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Abstract
Given a 3-uniform hypergraph H having a set V of vertices, and a set of hyperedges
T ⊂ P(V ), whose elements have cardinality three each, a null labelling is an assign-
ment of ±1 to the hyperedges such that each vertex belongs to the same number of
hyperedges labelled +1 and −1. A sufficient condition for the existence of a null
labelling of H (proved in Di Marco et al. Lect Notes Comput Sci 12757:282–294,
2021) is a Hamiltonian cycle in its 2-intersection graph. The notion of 2-intersection
graph generalizes that of intersection graph of an (hyper)graph and extends its effec-
tiveness. The present study first shows that this sufficient condition for the existence
of a null labelling in H can not be weakened by requiring only the connectedness
of the 2-intersection graph. Then some interesting properties related to their clique
configurations are proved. Finally, the main result is proved, the NP-completeness
of this characterization and, as a consequence, of the construction of the related 3-
hypergraphs.
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1 Introduction

The degree sequence of a graph or hypergraph provides useful information about
its geometrical and topological properties. When a graph or hypergraph has been
constructed for a given degree sequence, we say that it has been reconstructed. A
longstanding problem concerns the use of degree sequences for the reconstruction of
the related graphs or hypergraphs. In 1960, in a milestone paper, Erdös and Gallai
[7] characterized the degree sequences of simple graphs and set the basis for the suc-
cessive definition of fast reconstruction algorithms. These results can not be easily
generalized to hypergraphs, even in the simplest form of the k-uniform ones, with
k > 2. In recent years, many different reconstruction strategies have been consid-
ered, most of them relying on a general result of Dewdney in [4], concerning relevant
sub-classes of k-uniform hypergraphs (see [1, 3, 9, 10]). Recently, Deza et al. proved
the N P-completeness of the reconstruction problem of 3-uniform hypergraphs from
their degree sequences [5]. So, the study of the classes of hypergraphs whose recon-
struction can be performed in polynomial time becomes more relevant, as does the
characteristics of the solutions related to a single degree sequence. As an example,
in [12], the authors defined a general operator to move among all the 3-hypergraphs
sharing the same degree sequence and they introduced the notion of null-labelling
obtained as the symmetric difference of the edges of any two 3-hypergraphs. In [8],
this notion, restricted to 3-hypergraphs, is studied through their intersection graph
and a sufficient condition for its existence was provided. Finally, in [6], it was shown
that as the number of edges of the related 3-hypergraph increases, the usefulness of
the intersection graph decreases, and the stronger notion of 2-intersection graph was
introduced. In particular, the presence of a Hamiltonian cycle in the 2-intersection
graph guarantees the existence of, and allows one to compute, the null labelling of the
related 3-hypergraph.

Our study relies on these results and aims to deepen the knowledge of the structural
properties of 2-intersection graphs. In particular, we are concerned with the following

Question Given a graph G, is it possible to decide in polynomial time whether
there exists a 3-hypergraph H such that G ∼= I2(H)?

If it is possible, we say that G is reconstructible or equivalently, it has the 2-
intersection property. Here,we prove that the reconstruction problem is N P-complete.

2 Definitions and Preliminary Results

Let us recall some basic definitions for graph and hypergraphs, borrowing the notation
from [2]. A graph G is defined as a pair G = (V , E) such that V = {v1, . . . , vn} is
the set of vertices and E is a subset of pairs of vertices called edges. The notion of
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graph admits a natural generalization to hypergraph by removing the constraint on
the cardinality of the edges: H = (V , E) is a hypergraph with V = {v1, . . . , vn}
the set of vertices and E a collection of subsets of vertices called hyperedges, or
briefly edges, when no misunderstanding may arise. We also choose to abbreviate
the vertex notation vi with its only index i , when possible. In the sequel, we will
consider only graphs and hypergraphs that are simple, i.e., they do not allow singleton
(hyper)edges or (hyper)edges that are contained in or equal to other edges. The degree
of a vertex v ∈ V is the number of (hyper)edges containing v. The degree sequence
d = (d1, d2, . . . , dn) of a (hyper)graph is the list of its vertex degrees usually arranged
in non-increasing order.We focus on a remarkable class of hypergraphs, i.e., k-uniform
hypergraphs or simply k-hypergraphs, whose hyperedges have a fixed cardinality k.
In particular we are going to consider 3-hypergraphs.

