 (2016)

general definition

g(i)(x̃,ñ,m̃,ϑ,τ ) =
∫

d ṽdω̃ G(i). (32)

To proceed with the higher order equations (30b) and
(30c) we employ the solvability condition. It states that
the inhomogeneities on the right-hand sides need to be
orthogonal to the nullspace of the operator M̃ adjoint to
M̃† (Fredholm alternative; see, e.g., Ref. [52]). As we can
see from (22b), the nullspace of M̃ contains the functions
which are constant in ṽ and ω̃. Therefore, the solvability
condition for (30b) reads

∫
d ṽ dω̃ (∂G(0)/∂ϑ − L̃†G(0)) = 0.

It is straightforward to show from the explicit expression (22a)
for L̃† that

∫
d ṽ dω̃ L̃†G(0) = 0, so that we find g(0) in (31) to

be independent of the intermediate time scale ϑ :

∂g(0)

∂ϑ
= 0. (33)

Applying the solvability condition in an analogous way to
(30c) we obtain

∂g(0)

∂τ
+ ∂g(1)

∂ϑ
=
∫

d ṽ dω̃ L̃†G(1), (34)

where we have used
∫

d ṽ dω̃ Ñ †G(0) = 0.
We can now state more precisely what it means to derive

the overdamped equation of motion for the generating function
Gs̃1 s̃2 s̃3 . This overdamped equation should be valid only on time
scales beyond those of θ , after the fast degrees of freedom
have relaxed and have reached their stationary distribution
(on θ time scales), so that they can be integrated out. The
overdamped generating function is thus given by

gs̃1 s̃2 s̃3 = lim
ε→0

∫
d ṽ dω̃ Gs̃1 s̃2 s̃3 , (35)

for which we want to calculate the equation of motion

∂gs̃1 s̃2 s̃3

∂t̃
= lim

ε→0

∫
d ṽ dω̃

∂Gs̃1 s̃2 s̃3

∂t̃
. (36)

The overdamped limit ε = √
τv/τx → 0 singles out the zeroth-

order contribution in Gs̃1 s̃2 s̃3 and ∂Gs̃1 s̃2 s̃3/∂t̃ . It follows from
(27) and (31) that gs̃1 s̃2 s̃3 is actually identical to g(0). Moreover,
inserting the relations (27) and (28) into (36), and using the
results we so far obtained from the perturbation expansion,
namely, ∂G(0)/∂θ = 0, as well as (33) and (34), we find

∂gs̃1 s̃2 s̃3

∂t̃
=
∫

d ṽ dω̃ L̃†G(1). (37)

In the integral on the right-hand side the ∂/∂ṽi and ∂/∂ω̃i terms
from (22a) evaluate to zero. Our quantity of interest therefore
becomes

∂gs̃1 s̃2 s̃3

∂t̃
= −∂Jṽi

∂x̃i

− εijk

(
∂

∂ñi

ñk + ∂

∂m̃i

m̃k

)
Jω̃j

− s̃1

[
f̃iJṽi

T̃
− Jṽi

T̃

∂T̃

∂x̃i

+ M̃iJω̃i

T̃

]

− s̃3

(
5T̃ Jṽi

− Jṽj ṽj ṽi

2T̃ 2
+ 3T̃ Jṽi

− JĨjkω̃j ω̃k ṽi

2T̃ 2

)
∂T̃

∂x̃i

,

(38)
with the definition

Jπ(ṽ,ω̃) =
∫

d ṽ dω̃ π (ṽ,ω̃)G(1) (39)

for integrals over (polynomial) functions π (ṽ,ω̃) in ṽ and
ω̃ multiplying G(1). We remark that (38) does not depend
explicitly on s̃2, as G(1) is independent of s̃2 according to
(30b), with the consequence that in the overdamped limit the
temperature variations with time do not show up directly. For
evaluating the remaining various integrals Jπ(ṽ,ω̃) appearing in
(38), it is actually not necessary to find the full solution G(1) of
(30b). Instead, they can be evaluated directly from (30b) using
the known solution (31) for G(0), as shown in Appendix B.
The final result reads

∂gs̃1 s̃2 s̃3

∂t̃
= − ∂

∂x̃i

[
(γ̃ −1)ij f̃j − (γ̃ −1)ij

∂

∂x̃j

T̃

]
gs̃1 s̃2 s̃3

− εijk

(
∂

∂ñi

ñk + ∂

∂m̃i

m̃k

)[
(η̃−1)j lM̃l − (η̃−1)j l T̃ εplq

(
∂

∂ñp

ñq + ∂

∂m̃p

m̃q

)]
gs̃1 s̃2 s̃3

− s̃1

[
T̃ (γ̃ −1)ij

∂

∂x̃j

(
f̃i

T̃
− 1

T̃

∂T̃

∂x̃i

)
+
(

(γ̃ −1)ij f̃j + T̃
∂(γ̃ −1)ij

∂x̃j

)(
f̃i

T̃
− 1

T̃

∂T̃

∂x̃i

)]
gs̃1 s̃2 s̃3

+ s̃2
1 T̃ (γ̃ −1)ij

(
f̃i

T̃
− 1

T̃

∂T̃

∂x̃i

)(
f̃j

T̃
− 1

T̃

∂T̃

∂x̃j

)
gs̃1 s̃2 s̃3 + 2s̃1

[
∂

∂x̃i

(γ̃ −1)ij

(
f̃j − ∂T̃

∂x̃j

)
gs̃1 s̃2 s̃3

]

− s̃1

[
(η̃−1)ij

T̃
M̃iM̃j + εijk(η̃−1)j l

(
ñk

∂M̃l

∂ñi

+ m̃k

∂M̃l

∂m̃i

)]
gs̃1 s̃2 s̃3 + s̃2

1
(η̃−1)ij

T̃
M̃iM̃jgs̃1 s̃2 s̃3

+ 2s̃1

[(
∂

∂ñi

ñk + ∂

∂m̃i

m̃k

)
εijk(η̃−1)j lM̃lgs̃1 s̃2 s̃3

]

