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Mapping of number onto space is fundamental to mathematics and measurement. Previous
research suggests that while typical adults with mathematical schooling map numbers
veridically onto a linear scale, pre-school children and adults without formal mathematics
training, as well as individuals with dyscalculia, show strong compressive, logarithmic-like
non-linearities when mapping both symbolic and non-symbolic numbers onto the num-
berline. Here we show that the use of the linear scale is dependent on attentional
resources. We asked typical adults to position clouds of dots on a numberline of various
lengths. In agreement with previous research, they did so veridically under normal condi-
tions, but when asked to perform a concurrent attentionally-demanding conjunction task,
the mapping followed a compressive, non-linear function. We model the non-linearity both
by the commonly assumed logarithmic transform, and also with a Bayesian model of
central tendency. These results suggest that veridical representation numerosity requires
attentional mechanisms.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Most adult humans can estimate the numerosity of a
group of items, as can infants (Xu, Spelke, & Goddard,
2005) – including newborns (Izard, Sann, Spelke, & Streri,
2009) – and many non-human animals, including prima-
tes, parrots and even fish (Agrillo, Dadda, Serena, & Bisazza,
2009; Gallistel & Gelman, 1992; Nieder, 2005; Pepperberg,
2006). Numerosity shares many properties with other
perceptual attributes, such as obedience of Weber’s law
(Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Ross,
2003) and susceptibility to adaptation (Burr, Anobile, &
Turi, 2011; Burr & Ross, 2008). Importantly, the ability to
discriminate number, which improves during development
(Halberda & Feigenson, 2008; Piazza et al., 2010), is
strongly predictive of future mathematical ability
(Halberda, Mazzocco, & Feigenson, 2008).
. All rights reserved.

ology, University of
Number and space are intrinsically interconnected.
Mapping of numbers onto space plays a fundamental role
for many aspects of mathematics, including geometry,
Cartesian coordinates and mapping real and complex
numbers onto lines or planes (Butterworth, 1999; Dehae-
ne, 1997). Recent work has shown that children’s concep-
tions of how numbers map onto space shifts radically
during the early school years (Booth & Siegler, 2006;
Siegler & Booth, 2004; Siegler & Opfer, 2003). Kindergarten
children can represent numbers in space in a non-random
manner, but their representation is compressed, seemingly
logarithmic (placing, for example, the number 10 near the
midpoint of a 1–100 scale). The compressive non-linearity
becomes progressively more linear over the first 3 or
4 years of schooling (Booth & Siegler, 2006; Siegler &
Booth, 2004; Siegler & Opfer, 2003), leading some to sug-
gest that the ‘‘native’’ system of representating numbers
may be logarithmic, which becomes linearized by school-
ing (Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010).
Strong support for this idea comes from a recent study of
the Mundurucu, an Amazonian indigenous group with a
limited number lexicon and little or no formal training:

http://dx.doi.org/10.1016/j.cognition.2011.11.006
mailto:dave@in.cnr.it
http://dx.doi.org/10.1016/j.cognition.2011.11.006
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT
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both adults and children of this tribe map numbers and
numerical quantities onto space in a logarithmic fashion
(Dehaene, Izard, Spelke, & Pica, 2008). This points to both
genetic and cultural roots to numerical mapping: the abil-
ity to represent numbers in space appears to be innate, but
formal mathematical training is required to refine the rep-
resentation from logarithmic to linear. Interestingly,
dyscalculic children from developed societies also show a
more logarithmic representation of the numberline than
controls (Ashkenazi & Henik, 2010; Geary, Hoard,
Byrd-Craven, Nugent, & Numtee, 2007; Geary, Hoard,
Nugent, & Byrd-Craven, 2008).

