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Abstract  29 

The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of 30 
humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and 31 
climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and 32 
daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends 33 
and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in 34 
cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero 35 
or weak-positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. 36 
Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely 37 
from those associated with Tair in many cities. Our findings provide important insights into specific regions 38 
where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert 39 
systems. 40 
 41 
Significance Statement 42 
Climate change has intensified the frequency, duration, and severity of lethal heat stress in recent years, a 43 
trend expected to exacerbate further. Despite the increasing focus on humid heat, there remains a gap in 44 
understanding how to effectively integrate humid heat into heat-health alert systems across regions with 45 
diverse climatic conditions. Addressing this gap, our study utilizes extensive epidemiological and 46 
climatological datasets to discern locations where incorporating humidity largely improves the predictive 47 
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capacity for heat-related mortality compared to relying solely on air temperature. These findings offer 1 
crucial insights for enhancing heat-health alert systems in the face of ongoing climate change. 2 

 3 

 4 

Introduction 5 

In recent decades, global warming has led to an increase in the intensity, duration, and frequency of heat 6 
waves1,2, an effect that is projected to worsen in the future3,4. With record-breaking heatwaves observed 7 
worldwide, the 2022 and 2023 heatwaves provided a glimpse into what the future is expected to bring. In 8 
2022, Tokyo recorded nine consecutive days of temperatures above 35 ℃, marking the most severe 9 
heatwave since official temperature records began in the 1870s. In the United Kingdom, for the first time, 10 
the temperature reached 40 ℃5. More recently, parts of Spain broke high-temperature records for April in 11 
the spring heatwave of 2023. These events highlight a major concern for human health because exposure 12 
to high outdoor temperatures can significantly increase the risk of mortality and morbidity6-8. For example, 13 
in Europe only, heatwaves were responsible for over 120,000 reported deaths between 1970 and 2012, 14 
accounting for 85% of all climate disaster-related deaths9, and in 2022 alone, heatwaves are estimated to 15 
have resulted in over 70,000 excess deaths across Europe10. 16 

The human body responds to heat stress in two primary ways to release the heat: vasodilation and 17 
perspiration. Vasodilation enhances heat transfer from muscles to skin via blood flow, while perspiration 18 
removes heat from the skin to the environment through sweating and evaporative cooling11. Although 19 
perspiration plays a crucial role in heat dissipation, its efficacy is affected by ambient humidity, wind 20 
speed, and ventilation12,13. As a result, human-perceived heat stress depends not only on the air temperature 21 
(dry bulb, Tair) but also humidity, wind speed, and incident radiation. To measure the combined impact of 22 
multiple climate variables on human perceived heat stress, many heat stress indicators (HSIs) have been 23 
proposed, which all consider Tair and relative humidity (RH), some also wind speed and solar radiation14. 24 
These HSIs are increasingly utilized in climate change impact studies and are viewed as a better metric 25 
for quantifying the heat stress burden on human health (i.e., morbidity and mortality) than Tair

3,4,15-20. Some 26 
widely used HSIs include wet bulb temperature (Tw)21, wet bulb globe temperature (TWBG)22, heat index 27 
(HI)23, and apparent temperature (APT)24. 28 

Despite being widely used, several key questions about HSIs remain unclear. First, while many scholars 29 
expect HSIs to perform better than Tair in predicting human mortality based on physiological evidence25, 30 
existing population-scale epidemiological studies have not provided consistent evidence to support this26-31 
32. Therefore, epidemiologists continue to rely on Tair to quantify excess deaths related to heat stress6,7,33.  32 
Secondly, there are over 100 proposed HSIs in the literature, each based on different principles and 33 
assumptions, but there is no consensus on their proper usage or the strengths and limitations of each14. 34 
Recent research indicates that the HSI that best reflects health consequences may vary by country, and the 35 
estimated heat-related mortality using the optimal HSI could be similar to that of Tair, although apparent 36 
cross-country variations are observed32. Additionally, HSIs exhibit different sensitivities to changes in Tair 37 
and RH (Fig. S1 in the supplementary)12, and in some cases, may even suggest opposite effects under 38 
specific conditions. For example, regional climate simulations show that irrigation in northern India results 39 
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in a higher Tw but a lower HI16, making it challenging to measure and interpret changes in regional heat 1 
stress. To date, the role of humidity in heat-related health outcomes has become a heated discussion34. 2 
However, to the best of our knowledge, no study has yet examined how to appropriately use HSIs for 3 
population-scale heat-health alerts and health impact assessments related to climate change, particularly 4 
in regions characterized by diverse climate conditions. 5 