+ s̃3(s̃3 − 1)
1

2T̃

(
2UikUjk

3γ̃ (k)
+
∑

l

UikUjk

γ̃ (k) + 2γ̃ (l)
+
∑

l

UikUjk

γ̃ (k) + 2η̃(l)/Ĩ (l)

)
∂T̃

∂x̃i

∂T̃

∂x̃j

gs̃1 s̃2 s̃3 , (40)

where we have used on the right-hand side that g(0) = gs̃1 s̃2 s̃3 , and where Uik is defined in Eq. (B5) of Appendix B. This expression
together with its interpretation in the following sections constitute the main results of this paper.
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IV. OVERDAMPED DYNAMICS

In analogy to (19) we obtain the overdamped limit
of the probability density ρ(x,n,m,t) = limε→0

∫
dvdω

p(x,v,n,m,ω,t) from g000. According to (35) and (36), we
can thus read off the overdamped equation of motion for
ρ(x,n,m,t) from (40) by setting s̃1 = 0, s̃2 = 0, s̃3 = 0:

∂ρ

∂t
− A†

overρ = 0 (41)

with

A†
over = − ∂

∂xi

[
(γ −1)ij fj − (γ −1)ij

∂

∂xj

kBT

]

− εijk

(
∂

∂ni

nk + ∂

∂mi

mk

)[
(η−1)j lMl

− (η−1)j lkBT εplq

(
∂

∂np

nq + ∂

∂mp

mq

)]
, (42)

where we switched back to dimensionful quantities. Here
and in the following, we use a sub- or superscript “over” to
indicate the overdamped limit and to differentiate overdamped
quantities from the original ones. The Langevin equations,
which are equivalent to the Fokker-Planck equation (41) and
(42), read

ẋ = γ −1 f − γ −1

2

∂kBT

∂x
+ kBT

2

∂γ −1

∂x

+
√

2kBT γ −1/2 ◦ ξ (t), (43a)

ṅ = [η−1 M +
√

2kBT η−1/2ζ (t)] × n, (43b)

ṁ = [η−1 M +
√

2kBT η−1/2ζ (t)] × m, (43c)

where ξ (t) and ζ (t) are Gaussian white noise sources [like in
(1) and (2), but not related to those], and where all the products
involving noise terms, even the cross products, are to be in-
terpreted in the Stratonovich sense. These Langevin equations
are well known as a model for the overdamped translation and
rotation of ellipsoidal particles [1]. In particular the “splitting”
of the translational diffusion tensor D = kBT γ −1 into kBT

and γ −1 between the two spatial derivatives in the diffusion
term of (42) has been obtained before, as well as the specific
“spurious drift terms” in (43a) resulting from that “splitting”
[41–45]. Note that the explicit form of these “spurious drift
terms” and the corresponding interpretation of the noise
products are a natural outcome of the systematic perturbation
analysis. They can not be obtained from the overdamped
approximation, naively disregarding inertia effects in (1) and
(2). The overdamped approximation yields correct equations
only for homogeneous thermal environments when T , γ , and
η are constant.

V. OVERDAMPED ENTROPY PRODUCTION AND
ANOMALOUS ENTROPY

Based on the overdamped Langevin equations (43) we
can follow the standard reasoning of stochastic thermody-
namics and define the entropy production along stochastic

trajectories as

�Sover = �Sover
p + �Sover

env . (44)

It is composed of contributions from the entropy change of the
particle �Sover

p and from the entropy change in the environment
�Sover

env . The entropy change of the particle is given as [38]

�Sover
p = kB ln ρ(x0,n0,m0,t0) − kB ln ρ(x(t),n(t),m(t),t),

(45)
for a trajectory which starts at at a point (x0,n0,m0) at time
t0 and is located at a point (x(t),n(t),m(t)) at a later time
t . The entropy change in the environment can in principle
be defined from the heat exchanged with the environment.
However, due to the variations of temperature with position
such an identification is subtle for the translational degrees of
freedom [19,49] and thus the definition of entropy production
in the environment is better based on path probability ratios
[18]. It reads

�Sover
env =

∫ t

t0

1

T

[(
f − ∂kBT

∂x

)
◦ dx(t ′) + (η−1 M) · M dt ′

+
√

2kBT (η−1/2 M) ◦ dW (t ′)
]
, (46)

where dW is the increment of the Wiener process correspond-
ing to the Gaussian white noise ζ (t) in (43b) and (43c). In that
way, one arrives at an entropy production which is expressed
as a sequential functional on overdamped trajectories.

We now compare the expressions (45) and (46), obtained
from applying stochastic thermodynamics principles “naively”
to the overdamped equations of motion (43), with the full
result (40) from the systematic perturbation analysis. We first
observe that the overdamped limit ε → 0 of the probability
density p appearing in the change of particle entropy (6)
is given by G(0) evaluated at s̃1 = 0, s̃2 = 0, s̃3 = 0, which
we obtain from (31) to be ρ(x,n,m,t)wv(v|x,t)wω(ω|x,t)
(dimensionful units). Therefore, limε→0 �Sp yields the terms
listed in (45), plus additional terms involving log wvwω which
cancel precisely with the first line in (15). We conclude that, in
the overdamped limit, the change of the particle entropy can
indeed be identified with (45), while the entropy production in
the environment originates from the overdamped counterparts
�Sover

reg , �Sover
time , �Sover

anom of the entropy terms in the second line
of (15). These overdamped entropy contributions are encoded
in our main result (40) by the definition

gs1s2s3 (x,n,m,t |x0,n0,m0,t0)

= 〈 exp
(−s1�Sover

reg − s2�Sover
time − s3�Sover

anom

)
δ(x(t) − x)δ(n(t) − n)δ(m(t) − m)

〉
, (47)

analogous to (17). To access and analyze the specific form
of an individual contribution we set the s variables associated
with the other contributions to zero and compare the remaining
terms in (40) with the general formulas from Appendix C. In
that way, we find the following results.