Given a (hyper)graph, we can assign a +1 or −1 label to each (hyper)edge, result-
ing in positive and negative degrees of the vertices. An assignment of ±1 to the
(hyper)edges of a (hyper)graph is a null labelling if, for each vertex v, the sum d(v)
of the labels of its incident edges equals 0. A (hyper)graph that admits a null labelling
is said to be a null (hyper)graph. Note that an obvious necessary condition for a
(hyper)graph to have a null labelling is that each vertex must have even degree, i.e., it
is an even (hyper)graph.

The study of null (hyper)graphs is strictly related to their reconstruction from the
degree sequences. Let H1 = (V , E1) and H2 = (V , E2) be two (hyper)graphswith the
same vertex set V , and the same degree sequence (d1, d2, . . . , dn). Assign +1 to the
(hyper)edges of H1 and −1 to the (hyper)edges of H2. Such an assignment turns out
to be a null labelling of the (hyper)graph H = H1⊕H2 = (V , (E1∪ E2)\(E1∩ E2)).
This raises the question of whether there is a characterization of null (hyper)graphs.
From a computational perspective, the null labelling problems on k-hypergraphs turns
out to be NP-hard when k ≥ 3, as proved in [8].

In the sequel, the study focuses on 3-hypergraphs. In [6] the notion of 2-intersection
graph was introduced to study the null label problem. The 2-intersection graph of a
3-hypergraph H is denoted I2(H) = (V2H , E2H ). Its vertices V2H = {ve1, . . . , vem }
represent the hyperedges E = {e1, . . . , em} of H . Two vertices vei , ve j ∈ V2H are
adjacent, i.e., {vei , ve j } ∈ E2H , if the related hyperedges ei and e j share exactly two
vertices in H . In the sequel, we label the edge {vei , ve j } ∈ E2H with the indices of the
vertices that are shared by ei and e j , if needed.

The following results holds.

Proposition 1 [6]Let H bea3-hypergraph. If the2-intersection graph I2(H) isHamil-
tonian, then H admits a null labelling.

We observe that, provided an even graph G with n connected components and such
that each component has an even number of edges, we can find a null labelling of
G by considering, for each component, an Eulerian cycle and assigning alternatively
±1 to its edges. Note that this corresponds to have an intersection graph I (G) with n
components, each having a Hamiltonian cycle, where we can alternately assign ±1 to
the vertices of each Hamiltonian cycle to obtain a null labelling in the same fashion.
Therefore, it holds the following
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Proposition 2 Let H be a 3-hypergraph whose 2-intersection graph G = I2(H) has n
connected components G1, . . . ,Gn. If each connected component Gi , with 1 ≤ i ≤ n,
is Hamiltonian, and the sub-3-hypergraph Hi ⊂ H such that Gi = I2(Hi ) is even,
then H admits a null labelling.

Proof Since each Gi is Hamiltonian and it is the 2-intersection graph of an even sub-
3-hypergraph Hi , then we can apply Theorem 1 to it, obtaining a null labelling for
Hi . The null labelling of H is obtained by the union of the null labellings of these
sub-hypergraphs. 
�

Note that H may also be a connected 3-hypergraph, but the requirement of the
previous theorem asks that I2(H) has to be disconnected. Furthermore, each of its
components comes from an even sub−3-hypergraph of H .

Due to the connections with the null labelling problem, our main focus in this paper
is to study the structural properties of the 2-intersection graph. The following property
is straightforward, but it is fundamental for the next sections.

Property 1 [6] The edges of a 3-hypergraph H sharing the same pair of vertices
determine a clique in the 2-intersection graph I2(H).

In the sequel, we extend the common label of the edges of a clique of a 2-intersection
graph to label the clique itself. In the next section, we study the structure of 2-
intersection graphs.