Here, we conduct a detailed investigation on the association between multiple HSIs and human mortality 6 
at the city level, using state-of-the-art climatological (ERA5 reanalysis35) and epidemiological data (Multi-7 
Country Multi-City (MCC) database, https://mccstudy.lshtm.ac.uk/, see Materials and Methods) for 1980-8 
2019. The analysis incorporates multiple widely used and  contrasting HSIs calculated at hourly timescales, 9 
and covers 739 citiesa from 43 countries and territories (Fig. S2, Tables S1 and S2) spanning different 10 
climate regimes. Specifically, we examined the long-term trend and timing of heat stress events for 11 
multiple HSIs, and assessed their advantages in modelling/predicting city-level human mortality in lieu of 12 
Tair, as well as the spatial heterogeneity in their performances. Importantly, we identify the specific regions 13 
where humidity has a discernible impact on heat-related mortality and describe their common 14 
climatological features using machine learning, a crucial research question not known to have been 15 
addressed in studies to date. The findings of this study provide essential information for facilitating high-16 
accuracy heat-health alert systems, which can provide enhanced protection from heat under future climate 17 
change. 18 

Results 19 

Discrepancy among heat stress indicators  20 

We investigated trends in extreme temperatures and six different HSIs (Tw
21, simplified wet bulb globe 21 

temperature (TsWBG)36, Humidex (Hx)37, APT24, Universal Thermal Climate Index (UTCI)38, and HI23, see 22 
Materials and Methods, and Table S3) from 1980 to 2019 (Fig. 1). Specifically, we calculated the 99 th 23 
percentile of daily near-surface air temperature Tair (X99) for each year and estimated its average decadal 24 
change (Fig. 1a). We then similarly examined the trends in near-surface specific humidity (Q) and relative 25 
humidity (RH) for high-temperature days (Tair > X99) of each year (Fig. 1b, c).  26 

To quantify the discrepancy in trends over time among the six HSIs, we introduced the HSI vote. This 27 
measures the agreement of the trend direction among the X99 of HSIs, with a vote of 1 assigned for a 28 
positive trend and -1 for a negative trend. We then summed the HSI votes (possible values: -6, -4, -2, 0, 29 
2, 4, 6) for each region to show the overall trend agreement (Fig. 1d, e). Our analysis shows that Tair X99 30 
exhibits positive trends over most regions due to global warming, while a limited number of regions show 31 
no increase or a slight decrease (e.g., Midwest US, Canada, Central Asia, and northern Australia, Fig.1a) 32 
potentially due to factors such as irrigation39. Both positive and negative trends are observed for Q of high-33 
temperature days, while a larger proportion of the land surface shows negative trends for RH (Fig. 1b, c). 34 
The reduction in near-surface RH can be attributed to several factors. It may result from the constrained 35 
addition of water vapor to the air as the saturation vapor pressure increases40,41. Additionally, variations 36 
in warming rates between land and ocean surfaces can also contribute to the observed decrease in near-37 

 
a In the MCC dataset, the daily mortality is collected on a region/prefecture basis for some countries (i.e., Ireland, Japan , and 

Czech Republic). 
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surface RH over land. These diverging trends of Tair extremes and their RH result in discrepancies in the 1 
long-term trends of the HSIs as they have different sensitivities to changes in Tair and RH (Fig. S1). 2 

Our analysis reveals severe contrasting trends among HSIs in Midwest US, Canada, South Africa, Central 3 
Asia, and Australia (HSI vote sum=0, yellow colour in Fig. 1d, e). These contradictions are more 4 
significant for results based on the daily maximum value of HSI (Fig. 1e). This finding reveals the potential 5 
of providing misleading or contradictory information when quantifying regional heat stress changes based 6 
on a single HSI3,4,15,18,19. 7 

We also examined the discrepancy in the intra-annual peak time (PT, the day of the year when a given 8 
indicator reaches its highest annual value) for HSIs and Tair (Fig.2a-g). Tair typically peaks in February-9 
April in tropical regions, and in June-August and December-March for northern and southern extratropical 10 
regions, respectively (Fig. 2a). We found appreciable differences between the PTs of HSIs and Tair, 11 
particularly in northern tropical regions where the PT of HSIs (Fig. 2b-g) occurs much later than that of 12 
Tair, and in the southern tropical regions, where the PT of HSIs occurs much earlier. HSI peak times are 13 
clearly modulated by the position of tropical rainfall belts and the seasonal movement of summer 14 
monsoons. However, for the extratropical regions, only slight differences are observed. The PT 15 
discrepancy with Tair also varies among HSIs, with those more sensitive to RH (i.e., Tw and TsWBG, Fig. 16 
2b, c, Fig. S1) showing larger PT discrepancies than those less sensitive to RH (i.e., UTCI and HI, Fig. 2f, 17 
g).  18 

