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Abstract. Recent studies have revealed the possible role of choroid plexus (ChP) in Alzheimer’s disease (AD). T1-weighted
MRI is the modality of choice for the segmentation of ChP in humans. Manual segmentation is considered the gold-standard
technique, but given its time-consuming nature, large-scale neuroimaging studies of ChP would be impossible. In this study, we
introduce a lightweight segmentation algorithm based on the Gaussian Mixture Model (GMM). We compared its performance
against manual segmentation as well as automated segmentation by Freesurfer in three separate datasets: 1) patients with
structural MRIs enhanced with contrast (n = 19), 2) young healthy subjects (n = 20), and 3) patients with AD (n = 20). GMM
outperformed Freesurfer and showed high similarity with manual segmentation. To further assess the algorithm’s performance
in large scale studies, we performed GMM segmentations in young healthy subjects from the Human Connectome Project
(n = 1,067), as well as healthy controls, mild cognitive impairment (MCI), and AD patients from the Alzheimer’s Disease
Neuroimaging Initiative (n = 509). In both datasets, GMM segmented ChP more accurately than Freesurfer. To show the
clinical importance of accurate ChP segmentation, total AV1451 (tau) PET binding to ChP was measured in 108 MCI and
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32 AD patients. GMM was able to reveal the higher AV1451 binding to ChP in AD compared with MCI. Our results provide
evidence for the utility of the GMM in accurately segmenting ChP and show its clinical relevance in AD. Future structural
and functional studies of ChP will benefit from GMM’s accurate segmentation.

Keywords: Alzheimer’s disease, choroid plexus, magnetic resonance imaging, tau PET

INTRODUCTION

Choroid plexus (ChP) is a monolayer epithelial-
endothelial tissue that is located inside the ventricular
system [1, 2]. As the primary source of cerebrospinal
fluid (CSF) production, ChP plays an essential role
in CSF-mediated brain clearance pathways including
the newly discovered glymphatic system [3]. More-
over, recent molecular studies have shown that ChP
expresses diverse receptors on its epithelial surface,
that helps in homeostasis of CSF, as well as clearance
of proteins such as amyloid-� [4]. Because of its role
in protein clearance, ChP dysfunction can potentially
lead to aberrant protein accumulation as observed
in several neurodegenerative disorders including
Alzheimer’s disease (AD) [5]. Other important func-
tionalities have been attributed to ChP. Importantly,
ChP is considered the gateway for entrance of inflam-
matory cells into the brain, possibly playing a role
in the inflammation observed in various neurological
disorders such as multiple sclerosis [6].

In humans, ChP structure and function have been
studied using various imaging modalities such as
structural T1-weighted MRIs (T1-w) [7], arterial spin
labeling [8], positron emission tomography (PET)
[9–11], and diffusion weighted imaging [12]. Impor-
tantly, all these imaging modalities require accurate
segmentation of ChP from high-resolution struc-
tural magnetic resonance imaging. The gold-standard
technique to non-invasively segment ChP is to use
T1-weighted MRIs enhanced with contrast (cT1-w).
The fenestrated endothelium in ChP allows contrast
to accumulate in the interstitium, while the ChP-
CSF barrier precludes contrast to leak into CSF [13].
Contrast-enhancing agents are not used in research
studies routinely and their usage is mainly limited
to clinical settings where the benefits outweigh their
risks. On the other hand, high-resolution T1-w MRIs
are routinely acquired in research studies, where ChP
has intensity similar to grey matter voxels. ChP within
lateral ventricles, which has the largest ChP volume
among all other ventricles, is amenable to manual seg-
mentation (MS). However, given the time-consuming
nature of MS, studying ChP in a large number of

subjects is not practical. This highlights the need
for accurate automatic ChP segmentation techniques.
Freesurfer software has been conventionally used for
automatic ChP segmentation in most of these studies;
however, its accuracy has not been studied previously.

Here, we present a lightweight algorithm that
refines ChP segmentation on T1-w MRIs. The algo-
rithm uses the Gaussian Mixture Models (GMM) to
segment ChP within lateral ventricles. We compared
the performance of GMM with MS and Freesurfer.
We then showed the clinical relevance of GMM as it
was able to reveal the higher AV1451 (tau PET tracer)
binding to ChP in AD compared with mild cognitive
impairment (MCI) patients, given its higher accuracy
in segmenting ChP.