3 Structural Properties of 2-Intersection Graphs

In this section we provide some structural properties of 2-intersection graphs that
are related to 3-hypergraphs, with the aim of characterizing them and determining the
computational complexity of this problem. Recall that a graphG has the 2-intersection
property if it is the 2-intersection graph of a 3-hypergraph H . So, we approach the
problem of the existence of a 3-hypergraph H whose 2-intersection graph is G, i.e.,
G ∼= I2(H), by first observing that Property 1 does not characterize the cliques of
I2(H). In fact, there may appear triangles (K3 cliques) whose edges do not share
a common label. In order to distinguish them from the triangles whose edges have
a common label, we indicate the first and the second types as T -triangles and K -
triangles, respectively.

More precisely, the vertices {v1, v2, v3} of a T -triangle have the general form v1 =
{x, y, z}, v2 = {x, y, t}, and v3 = {x, z, t}—only four vertices of H are used; while
those of a K triangle (with common label {x, y}) have the form v1 = {x, y, z},
v2 = {x, y, t}, and v3 = {x, y, r}—five vertices of H are used.

Figure 1a shows a configuration of a 2-intersection graph where a T -triangle and a
K -triangle live together and share an edge. The T -triangle is shaded gray.

With the previous definitions, a first obvious necessary condition for a graph to be
reconstructible is described in the following lemma.

Lemma 1 If G is reconstructible, then every vertex of G must belong to at most three
maximal cliques, such that the vertices of each of them have in common the same
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(a) (b)

Fig. 1 a Example of a T and a K sharing 2 vertices. b Example of S

Fig. 2 Reconstruction of the
configuration in which a point
belongs to 5 triangles

couple of labels. Furthermore, these maximal cliques can be joined by at most two
non-adjacent T -triangles as shown in Fig. 2.

Proof A clique in I2(H) can derive from a shared pair or it can be a triangle (in which
two pairs are used). In all cases, since a vertex of I2(H) has only three pairs, it cannot
belong to more than three cliques. However, note that the configuration in which a
point is shared by four triangles is reconstructible (see Fig. 2).

The reason is simple: the edges of the T triangles shared with the K triangles count
as a unique pair containing the central point. Therefore, it shares exactly three pairs,
as desired. Note that the configuration is reconstructible even if the K triangles are
replaced by any clique of order at least four. 
�

We encounter a similar situation when dealing with K4 cliques: Fig. 1b shows a
clique that may be present in a 2-intersection graph and whose edges do not share a
common label. This clique is composed of four intersecting T -triangles. It arises from
four vertices of H for which all possible triples occur as hyperedges. So, maintaining
the notation introduced for triangles,we denote such a square by S, andwe differentiate
it from the K -square, i.e., the 4-clique whose edges all have a common label.

123



Algorithmica

Fig. 3 The labelling of the
clique K5 used in Example 1

Property 2 Let C1 and C2 be two cliques of I2(H). If |C1 ∩ C2 |≥ 3 then C1 = C2.

Proof Let C = {v1, v2, v3} ⊆ C1 ∩ C2. We proceed by contradiction assuming that
there exist two non adjacent vertices x ∈ C1 and y ∈ C2 such that C ′

1 = C ∪ x and
C ′
2 = C ∪ y are two different cliques. The following two cases arise (see cases (a)

and (b) in Fig. 1).
C is a T -triangle: we suppose w.l.g. v1 = {1, 2, 3}, v2 = {1, 2, 4}, and v3 =

{1, 3, 4}. SinceC ′
1 is a clique, then x = {2, 3, 4} is the only possibility for x . The same

reasoning holds for y, so it follows x = y, against the hypothesis.
C is a K -triangle: we suppose w.l.g. v1 = {1, 2, 3}, v2 = {1, 2, 4}, and v3 =

{1, 2, 5}. Both x and y have to contain the pair {1, 2}, shared by all the elements of C ,
so there exists an edge joining them, against the hypothesis. 
�

In the proof of Property 2, we note that if C is a K -triangle, then only two of its
elements are enough to determine the common pair {1, 2}, so that:
Corollary 1 Let C1 and C2 be two cliques of I2(H) not containing any T -triangle. If
| C1 ∩ C2 |≥ 2 then C1 = C2.

Corollary 2 Let C1 and C2 be two (maximal) cliques of I2(H). If |C1 ∩C2 |= 2, then
either C1 or C2, but not both, are T -triangles.