The entropy production given in (46) arises precisely from
the overdamped limit of the regular part (16a), represented by
the s̃1 terms in (40). There is no contribution from the entropy
production (16b) due to time changes of temperature, because

012132-8



ENTROPY PRODUCTION OF A BROWNIAN ELLIPSOID IN . . . PHYSICAL REVIEW E 93, 012132 (2016)

(40) does not explicitly depend on s̃2 (as already pointed
out earlier), such that �Sover

time is bound to vanish identically.
However, the s̃3 terms yield additional contributions to the
overdamped entropy production, which are not included
in (46). From their specific functional form we infer (see
Appendix C) that these contributions can not even be expressed
as a sequential functional over overdamped trajectories. Their
origin is the entropy production �Sanom from (16c) [see also
(17)] [19,24].

Although it is not possible to explicitly write this “anoma-
lous entropy production” [19] as an integral along paths of
the overdamped dynamics, we can still derive a number of
interesting and useful results on its average behavior from
(40), similarly to the reasoning in the Supplementary Material
of Ref. [19]. Setting s̃1 = 0, s̃2 = 0, s̃3 = 1 (i.e., s1 = 0, s2 = 0,
s3 = 1/kB) we find that g001 = 〈exp(−�Sover

anom/kB)δ(x(t) −
x)δ(n(t) − n)δ(m(t) − m)〉 obeys the same forward equation

as g000 = ρ(x,n,m,t), so that it has the solution〈
exp
(−�Sover

anom

/
kB
)
δ(x(t) − x)δ(n(t) − n)δ(m(t) − m)

〉
= ρ(x,n,m,t). (48)

Integrating over the spatial coordinates x, n, m, we find the
fluctuation relation〈

exp
(−�Sover

anom/kB
)〉 = 1. (49)

It follows immediately (by Jensen’s inequality) that〈
�Sover

anom

〉
� 0. (50)

The explicit form for the average rate of anomalous
entropy production can be obtained from (40) by observing
that d

dt
〈�Sover

anom〉 = − d
dt

∫
dx d(n,m)∂g00s3/∂s3|s3=0 [see also

the derivation of Eq. (C10) in Appendix C]. It reads (in
dimensionful quantities)

d

dt

〈
�Sover

anom

〉 = kB

〈
1

2T

(
2

3γ (k)
+
∑

l

1

γ (k) + 2γ (l)
+
∑

l

1

γ (k) + 2η(l)
/

I (l)

m

)(
Uik

∂T

∂xi

)(
Ujk

∂T

∂xj

)〉
(51a)

= kB

〈
1

2T

⎡
⎣2

3
(γ −1)ij +

∑
l

([γ + 2γ (l)I]−1)ij +
∑

l

([
γ + 2η(l)

I (l)/m
I

]−1
)

ij

⎤
⎦ ∂T

∂xi

∂T

∂xj

〉
(51b)

= kB

∫
dx d(n,m)

ρ

2T

(
∂T

∂x

)T
[

2

3
γ −1 +

∑
l

(γ + 2γ (l)I)−1 +
∑

l

(
γ + 2η(l)

I (l)/m
I

)−1
]

∂T

∂x
. (51c)

These expressions for the average rate of anomalous
entropy production are another central result of the present
paper. We give three different, but equivalent forms. In the
first line, the entropy production is written in the coordinate
frame fixed to the particle. Accordingly, the quantity Uik

∂T
∂xi

is the temperature gradient along that principal axis of the
particle, for which the friction coefficients are γ (k) and η(k)

(and moment of inertia is I (k)); see Eq. (B5) in Appendix B
where also the Uik are defined. The second line represents
the anomalous entropy production in the laboratory frame of
reference (I denotes the identity matrix). In the third line, we
switch back to vector notation, and we express the average
〈· · · 〉 over particle trajectories explicitly as an integral over
the probability density ρ = ρ(x,n,m,t); note that the integral
over d(n,m) is not performed independently over n and m
but rather represents an integral over the space of particle
orientations, parametrized by n, m.

The result (51) generalizes the discovery of the anomalous
entropy in Ref. [19] in essentially two respects. First, it
covers nontrivial particle shapes, quantifying deviations from
a perfectly spherical bead by the principal values γ (i), η(i) and
I (i)/m. Note that the ratio I (i)/m does not depend on the par-
ticle mass, because I (i) is proportional to m; it is thus a purely
geometrical factor reflecting the particle’s shape. Second, it
takes into account the rotational degrees of freedom of the
Brownian particle and reveals that rotational motion adds to the
entropy production. Partial results about the effects of rotation
on the entropic anomaly have also been derived in Ref. [26].
The rotational entropy production originates from the terms
involving the rotational friction coefficients η(i), since these

terms vanish when we “freeze” the particle rotation using
the limit η(i) → ∞ to be left with the translational motion
only. We can therefore identify the translational and rotational
contributions to the anomalous entropy production as

κtrans = kBρ

2T

[
2

3
γ −1 +

∑
l

(γ + 2γ (l)I)−1

]
, (52a)

κrot = kBρ

2T

∑
l

(
γ + 2η(l)

I (l)/m
I

)−1

. (52b)

It has been argued in Ref. [19] that the anomalous entropy
is generated by the particle permanently transporting heat
between adjacent regions at different temperatures in the
inhomogeneous thermal environment on the fast time scale τv

and associated length scale (kBT0m)1/2/γ0 without performing
any visible displacement on the long (overdamped) time scale
τx . We can therefore interpret κtrans and κrot as state-dependent,
anisotropic heat conductivities quantifying this process behind
the anomalous entropy production [26]. This interpretation
also explains why the rotational contribution κrot depends on
the translational friction coefficients γ . The conducted heat is
“stored” in the rotational degrees of freedom but is transported
from one temperature region to another by translation. Without
translational motion, the particle’s rotation can not produce
“anomalous entropy.”

