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We present a framework for the kinematics of a
material body undergoing anelastic deformation. For
such processes, the material structure of the body,
as reflected by the geometric structure given to the
set of body points, changes. The setting we propose
may be relevant to phenomena such as plasticity,
fracture, discontinuities and non-injectivity of the
deformations. In this framework, we construct an
unambiguous decomposition into incompatible and
compatible factors that includes the standard elastic–
plastic decomposition in plasticity.

This article is part of the theme issue ‘Foundational
issues, analysis and geometry in continuum
mechanics’.

1. Introduction
The elastic–plastic decomposition of the deformation
gradient, F, into an ‘elastic’ factor, Fe, and a ‘plastic’
factor, Fp, as F = FeFp, was introduced in 1960 by
Kröner [1] and in 1967 by Lee & Liu [2,3], and has
been used and studied extensively since then. For a
comprehensive review of the subsequent work, see [4],
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and for more recent work see for example [5–13]. The plastic factor is viewed as the tensor
field needed in order to release the residual stresses in the reference unloaded configuration
of the body. The incompatibility reflects the macroscopic description of the existence of defects
in the material. From another point of view, e.g. [12–14], it is impossible to embed isometrically
the body with the stress-free metric tensor in a three-dimensional Euclidean space. Under such
interpretations, the elastic factor, Fe, describes the incompatible packing of the stress-free body
elements to restore compatibility to F = FeFp.

Another view on the elastic–plastic decomposition is proposed by Reina & Conti [15–17] where
starting from a perfect lattice, Fp corresponds to a change of material structure of the lattice—a
change in the topology—while Fe corresponds to the placement of the defected structure in space.

The following exemplifies some approaches to motivate the elastic–plastic decomposition.

— By looking at lattices and considering a notion of defectiveness defined referring to
invariant peculiar features with respect to the action of diffeomorphisms, G. Parry arrived
at a multiplicative decomposition that involves two factors of the type Fp, one preceding
Fe, the other following it [18].

— In crystals, slips may occur along special planes and are a source of unrecoverable strain
determined by the slip of dislocations. Across such planes, deformations suffer jumps of
finite amplitude. A way to model the circumstance is selecting deformations to be special
maps of bounded variations (SBV-maps). Such maps admit a distributional derivative
that is a measure with an additive decomposition into a bulk part, which is absolutely
continuous with respect to the Lebesgue volume measure, and a singular component
concentrated over a rectifiable set with m − 1 Hausdorff dimension, where m is the
dimension of the domain. The multiplicative decomposition F = FeFp emerges naturally,
as shown by Reina & Conti [15] (see also [16,17,19]; the latter reference accounts for
possible volumetric plastic changes in the SBV setting). In this view, Fp is a measure, while
Fe a gradient, taken with positive determinant. In [16] the plastic deformation is shown
to follow from a coarse-graining procedure from the lattice mesoscopic description.

Here, we propose a framework that shares similarities with these last two approaches. Like [16],
we view the plastic factor as assignment of topological structure to the body. Similarly to [18], we
take material structure to be invariant under a subgroup of the group of diffeomorphisms.

When we refer to continuum mechanics, we commonly say that it is the qualitative and
quantitative description of the way tangible bodies react under external actions. The definition
requires clarification of the essential nature of what we call a body: this is a conceptual choice,
we need to make—and we do this even unconsciously—in building up mathematical models of
natural phenomena.

In basic treatises on continuum mechanics—mainly those emerging from the work of C.
A. Truesdell’s school—a body is taken to be a set of not otherwise specified material elements,
presumed to be endowed with the structure of a finite-dimensional manifold [20–25]. In
particular, in [20], the manifold structure of body is manifested by its configurations in the
three-dimensional Euclidean space.

This setting may be extended to the situation where the physical space is modelled as a general
n-dimensional manifold, S . Such a generalization may be motivated, for example, by considering
small scale interactions, or microstructure. In this case, configurations will be valued in a fibre
bundle over a Euclidean space [26–29].