However, the notion that number is encoded in a true
logarithmic fashion has been challenged from many fronts
(Gallistel & Gelman, 1992; Karolis, Iuculano, &
Butterworth, 2011). Alternate explanations have also been
put forward for the non-linearities in the numberline repre-
sentation, such as proportion judgments relative to the
ends and centers of the numberline (Barth & Paladino,
2011). Another possibility, which we advance in this study,
is that the non-linearity is an example of the well known
‘‘central tendency of judgment’’, reported by Hollingworth
back in 1910: ‘‘judgments of time, weight, force, brightness,
extent of movement, length, area, size of angles all show the
same tendency to gravitate toward a mean magnitude’’
(Hollingworth, 1910). This old concept has recently been
relaunched in the context of Bayesian analysis to model
interval reproduction judgments (Cicchini, Arrighi, Cecch-
etti, Giusti, & Burr, 2011; Jazayeri & Shadlen, 2010).

Attention has been shown to play an important role in
number perception. Attentional-training (through video-
game playing) increases the subitizing range (Green &
Bavelier, 2003). Although subitizing has often been consid-
ered to be ‘‘pre-attentive’’, several studies have shown that
it in fact highly attentional-dependent, suffering consider-
ably when attention is diverted with dual-task or atten-
tional-blink paradigms (Burr, Turi, & Anobile, 2010; Railo,
Koivisto, Revonsuo, & Hannula, 2008; Vetter, Butterworth,
& Bahrami, 2008; Xu & Liu, 2008). Under dual-task atten-
Fig. 1. Illustration of stimuli sequence. At onset of each trial observers view the n
100 dots to the right. On key press, the dot stimulus appears, together with four
random-noise mask was displayed until subjects respond. Subjects respond first
ignore it), then mouse-click the numberline at the position they think the dot c
tional conditions, number discrimination (measured by
Weber fraction) in the subitizing range falls to the same le-
vel as the estimation range (Burr et al., 2010). Attention
also affects adaptation to numerosity (Burr et al., 2011).

In this study we ask whether spatial mapping of num-
bers depends on attention. Adult observers positioned
dot-stimuli on a numberline, with and without a concur-
rent demanding color-conjunction task. With the atten-
tion-demanding task, the spatial representation of
number, linear under normal viewing, shows clear non-lin-
ear compression. One interpretation of the results is that
the native system of number representation is logarithmic,
even in typical adults with normal mathematical ability,
and that the linearization of this representation requires
attention. However, we also explore the possibility that
the compressive non-linearity results from a central ten-
dency like that described by Hollingworth (1910) for many
sensory judgments, which we model quantitatively within
the Bayesian context.
2. Methods

2.1. Participants

Four subjects with normal or corrected-to-normal
vision participated in this study, one author and three
naïve to the goals of the study. All subjects were graduate
students, two with previous experience in numerosity
judgment tasks (three female, one male; mean age 26).
2.2. Stimuli and procedure

The stimuli were generated and presented under
Matlab 7.6 using PsychToolbox routines (Brainard, 1997).
They were displayed in a dimly lit room on a 13-in. Macin-
tosh monitor with 1440 � 900 resolution at 60 Hz refresh
rate, mean luminance 60 cd/m2, viewed binocularly from
57 cm. The stimulus sequence is illustrated in Fig. 1a. Each
umber line, marked at each end with a single dot to the left and 10, 30 or
colored squares in the center of the dot cloud. After 240 ms a binary pixel
to the color conjunction task (in the dual-task condition, otherwise they

loud should occupy.



Fig. 2. (A–C) Average response location (pooling over all four subjects), plotted against actual dot number, for the three different ranges tested. Single-task
judgments in black, dual-task in blue (error bars (±1 s.e.m.). The curves are best fits of Eq. (1). (D) Values of the logarithmic component (k of Eq. (1)) of the
best fits, for the averaged data of Figs. 2A–C as bars, and also for the individual subjects (connected symbols). The error bars indicate the standard errors of
the fit to the averaged data.
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trial started with subjects viewing a 20 cm ‘‘number-line’’
with sample dot-clouds representing the extremes: one
dot on the left of the numberline, and either 10, 30 or
100 dots on the right. The numberline and samples re-
mained on throughout the trial. On subject initiation, the
stimuli were presented for 240 ms, followed by a ran-
dom-noise mask that remained on until the subject re-
sponded. Two stimuli were presented simultaneously: a
cloud of non-overlapping dots (the stimulus to be posi-
tioned on the numberline and four colored squares (the
distractor stimulus). The dots were half-white, half-black
at 90% contrast on a gray background, falling inside a circle
of 8� diameter, and sparing the central 1�. The four distrac-
tor squares were positioned centrally (covering 1� of visual
angle), and arranged in color combinations that either did
or did not constitute a target (defined as both the top-right
and bottom-left squares green, or both top-left and
bottom-right squares yellow).