We finally remark that the rotational motion contributes
to the anomalous entropy production even if the particle is
perfectly spherical. For homogeneous spherical beads with
radius a, translational and rotational friction tensors as well
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as the moment of inertia tensor are proportional to the unit
tensor, i.e., we have [37] γ (1) = γ (2) = γ (3) = 6πνa, η(1) =
η(2) = η(3) = 8πνa3, and I (1) = I (2) = I (3) = 2ma2/5, so that
the conductivities become isotropic,

κtrans = 5kBρ

6T γ (1)
I = 5kBρ

36πT νa
I, (53a)

κrot = 3kBρ

2T

1

γ (1) + 2η(1)/ I (1)

m

I = 3kBρ

92πT νa
I. (53b)

For the translational part we just recover the result from Ref.
[19], while the particle rotation gives rise to an additional
contribution not described in Ref. [19]. The frictional “coeffi-
cients” γ (1) and η(1)/ I (1)

m
, representing translation and rotation,

respectively, quantify physically related effects and are of
similar magnitude. Hence, the rotational contribution to the
“anomalous entropy” is well comparable to the translational
part and is actually only by about a factor four smaller (see
also the discussion in Ref. [26]).

VI. PROLATE AND OBLATE SPHEROIDS

For an ellipsoidal particle

x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

= 1 (54)

with semiaxis lengths a1, a2, a3, the translational friction
coefficients γ (i) have been calculated by Oberbeck [53], the
rotational ones η(i) by Edwardes [54] and Jeffery [55]. They
are summarized, for instance, in Ref. [34] and read

γ (i) = 16πν
1

χ + a2
i αi

(for i = 1,2,3), (55a)

η(1) = 16πν

3

a2
2 + a2

3

a2
2α2 + a2

3α3
, (55b)

η(2) = 16πν

3

a2
3 + a2

1

a2
3α3 + a2

1α1
, (55c)

η(3) = 16πν

3

a2
1 + a2

2

a2
1α1 + a2

2α2
, (55d)

with

χ =
∫ ∞

0

dλ

�(λ)
, (56a)

αi =
∫ ∞

0

dλ(
a2

i + λ
)
�(λ)

(for i = 1,2,3), (56b)

�(λ) = [(a2
1 + λ

)(
a2

2 + λ
)(

a2
3 + λ

)]1/2
, (56c)

and with ν being the viscosity of the medium. The moment of
inertia tensor for the ellipsoid (54) is

1

m

⎛
⎝I (1) 0 0

0 I (2) 0
0 0 I (3)

⎞
⎠ =

⎛
⎜⎝

a2
2+a2

3
5 0 0

0 a2
3+a2

1
5 0

0 0 a2
1+a2

2
5

⎞
⎟⎠.

(57)

It is clear that from these expressions we can write down the
entropic anomaly (51) in terms of the particle’s geometry (and
medium viscosity), although the result would be quite lengthy
and cumbersome and is explicit only up to the quadratures in
(56). As it turns out, however, these integrals can be performed
analytically in the case of spheroids, i.e., ellipsoids with two
equal semiaxes, a1 = a2. One distinguishes between oblate
and prolate spheroids,

a1 = a2 > a3 oblate spheroid, (58)

a1 = a2 < a3 prolate spheroid. (59)

A. Flat oblate spheroid

For oblate particles, as defined in (58), we obtain from (56)

α1 = α2 = 1

a3
1

⎡
⎢⎣ − a3

a1

1 − a2
3

a2
1

+ arccos
(

a3
a1

)
(

1 − a2
3

a2
1

)3/2

⎤
⎥⎦, (60a)

α3 = 2

a3
1

⎡
⎢⎣ a1

a3

1 − a2
3

a2
1

− arccos
(

a3
a1

)
(

1 − a2
3

a2
1

)3/2

⎤
⎥⎦, (60b)

χ = 2

a1

arccos
(

a3
a1

)
(

1 − a2
3

a2
1

)1/2 . (60c)

For further analysis we focus on the limiting case of a flat
oblate spheroid, assuming

a3

a1
= δ � 1. (61)

Neglecting second and higher order terms in δ, the translational
and rotational friction coefficients then read

γ (1) = γ (2) = 32

3
νa1

(
1 + 8

3π
δ

)
, (62a)

γ (3) = 16νa1, (62b)

η(1) = η(2) = 32

3
νa3

1, (62c)

η(3) = 32

3
νa3

1

(
1 + 4

π
δ

)
. (62d)

The moment of inertia tensor has only zeroth and second
order terms in δ, so that to first order we find simply

1

m

⎛
⎜⎝

I (1) 0 0

0 I (2) 0

0 0 I (3)

⎞
⎟⎠ =

⎛
⎜⎜⎝

a2
1

5 0 0

0 a2
1

5 0

0 0 2a2
1

5

⎞
⎟⎟⎠. (63)

From these expressions we can easily calculate the heat
conductivities (52) associated with the anomalous entropy
production to first order in δ,

κ
(1)
trans = κ

(2)
trans = kBρ

32T νa1

(
19

8
− 67

12π
δ

)
, (64a)

κ
(3)
trans = kBρ

32T νa1

(
13

7
− 64

49π
δ

)
, (64b)
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κ
(1)
rot = κ

(2)
rot = kBρ

32T νa1

(
23

44
− 2201

2178π
δ

)
, (64c)

κ
(3)
rot = kBρ

32T νa1

(
147

299
− 120

169π
δ

)
, (64d)

where the κ
(k)
trans (k = 1,2,3) are the translational heat con-

ductivities along the principal axes of the particle defined
via (κtrans)ij = UikUjkκ

(k)
trans, and likewise for the rotational

conductivities κ
(k)
rot . We find that both, translational and

rotational contributions to the anomalous entropy production
are comparable in magnitude, with the translational one being
about four times larger than the rotational one.