Anelasticity is associated with changes of material structure—the topological or geometric
structure of the material body. Thus, one has to make a clear distinction between a body, which
has a certain manifold structure, and the collection of points that the body comprises. To identify
the object, the material structure of which may change in an anelastic process, we use the term
protobody. The various material structures that a protobody may attain in anelastic processes are
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referred to as embodiments. Each embodiment of a protobody should be a body of continuum
mechanics. (See [30,31], where analogous notions are presented for theories of growing bodies.)

The configuration space, Q, of a protobody in space, should contain all the configurations
in space at all possible embodiments of the body. To each configuration κ of the protobody in
space, there corresponds an embodiment e of the protobody. However, it is expected that for each
embodiment there will be a subset of configurations of the protobody.

Thus, we say that two configurations, κ1 and κ2, of the protobody correspond to the same
embodiment if there is a diffeomorphism, g21, of the space manifold such that κ2 = g21 ◦ κ1. This
induces an equivalence relation on Q, for which an embodiment is an equivalence class, and the
embodiment space, E , is the quotient set.

Next, we show that an embodiment, e, may be represented as a topological space, Be, the
elements of which are the body points associated with that embodiment. It is noted that we do
not restrict configurations of the protobody to be injective. As a result, the topological spaces Be1

and Be2 , for two distinct embeddings need not comprise the same material points. Finally, each
configuration κ : B → S is factored in the form κ = κe ◦ κae, where κae : B → Be and κe : Be → S ,
the analogue of the elastic–plastic decomposition. There is no ambiguity in the decomposition.

This general framework makes it possible to represent discontinuous and non-injective
configurations of the protobody in space, modelling phenomena such as fracture and destruction
of material points.

To consider phenomena such as plasticity for which the elastic–plastic decomposition applies
to the deformation gradient, we have to be more specific. Thus, we substitute for the protobody
the tangent bundle TB of a manifold B, representing the perfect crystallographic structure of the
body. A configuration is represented by a vector bundle morphism κ : TB → TS . Incompatibility
occurs when κ is not the tangent mapping of the base map κ : B → S . We say that two
configurations, κ1 and κ2, correspond to the same embodiment when there is a diffeomorphism,
g21, of space such that κ2 = Tg21 ◦ κ1. We show that an embodiment is represented by a vector
bundle, representing the ‘dislocated’ material structure, and the elastic–plastic decomposition of
vector bundle configurations of a protobody follows.

Section 2 outlines the general framework we propose for the kinematics of elastic-anelastic
processes. Section 3 describes some of the notions of the general framework in terms of groupoids.
This section may be skipped without interrupting the rest of the text. Section 4 considers the case
where configurations are vector bundle morphisms defined on the tangent bundle of a manifold.
As mentioned above, the tangent bundle represents a solid body together with its microstructure.
Section 5 specializes the foregoing one to the case where the base mapping of the vector bundle
morphisms representing the configurations, are embeddings. This situation is analogous, in the
geometry of differentiable manifolds, to the classical elastic–plastic decomposition described
above. Finally, in §6, we make some comments as to the relevance of the proposed framework
to quasi-crystals.

2. The basic framework

(a) Basic definitions
Let B be a set, which we view as a collection of material points, and refer to it as a protobody.
We do not assume at this stage that B has any particular structure. As a standard example, the
protobody may be represented by a bounded open subset of R

3.
The physical space is modelled by an n-dimensional oriented differentiable manifold S .

In traditional formulations of continuum mechanics S is modelled as a three-dimensional
Euclidean space.

The configuration space, Q, of the protobody is assumed to be a given class of mappings of
the protobody into the space manifold. A generic element of Q is denoted as κ : B → S . For
example, if B is a bounded and connected open subset of R

3 and S = R
3, one may consider the

case where Q = BV(B, R3), or Q = SBVp(B, R3), with appropriate p, when discontinuities of the
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deformation distributional derivative (a measure, indeed) do not include a Cantor set and the
absolutely continuous part with respect to the Lebesgue measure is endowed with Lp density.

In the rest of the text, we refer to bi-Lipschitz, oriented diffeomorphisms simply as diffeomorphisms.
On a differentiable manifold, bi-Lipschitz mappings may be defined using a Riemannian metric.
The class of bi-Lipschitz mappings is invariant under the particular choice of a Riemannian
metric.