METHODS

Study design

The aim of the study was to evaluate the accuracy of
ChP segmentation using GMM and compare its per-
formance with Freesurfer and MS. In the first phase
of the study, we manually segmented ChP on cT1-w
MRIs in 19 patients collected at Le Scotte Hospital
in Siena, Italy (Siena dataset) to get the ground-
truth ChP segmentations. Using the ground-truth ChP
segmentation, we then evaluated the accuracy of man-
ual and both automatic (GMM and Freesurfer) ChP
segmentations on T1-w without contrast. We also
compared GMM and Freesurfer segmentations with
MS in two separate datasets of 20 young subjects
with high-resolution T1-w from the Human Con-
nectome Project (HCP) dataset and 20 patients with
AD from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) cohort. Lastly, to test the utility of
GMM for large-scale neuroimaging studies with wide
age range and brain pathologies, we performed both
GMM and Freesurfer segmentations in two separate
large datasets. The first dataset consisted of young
healthy controls from the HCP [14], which provided
high quality structural MRIs in a large number of
subjects (n = 1067). For the second dataset, we used
healthy controls, MCI, and AD patients from the



E. Tadayon et al. / Choroid Plexus Segmentation 1059

ADNI dataset (n = 509) [15]. In the final phase of
the study, we used GMM segmentation to measure
AV1451 tau tracer binding to ChP in AD (n = 32) and
MCI (n = 108) patients from the ADNI-3 cohort.

Subjects

Four separate datasets were used for the study: 1)
19 patients collected at Le Scotte Hospital in Siena
(Italy) (Siena data); 2) 1,067 healthy young sub-
jects from the publicly available HCP dataset; 3) 509
patients from the publicly available ADNI-2 dataset;
and 4) 140 patients from the ADNI-3 dataset.

Siena dataset
22 patients (age = 45.2 ± 16.4) who were referred

to the Le Scotte Hospital (Siena, Italy) were included
in this study. The patients underwent structural T1-
weighted MRIs with contrast (c-T1w) and without
contrast (T1-w). Patients required diagnostic imaging
for various clinical diagnoses including multiple scle-
rosis, migraine, vertigo, and brain tumor. Informed
consent was obtained from all subjects. The Ethics
Committee at the University of Siena and Le Scotte
Hospital approved the study. We excluded three
patients from the study due to gross structural abnor-
malities visible on structural T1-weighted MRIs.

HCP dataset
1,067 participants (age = 28.7 ± 3.7) from the HCP

who had 3T structural T1-weighted MRIs were
included in this study. Further information can be
found at https://db.humanconnectome.org.

ADNI dataset
The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure
the progression of MCI and early AD. Our study
population consisted of healthy controls (n = 115,
age = 73.4 ± 6.3), individuals with significant mem-
ory concern (n = 60, age = 71.5 ± 5.4), early mild
cognitive impairment (n = 127, age = 71.3 ± 7.0), late
MCI (n = 119, age = 72.0 ± 7.8), and AD (n = 88,
age = 74.6 ± 8.0) from ADNI-2 who had baseline
high-resolution 3T structural T1 MRIs as well as
MCI (n = 108, age = 72.2 ± 7.6) and AD (n = 32,
age = 73.3 ± 8.5) patients from ADNI-3 who had

baseline high-resolution 3T structural MRIs and
AV1451 PET data. Data used in this study were
obtained from http://adni.loni.usc.edu.

Imaging data

MRI acquisition
Siena dataset (cT1-w MRIs). MR imaging was per-

formed on a 1.5T MRI scanner (Avanto, Siemens
Healthcare, Germany) using an eight-channel head
coil. The brain MR protocol was performed by
acquiring volumetric FFE T1-weighted before and
immediately after intravenous administration of
0.2 mmol/kg body-weight of gadoterate meglumine
(Dotarem, Guerbet, Paris, France). The T1-weighted
volumetric acquisitions were obtained using the
following parameters: repetition time (TR)/echo
time (TE), 450–550 ms/7.3–11 ms; section thickness,
5–7 mm; field of view (FOV), 20–25 cm; and matrix,
200×256.