B. Thin prolate spheroid

For the prolate particles from (59), we can write (56) as

α1 = α2 = 1

a3
3

⎡
⎢⎣

a2
3

a2
1

1 − a2
1

a3
3

− arccosh
(

a3
a1

)
(

1 − a2
1

a2
3

)3/2

⎤
⎥⎦, (65a)

α3 = 2

a3
3

⎡
⎢⎣ −1

1 − a2
1

a2
3

+ arccosh
(

a3
a1

)
(

1 − a2
1

a2
3

)3/2

⎤
⎥⎦, (65b)

χ = 2

a3

arccosh
(

a3
a1

)
(

1 − a2
1

a2
3

)1/2 . (65c)

Considering thin prolate spheroids with

a1

a3
= δ � 1, (66)

we obtain to lowest order in δ

γ (1) = γ (2) = 16πνa3

2 ln 2 + 1 − 2 ln δ
, (67a)

γ (3) = 8πνa3

2 ln 2 − 1 − 2 ln δ
, (67b)

η(1) = η(2) = 16πνa3
3

3(2 ln 2 − 1 − 2 ln δ)
, (67c)

η(3) = 16

3
πνa3

3δ
2. (67d)

These friction coefficients asymptotically vanish in the limit
δ → 0 (with a logarithmic approach to 0, except for η(3)),
because then the prolate particle more and more resembles a
one-dimensional rodlike object which experiences practically
no friction when moving through the fluid. It is easy to verify
though that even for δ → 0 inertia effects remain negligible
compared to viscous friction forces, since the particle mass,
being proportional to the particle volume, decreases much
faster with δ → 0 than the friction coefficients (67). In other
words, the condition τv/τx � 1 [see (23)] as a prerequisite
for the overdamped limit is fulfilled for arbitrarily small δ.
The moment of inertia tensor I/m as well has entries which
vanish asymptotically as δ → 0 so that we here have to keep

the second-order terms:

1

m

⎛
⎜⎝

I (1) 0 0

0 I (2) 0

0 0 I (3)

⎞
⎟⎠ =

⎛
⎜⎜⎝

a2
3 (1+δ2)

5 0 0

0 a2
3 (1+δ2)

5 0

0 0 2a2
3

5 δ2

⎞
⎟⎟⎠.

(68)

Calculating the heat conductivities (κtrans)ij = UikUjkκ
(k)
trans

and (κrot)ij = UikUjkκ
(k)
rot from (52) using the expansions (67)

and (68), we find that the leading order terms diverge with
ln(1/δ). Explicitly the results read

κ
(1)
trans = κ

(2)
trans = kBρ

32T νa3

(
11

3π
ln

1

δ
+ 11 ln 2 + 4

3π

)
, (69a)

κ
(3)
trans = kBρ

32T νa3

[
28

5π
ln

1

δ
+ 2(70 ln 2 − 19)

25π

]
, (69b)

κ
(1)
rot = κ

(2)
rot = kBρ

32T νa3

[
12

13π
ln

1

δ
+ 3(260 ln 2 + 99)

845π

]
,

(69c)

κ
(3)
rot = kBρ

32T νa3

[
24

23π
ln

1

δ
+ 3(40 ln 2 + 3)

115π

]
. (69d)

Comparing with the corresponding results (64) for the flat
oblate spheroid, we see that the anomalous entropy production
rate typically is larger for the thin prolate particle, due to the
logarithmic divergence of the conductivities.

VII. SLIGHTLY DEFORMED SPHERE

Another interesting case to consider is an ellipsoid with
almost identical semiaxes, i.e., a particle slightly deformed
from perfect spherical shape. We fix a1 and set

a2 = a1(1 + δ2), a3 = a1(1 + δ3), (70)

assuming

δ2 � 1, δ3 � 1. (71)

Plugging (70) into (56), we can now perform the integrations
by expanding the integrands in δ2, δ3, and calculate the friction
coefficients from (55) to a desired order in δ2, δ3. The first-order
results read

γ (1) = 6πνa1
(
1 + 2

5δ2 + 2
5δ3
)
, (72a)

γ (2) = 6πνa1
(
1 + 1

5δ2 + 2
5δ3
)
, (72b)

γ (3) = 6πνa1
(
1 + 2

5δ2 + 1
5δ3
)
, (72c)

η(1) = 8πνa3
1

(
1 + 6

5δ2 + 6
5δ3
)
, (72d)

η(2) = 8πνa3
1

(
1 + 3

5δ2 + 6
5δ3
)
, (72e)

η(3) = 8πνa3
1

(
1 + 6

5δ2 + 3
5δ3
)
. (72f)

Obviously, the well-known isotropic Stokes friction coeffi-
cients for translation and rotation [37] of a perfectly spherical
particle are recovered in the limit δ2 → 0, δ3 → 0.