Definition 2.1. Let G be a subgroup of the group of diffeomorphisms of S . We say that κ1, κ2 ∈
Q are compatible if there is a diffeomorphism g21 ∈ G such that

κ2 = g21 ◦ κ1. (2.1)

In such a case, we refer to g21 as a (compatible) displacement and we write κ1 ∼ κ2.

Remark 2.2. As a possible generalization of this definition one may consider a group of
bijective mappings S → S that are not necessarily smooth. This may lead to a relaxed definition
of the compatible (elastic) factor of the decomposition. For example, one may consider a subgroup
of the group of bi-Lipschitz mappings on S .

Evidently, compatibility is an equivalence relation, which justifies the notation we adopt.

Definition 2.3. The quotient space,
E := Q/ ∼ (2.2)

will be referred to as the space of material structures or the embodiment space. An element e ∈ E

represents a material structure or an embodiment.

Thus, we have a natural projection

πE : Q −→ E , κ �−→ [κ], (2.3)

where [κ] denotes the equivalence class of κ .

(b) The structure induced by an embodiment
Any embodiment induces a topological space. In fact, let e ∈ E be an embodiment, and define

Ae :=
∐

κ∈e
Image κ . (2.4)

An element a ∈ Ae is represented by (y, κ) where y ∈ Image κ ⊂ S , κ ∈ e.
Consider the following relation on Ae. We say that

a1 = (y1, κ1) ∼e a2 = (y2, κ2) if y2 = g21(y1) (2.5)

for g21 ∈ G satisfying κ2 = g21 ◦ κ1. By the definition of E , such a diffeomorphism exists. Evidently,
∼e is an equivalence relation. The equivalence class of a ∈ Ae will be denoted as [a]e. The quotient
space Ae/ ∼e will be denoted by Be, so that we have a natural projection

πe : Ae −→ Be = Ae/∼e. (2.6)

An element x ∈ Be is interpreted as a body point contained in the embodiment e of the protobody.
The set Be is interpreted as the set of body points contained in the embodiment e. We may refer
to Be as the body structure induced by the embodiment e.

Let e ∈ E be an embodiment, and let κ ∈ e. We have a natural mapping

πeκ : Image κ −→ Be, y �−→ [(y, κ)]e. (2.7)

The mapping πeκ is clearly a bijection. The body point x = πeκ (y) occupies the location y ∈ S at
the configuration κ .

Let κ ∈ e be a configuration. Then, Image κ has the subspace topology it inherits from
the manifold S . If κ1, κ2 ∈ e so that κ2 = g21 ◦ κ1, then, g21| Image κ1 : Image κ1 → Image κ2 is a
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homeomorphism. This induces a topology on Be by defining a subset U ⊂ Be to be open if for
some κ ∈ e, and an open subset Uκ ⊂ Image κ ,

U = πeκ (Uκ ). (2.8)

The topology is well defined, and is independent of the choice of κ ∈ e. Moreover, with this
topology, πeκ : Image κ → Be is a homeomorphism for each κ ∈ e.

In all practical cases, Image κ will be a topological submanifold of S . If Image κ is an oriented
differentiable submanifold of S for some κ ∈ e, this applies to all other κ ′ ∈ e. In this case, for
κ1, κ2 ∈ e, g21| Image κ1 : Image κ1 → Image κ2 is a diffeomorphism. A procedure analogous to the
one above induces an oriented manifold structure on Be for which πeκ is a diffeomorphism.

(c) The incompatible–compatible decomposition
Let κ : B → S be a configuration, Iκ : Image κ → S the natural inclusion, and e = π (κ) ∈ E the
induced embodiment. Since πeκ : Image κ → Be is a homeomorphism, the same applies to π−1

eκ
and we can define

κe := Iκ ◦ π−1
eκ : Be −→ S . (2.9)

The mapping κe is interpreted as the compatible factor of the configuration κ . It is the analogue
of the ‘elastic’ factor of the ‘plastic-elastic’ decomposition. Clearly, the compatible factor of the
configuration is a continuous injection into S . In case Image κ is an oriented submanifold of S ,
and we use the induced differentiable structure on Be, κe is an embedding.

