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Abstract
In a domain of the Euclidean space, we estimate from below the distance to the
boundary of global maximum points of solutions of elliptic and parabolic equations
with homogeneous Dirichlet boundary values. As reference cases, we consider the
torsional rigidity function of a bar, the first mode of a vibrating membrane, and the
temperature of a heat conductor grounded to zero at the boundary. Our main results
are presented for domains with mean convex boundary and compare that distance to
the inradius of the relevant domain.

For the torsional rigidity function, the obtained bound only depends on the space
dimension. The more general case of a boundary which is not mean convex is also
considered. However, in this case the estimates also depend on some geometrical
quantities such as the diameter and the radius of the largest exterior osculating ball to
the relevant domain, or the minimum of the mean curvature of the boundary.

For the first mode, the relevant bound only depends on the space dimension, as well.
Moreover, it largely improves on an earlier estimate obtained for convex domains by
the first author and co-authors. The bound related to the temperature depends on time
and the initial distribution of temperature. Such a bound is substantially consistent
with what one obtains in the stationary situation.

The methods employed are based on elementary arguments and existing literature,
and can be extended to other situations that entail quasilinear equations, isotropic and
anisotropic, and also certain classes of semilinear equations.
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1 Introduction

Any Calculus student is aware of the importance of the critical (or stationary) points
of a differentiable function u for describing its graph or level surfaces. Also, from
the point of view of mathematical physics, we can often interpret a function u as a
gravitational, electrostatic or velocity potential, or the temperature distribution in a
thermal conductor, and regard its gradient ∇u as an underlying field of force or flow.
Thus, the critical points of u (at which ∇u = 0) may be viewed as the positions of
equilibrium for the field or the hot spots of the distribution of temperature, or yet the
points associated to stream lines in the flow with maximal velocity.

A priori information on the location of the extremum points, and also of the other
critical points, of a differentiable function is thereby an important issue. Work on
the location of critical points of complex polynomials dates back to C. F. Gauss.
More in general one can consider the same problem for holomorphic or meromorphic
functions, and their (harmonic) real or imaginary parts. We refer the reader to the 1950
treatise [43] for an anthology of results in these circumstances. Moreover, as shown
in [1,4,5], and gathered up in the recent surveys [29,37], some of these results can
be extended to solutions of certain homogeneous elliptic equations (that are modelled
on Laplace’s equation) (see also [20]). Further extensions can be obtained even for
certain degenerate linear and quasilinear equations [2,3,20,21].

Still, it should be noticed that the critical points of the kind considered in (most of)
the above listed papers are never extremal points. In this paper, we shall consider three
important reference situations in which extremal points occur. They entail problems
still actively studied in the applications of partial differential equations tomathematical
physics. They concern: the torsional rigidity of a long straight bar or the flow velocity
of a viscous incompressible fluid in a straight pipe; the temperature distribution of
a heat conductor; the first vibrating mode of a clamped membrane or the stationary
distribution of temperature in a grounded heat conductor.

In mathematical terms, the simplest situation has to do with the Dirichlet problem
for the Poisson equation:

− �u = N in �, u = 0 on �. (1.1)

Here, � is a bounded domain in R
N , N ≥ 2 with boundary �. The solution of (1.1)

may have the physical meaning of the torsional rigidity density of a long straight bar
or the flow velocity of a fluid flowing in a straight pipe, both with cross section �

(see [40]). Owing to this fluid dynimical interpretation of u, the maximum points of
u correspond to the stream lines in the fluid that flow with maximal velocity.

It is well known that a unique solution u ∈ C0(�)∩C2(�) of (1.1) always exists if
� is made of regular points for the Dirichlet problem. We know that u is positive in �

by the strong maximum principle and, once a Hopf boundary lemma is applicable and
� is sufficiently regular, we can infer that the gradient ∇u of u is not zero at points of
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�. As a result, the critical points of u must be inside�. It then makes sense to estimate
(from below) the distance of the critical points of u to the boundary in terms of some
clearly measurable geometric parameters of �. In this paper, we shall derive such an
estimate for the global maximum points of u. The following theorem yields a bound
in terms of the inradius r� of �, that is the radius of any largest ball contained in �.
Here, d�(x) denotes the distance of a point x ∈ � to �, which is defined by

d�(x) = min
y∈�

|x − y| for x ∈ �.