For the anomalous heat conductivities κtrans, κrot [see (52)]
we further need the moment of inertia tensor I/m, which is
easily obtained by inserting (70) into (57). We finally find,
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again to first order in δ2 and δ3,

κ
(1)
trans = 5kBρ

36πT νa1

(
1 − 28

75
δ2 − 28

75
δ3

)
, (73a)

κ
(2)
trans = 5kBρ

36πT νa1

(
1 − 19

75
δ2 − 28

75
δ3

)
, (73b)

κ
(3)
trans = 5kBρ

36πT νa1

(
1 − 28

75
δ2 − 19

75
δ3

)
, (73c)

κ
(1)
rot = 3kBρ

92πT νa1

(
1 − 118

345
δ2 − 118

345
δ3

)
, (73d)

κ
(2)
rot = 3kBρ

92πT νa1

(
1 − 109

345
δ2 − 118

345
δ3

)
, (73e)

κ
(3)
rot = 3kBρ

92πT νa1

(
1 − 118

345
δ2 − 109

345
δ3

)
. (73f)

For δ2 = 0, δ3 = 0, we recover the results for a spherical
bead, already calculated in (53). Note that our observation
from the spherical case, that translational and rotational
contributions to “anomalous” entropy production are well
comparable (about a factor of four difference), also applies
for near-spherical particles. Deviations from perfect spherical
shape lead to similar corrections for both translational and
rotational “anomalous” entropy.

VIII. CONCLUSIONS

In the present paper we analyze the thermodynamic
properties of a single Brownian particle of nonspherical shape,
for which rotational degrees of freedom play a non-negligible
role. The main aim is to understand how the stochastic
thermodynamics is affected by “coarse graining” the level
of description of the particle motion when performing the
overdamped limit to “integrate out” the fast velocity degrees
of freedom. This question is of particular interest in case that
the surrounding heat bath is heterogeneous, a situation which
is known to be nontrivial already for the particle’s equations
of motion [41–48]. A central quantity for such an analysis is
the trajectory-wise entropy production of the particle defined
according to stochastic thermodynamics [16]. For translational
Brownian motion, it has been discovered in Ref. [19] that
the overdamped limit of this entropy production generates
an “anomalous” contribution, which is not captured by the
statistics of the overdamped trajectories.

Here we analyze in detail the effects of a nonspherical
particle shape and of the Brownian rotation of such particles.
Starting from the standard entropy production of stochastic
thermodynamics (extended to include rotational degrees of
freedom; see Sec. II) on the level of the full-fledged description
of the particle dynamics, we perform the overdamped limit
using singular perturbation theory (Sec. III). As our main
result we find that the rotational Brownian motion not only
yields a “standard” contribution to entropy production which
is consistent with the overdamped approximation (where one
simply disregards velocity degrees of freedom), but in addition
also generates an “anomalous” entropy which can not be
expressed as a functional along overdamped trajectories [see
Eqs. (51) and (52)]. This “anomalous” contribution to entropy

production from the particle’s rotation is comparable in mag-
nitude to the “anomalous” entropy generated by translational
motion.

We remark that our starting equations (1) and (2) to
model the particle’s Brownian motion do not contain any
hydrodynamic coupling between translational and rotational
degrees of freedom. Such couplings would be relevant, for
instance, for particles with a helical shape. For that reason
our analysis is restricted to the class of ellipsoidal (and other
rod- and disklike) Brownian particles. We expect that the more
general case of hydrodynamic couplings between translation
and rotation will also induce couplings between these degrees
of freedom in the entropy production and thus lead to an
additional “anomalous” contribution. The details, however,
remain to be revealed in future work.

Potential applications of the present findings include the
influence of rotational Brownian motion and the associated
“anomalous” entropy production in inhomogeneous thermal
environments on optimal time-dependent protocols, realized
by external forces to optimize a specific quantity of interest
during a finite-time process [27], on the efficiency of micro-
scopic stochastic heat engines [28,56], and even on its universal
fluctuations discovered recently in Ref. [57].
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APPENDIX A: ENTROPY PRODUCTION

In Sec. II we derive the entropy production in the environ-
ment (9) from the heat exchanged between particle and thermal
environment. In this appendix, we summarize the relevant
results which show that (9) can also be obtained from the
ratio between the probability for observing a certain particle
trajectory and the probability for observing its time-reversed
counterpart [18].

We consider a set of stochastic equations of the form

dqi = μijpj dt, (A1a)

dpi = (−�ijpj + ūi)dt + βij ◦ dWj , (A1b)

where qi are spacelike coordinates, transforming as qi → qi

if time is reversed, and pi are velocity-like coordinates with
pi → −pi under time reversal. The dynamics of the spacelike
coordinates is linear in the pi with a tensor μij which may
depend on qi only (not on pi). The deterministic part of the
dynamics for the velocity-like coordinates pi has a dissipative
contribution −�ijpj and a part ūi collecting external forces,
which is assumed to transform as ūi → ūi under time reversal.
The tensor βij defines the strength of the thermal noise, where
the stochastic noise itself is represented by the increments
of mutually independent Wiener processes dWi ; the products
between βij and dWj are to be interpreted in Stratonovich
sense. The diffusion tensor Dij resulting from these noise
terms is given by Dij = βikβjk , where we assume that its
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inverse (D−1)ij exists. Note that the structure of the stochastic
differential equations (A1) covers the Langevin equations (1)
and (2) for translational and rotational Brownian motion.

It can be shown (see, e.g., Ref. [18] or the Supplementary
Material of Ref. [19]) that the probability P [q(t), p(t)|q0, p0]
for a specific trajectory (q(t), p(t)) starting at (q0, p0) at
time t0 and ending at the point (q1, p1) at a later time
t1 is related to the probability P̂ [q̂(t), p̂(t)|q̂0, p̂0] for the
time-reversed trajectory [i.e., with (q̂0, p̂0) = (q1,−p1) and
(q̂1, p̂1) = (q0,−p0)] according to

P̂ [q̂(t), p̂(t)|q̂0, p̂0]

P [q(t), p(t)|q0, p0]

= exp

{
−
∫ t1

t0

[
2(D−1)ij�ikpk(ūj − ṗj ) − ∂ūi

∂pi

]
dt

}
. (A2)

We observe that for subsets of coordinates with noise
sources which are statistically independent, the inverse dif-
fusion tensor D−1 takes block-diagonal structure, so that the
contributions of these subsets in the exponent are additive, even
though their deterministic forces may depend on the whole set
of coordinates. As the Gaussian noise sources in (1) and (2) are
independent, we can therefore focus on translation and rotation
separately to determine their contributions to the exponent in
(A2).