For the same variables as above, consider the mapping

κae := πeκ ◦ κ : B −→ Be. (2.10)

Then,

κ = κe ◦ κae, (2.11)

which is the incompatible–compatible decomposition (see the diagram below).

(2.12)

The relevance of the decomposition follows from the following property.

Lemma 2.4. Let κ ∈ Q be a configuration. Then, κae depends only on e = πE (κ) ∈ E .

Proof. Let X ∈ B and κ ′ ∼ κ . We have to show that κ ′
ae(X) = κae(X). Since κ ′ ∼ κ , there is a

diffeomorphism, g ∈ G, such that κ ′ = g ◦ κ . Hence, κ ′(X) = g(κ(X)). By the definition (2.5),

(κ ′(X), κ ′) ∼e (κ(X), κ). (2.13)

The definition of πeκ in (2.7), implies now that

πeκ ′ (κ ′(X)) = πeκ (κ(X)). (2.14)

�

When B has an oriented manifold structure, and κ is an oriented embedding, κae is a
diffeomorphism. Thus, in such a case, one can identify B with Be, i.e. κae reduces to an identity. In
general, B has no structure, and compatibility of κae : B → Be in the standard sense of continuum
mechanics cannot even be defined. Intermediate situations, where the incompatibility of κae is
significant and well defined, are considered below.
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(d) Reference configurations
A right inverse of πE ,

r : E → Q, (2.15)

may be interpreted as a system of reference configurations for the embodiments of B. In other
words, r(e) is the reference configuration for the material structure e in space.

When a system of reference configurations is given, one may accept the identification Be :=
Image r(e). In such a situation, for some κ ∈ Q, the deformation κe may be identified with the
restriction,

gκ ,r(e)| Image r(e) : Image r(e) −→ S , (2.16)

of the diffeomorphism gκ ,r(e) of S to Image r(e). The mapping κae is identified in this case with
r(e). In case a system of reference configurations is not given, the term “intermediate’ configuration
does not describe the situation appropriately because κae is valued in the abstract manifold Be

and not in space.
Also, although commonly used as a terminology in modelling plasticity, an ‘intermediate’

configuration intended as a global configuration obtained by rearranging in an incompatible way
the material texture, is in general not available. In analysing strain, we essentially have a local
description of the incompatibility due to the rearrangement of the material structure. We locally
map the tangent space at a point in some configuration into an ‘intermediate’ space, and the
mapping is incompatible in the sense of being not congruent. This circumstance leads us to model
incompatibility of tangent-plane-neighbourhoods, as we do in §4.

3. The groupoid point of view
This section describes how some of the foregoing structure can be described and generalized
using the language of groupoid theory. It is of a formal nature and may be skipped without
interrupting the reading of the following sections. Roughly speaking, a groupoid consists of a
collection of elements and a collection of arrows between pairs of elements. In particular, not
all pairs of elements are connected by an arrow. Arrows can be composed and inverted in a
consistent way.

In our situation, we have a set Q, and a set Γ containing mappings. The configurations
in Q are referred to as objects in the language of groupoid theory and the elements of Γ are
referred to as morphisms. Each morphism, γ , is associated with a configuration κ1 = α(γ ) and a
configuration κ2 = β(γ ), and γ represents a mapping (a restriction of a diffeomorphism of S in
the case considered above) Image κ1 → Image κ2. In such a case, we write κ2 = γ κ1.

The mappings α : Γ → Q and β : Γ → Q are referred to as the source map and target map,
respectively. Note that here, we do not require that the diffeomorphism be extended to a
diffeomorphism of S .

It is emphasized that not any pair of elements of Q are the source and target of some morphism.
In general, there are pairs κ1, κ2 ∈ Q, representing incompatible configurations of the body, for
which there is no connecting morphism. For the case where there is a morphism γ such that
κ2 = γ κ1, we have written κ2 ∼ κ1.

The morphisms satisfy the following properties.