HCP dataset. Structural T1-MRIs in HCP
were acquired using a dedicated customized 3T
Connectome Skyra scanner with the following
parameters: MPRAGE sequence, TR = 2400 ms,
TE = 2.14 ms, and TI = 1000 ms, Flip Angle = 8
degrees, FOV = 224 × 224 mm, voxel size = 0.7 mm
isotropic.

ADNI dataset. High-resolution structural brain
MRI scans were acquired at 55 ADNI sites using 3T
MRI scanners (GE Healthcare, Philips Medical Sys-
tems, or Siemens). Detailed MRI scanner protocols
for T1-w sequences by vendor are available online
(http://adni.loni.usc.edu/methods/documents/mripro
tocols/).

AV1451 PET images
Scans were acquired for a duration of 30 min

beginning at 75 min post-injection. SUVR images
were created based on mean uptake over 80–100 min
post-injection normalized by mean inferior cerebel-
lar gray matter. SUVR images were smoothed to a
common resolution of 8 mm3. The processed SUVR
images were downloaded from ida.loni.usc.edu.
SUVR images were registered to high-resolution T1-
weighted MRIs using linear registration (FLIRT).
The registrations were visually inspected for their
accuracy. T1-weighted MRIs were processed using
both Freesurfer and GMM for ChP segmentations.
Total AV1451 in ChP were measured for each
method.

https://db.humanconnectome.org
http://adni.loni.usc.edu
http://adni.loni.usc.edu/methods/documents/mriprotocols/
http://adni.loni.usc.edu/methods/documents/mriprotocols/
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ChP segmentation

ChP Manual segmentation
ITK-SNAP (version 3.8) was used for MS

(Yushkevich et al., 2016) [16]. Two trained
researchers (GS, BM) working independently man-
ually segmented ChP in the lateral ventricles on the
T1-w MRIs. In the Siena dataset, the T1-w MRIs with
no contrast were segmented first to minimize bias, as
ChP can be more readily visualized on T1-weighted
MRIs with contrast. We combined segmentations
from the two independent researchers to get one sin-
gle map for cT1-w MRIs (enhanced with contrast)
(MSC = MSC1 + MSC2) and one for T1-weighted
MRIs with no contrast (MSNC = MSNC1 + MSNC2).
MSC was considered as the ground truth in the Siena
data. MSNC was considered the ground truth in the
HCP dataset.

Freesurfer segmentation
Automated segmentation of ChP in the lat-

eral ventricles was performed using Freesurfer
software package Version 6.0 (http://surfer.nmr.
mgh.harvard.edu/). Freesurfer volume-based subcor-
tical segmentation pipeline has been extensively
described in previous literature [17]. Briefly,
Freesurfer uses a probabilistic atlas that is built
by manually labeling a training dataset, which is
then normalized to the MNI305 space to achieve a
point-to-point correspondence between all the train-
ing subjects. The atlas provides the probability of
each label at each voxel, the probability of each label
given the classification of neighboring voxels (neigh-
borhood function), and the probability distribution
function of voxel intensities, modeled as a normal
distribution, for each label at each voxel. The seg-
mentation of a new image is achieved by normalizing
the new subject to the common space and incorporat-
ing the subject-specific voxel intensities to find the
optimal segmentation that maximizes the probability
of observing the input data.

GMM segmentation
GMM is an unsupervised machine learning

approach and is one of the most widely used med-
ical image segmentation algorithms [18]. Compared
to the conventional supervised learning approaches,
it does not require manual labeling for training and
can generalize more robustly to unseen data. The
underlying assumption behind GMM is that the data
points (voxel intensities in this study) are generated
from a mixture of finite number of Gaussian distri-

butions, where each Gaussian distribution represents
a distinct class of tissue. For instance, in the con-
text of whole brain segmentation, one can assume
the voxels belong to either grey matter, white matter,
or CSF. Thus, a GMM with three Gaussian distribu-
tions can classify the voxels into three groups. Each
Gaussian distribution can be summarized by a mean
and a variance, so the task is to find the optimal values
for the mean and variance of each Gaussian distribu-
tion that optimally fits the data. This problem can not
be solved using conventional likelihood estimation
and is solved using Expectation-Maximization (EM)
algorithms [19]. EM is an iterative algorithm that tries
to find optimal parameters in statistical models with
latent variables (here the tissue classes).