Theorem 1.1 Let � be a bounded domain with mean convex boundary �.
If z ∈ � is any maximum point in � of the solution of (1.1), then we have that

d�(z)

r�
≥ 1√

N
. (1.2)

We say that a surface (more precisely a boundary) is mean convex if it is of class C2

and its mean curvature M (with respect to the inward normal) is non-negative.
A nice geometric corollary of (1.2) reads as follows. Let � ⊂ R

3 be a dumbbell-
shaped domain, with boundary � made by two spheres connected by a portion of a
catenoid (and suitably smoothed out). If the radius of the smaller sphere is less than
57% of that of the larger one, then the maximum point(s) must be within the larger
sphere (see Fig. 1). This fact is somewhat expected. However, (1.2) quantitatively
details it and, more importantly, it shows that this information is independent of the
length of the dumbbell.

The proof of Theorem 1.1 will be presented in Sect. 2. It is based on a pointwise
bound from above for |∇u|, already existing in the literature (see [34]), and one for u
from below. In the same section, we shall prove three related results. In the first one
we consider the case in which � is convex and obtain an improvement of (1.2), based
on the John’s ellipsoid related to � (see Theorem 2.5). In the other ones, we will
remove the mean convexity assumption and obtain a bound for more general domains.
In this case, either the negative part of the mean curvature of � (Corollary 2.6) or the
diameter of� and the radius of the largest exterior osculating ball to � (Corollary 2.7)
come into play.

In our knowledge, work on the location of critical points of the torsional rigidity
function is not present in the literature. This issue has been instead investigated for
the first eigenfunction ψ1 of the Laplace operator, which has to do with the first mode
of a clamped membrane. We know that ψ1 is a solution of the problem

�ψ1 + λ1 ψ1 = 0 and ψ1 > 0 in �, ψ1 = 0 on �, (1.3)

where λ1 > 0 is called the first Dirichlet eigenvalue. Here, we agree that ψ1 is
normalized in L2(�), but it is clear that the location of the maximum points does not
depend on how the eigenfunction is normalized.
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An estimate of that location gives information on where an eigenfunction concen-
trates. Furthermore, it is useful to describe the large time behavior of hot spots in a
grounded heat conductor, i.e. the maximum points of the solution of the problem

ut − �u = 0 in � × (0,∞), u = 0 on � × (0,∞), u = g on � × {0},
(1.4)

for some initial (non-negative) distribution of temperature g. In fact, by a spectral for-
mula we know that eλ1t u(x, t) → ĝ1 ψ1(x) as t → ∞, where ĝ1 is the scalar product
in L2(�) of g = u(·, 0) against ψ1. Thus, under suitable sufficient assumptions, we
can claim that the set Ct of the hot spots of u must converge to the set C∞ of the
maximum points of ψ1, in the sense that dist(Ct ,C∞) → 0 as t → ∞.

To the best of our knowledge, in the literature there are mainly two papers dealing
with the problem of locating the maximum points of ψ1 or u(x, t). In one, [24], for
a planar convex domain the location of the (unique) maximum point x∞ of ψ1 is
estimated by comparing it with that of the maximum point of a solution of a suitably
constructed one-dimensional Schrödinger equation. The bound is universal.

In [13] instead, two types of results have been obtained. One is a bound in the same
spirit of (1.2), that holds for convex domains in a general Euclidean space. Themethod
employed is however peculiar to the case of the first eigenfunction in convex domains
and its extension to other equations appears to be difficult. The other estimate, still
for convex domains in general dimension, also holds for a quite large class of elliptic
and parabolic differential equations. It is based on Alexandrov reflection principle
and states that the relevant maximum point must fall into the so-called heart ♥(�)

of �, independently of the equation considered. The set ♥(�) is defined by purely
geometrical means. It has some drawbacks, though. In fact, it is somewhat unstable
under small perturbations of � and its estimation by means of simple geometrical
quantities is not easy (see [12]).

Themethod introduced in the present paper is more flexible. In fact, more or less the
same arguments used to prove Theorem 1.1 can be adapted to the solutions of problems
(1.3) and (1.4). For the eigenfunction equation, we have the following result.

Theorem 1.2 Let� be a bounded domain with mean convex boundary� and let z ∈ �

be a maximum point of the first Dirichlet eigenfunction ψ1, satisfying problem (1.3).
Then it holds that

d�(z) ≥ π

2
√

λ1(�)
. (1.5)

In particular, we have that

d�(z)

r�
≥ π

2
√

λ1(B)
, (1.6)

where B is the unit ball.
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Inequality (1.5) is sharper than (1.6). However, the right-hand side of (1.6) only
depends on N . As is well known,

√
λ1(B) is the first zero of the Bessel function

of order N/2 − 1. In the case N = 3 we have
√

λ1(B) = π . Thus, (1.6) is slightly
(7%) worse than (1.2).