(i) α and β are surjective.
(ii) For composable morphisms γ1, γ2 ∈ Γ , that is β(γ1) = α(γ2), there is a composition γ2 · γ1 ∈

Γ such that

α(γ2 · γ1) = α(γ1) and β(γ2 · γ1) = β(γ2). (3.1)

(iii) The composition is associative, so for three composable morphisms

γ3 · (γ2 · γ1) = (γ3 · γ2) · γ1. (3.2)
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(iv) For each κ ∈ Q there is a morphism εκ—corresponding to the identity mapping
Image κ → Image κ—such that α(εκ ) = β(εκ ) = κ , and

γ · εα(γ ) = γ = εβ(γ ) · γ , for all γ ∈ Γ . (3.3)

(v) For each γ ∈ Γ , there is γ −1 ∈ Γ , in our case the inverse mapping, such that

γ −1 · γ = εα(γ ) and γ · γ −1 = εβ(γ ). (3.4)

The restrictions of diffeomorphisms of S , of the type Image κ1 → Image κ2, evidently satisfy
these conditions. This implies that Γ is a groupoid over Q and we express this as Γ ⇒ Q. (See [32]
for the theory of groupoids and some of its applications to continuum mechanics.)

In the language of groupoid theory, the set

O(κ) := β(α−1{κ}) = α(β−1{κ}) ⊂ Q (3.5)

is referred to as the orbit of κ . However, in our notation, the orbit is simply the equivalence class of
κ—an embodiment of the body. The quotient space—the embodiment space in our application—is
referred to as the orbit space.

Another groupoid structure corresponds to the construction of the set Be for some given
embodiment e ∈ E . The space of objects in this case is Ae defined above, so that an object
is represented by (y, κ), y ∈ Image κ . A morphism δ sends (y1, κ1) to (y2, κ2), where κ2 = γ κ1,
γ ∈ Γ . Evidently, given κ1 and κ2, with κ2 = γ κ1, there is only a single y2 ∈ Image κ2 such that
(y2, κ2) = δ(y1, κ1). The resulting groupoid will be denoted as Γe ⇒ Ae. Thus, for the case described,

α(δ) = (y1, κ1) and β(δ) = (y2, κ2). (3.6)

Using the language of groupoids, a point x ∈ Be is an orbit in Γe and Be is the orbit space of Γe.

4. Infinitesimal incompatibility
For the case where B has an oriented manifold structure, a natural bundle morphism is associated
with κ : B → S ; it is the tangent map, Tκ , from TB to TS . When we aim at describing
elastic–plastic phenomena, we need to model incompatibility of tangent planes—‘infinitesimal
neighbourhoods’ of material points—that may occur even in the case of smooth placements of
the material points in space. To account for such incompatibility, we need to extend the view
described so far. Specifically, we will no longer consider κ as a map from B to S , rather, we take
κ as a vector bundle morphism from TB to TS .

(a) Infinitesimal configurations and embodiments
We specialize the setting of §2 by replacing first the protobody general set B by the tangent
bundle, TB of an oriented manifold B, where we have the projection

τB : TB −→ B. (4.1)

The tangent space TXB at X ∈ B represents the ‘infinitesimal neighbourhood’ of X.
The configuration space Q is a family of vector bundle morphisms

κ : TB −→ TS . (4.2)

For κ ∈ Q,

κ : B −→ S (4.3)

will denote the corresponding base map. It is assumed that κ is oriented. Incompatibility occurs
when κ is not the tangent mapping Tκ of some κ : B → S . It is assumed that for each κ ∈ Q,
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Image κ is a subbundle of the restriction of TS to Image κ . Thus, for each κ ∈ Q, Image κ has a
structure of a vector bundle with projection

πκ : Image κ −→ Image κ . (4.4)

(Note that we use the notation κ for the vector bundle morphism rather than the traditional F in
order to emphasize the analogy with the general case described above.)