Here, we applied GMM to all the voxels within
lateral ventricles to tease apart CSF, ventricular wall,
and ChP voxels. Figure 1 shows the pipeline for
GMM segmentation. GMM starts with a mask that
covers all the CSF, ChP and ventricular wall voxels
within lateral ventricles. Here, we combined the ven-
tricular and ChP masks generated from Freesurfer.
Any other algorithms that can generate a lateral ven-
tricular mask can also be used. Next, we applied a
Bayesian GMM with two components (implemented
in scikit-learn python package [20]) to all the voxels
within the mask. This groups the voxels into two clus-
ters: one cluster with lower average voxel intensity
that mainly includes CSF voxels, and another clus-
ter with higher average voxel intensity that mainly
includes the ChP and lateral ventricular wall vox-
els. Voxels belong to the second cluster are smoothed
using 3D Susan smoothing algorithm implemented
in FSL software (sigma = 1 mm) [21]. This step is
to take advantage of the fact that ventricular wall
voxels are smoothed with nearby CSF voxels (CSF
voxel value within the mask = 0), thus will have lower
intensity value after smoothing, while ChP voxels are
smoothed with nearby ChP voxels (ChP voxel value
within the mask = 1), thus will have higher inten-
sity value following smoothing. A second Bayesian
GMM with three components is then applied and the
voxels with the highest average voxel intensity are
considered as the final ChP voxels.

Statistical analysis

Dice coefficient (DC) was used to measure the
similarity between two segmentations (e.g., man-
ual segmentation versus Freesurfer; GMM versus
Freesurfer) [22]. DC was computed as follows:

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Fig. 1. GMM segmentation pipeline. Panel A depicts the pipeline steps. Step 1: Combining lateral ventricle and ChP segmentations to get
a single mask including all the voxels within the lateral ventricles. Step 2: Bayesian GMM with two components is applied to the intensity
values of the voxels of the mask from step 1. Voxels that belong to the cluster with the higher average intensity value are used for the next step.
Step 3: Smoothing with 3D Susan algorithm (implemented in FSL) (sigma = 1 mm). Step 4: Second Bayesian GMM with three components.
The voxels that belong to the cluster with the highest average intensity value are chosen as the final ChP segmentation. Panel B illustrates
sample images for each step. Panel C shows the histogram of voxel intensities and fitted GMMs. GMM, Gaussian Mixture Model; ChP,
choroid plexus.

DC(Mask1, Mask2) = 2 ∗ |Mask1 ∩ Mask2|
|Mask1| + |Mask2|

where | Mask1 ∩ Mask2 | is the number of overlap-
ping voxels segmented as ChP in both masks, |Mask1|
is the number of voxels segmented as ChP in Mask1
and |Mask2| is the number of voxels segmented as
ChP in Mask2. DC value could range from 0 to 1,
with 1 showing complete overlap between two seg-
mentations and 0 showing no overlap.

In the Siena dataset, we calculated the DC simi-
larity of ChP manual and automatic segmentations
performed on T1-weighted MRIs with no contrast
(MSNC, GMM, and Freesurfer) with the ChP man-
ual segmentations performed on T1-weighted MRIs
with contrast (ground truth). In the HCP and ADNI
datasets, we compared the accuracy of automatic
segmentations (GMM and Freesurfer) with MSNC

(keeping voxels that have been segmented as ChP by
both researchers on T1-weighted MRIs without con-
trast). We also measured DC similarity between first
and second manual segmentations in the HCP and
the ADNI datasets to assess the accuracy of manual
segmentations. We used linear mixed-effect mod-
els (LME) with random intercepts for each subject
to account for within-subject correlation (repeated
measure) [23]. Post hoc analysis was performed
with multiple comparison correction (Bonferroni).
The statistical analyses were performed using R and
Python packages.