Inequality (1.6) may be compared to [13, Ineq. (1.7)]:

d�(z)

r�
≥

(

N

2

)N−1
ωN−1

ωNλ1(B)N

[

2 r�
diam(�)

]N2−1

.

Here, ωk is the volume of the unit ball in R
k . This bound was obtained for bounded

convex domains in R
N . It can be shown (see Remark 3.1) that the right-hand side of

this inequality is always much smaller than that of (1.6). Also, it clearly decays to zero
for long and thin domains.

In the case of the heat equation we get instead an evolutive bound from below.

Theorem 1.3 Let � be a bounded domain with mean convex boundary �. Let g be a
non-negative function of class C1(�) such that g = 0 on �. Also, suppose that

sup
�

g

φ1
< ∞,

where φ1 is the solution of (1.3) whose maximum in � is normalized to 1.
If, for any fixed t > 0, z(t) denotes any maximum point in � of the solution

u = u(x, t) of (1.4), then it holds that

d�(z(t))

r�
≥ M(t)

K
eλ1(�) t . (1.7)

Here,

M(t) = max
x∈�

u(x, t) (1.8)

and

K = √

λ1(B) max

⎧

⎨

⎩

sup
�

g

φ1
,max

�

√

g2 + |∇g|2
λ1(�)

⎫

⎬

⎭

.

Notice that, by the spectral formula

u(x, t) = 〈g, φ1〉φ1(x)

‖φ1‖2L2(�)

e−λ1(�)t {1 + o(1)} as t → ∞,

the right-hand side of (1.7) does not deteriorates to zero as t → ∞, that is the hot
spots stay away from � at all times. Moreover, we can compare (1.7) to (1.6) by
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choosing g = φ1. In this case u(x, t) = φ1(x) e−λ1(�)t , and hence we can compute
that K ≤ λ1(B) (see Remark 3.5), so that we obtain the bound:

d�(z(t))

r�
≥ 1√

λ1(B)
.

This is slightly worse than (1.6), but substantially consistent with it.
The proofs of Theorems 1.1, 1.2, and 1.3 are not so difficult. They are all based on

now classical bounds for the gradient of the relevant solutions ( [14,34–36]). To make
our proofs self-contained, we shall recall and adapt the main arguments used in those
references.

To affirm the flexibility of this method, we also show that it provides basic estimates
of the location of maximum points of solutions of a variety of equations, that can be
quasilinear, isotropic and anisotropic, and semilinear. As an instance of this kind of
results, here we consider a generalization of the torsional rigidity function to the case
of isotropic quasilinear equations. Here below, 
 is a Young’s function, satisfying
sufficient smoothness and growth assumptions, and � is its Young’s conjugate (see
Sect. 4 for details).

Theorem 1.4 Let � be a bounded domain with mean convex boundary �. Let z ∈ �

be any maximum point in � of the (weak) solution of

− div

{


′(|∇u|) ∇u

|∇u|
}

= N in �, u = 0 on �. (1.9)

Then we have that

d�(z) ≥ 1

N
�−1(N �(r�)). (1.10)

The relevant assumptions on 
 cover the case of the p-Laplace operator, for which
we set 
(σ) = σ p/p for p > 1. Inequality (1.10) thus reads as

d�(z)

r�
≥ 1

N 1/p ,

in accordance with (1.2) and still independent of geometrical quantities. In Corollary
4.3, we also show that, for a quite general choice of 
, the right-hand side of the last
inequality should be replaced by a quantity also depending on the growth parameters
of 
.

Theorem 1.4 can be further generalized to the anisotropic case in which the
Euclidean norm of the gradient in (1.9) is replaced by any norm H on R

N , satis-
fying suitable sufficient assumptions. In fact, in Sect. 5 we shall prove the following
result for the case of H -mean convex boundaries—the appropriate analog of mean
convex boundaries in this setting.
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Theorem 1.5 Let� be a bounded domain with H-mean convex boundary�. Let z ∈ �

be any maximum point in � of the (weak) solution of

− div{∇
H (∇u)} = N in �, u = 0 on �,

where 
H = 
 ◦ H. Then, it holds that

do�(z) ≥ 1

N
�−1(N �(ro�)).