We further examined the PT discrepancy in four MCC cities (Austin, Brasilia, London, and Bangkok) 19 
located in different regions using Tair and eight HSIs (see Materials and Methods), focusing on the 20 
occurrence frequency of the hottest ten days (Fig. 2h-k). In Austin and Brasilia, there were apparent timing 21 
differences for HSIs, particularly Tw, compared to Tair. In contrast, London and Bangkok had relatively 22 
small discrepancies. These variations can be attributed to the cities' distinct climatic characteristics (Fig. 23 
S3). RH was less influenced by changes in Tair in London and Bangkok and maintained consistently high 24 
values throughout the year (Fig. S3c, d). Conversely, Austin and Brasilia experienced significant 25 
reductions in RH during the summer when Tair increased  (Fig. S3a, b), leading to a limitation in the 26 
increase of Tw and resulting in discrepancies in PT with Tair. The low overlap rate in some regions between 27 
the annual hottest 10 and 30 days of HSIs and Tair further emphasizes the challenge of early warning for 28 
heat stress when using different HSIs and Tair (Fig. S4). This analysis highlights the need for improved 29 
understanding and applying appropriate HSIs (as well as Tair) in heat stress forecasting.  30 

Spatial diversity of the best-fit indicators to city-level mortality  31 

To investigate which indicator, either Tair or multiple HSIs, provides better predictive power for modelling 32 
city-level mortality across 739 MCC cities, we evaluated the association between the daily mean value of 33 
these indicators and daily mortality during the warm season (defined as the six warmest consecutive 34 
months in each city, provided in Table S2). We then used the quasi-Akaike information criterion (qAIC)42 35 
to evaluate the goodness of fit of the models (see Materials and Methods). The best-fit indicator (BFI) was 36 
defined as the indicator with the lowest qAIC. 37 

Our analysis reveals that the BFI varies for cities in different regions (Fig. 3). Fig. 3a presents the BFIs 38 
with a focus on their sensitivity to RH. The result suggests that humid heat may play a more important 39 
role in influencing human mortality in coastal and large lake areas of the U.S., Peru, Thailand, Korea, and 40 
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Japan, where the BFI tends to have a high sensitivity to RH.  However, for other regions, such as 1 
Argentina, Portugal, southern Spain, and South Africa, dry heat (without or with slight consideration of 2 
RH) is more closely associated with human mortality. Overall, Tair demonstrates the highest performance 3 
among all indicators for approximately 30% (222 out of 739) of MCC cities (Fig. 3b). However, HSIs also 4 
exhibit strong performance in the other 517 cities. The qAIC differences between Tair and the BFI for the 5 
517 cities (Fig. S5) are large enough to make chance an unlikely explanation for their better fit (averaged 6 
qAIC differences > 2)43. 7 

As our objective is to examine the performance of these HSIs compared to Tair, we investigate the number 8 
of HSIs that surpass Tair's performance for each city (Fig. S6). The result indicates that for the cities whose 9 
BFI has high humidity sensitivity, the use of other indicators considering humidity even marginally in 10 
their formulation also exhibits superior performance to Tair in general (compare Fig. 3a and Fig. S6a).  11 

In addition, using the daily maximum indicator values and quasi-Bayesian information criterion (qBIC)42, 12 
we obtained similar spatial patterns of BFIs (Figs. S7 and S8), strengthening the robustness of our findings. 13 
In most cities, the daily mean value of the indicators slightly outperformed the daily maximum value in 14 
modelling city-level mortality, except for Central America (Fig. S9). Detailed information on the qAIC of 15 
each indicator and the BFI of 739 cities can be found in Table S4.  16 

Under what conditions does humid heat matter more for mortality 17 

To gain insights into why humid heat stress has a higher association with human mortality in certain 18 
regions and cities, we compared two groups of cities: dry heat cities with a BFI of Tair (222 cities) and 19 
humid heat cities with a BFI of one of the humidity sensitive HSIs: Tw, TS, TWBG, or TsWBG (231 cities). 20 
The qAIC difference between HSIs and Tair for these groups is shown in Fig. S10. We also compared the 21 
performance of each HSI and Tair for all 739 cities and 231 humid heat cities in Fig. S11. The results reveal 22 
that, across all 739 cities, Tair generally outperforms individual HSIs, except for HI. However, in humid 23 
heat-dominant cities, most HSIs (except for UTCI) show better performance than Tair (Fig. S11). 24 

We collected 13 features for each city, covering climatological, geographical, and socio-economic factors, 25 
and used them as inputs to train a random forest model to classify the cities into the two groups (see 26 
Materials and Methods, and Tables S5 and S6). Our supervised machine learning model was able to 27 
distinguish between the two groups of cities, with accuracy, precision, and recall of 65.6%, 66.3%, and 28 
65.5%, respectively (see the confusion matrix in Table S7). We identified the top two factors that 29 
influenced the classification to be the correlation between daily Tair and RH during the warm season (CT-30 
RH) and latitude (Fig. 4a). 31 