We emphasize that, if both C1 and C2 are T -triangles such that |C1 ∩C2 |= 2, then
they are not maximal, i.e., they form an S-square as in Fig. 1b.

The following example shows that S is the biggest clique that does not admit a
common pair in all of its edges.

Example 1 Consider a clique K5 of a 2-intersection graph. It is not possible to label its
vertices without a common pair. In fact, let us start by labelling a vertex with {1, 2, 3}
(see Fig. 3) and one of its neighbours with {1, 2, 4}. Suppose that we label a third
vertex with a pair different from {1, 2}, say {1, 3, 4}. Then we have only one label
possible for the fourth vertex, namely {2, 3, 4}. We observe that there does not exist
any label for the fifth vertex, since all possible pairs have been already used. So a
labelling of the vertices of K5 without a common pair is not possible.

The same argument can be used to prove that any clique of order greater than four
has the edges labelled with the same pair of indices. Many other conditions can help
to restrict the cases when G is a 2-intersection graph.

Theorem 1 Let G be a graph containing two distinct cliques of order n and m and
intersecting in 2 ≤ i ≤ min(m, n) − 1 vertices. Moreover, assume that the condition
of Lemma 1 holds. Then the following statements hold:
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(i) if n = 3 and m ≥ 3, then G is reconstructible;
(ii) let n = 4 and m ≥ 4, then G is reconstructible if and only if i = 2;
(iii) if n > 4 and m > 5, then G is not reconstructible.

Proof (i): by hypothesis, i = 2, so the two cliques must intersect in two vertices.
From Property 2 and the corollaries, a clique Km , with m ≥ 3 shares a com-
mon edge, say with label {x, y}, with a T -triangle. We proceed in labelling the
three vertices of T by {x, y, z1}, {x, y, z2}, {x, z1, z2}. Finally, we assign the labels
{x, y, z3}, {x, y, z4}, . . . , {x, y, zm} to the remaining vertices of Km . The labels turn
out to be the hyperedges of a 3-hypergraph H on {x, y, z1, . . . , zm} vertices such that
I2(H) = G, as desired.

(i i): fromProperty 2 andcorollaries, if i = 2, then the edge sharedby the twocliques
must intersect a triangle T . Let T be contained in the first clique whose configuration
turns out to be S. The other clique is forced to have a common label of the edges, since
it can not contain a second T -triangle. So, a labelling similar to that defined in (i) is
allowed, providing a 3-hypergraph whose 2-intersection graph is G.

Finally, the case i = 3 causes the collapse of the two cliques into one single clique.
(i i i): consider two cliques of order greater than four. Property 2 states that if they

share two or more vertices, then they are the same clique, so G is not a 2-intersection
graph. 
�

The above result can be naturally extended to graphs having more than two cliques,
by inspecting the intersections between pairs of them. A labelling of the edges and the
determination of a 3-hypergraph compatible with them can be performed.

However, there are several classes of graphs that can be immediately detected as
2-intersection graphs due to their topological properties. For them, some simple edge
labellings lead to the determination of a related 3-hypergraph. One class is the cycle
graphs, i.e. a sequence of consecutive 2-cliques.

First, we observe that a cycle of length k admits a labelling involving k integer
indices atmost. In fact, we start by labelling a randomly chosen vertex v1 with {1, 2, 3},
then we visit the remaining vertices v2, . . . , vk of the cycle according to a chosen
direction and we label the i th one, where 1 < i < k − 1, with {i, i + 1, i + 2}, so that
{i, i + 1} is the pair shared by vi−1 and vi , i.e., the label of the edge joining them.
Finally, vertices vk−1 and vk are labelled with {1, k, k + 1} and {1, 2, k}, respectively.
An example is shown in Fig. 4.

Note that the labelling of the first k − 1 vertices of the cycle defined above can be
used to label a path of length k − 1 involving k integer indices.