Here, do� and ro� are the appropriate analogs of d� and r� in the norm H (see Sect. 5
for details).

We shall begin our account by presenting in Sect. 2 what we think is the easiest
setting: that of the torsional rigidity density of a straight bar or the flow velocity of
a fluid in a straight pipe (Theorem 1.1). The simple setting will allow us to dwell on
some further details and extensions to more general domains. In this same section, we
will also present a similar estimate for positive solutions of semilinear equations (see
Theorem 2.10). Section 2 ends with the description of the relationship of themaximum
points of the torsional rigidity function and those of a related problem in dependence
of a diffusion parameter.

In Sect. 3, we consider the first Dirichlet eigenfunction for −� and the case of the
heat equation. We prove and compare Theorems 1.2 and 1.3. In these frameworks, the
pointwise estimate from below for the relevant solution is not needed.

Section 4 contains a basic introduction to Young’s functions, the proof of Theorem
1.4, and an extension of that theorem to the case of semilinear source terms.

We conclude our paper with Sect. 5, in which we consider quite general anisotropic
operators and prove Theorem 1.5.

To avoid unnecessary technicalities, differently from what done in Sect. 2, in the
remaining sections we decided to limit our description to the elegant case of a domain
with mean convex boundary � of class C2,γ for some γ ∈ (0, 1]. The restriction on
the regularity of � can be removed by an appropriate approximation argument. We
shall present this argument for the case discussed in Sect. 2 (see Lemma 2.2) and omit
it for those considered in Sects. 3–5, since it is not our purpose to discuss here the
optimal regularity assumptions.

2 Maximum points of the torsional rigidity function

In this section, we shall present our results on the location of maximum points of
the classical torsional rigidity function u defined by (1.1). We will consider domains
with various geometries. As a reference case, we choose that in which � is a bounded
domain with mean convex boundary �. Thus, we assume that � is of class C2 and
its mean curvature M with respect to the interior normal ν is non-negative. With
this choice, convex domains have non-negative principal curvatures, and hence mean
convex boundary.
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2.1 Bounds for u and its gradient

The first step of our argument is a pointwise bound from below for u in terms of the
distance d�(x) of a point x ∈ � to �. This is the content of [32, Lemma 3.1] that, for
the reader’s convenience, we recall here below.

Lemma 2.1 Let � ⊂ R
N , N ≥ 2, be a bounded domain. Let u ∈ C0(�) ∩ C2(�)

satisfy the problem (1.1). Then

u(x) ≥ 1

2
d�(x)2 for every x ∈ �. (2.1)

Proof For a fixed x ∈ �, let r = d�(x) and consider the ball B = Br (x). Let wr be
the solution of (1.1) in B, that is wr (y) = (r2 − |y − x |2)/2. By comparison we have
that u ≥ wr on B and hence, in particular, at the center of B, that is u(x) ≥ w(x) =
r2/2 = d�(x)2/2. ��

Next, we recall an inequality for |∇u| that can be found in [34] for dimension
N = 2 (for a proof in a more general setting, we refer to [14]). For our aims, in the
following lemma we collect, adapt to the case of general dimension, and re-organize
some results contained in [34].

Lemma 2.2 Let � ⊂ R
N , N ≥ 2, be a bounded domain with boundary � of class C2.

Let u ∈ C1(�) ∩ C2(�) satisfy problem (1.1). Set

G = max
�

|∇u| and M−
0 = max

�
M−,

where M− = max(−M, 0). Then the function defined by

P = 1

2
|∇u|2 + [N + (N − 1)M−

0 G]
[

u − max
�

u

]

on �

attains its maximum at some critical point of u, and hence it holds that

|∇u|2 ≤ 2 [N + (N − 1)M−
0 G]

[

max
�

u − u

]

on �. (2.2)

In particular, if � is mean convex, we have that

|∇u|2 ≤ 2 N

[

max
�

u − u

]

on �.