The CT-RH emerges as the most important factor in determining the influence of humidity on heat-related 32 
mortality at the city level. CT-RH is negative in many cities (Fig. 4b), indicating that as Tair rises, the air can 33 
hold more water, but the local environment fails to provide sufficient water vapor, resulting in decreased 34 
RH41. This phenomenon can be observed in the time series of Tair and RH of Austin and Brasilia (Fig. S3a, 35 
b). However, we also found that some cities (many of them coastal) have positive CT-RH (Fig. 4b), although 36 
this correlation is usually weak. In Fig. 4c, we plot the BFI against CT-RH for the 739 MCC cities. Dry heat 37 
cities with RH-insensitive BFIs (e.g., Tair) exhibit clear negative CT-RH, while cities with RH-sensitive 38 
BFIs (e.g., Tw, TS, TWBG) predominantly display near-zero or weak positive CT-RH associations (Fig. 4c). 39 
The spatial distribution also suggests that there is a significant overlap between the locations of cities with 40 
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moderate positive CT-RH and where humidity is influential to heat-related mortality (compare Fig. 4b and 1 
Fig. 3a). Substituting RH with specific humidity (Q) as input features, we obtained comparable results for 2 
the feature importance. These findings underscore the importance of the temperature-humidity correlation 3 
in determining the health impacts of humid heat.  4 

Furthermore, another result also suggests that the relative performance of HSIs tends to increase as CT-RH 5 
transitions from strongly negative to moderately positive. We analysed the qAIC difference between each 6 
HSI and Tair in relation to the CT-RH of cities (Fig. S13). With a higher positive CT-RH, Tair's performance 7 
declines, whereas HSIs (except for UTCI) show clear improvement, although CT-RH alone cannot perfectly 8 
separate the data points by ΔqAIC=0 as it is influenced by factors such as latitude. Notably, for cities with 9 
CT-RH > 0, HSIs such as HI, TWBG, and TS exhibit better performance than Tair (Fig. S13a, f, g). The same 10 
analysis using the daily maximum value of indicators, which is more frequently used in issuing a heat 11 
alert, shows a more apparent trend, which further demonstrates the robustness of the findings (Fig. S14). 12 

Our general interpretations of the results are as follows: Firstly, in cities with a strong negative CT-RH, the 13 
daily variation in RH is already captured by Tair change due to their strong negative correlation. Therefore, 14 
using HSIs that place excessive emphasis on humidity (e.g., Tw, which assumes the human body is naked 15 
and fully wet) does not yield improved predictive performance.  In these cities, Tair emerges as the superior 16 
predictor. However, in cities with a relatively weak CT-RH, explicitly considering the variation in RH 17 
becomes necessary, and HSIs that account for humidity provide improved predictive power compared to 18 
Tair alone. Secondly, in cities with a strong negative CT-RH, the occurrence of simultaneously high Tair and 19 
high RH is unlikely due to their mutual constraint. However, in cities with a near-zero or positive CT-RH, 20 
the likelihood of such co-occurrence increases, resulting in a higher risk of severe humid heat stress that 21 
significantly impacts human mortality.  22 

Heat-related mortality estimation using air temperature and the best-fit heat stress indicator  23 

To estimate heat-related deaths, we applied location-specific exposure-response functions to the warm-24 
season Tair and the BFI time series (see Materials and Methods). We calculated the attributable fraction 25 
(AF, %) of heat-related mortality as the number of deaths attributed to heat divided by the total number of 26 
deaths during the warm season, for the 517 cities whose BFI is one of HSIs (see Materials and Methods). 27 
We also analysed the exposure-response curves and the intra-annual variation of the mortality relative risk 28 
(RR) averaged between 1980-2019 for four big cities (Miami, Bristol, Ho Chi Minh City, and Taipei) 29 
located in different regions (Fig. 5). 30 

The RR increases significantly when Tair and the BFI exceed the optimum values for all four cities (Fig. 31 
5a, c, e, g). Bristol and Ho Chi Minh City had shorter heat stress exposure periods when estimated using 32 
BFI compared to Tair (Fig. 5d, f), and smaller BFI-estimated heat-related AFs of 0.39% (95% CI 33 
(Confidence Interval): -0.21 – 0.93) and 2.50% (95% CI: 0.91 – 3.97), respectively, compared to Tair-34 
estimated AFs of 0.42% (95% CI: -0.94 – 1.68) and 2.67% (95% CI: 0.01 – 5.11). In particular, the timing 35 
of the highest RR notably differs between Tair and the BFI (specifically TWBG) at Ho Chi Minh City, 36 
providing distinct information relevant to an effective heat stress early warning system. On the other hand, 37 
BFI-estimated mortalities were higher than Tair-estimated for Miami and Taipei, with a similar heat stress 38 
exposure period between Tair and the BFI (Fig. 5b, h). These findings demonstrate that the choice of HSI 39 
can be critical for the estimation of both the total number and timing of heat stress-related deaths. 40 
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The warm-season heat-related AF estimated by Tair averaged 2.25% (95 % CI: -1.61 – 5.11) across these 1 
517 cities, with higher mortality in cities in Europe, Peru, Southeast Asia, and some regions in the US 2 
(Fig. S15a, b). The BFI estimated a slightly higher AF of 2.39% (95% CI: -1.55 – 5.14) during the warm 3 
season compared to Tair. The AF difference varied across cities, with relatively small variations in the 4 
Midwest US and Japan, but larger deviations among cities in Peru, Europe, and Southeast Asia, indicating 5 
a large divergence from Tair estimates (Fig. S15c, d). However, it is important to interpret these specific 6 
mortality numbers and differences with caution, as AFs do not measure predictive performance, and they 7 
may be influenced by data length, quality, and other factors, introducing potential uncertainties (Fig. S16). 8 