4 Computational Complexity of 2-Intersection Property

In this section it is shown that it is N P-complete to determine whether an arbitrary
graphG is the 2-intersection graph of a 3-hypergraph. We refer to this problem as then
2INT problem. Note that is clear that 2INT is in NP. We reduce from the following
variant of the 3-SAT problem (L02 in [11])
MAX- 3- SAT:
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Fig. 4 The labelling of a cycle
of length 6

Instance: a setU of variables and a set C of clauses overU such that each clause
c ∈ C has |c |= 3 literals, where a literal corresponding to a variable x is either x or
x . Each variable, as represented by a literal, appears at most three times in the clauses.
Furthermore, no three occurrences of a variable are the same literal.

Question: Is there a satisfying truth assignment for C?
First of all, we prove that this problem is NP-complete.

Lemma 2 MAX-3-SAT is NP-complete.

Proof We reduce 3-SAT to MAX-3-SAT. Consider an instance of 3-SAT, in which a
variable x appears k times, either as x or x . Replace the first instance with x1, the
second with x2 and so on up to xk (possibly the complements). Then add (x1 ∨ x2)∧
(x2 ∨ x3) . . . (xk ∨ x1). This ensures that either all xi are true, or all are false. Note
that each xi has two literals occurring in this expression, and onemore literal occurring
in the clauses of 3-SAT, providing a total of three occurrences.

Acting similarly for the remaining literals, when needed, we obtain an instance
of 3-SAT, where each variable appears at most three times, all of them not the same
literal. 
�

Given an instance C of MAX-3-SAT, we construct a graph GC so that there is
a solution of the MAX-3-SAT instance if and only if GC is a 2-intersection graph.
This will imply that 2INT is NP-complete. We remark that each solution of C will be
achieved by one of the possible labellings of GC that determines a 3-hypergraph H
such that G = I2(H).

To achieve the objective, we need to define some graph configurations that have the
2-intersection property and that are useful to model variables and clauses of 3-SAT.
Each vertex of a 2-intersection graph G corresponds to a hyperedge of its related
hypergraph H . So each vertex v of G contains three vertices of H . In order to avoid
confusion with the use of the word vertex, we will use the term indices for the vertices
of H contained in a vertex of G. When a hypergraph H is constructed from a 2-
intersection graph G, by assigning indices to the vertices of G, we say that a label is
assigned to v, eg., we assign {1, 2, 4} as the label of a vertex of G. In the following
properties, we consider subgraphs of G determined by triangles, and show that when
G is a 2-intersection graph, the labels of G have to satisfy certain requirements, i.e.,
local properties of G extend to properties of H .

Property 3 If two triangles intersecting in one vertex have the 2-intersection property,
and there are no edges joining the triangles, then they are not T -triangles both.
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(a) (b)

Fig. 5 Two possible labels of a ribbon configuration. In each of them at most one triangle is a T -triangle

Proof Observe that the three vertices of a T -triangle use just four different indices
from H . If the two triangles are T -triangles, then the common vertex has to share four
different pairs of indices with the four adjacent vertices, and this is not possible (see
Fig. 5). 
�

Wewill call two triangles sharing one vertex, with no edges between them, a ribbon
configuration. Figure 5 shows the labels of two one-vertex intersecting triangles when
at least one of them is a K -triangle.

Property 4 Let T1 and T2 be two triangular cliques. Suppose there are just two edges
joining a vertex of T1 to a vertex of T2, without common endpoints. Then the obtained
configuration has the 2-intersection property. Furthermore, T1 and T2 cannot both be
T -triangles.

Proof Let x1 and y1 be the vertices of T1 adjacent to the vertices x2, and y2 of T2
by the edges ex and ey , respectively. We first show that that T1 and T2 cannot be
both T -triangles. Suppose, w.l.g., that T1 is a T -triangle whose vertices have labels
x1 = {1, 2, 3}, y1 = {2, 3, 4}, and z1 = {1, 2, 4} (see Fig. 6). Since x2 is adjacent to
only x1 in T1, then the label of ex must be {1, 3}. With the same argument, the label
of ey is {3, 4}. Since x2 and y2 belong to T2, they have a common pair of labels, say
{3, 5}. So their labels must be x2 = {1, 3, 5} and y2 = {3, 4, 5}. If we assume T2 to be
a T -triangle, then z2 = {1, 4, 5}. This leads to a contradiction since z2 is not adjacent
to z1 = {1, 2, 4}. Therefore the only possible label is z2 = {3, 5, 6}, showing that T2
is a K -triangle.