Consider,

Q := {κ | κ ∈ Q}, (4.5)

the set of all base mappings corresponding to the vector bundle morphisms in Q. We have a
natural projection

B : Q −→ Q κ �−→ κ . (4.6)

The compatibility relation ∼ is now redefined as follows. The configurations κ1 and κ2 are
compatible, that is, κ2 ∼ κ1 if there exists some diffeomorphism, g21 ∈ G of S , the tangent map,
Tg21 : TS → TS , of which satisfies

κ2 = Tg21 ◦ κ1. (4.7)

Clearly, compatibility is an equivalence relation. Note that the collection, H, of mappings TS →
TS that are of the form h = Tg, where g is a diffeomorphism of S , is a subgroup of the group of
all diffeomorphisms of TS .

On Q we can apply the construction described in §2, and define the equivalence relation

κ1 ∼ κ2 if κ2 = g21 ◦ κ1, (4.8)

for some g21 ∈ G. Evidently,

κ1 = B(κ1) ∼ κ2 = B(κ2), if κ2 ∼ κ1. (4.9)

The converse is false in general. For two distinct infinitesimal configurations such that the images
of the base mappings are compatible, the infinitesimal structures need not be compatible. Once
again we define the space of material structures, or the embodiment space, E , to be the quotient
space Q/ ∼, and we have the natural projection

πE : Q −→ E = Q/∼. (4.10)

By our construction, the vector bundles of the form Image κ for the various elements κ ∈ e ∈ E

are all vector bundle diffeomorphic. That is, if κ2 ∼ κ1, then,

Tg21| Image κ1 : Image κ1 −→ Image κ2, (4.11)

is a diffeomorphism of vector bundles.
In accordance with the previous section, we write

πE : Q −→ E := Q/∼, (4.12)

for the natural projection induced by the equivalence relation ∼.
Let e ∈ E be represented by κ , and let e = [κ = B(κ)] ∈ E . It follows from equation (4.9) that e is

independent of the particular representative κ ∈ e. Hence, we have a surjection

B∼ : E −→ E and [κ] �−→ [B(κ)]. (4.13)

Thus, B−1∼ (e) is the collection of infinitesimal material structures for which the base material
structure is e.
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(b) The structure corresponding to an infinitesimal embodiment
As in equation (2.4), Ae, e ∈ E is defined as the disjoint union of the images of all κ ∈ e. In analogy
with (2.5), we define the equivalence relation ∼e in Ae by

a1 = (v1, κ1) ∼e a2 = (v2, κ2) if v2 = Tg21(v1) (4.14)

for g21 ∈ G satisfying κ2 = Tg21 ◦ κ1. In accordance with our notation scheme, we have

We := Ae/∼e and πe : Ae −→ We. (4.15)

Evidently, if a1 ∼e a2, as above,

πκ2 (v2) = g21(πκ1 (v1)). (4.16)

Let e ∈ E , and

Ae :=
∐

κ∈e
Image κ . (4.17)

On Ae, we have the equivalence relation

a1 = (y1, κ1) ∼ e a2 = (y2, κ2) if y2 = g21(y1), (4.18)

for some g21 ∈ G satisfying κ2 = g21 ◦ κ1. We set

Be = Ae/∼ e and π e : Ae −→ Be. (4.19)

From (4.16) it follows that

(v1, κ1) ∼e (v2, κ2) implies (πκ1 (v1), κ1) ∼e (πκ2 (v2), κ2). (4.20)

We consider the quotient space, We := Ae/ ∼e, the structure of which is described below. We
will show that We is a vector bundle over Be. The fibre over x ∈ Be represents the infinitesimal
material structure at x.

For u = [(v, κ)]e ∈ We ([·]e indicates the equivalence class relative to ∼e), we set

πWe (u) := [(πκ (v), B(κ)]e = [(πκ (v), κ]e ∈ Be. (4.21)

By (4.20), πWe (u) is independent of the representative (v, κ) ∈ Ae, so we have a projection

πWe : We −→ Be. (4.22)

Let e ∈ E be an embodiment, and let κ ∈ e. We have a natural mapping

πeκ : Image κ −→ We, and v �−→ [(v, κ)]e. (4.23)

The mapping πeκ is a vector bundle diffeomorphism.
Similarly, let e ∈ E , and let κ ∈ e. We have a natural diffeomorphism,

π eκ : Image κ −→ Be, y �−→ [(y, κ)]e (4.24)

as in the previous section.
The induced decomposition is

κ = κe ◦ κae and κe := Iκ ◦ π−1
eκ (4.25)

and

κ = κe ◦ κae, κae := πeκ ◦ κ and κe := Iκ ◦ π−1
eκ . (4.26)
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In fact, πWe : We −→ Be is a vector bundle that is the pullback of πκ : Image κ → Image κ by κe.
The resulting structure is illustrated in the following commutative diagram.