For the translational motion (1) we identify q = x and
p = v and find by comparison with (A1)

μij = δij , �ij = γij

m
, (A3a)

ūi = 1

m
fi, (A3b)

Dij = 2kBT

m2
γij . (A3c)

The exponent in (A2) thus reads 2(D−1)ij�ikpk(ūj − ṗj ) −
∂ūi/∂pi = (vifi − mviv̇i)/(kBT ) and corresponds exactly to
the translational contribution in (9), up to a factor 1/kB.

Likewise, the rotational motion (2) matches Eqs. (A1) for
q = (n,m), p = ω and

μij =
(

εijknk 0
0 εijkmk

)
, (A4a)

�ij = (I−1)ikηkj , (A4b)

ūi = (I−1)ijMj − (I−1)ij εjklωkIlmωm, (A4c)

Dij = 2kBT (I−1)ik(I−1)lj ηkl . (A4d)

We can then calculate its contribution to the expo-
nent to read 2(D−1)ij�ikpk(ūj − ṗj ) − ∂ūi/∂pi = (ωiMi −
Iijωiω̇j )/(kBT ), which is equivalent to the rotational part in
(9), again up to a factor 1/kB.

Summarizing, we therefore arrive at the central result of
this appendix,

P̂

P
= e−�Senv/kB, (A5)

relating the entropy production in the environment �Senv as
defined in (9) to the ratio of forward and backward path
probabilities. Finally, from here it is straightforward to verify

[38] that for the total entropy production from (4) the integral
fluctuation relation

〈e−�S/kB〉 = 1, (A6)

is fulfilled, as already stated in (10). The average 〈. . .〉 is taken
over all trajectories starting from a fixed initial condition.

APPENDIX B: EVALUATION OF THE G(1)

INTEGRALS Jπ(ṽ,ω̃)

We here describe how to evaluate the integrals

Jṽi
=
∫

d ṽ dω̃ ṽiG
(1), (B1a)

Jω̃i
=
∫

d ṽ dω̃ ω̃iG
(1), (B1b)

Jṽj ṽj ṽi
=
∫

d ṽ dω̃ ṽj ṽj ṽiG
(1), (B1c)

JĨjkω̃j ω̃k ṽi
=
∫

d ṽ dω̃ Ĩjkω̃j ω̃kṽiG
(1), (B1d)

appearing in (38), without calculating G(1) explicitly. The basic
idea is to multiply the order ε−1 equation (30b) by a polynomial
�(ṽ,ω̃), integrate over ṽ, ω̃, and rewrite the left-hand side in
terms of the operator M̃ adjoint to M̃† [see (22b)]. In that
way we obtain equations of the form∫

d ṽ dω̃ (M̃�)G(1) = −
∫

d ṽ dω̃ �(L̃†G(0)), (B2)

where we remembered that ∂G(0)/∂ϑ = 0 according to (33).
For suitable choice of �, the operationM̃� in the left-hand in-
tegral may then reproduce one of the desired polynomials from
(B1) (or a linear combination of several such polynomials),
while the right-hand side can be calculated straightforwardly
using the explicit expression (22a) for L̃† and the known
solution (31) for G(0).

For instance, taking � = ṽi we get M̃� = −γ̃ij ṽj , such
that after evaluation of the corresponding right-hand side
integral − ∫ d ṽ dω̃ ṽi(L̃†G(0)) in (B2) we find

Jṽi
= −(γ̃ −1)ij T̃

∂g(0)

∂x̃j

− (s̃1 − 1)(γ̃ −1)ij

(
f̃j − ∂T̃

∂x̃j

)
g(0).

(B3)
Similarly, with the choice � = ω̃i we obtain

Jω̃i
= −(η̃−1)ikT̃ εjkl

(
∂

∂ñj

ñl + ∂

∂m̃j

m̃l

)
g(0)

− (s̃1 − 1)(η̃−1)ij M̃jg
(0). (B4)

The two remaining integrals (B1c) and (B1d) are more
cumbersome to calculate because of the third-order poly-
nomials involved. For Jṽj ṽj ṽi

it turns out that we have to
choose � = Aijkl ṽj ṽkṽl , where the tensor Aijkl has to be deter-
mined such that in M̃� = −Aijkl(γ̃jmṽmṽkṽl + γ̃kmṽmṽj ṽl +
γ̃lmṽmṽj ṽk) + 2T̃ Aijkl(γ̃jkṽl + γ̃j l ṽk + γ̃kl ṽj ) the sum over
polynomials of third degree in ṽ components reduces to ṽj ṽj ṽi .
To construct the explicit form of Aijkl , it is convenient to
diagonalize γ̃ in M̃ by

(UTγ̃ U )ij = γ̃ (i)δij , (B5)

012132-13



RAFFAELE MARINO, RALF EICHHORN, AND ERIK AURELL PHYSICAL REVIEW E 93, 012132 (2016)

where U is a symmetric tensor and γ̃ (i) are the eigenvalues of
γ̃ . It is then straightforward to identify

Aijkl = −UimUjmUknUln

γ̃ (m) + 2γ̃ (n)
. (B6)

Note that the sum here is over m and n and
that Aijkl obeys the symmetries Aijkl = Ajikl = Aijlk .
With this expression for Aijkl we can now calcu-
late the two integrals

∫
d ṽ dω̃ (M̃Aijkl ṽj ṽkṽl)G(1) and

− ∫ d ṽ dω̃ Aijkl ṽj ṽkṽl(L̃†G(0)) to find

Jṽj ṽj ṽi
= 5T̃ Jṽi

+ (s̃3 − 1)T̃

(
2UikUjk

3γ̃ (k)

+
∑

l

UikUjk

γ̃ (k) + 2γ̃ (l)

)
∂T̃

∂x̃j

g(0). (B7)

The sum over l is specified explicitly, since this index appears
only once; apart from that summation over double indices is
still understood. To arrive at the simple form (B7) we made
use of (B3) and of the relations 2Ailkl + Aikll = − 2UikUjk

3γ̃ (k) −∑
l

UikUjk

γ̃ (k)+2γ̃ (l) and (4Aiklj + 2Aijkl)γ̃kl + (2Ailkl + Aikll)γ̃kj =
−5δij , which can be proven by using (B5) and (B6).