Code availability

The code to perform GMM-ChP segmentation is
available upon request from corresponding authors.
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RESULTS

Comparing Freesurfer, GMM, and MS using
T1-weighted MRIs with contrast as
gold-standard

Figure 2A illustrates two examples of ChP
segmentation on T1-weighted MRIs with and with-
out contrast. Using MSC as the ground truth, a
statistically significant difference between GMM,
Freesurfer, and MSNC segmentations was found
using LME analysis. Post hoc analysis corrected
for multiple comparison revealed that GMM signif-
icantly improved ChP segmentation compared with
Freesurfer (�DC = 0.2, p < 0.005) and reached close
to the accuracy of MSNC (�DC = –0.05, p = 0.03),
implying that GMM performance is comparable in
terms of accuracy to manual segmentation of ChP on
T1-weighted MRIs without contrast.

Comparing Freesurfer, GMM, and MS in the
HCP dataset (n = 20)

Figure 3A shows ChP segmentation performed
manually (i.e., MS) and automatically by Freesurfer
and GMM for two representative participants from
the HCP dataset. The performance of Freesurfer
and GMM was compared based on their similar-
ity to MSNC. We also evaluated the accuracy of
manual segmentation by measuring the DC between
two manual segmentations performed by two differ-
ent researchers (i.e., MSNC1, MSNC2). This metric
would give us the level of agreement in manual
ChP segmentation. There was a statistically sig-
nificant difference in DC values as determined by
LME analysis (Fig. 3B). Post hoc analysis corrected
for multiple comparisons showed GMM signifi-
cantly improved ChP segmentation compared with
Freesurfer (�DC=0.30, p < 0.005) and reached close
to the level of accuracy (agreement) obtained manu-
ally (�DC=-0.03, p = 0.04).

Comparing Freesurfer and GMM in the HCP
dataset (n = 1,067)

To show the performance of GMM in a large num-
ber of subjects and comparing GMM with Freesurfer,
we next applied GMM and Freesurfer to segment
ChP in 1067 participants of the HCP dataset. Fig-
ure 3C displays the histogram of DC values between
Freesurfer and GMM segmentations. Freesurfer and
GMM segmentations for low, medium and high DC

values are depicted in Figure 3D, showing the per-
formance of GMM in capturing ChP within lateral
ventricles compared with Freesurfer.

Comparing freesurfer, GMM, and MS in the
ADNI dataset (n = 20)

Figure 4A shows the DC values of the GMM
and Freesurfer compared to MSNC. GMM outper-
formed Freesurfer (�DC=0.21, p < 0.005) but had
lower accuracy compared to MSNC (�DC=–0.21,
p < 0.005).

Comparing freesurfer and GMM in the ADNI
dataset (n = 509)

Similar to the analysis of the HCP dataset, we per-
formed GMM segmentation on 509 participants of the
ADNI dataset and compared results with Freesurfer.
Figure 4B shows the histogram of DC values between
Freesurfer and GMM segmentations and GMM and
Freesurfer segmentations for low, medium and high
DC values. Additionally, we compared ChP volume
measured using GMM with Freesurfer across diag-
nostic groups in the ADNI dataset (Fig. 4 C). ChP
had statistically larger volume in the AD group when
measured by GMM (mean = 3.4 ml) compared with
Freesurfer (mean = 3.1 ml), which amounts to about
300 voxels (two-sample t-test: t = 2.61, p = 0.009
(with Bonferroni corrected threshold = 0.01). There
was no statistically significant difference between
other diagnostic groups.

Total AV1451 Tau-PET tracer uptake in ChP

Figure 5A shows the ChP segmentations using
GMM and Freesurfer and AV1451 PET registered
to T1-weighted MRIs for two sample subjects. Fig-
ure 5B shows the total AV1451 in ChP at the
group-level for MCI and AD patients using both
GMM and Freesurfer segmentations. The difference
in total AV1451 binding to ChP becomes signifi-
cant and more pronounced between AD and MCI
using GMM segmentation (t = 2.3, p = 0.02, Cohen’s
d = 0.47) compared to Freesurfer (t = 1.8, p = 0.07,
Cohen’s d = 0.36).