(4.27)

In case a system of reference configurations r : E → TS , a right inverse of πE is given, the
comments made in §2d, still apply. Looking at the decomposition κ = κe ◦ κae, we recover the
standard multiplicative decomposition of the deformation gradient F, namely F = FeFp.

5. Deformations of dislocated crystals
The description of dislocated (periodic) crystals falls within the scheme built up so far. As above,
the space manifold, S , is an oriented n-dimensional manifold and the protobody TB is the
tangent bundle of an oriented, compact, n-dimensional manifold with boundary. A configuration
κ ∈ Q is assumed once again to be a vector bundle morphism

κ : TB −→ TS , (5.1)

such that the base mapping, κ : B → S , is an oriented embedding, and for each X ∈ B,

κ|TXB : TXB −→ TXS (5.2)

is an orientation preserving isomorphism.
The tangent bundle, TB, is viewed as the perfect crystal lattice. Specifically, as a possible

interpretation we can say that B is the set of atoms, itself the lattice structure, while considering
TB allows us to assign at each point the pertinent optical axes. See also [33] where frames at the
various material points represent the crystalline structure. The fact that κ need not be Tκ reflects
the dislocated configuration.

We set κ1 ∼ κ2 if there is a diffeomorphism g21 : S → S such that κ2 = Tg21 ◦ κ1. Evidently, if
κ1 ∼ κ2 = Tg21 ◦ κ1, then, κ1 ∼ κ2. Here, again, the equivalence relation κ1 ∼ κ2 is defined by the
requirement that there is some diffeomorphism g21 of S , such that κ2 = g21 ◦ κ1. The spaces E

and E are defined in the previous section.
Let κ1, κ2 ∈ Q be arbitrary (not necessarily related). Then, since both κ1 and κ2 are embeddings,

letting κ−1
1 : Image κ1 → B be the right inverse, we have a diffeomorphism

κ2 ◦ κ−1
1 : Image κ1 −→ Image κ2. (5.3)

Since this diffeomorphism may be extended to a diffeomorphism g21 of S , all elements κ ∈ Q are
related. This implies that all κ ∈ Q share the same embodiment e = [κ] ∈ E , so that E = {e}.

Moreover, as for any κ ∈ Q, Image κ is diffeomorphic with B and diffeomorphic with the
single Be, we may naturally identify Be with B so that κae is the identity. It follows that for every
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κ , κe = κ , π eκ = κ−1 : Image κ → B, and Diagram (4.27) reduces to

(5.4)

As mentioned above, the presence of dislocations, or incompatibility, is reflected by the fact
that κ is different from Tκ .

Lemma 5.1. Let κ1, κ2 ∈ Q. Then, κ1 ∼ κ2 if and only if

(Tκ1)−1 ◦ κ1 = (Tκ2)−1 ◦ κ2, (5.5)

where each side of the equation is a vector bundle morphism TB → TB over the identity, and left inverses
of the tangent mappings are well-defined on the images of the configurations.

Proof. Assume that κ1 ∼ κ2. Then, there is a diffeomorphism g21 : S → S such that κ2 = g21 ◦ κ1
and κ2 = Tg21 ◦ κ1. Hence,

(Tκ2)−1 ◦ κ2 = (T(g21 ◦ κ1))−1 ◦ Tg21 ◦ κ1,

= (Tg21 ◦ Tκ1)−1 ◦ Tg21 ◦ κ1,

= (Tκ1)−1 ◦ κ1,

= Tκ−1
1 ◦ κ1. (5.6)