To show that T1 and T2 can both be K -triangles, we set x2 = {1, 3, 5} and y2 =
{3, 4, 5} and z2 = {3, 5, 6} in T2 (see Fig. 6). We can then take x1 = {1, 2, 3},
y1 = {2, 3, 4} and z1 = {2, 3, 7} in T1. 
�

4.1 Representing theVariables of U

Define a variable gadget, denoted Gx , to represent a variable x in U . The gadget is a
2-intersection graph obtained by the union of different configurations and its definition
can be checked in Fig. 7.
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Fig. 6 The configuration obtained by two triangles with joined by two edges. One possible labelling is
shown

Fig. 7 The graph Gx . It is used to model the occurrences of the literals x and x in the clauses of an instance
of MAX-3-SAT. The two parts G1

x and G2
x are indicated together with their connection through a ribbon

configuration

The graph Gx consists of two gadgets G1
x and G

2
x that grow around two K5 cliques

C1 and C2 that are connected by a ribbon configuration, say R.
The gadget G1

x includes the clique C1 whose vertices are in common with five
different K3 triangular cliques, counter-clockwise denoted by T 1

i , with 1 ≤ i ≤ 5,
and starting from the triangle facing the ribbon that joins the two gadgets. These
triangles are then connected in pairs by their two remaining free vertices, forming a
10-cycle, as shown in Fig. 7.

The triangles T 1
2 and T 1

5 will be associated with the two (at most) occurrences of
the variable x , while T 2

3 will be associated with the single occurrence of the variable
x .

We show that the graph Gx has the 2-intersection property. Furthermore, it allows
very few possibilities when setting the triangles as K or T .

Property 5 The variable gadget Gx is a 2-intersection graph.

In Figs. 8 and 9 we provide samples of labellings of Gx .

Corollary 3 A labelling of the vertices of the graph Gx only produces the following
possible types (K or T ) of the triangles T 1

2 , T
1
5 and T 2

3 :

i) if T 2
3 = T then T 1

2 = T 1
5 = K;

ii) if T 1
5 = T (resp. T 1

2 = T ) then T 2
3 = K.
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Fig. 8 One of the labellings of Gx related to case i) of Corollary 3. The starting triangle T 2
3 = T is shaded.

The type (T or K ) of each triangle is also shown

Fig. 9 One of the labellings ofGx related to case i i) of Corollary 3. The starting triangle T 2
3 = T is shaded.

The type (T or K ) of each triangle is also shown

Proof i) let us assume T 2
3 = T . Property 4 assures that triangle T 2

1 is a K -triangle. So,
by Corollary 2, the triangle adjacent to T 2

1 is a T -triangle, and the triangle adjacent to
T 1
1 is a K -triangle by Property 3. Continuing with the configurations, we get T 1

1 = T ,
and, again by Property 4, we obtain that both T 1

2 and T 1
5 are K -triangles as desired

(see a possible labelling in Fig. 8).
i i) let us assume T 1

5 = T (resp. T 1
2 = T ). Property 4 assures that T 1

1 = K . So, by
Corollary 2, the triangle adjacent to T 1

1 is a T -triangle, and the triangle adjacent to T 1
1

is a K -triangle by Property 3, and finally T 2
1 = T . Again Property 4 assures that T 2

3
is a K -triangle as desired (see a possible labelling in Fig. 9). 
�
Remark 1 We point out that in case i i) of Corollary 3 no assumption involves the type
of T 1

2 , that can be either T or K , when T 1
5 = T and vice versa. Figure 9 shows an

example of a labelling where T 2
1 = K . An easy check reveals that exchanging the

types K and T between T 3
1 and T 2

1 produces a new admissible labelling.
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Fig. 10 The clause gadget Gc with its triangles. By Property 4 no more that three T -triangles are allowed
in the boundary

4.2 Representing the Clauses of U

The clause gadget Gc, represents a single clause c ∈ C . It consists of a central clique
K6 whose vertices also belong to six different K3 cliques, called boundary triangles,
as shown in Fig. 10. The boundary triangles are then connected in pairs via the two
remaining free vertices, as shown in Fig. 12, forming a 12-cycle. In order to have the
2-intersection property, the clause gadget admits a maximum number of T -triangles
among the six boundary ones, as stated in the following

Lemma 3 A clause gadget Gc is a 2-intersection graph if and only if the boundary
triangles do not contain either exactly three or exactly one T -triangles.