Discussion  9 

In this study, we analysed state-of-the-art epidemiological and climatological data to examine the 10 
influence of humidity on heat-related mortality at the city level. Our findings indicate that for the majority 11 
of the cities examined that feature a robust negative Tair-RH correlation, the commonly used temperature 12 
indicator Tair could be a reasonable predictor, and properly incorporating the low-weight humidity term 13 
(i.e. HI) only moderately improves the predictive power. However, Tair’s performance in predicting 14 
mortality tends to decline when CT-RH is near-zero or weakly positive (i.e., coastal and large lake areas of 15 
the US, Peru, Korea, and Japan), while HSIs with a higher emphasis on humidity often demonstrate 16 
improved performance and can outperform Tair. We also quantify heat-related deaths using the BFI, which 17 
reveals differences in both the number and timing of deaths compared to estimates based on Tair. These 18 
findings provide important information for the development of city-level heat-action plans and adaptive 19 
strategies through localized heat-health warning systems based on the BFI.  20 

Our study encompasses 739 cities across 43 countries/territories, with a time series spanning part or all of 21 
1980-2019. Additionally, to capture the simultaneity of multiple climate variables, we calculated HSIs on 22 
an hourly scale. Collecting continuous time series of hourly Tair, RH, wind speed, and solar radiation data 23 
with such temporal and spatial coverage is challenging. Thus, climate reanalysis data such as ERA5, 24 
combining multi-source observations and model simulations, provides a viable alternative. To verify the 25 
reliability of ERA5 in accurately representing the association between Tair and RH, we compared the CT-26 
RH during the warm season from ERA5 to climate observations. The CT-RH of ERA5 is verified with climate 27 
observations for 476 out of 739 MCC cities, for which the observed daily Tair and RH are available in the 28 
MCC dataset (Fig. S17). These observations were collected from representative weather stations in the 29 
respective cities, covering part of the periods between 1980-2019, totaling more than five years for each 30 
city. For the same periods, we found that the spatial pattern of CT-RH from ERA5 matches well with the 31 
observational data. Specifically, both datasets reveal weak positive CT-RH in cities in the western US, 32 
Ireland, Korea, and Japan, and strong negative CT-RH in the eastern US, Brazil, southern Europe, and 33 
Southeast Asia. Given the high consistency between CT-RH from ERA5 and in-situ data, we believe ERA5 34 
reliably represents CT-RH for the cities studied.  35 

Compared to urban climate studies, which focus more on investigating the spatial diversity of the urban 36 
heat44,45, environmental health studies emphasize temporal fluctuations of the exposure and their short-37 
term associations with city-level health outcomes. Environmental health studies typically use one 38 
representative climate station per city to represent the general climate conditions and build associations 39 
with population-scale health outcomes. This approach is standard in the environmental health research 40 
community and has been well demonstrated by previous studies6,7,42. Additionally, studies such as Mistry 41 
et al. (2022)46 have shown that ERA5 data compare well with in-situ data from representative stations in 42 
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environmental health analyses, with similar model fitness and temperature-related risk estimates. Guo et 1 
al. (2024)47 also validated ERA5's daily mean Tair and RH against observations from representative climate 2 
stations for 47 prefectures in Japan, finding good consistency. Given ERA5's reliable performance, high 3 
temporal and spatial resolution, and global coverage, it has become widely demonstrated and used in 4 
environmental health studies32,48,49.  5 

Nonetheless, some limitations to our study should be discussed. Although we analysed data from over 700 6 
cities worldwide, the majority of these cities are located in developed countries, constraining us from 7 
conducting analysis for other regions facing severe humid heat stress, such as the Persian Gulf, northern 8 
India, and North China Plain50, due to data scarcity. Additionally, our machine learning model utilized 9 
thirteen city features as inputs, achieving a modest accuracy of 65.6%. However, possibly important 10 
factors, including race, air conditioning availability, and medical infrastructure were not included due to 11 
data unavailability, which in turn could have limited the accuracy of the random forest model. We did not 12 
evaluate the separate impact of wind speed and solar radiation, included in some HSIs (UTCI, APT, and 13 
TWBG), from that of RH, due to the fact that these were not particularly high-performing indicators. 14 