In all trials, subjects were required to position and click a
mouse pointer on the position of the number line corre-
sponding to the estimated numerosity. In the dual-task par-
adigm, subjects performed a color-orientation conjunction
task on the central squares before making the number-line
judgment, with a left mouse-click for a target, right-click
for not. In the single-task condition subjects ignored the cen-
tral task (that was always presented). Numberline data were
recorded both for correct and incorrect responses for the dis-
tractor task, with errors running around 10% for all subjects.
The average duration of each trial was 5.8 (±1.1) s for the
dual-task condition, and 3.4 (±1.5) s in the single-task
condition.
Each block measured one of the six conditions (three
ranges, single and dual-task), presenting eight to ten test
stimuli of different numerosity were presented in random
order once. Three blocks were run for each condition, order
randomized between observers. Following Siegler and
Opfer (2003), the numerosities used for the three ranges
were: 1–10: 2, 3, 4, 5, 6, 7, 8, 9; 1–30: 2, 3, 4, 6, 10, 14,
18, 20, 22; 1–100: 2, 3, 4, 5, 6, 18, 25, 42, 67, 71, 86. To dis-
courage observers using strategies other than numerosity
(such as texture density), on each block we kept constant
either the total covered area (varying individual dot size)
or individual dot size (varying total area covered), alterna-
tively trial-by-trial. Thus on average, neither dot size nor
total covered area correlated with numerosity.

2.3. Data analysis

We performed two types of analysis, a linear-logarith-
mic fit, and a Bayesian model of central tendency.

2.3.1. Linear-logarithmic fits
In this model we assume that the data can be described

as the sum of a linear and a logarithmic component, given
by the following equation:

L ¼ a ð1� kÞN þ k
Nmax

ln Nmax
ln N

� �
ð1Þ

where N is the number of stimulus dots, L the average re-
sponse location for that stimulus, Nmax the set size (10,
30 or 100), and a a scaling factor. The main free parameter
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of the equation is k, which determines the logarithmic
component of the fit (k = 0 defines a linear function, k = 1
logarithmic). Both individual data and pooled data were
well fit by this equation, with 0.84 6 R2

6 0.99, and no ten-
dency for the goodness of fit to vary with the degree of
linearity.

2.3.2. Bayesian model
We also model the data with a Bayesian model, illus-

trated in Fig. 3. Bayes rule, in this context, is

pðLjNÞ / pðLÞpðNjLÞ ð2Þ

where L represents the mapped location and N the actual
number of dots. p(L) is the prior, which in our model repre-
sents the central tendency, the apriori likelihood that the
response is at a given point near line center. We model
the prior with a Gaussian function, with center P, and
standard deviation rP determined by best fit of the data.
The term p(N|L) represents the sensory likelihood, which
is set by the observer’s precision. We assume that Weber’s
law applies over the range tested (Ross, 2003), so precision
thresholds will be given by wN, where w is the Weber frac-
tion (arbitrarily set to be 0.3). Again we model the sensory
likelihood by a Gaussian probability density function, cen-
tered at the physical numerosity N with standard deviation
wN. The posterior – p(L|N) – will also be a Gaussian pdf,
Fig. 3. Illustration of the central-tendency model of non-linear mapping.
(A) Probability density functions for likelihood, prior and posterior (Eq. (2)),
for two physical displays of 10 or 100 dots to be mapped onto a 1–100
numberline. For all three numberlines, the prior is a Gaussian pdf
centered at 60% on the number line with standard deviation of 5
(determined by best fit to data). The likelihood was also Gaussian,
centered at the physical number L, with standard deviation equal to wL,
where w is the Weber fraction (set at 0.3). The posterior is the product of
the sensory likelihood and the prior. (B) Data from Fig. 2, with the
simulations shown by continuous curves. Again the fit to the data was
good, with 0.95 6 R2