Proof W.l.g. let T1, . . . , T6 be the boundary triangles (labelled counter-clockwise) of
a clause gadget. Without loss of generality, let Ti have vertices {xi , yi , zi }, such that xi
is in commonwith the central clique K6, while yi and zi connect Ti with the neighbour
triangles Ti−1 and Ti+1. Note that the indices i − 1 and i + 1 are reduced to the range
1 . . . 6. We first show that there is no labelling when three (non consecutive, according
with Property 4) boundary triangles are T -triangles. Let T1, T3 and T5 be T -triangles
that alternate with three K -triangles T2, T4 and T6. We show that such a configuration
does not have the 2-intersection property, i.e., it does not allow any labelling. Assume
that the edges of the central clique K6 have the common label {1, 2}. Therefore, label
every vertex {x1, . . . , x6} of K6 with {1, 2, i}, with 3 ≤ i ≤ 8, respectively, and let x1
belong to a T -triangle.
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Fig. 11 An attempt to define a labelling of a clause gadget with three (on the left) or one (on the right)
boundary T -triangles. Both configurations prevent any labelling of the K -triangle T4

W.l.g, its two remaining vertices have labels y1 = {1, 3, 9} and z1 = {2, 3, 9}.
Suppose T1 is connected by the edges (y1, y2) and (z1, z6) with the triangles T2 and
T6, respectively. So, the edge {y1, y2} has label {1, 9}, and the edge {z1, z6} has label
{2, 9} (check the labelling in Fig. 11, left graph).

So, the labels y2 = {1, 8, 9} and z6 = {2, 4, 9} are determined. Since T2 is a K -
triangle, the label of z2 requires the introduction of a new index, i.e., z2 = {1, 8, 10}.
The same holds in T6, where the label y6 = {2, 4, 11} can be assumed.

Continuing labelling the boundary triangles, we observe that the edge {z2, z3} has
two possible labels remaining, i.e., either {1, 10} or {8, 10}. Since T3 is a T -triangle,
then z3 has either label {1, 7, 10} or {2, 7, 10}; the first one only being compatible with
one of the possible labels of the edge {z2, z3}. As a consequence, y3 = {2, 7, 10}.

Acting similarly on the T -triangle T5, we get y5 = {2, 5, 11} and z5 = {1, 5, 11}.
Finally, a problem occurs in the labelling of the K -triangle T4: the edges {z3, z4}

and {y4, y5} have labels {2, 10} and {1, 11}, respectively, preventing any connection
between the vertices y5 and z5.

A similar reasoning reveals that the presence of exactly one boundary T -triangle
does not allow a labelling of the clause gadget. The failure of a labelling in this case
is shown in Fig. 11, right (T1 is the T -triangle). 
�

Finally, Fig. 12 shows the possible labellings when either two or no T -triangles are
present as boundary triangles.

4.3 The Final NP-Completeness Reduction

Let us consider the instance C = {c1, . . . , cn} of MAX-3-SAT involving the variables
in the set U = {x1, . . . xm}. Based on the gadgets already defined, we construct a
graph GC whose labels determine its 2-intersection property and express the desired
valuations of C . The reader can follow an example of the construction of GC in the
case C = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) in Fig. 13.

First, from Lemma 2, we can suppose that each variable must appear at most three
times: one in a form and two in the opposite form. For each variable xi ∈ U , we define
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Fig. 12 Reconstruction in the case of zero or two T -triangles. The bold triangles are the boundary triangles

a variable gadget Gxi , and associate the triangle T 2
3 with the single occurrences of a

literal xi . The at-most-two remaining occurrences of the opposite literal are associated
with the triangles T 1

2 and T 1
5 .

For each clause c j ∈ C , we construct a clause gadget Gcj and label its boundary
triangles T1 . . . T6 as in Lemma 3.