Although previous studies have demonstrated a strong agreement between HSIs calculated from multiple 15 
reanalysis datasets and those derived from station-based data44,46,47, discrepancies remain when compared 16 
to observations, and also among different reanalysis datasets. These discrepancies can vary by climate 17 
region and meteorological variable44. Therefore, further research and improved data gathering by 18 
enhancing local weather station networks are crucial to reduce measurement errors and deepen our 19 
understanding of heat stress measures and their health impacts. Additionally, we acknowledge that while 20 
the feature importance analysis identified CT-RH as a significant factor influencing the relative performance 21 
of different HSIs, this method does not provide insights into causality. Investigating the sensitivity of 22 
population-scale residents to humid heat stress involves numerous multidisciplinary factors, including 23 
climatic, socio-economic, demographic, and human behavioral elements. Our study represents an initial 24 
attempt to understand the spatial heterogeneity in the performance of different HSIs and the role of 25 
humidity in health impacts. Further research encompassing physiological, demographic, and 26 
epidemiological areas is needed to enhance our understanding of the causality involved. 27 

Despite these limitations, the results presented here provide important new aspects for understanding the 28 
role of humidity in the epidemiological analysis of heat-related mortality. The findings may bridge the 29 
recognition gap among physiological, climatological, and epidemiological communities on the association 30 
between humid heat and health outcomes, a heated debate across communities. As for further research, 31 
integrating this city-level mortality analysis with individual-level heat stress adaptability experiments25 32 
could enhance our understanding of the health effects of humid heat stress. Given the risk of heat waves 33 
globally, our results demonstrate the importance of considering humidity in heat stress prediction and 34 
heat-action plans for regions with a non-negative temperature-humidity correlation. 35 

Materials and Methods 36 

Mortality data. We obtained daily mortality data for our study from the Multi-Country Multi-City (MCC) 37 
Collaborative Research Network database (https://mccstudy.lshtm.ac.uk/). A summary of the data for each 38 
country is provided in Table S1 in the supplementary, and the full list of cities included in our analysis is 39 
provided in Table S2. We used all-cause or non-external cause deaths (ICD-9: 0-799; ICD-10: A00-R99) 40 
for each city, with the data covering part of the period from 1 January 1980 to 31 December 2019, and 41 
with varying lengths by location, totalling more than three years. To focus on the impact of heat stress, we 42 
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used only the warm season data for each city, defined as the location-specific warmest six consecutive 1 
months, as listed in Table S2. 2 

Global climate reanalysis data. We utilize the ERA5 reanalysis data from the European Centre for 3 
Medium-Range Weather Forecasts – (ECMWF)35, which integrates multi-source observations and model 4 
forecasts, to calculate the HSIs. The hourly 2-m air temperature, 2-m dewpoint temperature, 10-m wind 5 
speed, surface pressure, surface downward solar radiation, and precipitation are used, covering 1980-2019. 6 
The climate conditions for each city are represented by the reanalysis grid cell (~31 km) that contains the 7 
city's geographic coordinates. Prior research has demonstrated the reliability of reanalysis data as a 8 
substitute for in-situ data in health impact assessments46. Moreover, since meteorological variables other 9 
than Tair, such as RH, wind speed, and solar radiation are required for the computation of the HSIs, 10 
reanalysis data offers a suitable alternative to in-situ measurements in providing consistent historical 11 
spatiotemporal coverage required for our analyses. 12 

Heat stress indicators (HSIs). This study examines eight commonly used HSIs: wet bulb temperature 13 
(Tw)21, wet bulb globe temperature (TWBG)22, simplified wet bulb globe temperature (TsWBG)36, heat index 14 
(HI)23, Humidex (Hx)37, apparent temperature (APT)24, lethal heat stress temperature (TS)18, and Universal 15 
Thermal Climate Index (UTCI)38. The hourly values of each HSI are calculated using ERA5 reanalysis 16 
data, and the daily mean and maximum values are assembled by averaging or taking the maximum of the 17 
hourly values, taking care to convert to the location-specific time zone. The study analyses all eight 18 
indicators for the 739 MCC cities, while TWBG and TS are excluded from the global land surface grid 19 
calculation and the HSIs discrepancy analysis due to computational costs. For further information and the 20 
input variables of each HSI, see Table S3. A recent systematic review article provides comprehensive 21 
information about these HSIs14.  22 

The heat-mortality analysis. We employed distributed lag non-linear models (DLNMs), a well-23 
established method to examine the heat-mortality relationship during the warm season in each city51.  24 
DLNMs are capable of handling complex nonlinear and lagged dependencies often found in heat-mortality 25 
studies. We analysed the association between daily mortality and daily max/mean values of each of the 26 
eight HSIs (as well as Tair) separately using quasi-Poisson regression, for which a quasi-likelihood was 27 
used to scale the standard error of the coefficients proportionally to the possible overdispersion51. The 28 
daily mortality and HSIs/Tair series are synchronized based on the local time of each city. 29 