6 0.98 (pooled data).
whose mean will be between the sensory estimate and
the central prior. The extent to which the prior draws the
results towards the mean depends on the relative widths
of the prior and sensory likelihood functions. As the width
of the sensory pdf is proportional to N, the effect will be
stronger for large than for small numerosities, resulting
in a compressive function.

There were only two free parameters to optimize, P and
rP, the mean and standard deviation of the prior. The
choice of the Weber fraction was somewhat arbitrary
(but reasonable), but as it is the ratio of the Weber fraction
to prior width that determines the effect, it makes no dif-
ference to the fit what value is chosen. The parameters that
best fit the data were P ¼ 60% and rP = 5 .
3. Results

Fig. 2A–C shows the number line judgments for the two
attentional conditions, for the three different numerosities,
averaged over all subjects. In all cases the numberlines for
the single-task conditions (black symbols) are virtually lin-
ear, while those of the dual-task conditions (blue1 symbols)
show a clear compressive non-linearity. The lines passing
through the symbols are best fits of the log-linear Eq. (1).
Fig. 2D shows how the logarithmic index (k) of these fits de-
pends on attention for all three number ranges (bars the
fits of the group data of Fig. 2A–C, linked symbols individ-
ual data). For every subject, the logarithmic component
was far larger in the dual-task than the single-task condi-
tion. A two-way repeated measures ANOVA on the k values
revealed a significant main effect for attentional condition
(F = 47.8, p = 0.006), but no effect for range (F = 1.17,
p = 0.387) and no interaction (F = 0.85, p = 0.47). Post-hoc
t-tests revealed that in none of the range conditions for
the single-task k was significantly different from 0
(0.77 < t < 1.55; 0.22 < p < 0.49), showing that the linear
model was adequate for the single-task conditions.

We also fit our data with an alternative model, the
Bayesian model of central tendency (Eq. (2)), where the pos-
terior probability of a particular localization response is gi-
ven by the normalized product of the sensory data (the
likelihood distribution resulting from a given number of
dots) and the ‘‘central tendency’’ prior, which draws the sen-
sory estimates towards the center. The blue curves at right
show the Bayesian predictions for the three numberlines,
clearly capturing the pattern of results (0.95 < R2 < 0.98).
4. Discussion

This study shows that when adult humans are asked to
position a cloud of dots on a number line, they normally do
so accurately: that is, linearly. However, when attentional
resources are diverted by a concurrent demanding con-
junction task, the judgments become distinctly non-linear,
well described by a logarithmic relationship.

One potential confound of our results is that they may
reflect memory, as well as attentive, processes, as the aver-
1 For interpretation of color in Fig. 2, the reader is referred to the web
version of this article.
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age time of response in the dual-task condition was nearly
twice that of the single-task condition (5.8 compared with
3.4 s). It would be interesting to pursue which of these two
factors is more important. Furthermore, our data do not al-
low us to distinguish whether the attentional (and mem-
ory) manipulation disrupts the encoding of non-symbolic
quantity, or the mapping process itself – or both. However,
our results make clear that when both encoding and map-
ping are required – as they are in this and previous studies
– the non-linearity emerges very clearly. This is interest-
ing, as it suggests that withdrawing attention may reveal
a more native representation of numbers, one which pre-
vails in young children (Berteletti et al., 2010; Siegler &
Booth, 2004; Siegler & Opfer, 2003) and unschooled adults
(Dehaene et al., 2008). Attention is necessary to map num-
bers linearly onto the number line. We believe that it is the
attentional manipulation that affects the results, as previ-
ous work has demonstrated that linear responses occur
even under conditions of speeded response (Pinhas &
Fischer, 2008). However, other work has shown that hu-
mans adults, normally linear on a numberline task, show
logarithmic-like non-linearities when asked to gauge the
randomness of random a series that oversampled small
numbers (Viarouge, Hubbard, Dehaene, & Sackur, 2010).
This suggests that both linear and compressed maps can
coexist, and the use of one or the other may be due to a
variety of task-driven strategic factors.