DISCUSSION

Automatic algorithms that segment ChP from MRI
images have not been fully validated, and their
accuracy levels are unknown. Here, we introduce a
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Fig. 2. GMM, Freesurfer, and MSNC comparison. Example images and resulting ChP segmentation for two representative subjects. As the
figure shows, contrast agent enhances ChP intensity, allowing for better visualization and manual segmentation (A). We used MSC as the
ground truth to compare segmentations performed on T1-weighted MRIs without contrast (Freesurfer, GMM, and MSNC). Dice coefficient
(DC) was used to calculate similarity between each pair of segmentations. GMM significantly improved Freesurfer segmentation (�DC=0.2,
p < 0.005), and had a performance close to human eye (�DC=0.05, p = 0.03). MSC, manual segmentations performed on cT1w MRIs; MSNC,
manual segmentations performed on T1-w MRIs; GMM, Gaussian Mixture Model; DC, dice coefficient.

lightweight algorithm (GMM) to improve ChP seg-
mentation from structural T1-w MRIs. Using manual
ChP segmentation as the gold-standard in three dif-
ferent datasets, we showed that GMM outperformed
Freesurfer, which has been conventionally used in

prior studies of automatic ChP segmentation. We then
compared GMM and Freesurfer in two separate large
datasets of 1,067 healthy young controls from the
HCP and 509 healthy controls, MCI, and AD patients
from the ADNI dataset. We showed that GMM does
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Fig. 3. ChP segmentation in the HCP dataset. A) ChP was segmented on T1-weighted MRIs without contrast in 20 participants of HCP
dataset using manual (MSNC) as well as automatic Freesurfer and GMM segmentations. B) We computed DC to measure similarity between
Freesurfer and MSNC, and GMM and MSNC. We also measured DC between MSNC1 and MSNC2 (i.e., segmentations performed by first and
second researchers) as the highest level of agreement obtained by MS. GMM significantly improved Freesurfer segmentation (�DC=0.3,
p < 0.005) and reached close to accuracy of MS (�DC=–0.03, p < 0.04). C) GMM and Freesurfer segmentations were performed for 1067
subjects of HCP dataset. The histogram shows the DC similarity between GMM and Freesurfer. GMM and Freesurfer segmentations for
three subjects with low similarity (DC = 0.2), medium similarity (DC = 0.42) and high similarity (DC = 0.65). MSC, manual segmentations
performed on T1-weighted MRIs with contrast; MSNC, manual segmentations performed on T1-weighted MRIs with no contrast; GMM,
Gaussian Mixture Model; DC, dice coefficient; ChP, choroid plexus; HCP, Human Connectome Project.

a better job in delineating ChP in these two datasets,
demonstrating its utility for future large-scale neu-
roimaging studies of ChP in healthy controls and
aging populations. Lastly, we were able to detect the
difference in AV1451 binding to ChP between AD
and MCI patients using GMM, showing the impor-
tance of accurate ChP segmentation.

ChP segmentation

Previous imaging studies of ChP have used
Freesurfer for automatic segmentation. Through
visual inspection of the results, we found that
Freesurfer frequently missed bulk of the ChP within

right lateral ventricle, and mislabeled CSF voxels
as ChP voxels (see Fig. 3D and 4B). This possibly
can arise due to the atlas-based segmentation imple-
mented in Freesurfer. To build the atlas, manually
labeled segmentations are morphed into a common
space and averaged across subjects. This process
retains anatomical commonalities across subjects in
the expense of losing peculiarities of each subject,
and imposes a fixed constraint that could be problem-
atic for segmenting a structure like ChP. Approaches
that can reach high-level accuracy at the subject level
could obviate the need for atlas-based segmentation.
By using the information present at the subject-level,
GMM enables capturing idiosyncrasies present in
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Fig. 4. ChP segmentation in the ADNI dataset. A) Comparing GMM and Freesurfer with MS. GMM significantly improved Freesurfer
segmentation (�DC=0.21, p < 0.005) but the accuracy was lower than manual segmentation (�DC=–0.21, p < 0.005). B) GMM and Freesurfer
were applied to 509 subjects from the ADNI dataset. Histogram of DC similarity between GMM and Freesurfer segmentations and three
samples showing Freesurfer and GMM segmentations with low similarity (DC = 0.17), medium similarity (DC = 0.32) and high similarity
(DC = 0.66). C) ChP volume measured by GMM and Freesurfer across the diagnostic groups in the ADNI dataset. ChP volume was larger
in the AD group when measured by GMM compared to Freesurfer (two-sample t-test: t = 2.61, p = 0.009), while other groups showed no
statistically significant difference. ADNI, Alzheimer’s Disease Neuroimaging Initiative; DC, dice coefficient; ChP, choroid plexus; GMM,
Gaussian Mixture Model.