In DLNMs, the bi-dimensional exposure-lag-response association is modelled through a combination of 30 
two functions defined within a cross-basis term. Specifically, the exposure-response curve is modelled by 31 
a natural cubic spline function with two internal knots at the 50th and 90th percentile of the warm season 32 
indicator distribution, and the lag-response curve is modelled by a natural spline function with two internal 33 
knots at equally spaced values in the log scale over a 10-day lag. As the daily mortality time series is likely 34 
to have seasonality and long-term trends independent of temperature, it is necessary to control these 35 
patterns in the model so that the short-term association between heat stress and mortality can be detected. 36 
We use a natural spline function with 4 degrees of freedom of day of the year to model the seasonality, 37 
and a natural spline function of time with one knot/10 years to model the long-term trends of the mortality. 38 
This has the same effect as detrending a priori52 since the association with temperature (and other HSIs) 39 
that is captured is conditional on this trend. The model also includes an indicator to model the intra-week 40 
variation of the mortality. The model parameters were based on relevant studies from the MCC 41 
Collaborative Research Network7,53. The obtained bidimensional set of coefficients at each city was then 42 
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reduced across the lag dimension into the overall cumulative exposure-response association curve, which 1 
represents the heat-mortality association for all ten days.   2 

We used the quasi-Akaike information criterion (qAIC)42 and quasi-Bayesian information criterion (qBIC) 3 
42 to assess the performance of each indicator in predicting mortality at each city, with a lower qAIC or 4 
qBIC value indicating a better fit. The indicator with the smallest qAIC or qBIC value was deemed the 5 
best-fit indicator (BFI) for each city. We obtained two groups of BFIs based on the daily mean and 6 
maximum value of the indicators, respectively. 7 

Finally, we quantified the heat-related mortality in each city during the warm season, based on the Tair-8 
fitted model and BFI-fitted model, separately. For each city, the number of heat-related deaths is estimated 9 
according to the indicator time series, daily baseline mortality, and the heat-mortality association 10 
represented in DLNMs. Then, the total number of heat-related deaths in each city is obtained by summing 11 
the daily excess deaths when the indicator is higher than the location-specific optimum value, which is 12 
obtained in the fitted DLNMs and represents the indicator value with the lowest mortality risk. Lastly, 13 
similar to previous studies7,46, the attributable fraction (AF) of mortality related to heat stress is calculated 14 
by dividing the heat-related mortality by the total number of warm season deaths for the same period in 15 
each city. We assessed the uncertainty of our estimates by conducting Monte Carlo simulations to generate 16 
1,000 samples of the coefficients, which represent the association. We assumed a multivariate normal 17 
distribution for the estimated spline model coefficient. From these simulations, we derived empirical 18 
confidence intervals (CIs) corresponding to the 2.5th and 97.5th percentiles of the empirical distribution 19 
of heat-related mortality. 20 

The supervised machine learning analysis. To investigate under what conditions city-level mortality 21 
shows a stronger association with humid heat, than dry heat (Tair), we used a random forest algorithm54 to 22 
analyse multiple features of selected cities and their BFIs. We chose two groups of cities based on the 23 
sensitivity of their BFI to RH (Fig. S1). The first group, humid heat-dominant cities, includes cities whose 24 
BFI is one of Tw, TS, TWBG, and TsWBG. The second group, dry heat-dominant cities, includes cities with 25 
Tair as their BFI. The numbers of humid heat and dry heat-dominant cities are 231 and 222, respectively.  26 

We used 13 features related to climatologic, geographic, and socio-economic factors of the selected cities 27 
as input (Table S5). The specific values of these features are provided in Table S6. The elevation and 28 
distance to the nearest coastline of the city are obtained by matching the city’s coordinates to the available 29 
open-source data55,56. We used the dominant heat type (dry or humid) of the city as the output of the 30 
classification model. The random forest algorithm has been fine-tuned to optimize its performance. The 31 
resulting optimized parameters are as follows: the number of trees is set to 500, the number of predictors 32 
sampled for splitting at each node is set to 4, and the minimum size of terminal nodes is set to 7. To 33 
account for model uncertainty, we ran the random forest algorithm 500 times, using 70% of the data for 34 
training and 30% of the data for testing in each run. We report the classification results in a confusion 35 
matrix format in Table S7 in the supplementary, which is the summary of all 500 implementations for the 36 
testing datasets. On average, the model has an accuracy of 65.6%, precision of 66.3%, and recall of 65.5%, 37 
demonstrating its ability to classify the dominant heat type of a city. Substituting RH with specific 38 
humidity (Q) in the input features, we obtained comparable classification results with accuracy, precision, 39 
and recall of 65.9%, 66.7%, and 65.2%, respectively. 40 

Furthermore, the random forest algorithm provides feature importance, which ranks the input features 41 
based on their importance in predicting the output. We analysed the importance of the 13 input features in 42 
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influencing the dominant heat type of a city. The feature importance is calculated based on the decrease 1 
in Gini impurity.  2 
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Data and materials availability  1 