Finally, we connect variable gadgets and clause gadgets together as follows: for
each clause c j , with 1 ≤ j ≤ n, we use a ribbon to the triangle T2i−1 of the clause
gadget Gc, to the corresponding triangle associated with the i th literal of c in the Gx

gadget of its variable, as in Fig. 13.
Now, we prove the main theorem of this section.

Lemma 4 Given an instance C of MAX-3-SAT, the graph GC has the 2-intersection
property if and only if the instance C has a solution.

Proof Let us assume that there exists a valuation for the MAX-3-SAT instance C .
Given a variable x ∈ U , for each literal with value true associated with x , we assign
the triangles associated with it to be T -triangles, and we assign the triangles associated
with its negation to be K -triangles. Corollary 3 assures that the variable gadget Gx

has a labelling. Then, for each clause c j ∈ C , in its clause gadget Gcj , we assign the
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Fig. 13 Example of the construction of the gadget for C = {c1, c2}, c1 = (x3, x1, x1), c2 = (x1, x3, x2).
One of the valuations obtained by the labelling of the corresponding GC graph is x1 = true, x2 = true
and x3 = true. The valuation can be obtained by the position of (at least one of) the T configurations in
the triangles T 1

2 , T
1
5 and T 2

3 of the variable gadget

triangles associated with the literals having valuation true to be K -triangles, but T -
triangles for the literals having valuation false. Since three or more T -triangles are not
allowed in Gcj by Lemma 3, then also the clause gadget has a labelling. The labelling
of the connecting ribbons is straightforward. The reader can benefit from an example
of such a construction in Fig. 13.

On the other hand, suppose GC has the 2-intersection property, i.e., there is a
labelling of GC that determines a 3-hypergraph H such that I2(H) = GC . For each
clause gadget Gcj , with c j ∈ C , there exists at least one triangle among T1, T3 and
T5, say T ′ of type K , by Lemma 3. Property 3 assures that T ′ having type K leads to
a T -triangle in the variable gadget Gx to which a literal, say l, is associated (note that
the opposite does not hold, as shown by the red triangle in Fig. 13). We assign such a
literal the truth value true. The opposite literal l is then associated with false. Due to
Corollary 3 the triangles (one or two) in Gx associated with l are of type K .

We emphasize the following situation: it may happen that there exists aGx labelling
where all three triangles associated with the literals are of type K . In such a case, the
value assigned to the variable does not affect the truth value of the clauses of C , so it
can be arbitrarily assigned.

So, the valuation defined is a solution of the MAX-3-SAT instance C : each clause
gadget Gcj has at most one triangle among T1, T3 and T5 of type K , so at least one
literal in the clause has value true. Furthermore, in each variable gadget, if one literal
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is set to true, i.e. at least one of the corresponding triangles is of type T , then the the
opposite literal has the logical value false. 
�
Theorem 2 The 2I NT Problem is NP-complete.

The proof directly follows from Lemma 4.3, after checking that the construction of
the graph GC associated with the instance C can be performed in polynomial time.

Remark 2 In Fig. 13, the two highlighted triangles in different colors indicate the
following situation:

• the red triangle in the ribbon connecting T1 of Gc1 to T 1
2 of Gx3 shows that the

T -triangle related to the value false in a clause may produce the truth value true
in the associated literal. This is not a contradiction: it simply means that in the
clause, here c1, there exists at least a second triangle of type K , i.e. the clause is
already satisfied by at least one different literal;

• the blue triangle T 5
1 in Gx2 is of type K which is different from the T -triangle T 1

2
although they are associated with the same literal l. This means that l may have a
value false in a second clause in which it is possibly present. As a consequence, a
different literal having truth value true is present in that clause. What is relevant
in Gx2 is that the triangle associated with l, i.e. T 2

3 , has to be of type K , assuring
that l has truth value false in all its occurrences.

Example 2 Consider the formula F = (x1 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). Figure 13
shows the construction of its corresponding gadget. The labelling shown in the same
figure corresponds to the valuation x1 = false, x3 = false. The value of x2 doesn’t
matter since, in any case, the assignment is a solution for F .
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