ChP without imposing a group-averaged constraint.
New segmentation algorithms using sophisticated
machine learning techniques such as deep learning
have recently gained popularity [24]. However, these
techniques require large amounts of labeled data to
be trained [25]. In this study, we found that GMM
can reach the level of human eye performance and
provide reasonable segmentations.

It is worth mentioning that although ChP seg-
mented using GMM had medium overlap with
Freesurfer, ChP volume was not statistically differ-
ent at the group level except in the AD group of the
ADNI dataset. Hence, Freesurfer ChP volume mea-
surement used in prior studies in healthy controls is
not affected and still valuable.

Clinical implications

Interest in studying ChP has grown in recent years.
Accumulating evidence points to a possible role of

ChP in the pathogenesis of neurological and psy-
chiatric disorders. Recently, the role of ChP in AD
has gained attention. ChP is considered the primary
site for CSF production, indirectly contributing to
CSF-dependent brain clearance systems such as the
recently discovered glymphatic system [3]. More-
over, molecular studies of ChP epithelial cells have
revealed many transporters on the apical side of the
epithelium responsible for transporting proteins. For
instance, many of the A� transporters (such as LRP1,
LRP2, RAGE, ABCB1) that are normally expressed
at the blood-brain barrier have been also localized on
ChP epithelium on the CSF side [26]. Animal studies
have shown pathological changes in the ChP in mice
models of AD, possibly interfering with its clearance
function [5]. Recently, in a volumetric study of ChP, a
strong negative association between ChP volume and
levels of CSF proteins was found in healthy controls
and early MCI patients, while the association declines
in late MCI and AD [27]. These lines of evidence
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Fig. 5. Total AV1451 in ChP. A) Freesurfer and GMM automatic ChP segmentations for two representative subjects of ADNI3 subjects.
AV1451 PET images registered to the high-resolution T1-weighted MRIs show high signal in the ChP. B) Total AV1451 binding to ChP in
AD and MCI subjects using Freesurfer (Pink) and GMM (Blue) automatic segmentations. The difference between AD and MCI becomes
statistically significant using GMM compared to Freesurfer.

indicate the possible role of ChP in the pathogene-
sis of AD and suggest ChP as a potential therapeutic
target.

Prior tau-PET imaging studies using ligands such
as [F-18]AV-1451 have shown substantial binding
of [F-18]AV-1451 to ChP [28]. Although initially
hypothesized as off-target binding [29], recent his-
tological analyses of postmortem brains of patients
with AD have shown tau aggregates in the ChP, chal-
lenging off-binding hypothesis [30]. In this study,
we showed that accurate segmentation of ChP using
GMM could reveal the difference in total ChP-
AV1451 binding between MCI and AD patients.
AD patients had higher ChP-AV1451 binding com-
pared to MCI. Our results further support the possible
clinical importance of ChP in AD. Moreover, given
the close proximity of ChP and hippocampus, accu-

rate measurement of hippocampal AV1451 binding
requires partial volume correction of ChP-AV1451
binding. Thus, future AV1451 PET studies can benefit
from accurate segmentation of ChP.

Lastly, as ChP is the gateway for the entrance of
immune cells from blood into the brain, it can poten-
tially contribute to neuroinflammation observed in
various neurological and psychiatric disorders [31].
Novel PET radioligands such as [11C]PBR28 have
shown promising results to non-invasively detect neu-
roinflammation via detection of microglia activation.
In a study of patients with unilateral temporal lobe
epilepsy, Hirvonen et al. found higher uptake of
[11C]PBR28 in the ChP ipsilateral to the epilepto-
genic focus, supporting a possible role of ChP in the
neuroinflammatory process in epilepsy [9]. Future
studies on the role of ChP in the neuroinflammatory
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disorders can benefit from accurate segmentation of
ChP.

Conclusion

Interest in studying ChP structure and func-
tion in healthy and diseased conditions has surged
recently. We introduced a lightweight algorithm that
enables accurate ChP segmentation from structural
T1-weighted MRIs. The algorithm can be easily
implemented in future morphometric and functional
neuroimaging studies to address the potential role
of ChP in neurodegenerative disorders, CSF-related
dynamics, and neuroinflammation.
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