Conversely, assume that condition (5.5) holds. Then,

κ2 = Tκ2 ◦ (Tκ1)−1 ◦ κ1,

= Tκ2 ◦ Tκ−1
1 ◦ κ1,

= T(κ2 ◦ κ−1
1 ) ◦ κ1. (5.7)
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As mentioned above, κ1 ∼ κ2 always, and so, there is an extending diffeomorphism g21 : S → S

such that κ2 ◦ κ−1
1 is the restriction of g21 to Image κ1 as in the following diagram

(5.8)

It follows that κ2 = Tg21 ◦ κ1. �

We conclude that for any embodiment e = [κ], there is a unique oriented vector bundle
isomorphism

Fae : TB −→ TB, (5.9)

over the identity of B. For any κ ∈ e, Fae satisfies

Fae = (Tκ)−1 ◦ κ , (5.10)

and this definition is independent of the choice of κ .
Consequently,

Proposition 5.2. For a dislocated crystal, the embodiment space may be identified with the group of
oriented vector isomorphisms TB → TB, over the identity.

Any such vector bundle isomorphism may be identified with a section of a principal fibre
bundle over B, the fibre at X ∈ B of which is GL(TXB)+. Evidently, under a chart, the fibre may
be modelled by GL(n)+, which also acts on the fibres (see [34, p. 313]). In fact, we obtain the
material G-structure of [35, p. 261].

Remark 5.3. As mentioned in the Introduction, we view the plastic factor, κae, of the
decomposition as the vector bundle morphism that maps the perfect crystal structure to the
dislocated one, an incompatible vector bundle morphism (as it not the tangent of the base
mapping). The plastic factor is followed by a compatible (the tangent to the base map) vector
bundle morphism κe : Be → S . Their composition gives the incompatible configuration of the
protobody in space. For this remark, let us refer to this point of view as II, and write

κ II = κ II
e ◦ κ II

ae, (5.11)

for a compatible κ II
e .

This point of view differs from the point of view (e.g. [3]) where the body is first dissected into
small neighbourhoods to release the residual stresses—an incompatible mapping—then packed
into the new configuration in space by another incompatible mapping, so that the composition is
a compatible vector bundle morphism of the body into space. Let us refer to this point of view as
I and write

κ I = κ I
e ◦ κ I

ae, (5.12)

where now κ I is compatible.
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The relation between the two points of view is quite clear. If we make the identification

κ I
ae = (κ II

ae)
−1 : Be −→ TB and κ I

e = κ II : TB −→ TS , (5.13)

we obtain

κ I = κ II ◦ (κ II
ae)

−1, (5.14)

as in the following diagram.

(5.15)

While in point of view I, the basic object is the ‘frustrated’ body Be, for view II, which we adopt
in this manuscript, the basic object is TB, interpreted as the perfect crystal.

6. Dislocated quasi-crystals
The above construction admits a natural adaptation to the case of quasi-crystals, i.e. those
(natural and synthetic) alloys showing a quasi-periodic distribution of Bragg’s peaks under
diffraction experiments. In fact, every n-dimensional quasi-periodic lattice can be considered
as the projection of a periodic atomic array in a 2n-dimensional space onto a n-dimensional
incommensurate subspace. For example, consider a quasi-periodic lattice in the plane and
develop the mass density function in a Fourier series; quasi-periodicity imposes in the Fourier
series a four-dimensional wave vector: once again we go from n to 2n [36].

Quasi-crystals admit dislocations [37,38]. Their Burgers vector admits a component in
the incommensurate subspace and another one in the orthogonal complement to that
space in the higher-dimensional space from which we construct the quasi-periodic lattice
[39,40].

To exploit in this case the structure in the previous section, we could consider B itself as a
locally trivial fibre bundle with base manifold a fit region in three-dimensional real space and R

3

as a typical fibre. The fit region includes the physical atoms constituting the body, while the fibre
at each point includes information on the low-scale atomic flips that assure quasi-periodicity in
the physical space. Then we consider TB and act as above, paying attention to the circumstance
that equivalence relations should account for both basis and fibre of B at the same time; in essence
they can be considered as those in the previous section when referred to the higher-dimensional
space from which we obtain the quasi-periodic lattice.
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