Finally, the calculation of JĨjkω̃j ω̃k ṽi
from (B1d) proceeds

completely analogously. The proper choice for � turns out to
be Bijkl ṽj ω̃kω̃l , with

Bijkl = −UimUjmVknVlnĨ
(n)

γ̃ (m) + 2η̃(n)/Ĩ (n)
(B8)

to guarantee that M̃Bijkl ṽj ω̃kω̃l = Ĩjkω̃j ω̃kṽi +
(terms linear in ṽ components). In determining (B8) we
have assumed that Ĩ and η̃ are diagonalized simultaneously
by V [58]:

(V TĨV )ij = Ĩ (i)δij , (V Tη̃V )ij = η̃(i)δij . (B9)

Then, evaluating
∫

d ṽ dω̃ (M̃Bijkl ṽj ω̃kω̃l)G(1) and
− ∫ d ṽ dω̃ Bijkl ṽj ω̃kω̃l(L̃†G(0)), we obtain

JĨjkω̃j ω̃k ṽi
= 3T̃ Jṽi

+ (s̃3 − 1)T̃
∑

l

UikUjk

γ̃ (k) + 2η̃(l)/Ĩ (l)

∂T̃

∂x̃j

g(0).

(B10)
Again, we have simplified (B10) by using (B3), and
by observing that Bijkl(Ĩ−1)kl = −∑l

UimUjm

γ̃ (m)+2η̃(l)/Ĩ (l) and

2Bijkl(Ĩ−1)km(Ĩ−1)lnη̃mn + Biklm(Ĩ−1)lmγ̃kj = −3δij .

APPENDIX C: FORWARD EQUATION FOR THE
GENERATING FUNCTION OF SEQUENTIAL

FUNCTIONALS

We consider the general Langevin-equation in Ito form

dqi = ui dt + βij · dWj , (C1)

where the dot here denotes the Ito product. The set of
coordinates qi typically comprises velocities and positions for
translational motion, but, more generally, may also contain
angular velocities and corresponding coordinates representing
the particle orientation. Note that we therefore adopt a slightly
different notation as in Appendix A, where we explicitly
distinguished between space- and velocity-like coordinates.

The deterministic velocities are ui , the dWi are increments
of independent Wiener processes, and the βij define the
symmetric diffusion tensor Dij via Dij = βikβjk . In the
general case, ui and βij are functions of qi and t . The Langevin
equation can also be written in Stratonovich interpretation,

dqi = ūi dt + βij ◦ dWj , (C2)

where the relation between ui and ūi is

ui = ūi + 1

2

∂βij

∂qk

βkj . (C3)

The general form of a functional along trajectories gener-
ated by (C1) reads

J (q,t |q0,t0) =
∫ t

t0

[hdt ′ + gi · dqi(t
′) + fi · dWi(t

′)], (C4)

where the trajectories start at q(0) = q0 at time t0 and end at
q(t) = q at a later time t . The functions h, gi , fi depend on
coordinates qi and time t . The products in (C4) are understood
in the Ito sense. The equivalent form of the functional with
Stratonovich products is

J (q,t |q0,t0) =
∫ t

t0

[h̄dt ′ + ḡi ◦ dqi(t
′) + f̄i ◦ dWi(t

′)].

(C5)
Like in (C2) we label the the functions h̄, ḡi , f̄i of the
Stratonovich form by an overbar. They are related to the Ito
functions via

h = h̄ + 1

2

∂ḡi

∂qj

Dij + 1

2

∂f̄i

∂qj

βji, (C6a)

gi = ḡi , (C6b)

fi = f̄i . (C6c)

The generating function of J (q,t |q0,t0) is defined as

Gs(q,t |q0,t0) = 〈e−sJ δ(q(t) − q)〉, (C7)

with the average 〈. . .〉 being taken over all trajectories starting
at q0, t0. It can be shown (see, for instance, Chapter 6.4 in
Ref. [1] or the Supplementary Material of Ref. [19] for the
explicit derivation in special cases) that the forward equation
for the generating function Gs reads

∂Gs

∂t
− A†Gs = −s(h + uigi)Gs + s2

2

(
Dijgigj + fifi

)
Gs

+ s

[
∂

∂qi

(
Dijgj + βijfj

)
Gs

]
, (C8a)

with the usual generator of the forward diffusion process

A† = − ∂

∂qi

(
ui − ∂

∂qj

Dij

)
. (C8b)

All functions Dij , βij , ui , h, gi , fi in (C8) are evaluated at
the final state q, t .

Using the definition (C7) and integrating over this final state
q, we obtain

d

dt
〈e−sJ 〉 = −

〈(
sh + suigi − s2

2
Dijgigj − s2

2
fifi

)
e−sJ

〉
.

(C9)
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Finally, deriving with respect to s and setting s = 0 afterwards,
we find an equation for the average of the functional J over

all trajectories starting at q0, t0,

d

dt
〈J 〉 = 〈h + uigi〉. (C10)
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