The ERA5 data are freely available from the Climate Data Store 2 
(https://cds.climate.copernicus.eu/cdsapp#!/home). The elevation data and distance to the nearest 3 
coastline data can be obtained from EarthEnv (https://www.earthenv.org/topography) and ERDDAP 4 
(https://pae-paha.pacioos.hawaii.edu/erddap/griddap/dist2coast_1deg_land.html), respectively. The 5 
mortality data have been obtained through a restricted data use agreement with each national institute and 6 
are therefore not available for public dissemination (https://mccstudy.lshtm.ac.uk/), and the intermediary 7 
data obtained from the heat-mortality association analysis is provided at  https://github.com/superqiang-8 
cc/RH_Role_Mortality. All calculations and analyses were conducted using Python (version 3.7.12) and 9 
R (version 4.0.3).  All figures were produced using the freely available visualization libraries in Python 10 
3.7.12 (such as Matplotlib). The relevant portions of the computer code used to process the results and 11 
develop the figures are available at https://github.com/superqiang-cc/RH_Role_Mortality.  12 

 13 

Figures and Tables 14 
 15 
Fig. 1 | Long-term trends of the extremes of 6 heat stress indicators (HSIs). a-c, The linear trends (per 16 
decade) of the of Tair X99 (99th percentile of the annual values of each year) (a), and specific humidity (Q) 17 
(b) and relative humidity (RH) (c) of the high-temperature days (daily Tair > Tair X99) between 1980-2019. 18 
The results of a-c are based on the daily mean value. Stippling denotes the linear trend reaches the 19 
significant level (p<0.05). d,e, The sum of the HSI vote of Tw, TsWBG, Hx, APT, UTCI, and HI. The HSI vote is 20 
set as 1 when HSI X99 shows a positive trend between 1980-2019 and is set as -1 when negative. Results 21 
based both on the daily mean (d) and daily maximum (e) values of HSIs are presented. Stippling denotes 22 
the linear trend of at least one HSI reaching the significant level (p<0.05). 23 

 24 
Fig. 2 | Intra-annual peak time difference among air temperature (Tair) and heat stress indicators (HSIs). 25 
a, Averaged intra-annual peak time (day of year when Tair reaches annual peak) of Tair for 1980-2019. b-26 
g, Difference between averaged intra-annual peak time of corresponding HSI and Tair (the former minus 27 
the latter) for 1980-2019. h-k, Occurrence frequency of the hottest 10 days measured by Tair and 8 HSIs 28 
for 4 cities: Austin (h), Brasilia (i), London (j), and Bangkok (k) for 1980-2019. The occurrence frequency 29 
is obtained by Gaussian kernel density estimation. 30 

 31 
Fig. 3 | The best-fit indicator (including air temperature (Tair) and heat stress indicators (HSIs)) in 32 
modelling/predicting daily human mortality for 739 MCC cities. a, The indicator with the minimum qAIC 33 
when fitting to the human mortality (defined as best-fit indicator, BFI). The colour of the BFI is presented 34 
based on their sensitivity to the humidity (Fig. S1, e.g., Tair (zero sensitivity to humidity), Tw (maximum 35 
sensitivity to humidity)). The number in the bracket represents the rank in the sensitivity to humidity of 36 
the HSI. b, The number of cities and their locations under each BFI group. The results are based on the 37 
daily mean value of the indicators.  38 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae290/7720638 by U

niversity of Tokyo Library user on 28 July 2024



 

17 

 

Fig. 4 | The factors that influence the lethal heat stress type (dry or humid) for city -level human 1 
mortality. a, The feature importance of 13 input features (Table S5) for the random forest algorithm 2 
classifying lethal heat stress type. The thick black line indicates the uncertainty in 500 times 3 
implementations. b, The Spearman correlation coefficient between daily mean air temperature and 4 
relative humidity (CT-RH) for 739 MCC cities. c, The distribution of the CT-RH for cities versus their best-fit 5 
indicators (BFIs) for predicting mortality.  The distribution density is obtained by Gaussian kernel density 6 
estimation.  7 

 8 

Fig. 5 | The seasonality of relative risk (RR) of heat stress for 4 cities (Miami, Bristol, Ho Chi Minh City, 9 
and Taipei). a, c, e, g, Exposure-response associations estimated by air temperature (Tair, black) and best-10 
fit indicator (BFI, red) (with 95% confidence interval, shaded area). The numbers indicate the optimum 11 
of Tair and BFI with the lowest RR = 1, and the vertical dotted lines indicate the 95th percentile of local-12 
specific warm-season indicator value. b, d, f, h, The averaged intra-annual variation of RR estimated by 13 
Tair (black) and BFI (red) during the warm season. The line represents the RR time series, and the shaded 14 
area represents the days under heat stress (indicator value > optimum). The numbers indicate the 15 

attributable fraction (AF) of death related to heat and the corresponding 95% confidence interval (CI). 16 
The intra-annual time series is the averaged results of 1980-2019. 17 

 18 
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