What is the neural substrate underlying the logarithmic
encoding and/or mapping? One possibility, assumed by
many, is that it reflects the bandwidth of neurons selective
to number. In both non-human and human primates, neural
responses in the intraparietal sulcus show a logarithmic-
like tuning, with bandwidth proportional to preferred num-
ber (Nieder, 2005; Nieder & Merten, 2007; Piazza et al.,
2004), consistent with a pre-attentive logarithmic mapping
onto the numberline. A native logarithmic representation is
also consistent with the fact that numerosity discrimination
in both monkeys and humans shows Weber-Law behavior,
with the root-variance of the discrimination increasing di-
rectly with numerosity.

However, another possibility that we have explicitly
modeled is that the non-linearity does not reflect logarith-
mic encoding of numerosities, but a more general percep-
tual principle, central tendency, observed in almost all
sensory systems. That numerosity may be subject to the
central tendency is further support for the notion of number
being a visual sensory attribute (Burr & Ross, 2008; Dehae-
ne, 1997). The intuitive explanation for how the model
introduces the compressive non-linearity is that for con-
stant Weber fraction, the sensory likelihood function at high
numbers is broad, so the prior will be effective, while at low
numerosities, the likelihood function is narrow, so the prior
impacts less on it. This may also explain why numerosities
over a larger scale tend to show more compression than over
a smaller scale (Berteletti et al., 2010). The model has only
two parameters, the mean of the distribution, which error
minimization sets near the center of the numberline
(excluding the small, easily recognizable numbers), and
the width of the prior (relative to the Weber fraction). It
has no more free parameters than the logarithmic model
of Eq. (1), and the parameters remain fixed for all three
numberlines: yet it accounts for 97% of the variance of all
number lines.

What exactly is the prior, and how does it depend on
attention? The prior could be computed from the sensory
input, a ‘‘running average’’ calculated over trials, much in
the same way as the system does in the ‘‘method of con-
stant stimuli’’, where subjects compare quantities on indi-
vidual trials against an estimate of the mean. Alternatively
it may depend on the output numberline, which has finite
length. For example, if a physical numerosity of 100 were
perceived as 130 (through noise fluctuations), it could
not be placed higher than 100 – and this effect could prop-
agate down. We suspect that both these factors contribute
to the prior.

What purpose does the prior – and central tendency in
general – serve? As others have argued, a prior based on
the statistics of the sensory events can improve perfor-
mance – measured as the sum of total error – at the ex-
pense of reducing veridicality (see Jazayeri & Shadlen,
2010, for detailed account). Effectively, under conditions
of great uncertainty, performance can be improved by con-
sidering the past history of events. But why does the
regression to the mean occur only under conditions of di-
vided attention? The most straight-forward possibility is
that the sensory Weber fraction is higher under conditions
of divided attention (Burr et al., 2010), so the prior be-
comes more effective (as it is the relative widths of prior
and sensory likelihood that determines the extent of cen-
tral tendency). Another possibility is that attention induces
a more qualitative change in the processing, acting on the
prior itself by reducing its width, and hence the mode of
encoding and/or mapping numbers. We are currently
investing these possibilities quantitatively.

To conclude, the current results show that attention can
change the pattern of mapping numerosity estimates onto
a numberline. The study provides support for the idea that
mapping numbers onto space is a universal intuition, but
that the native mapping principle is non-linear. The non-
linearity could arise either from an intrinsic logarithmic
representation of numbers, as many have assumed, or from
a more general principle of central tendency of perceptual
judgments. Either way it would seem that the linear
numberline is a cultural invention, depending on formal
education. But even after it has been instilled by years of
schooling, it remains strongly dependent on the
availability of attentional resources.
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