Proof (i) We first assume that � is of class C2,γ for some γ ∈ (0, 1]. Then, the
standard regularity theory ensures that u ∈ C2,γ (�) ∩ C∞(�), and hence that P ∈
C1,γ (�) ∩ C∞(�).
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Let

P = 1

2
|∇u|2 + β [u − max

�

u];

by straightforward calculations, we obtain the identity:

|∇u|2�P − |∇P|2 + 2β ∇u · ∇P

= |∇u|2|∇2u|2 − |∇2u ∇u|2 + β (β − N ) |∇u|2 in �. (2.3)

Also,

Pν = |∇u|
{ 〈∇2u ∇u,∇u〉

|∇u|2 + β

}

= |∇u| {β − N + (N − 1)M |∇u|} on �,

where we have used the identity

�u = uνν − (N − 1)M |∇u| on �, (2.4)

and the fact that the inward unit normal ν equals ∇u/|∇u| at points on �, since � is
the boundary of the set where u is positive. Hence, we obtain the inequality

Pν ≥ |∇u| {β − N − (N − 1)M−
0 G} on �. (2.5)

Thus, if we choose

β = N + (N − 1)M−
0 G ≥ N ,

then (2.3) and (2.5), and the fact that |∇2u ∇u|2 ≤ |∇u|2|∇2u|2 (by Cauchy-Schwarz
inequality) give that

|∇u|2�P − |∇P|2 + 2β ∇u · ∇P ≥ 0 in � and Pν ≥ 0 on �.

By the strong maximum principle and the Hopf boundary lemma, the last two inequal-
ities give that the maximum of P must be attained at a critical point of u. Since P ≤ 0
at the critical points of u, we conclude that P ≤ 0 on �, and our claim is proved.

(ii) If � is of classC2, we can approximate� by a decreasing sequence of domains
�n ⊃ �,with boundaries�n of classC2,γ such that the correspondingmeancurvatures
Mn converge to the mean curvatureM of �, uniformly as n → ∞. The corresponding
solution un of (1.1) in �n satisfies (2.2) for every n ∈ N, thanks to (i). Since un and
∇un converge uniformly to u and ∇u on �, we conclude that (2.2) holds true for u on
�. ��
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2.2 The location of maximal torsional points

We now proceed to the proof of our first main result. To this aim we set

r� = max
x∈�

d�(x), (2.6)

the inradius of �. A point x� attaining the value r� is often called an incenter. A
strictly convex domain admits a unique incenter. If the domain is not strictly convex,
then it may admit more than one incenter and even a continuum of incenters. For
instance, a dumbbell admits two incenters. A rectangle admits a segment of incenters.
A (circular) torus admits a circle of incenters (notice that one can construct tori with
mean convex boundaries).

Proof of Theorem 1.1 We can apply Lemma 2.2 and obtain that

|∇u|
2

√
u(z) − u

≤
√

N

2
on �,

since we are assuming that M ≥ 0 on �. We take x ∈ � and proceed as in [34], that
is we let y ∈ � be such that |x − y| = d�(x) and, being u(y) = 0, compute:

√

u(z) − √

u(z) − u(x) =
∫ 1

0

d

dt

√

u(z) − u(x + t (y − x)) dt

=
∫ 1

0

∇u(x + t (y − x)) · (x − y)

2
√
u(z) − u(x + t (y − x))

dt

≤
√

N

2
|x − y| =

√

N

2
d�(x).

Thus, by choosing x = z, we have that

√

u(z) ≤
√

N

2
d�(z). (2.7)

Finally, we pick an incenter x� of � and by Lemma 2.1 obtain:

1√
2
r� = 1√

2
d�(x�) ≤ √

u(x�) ≤ √

u(z). (2.8)

The claim easily follows by putting together (2.7) and (2.8). ��
Remark 2.3 Notice that (2.7) also gives the estimate:

u(z) ≤ N

2
r2�.

This can be found in [34].
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Fig. 1 The right spherical end of the dumbbell is too small compared to the left one. The maximum point
of the torsional rigidity density u must thus fall into the dark domain parallel to the boundary

Example 2.4 The assumption of mean convexity allows domains made of balls con-
nected by goose-necks or with tails attached. Theorem 1.1 tells us that goose-necks
and tails cannot contain a maximum point of u, if they are too thin.

For instance, one can construct a dumbbell-shaped domain in R
3 with a boundary

made by portions of two spheres joined by a portion of a catenoid. The mean curvature
of the spheres is constant and positive and that of the catenoid is zero. It is not difficult
to smooth out the boundary to obtain a mean convex surface � of class C2. If � is the
bounded domain having � as a boundary, then Theorem 1.1 ensures that

d�(z)

r�
≥ 1√

3
= 0.57735 . . . .

Thus, if one of the two balls has radius which is smaller than 57% of the other, we have
that the maximum point must fall within (the portion of) the larger sphere, somewhere
near its center. Notice that a second (local) maximum point (within the smaller ball)
and a saddle point (within the catenoid) may be present in �.

If� is convex, it is well-known that u has only onemaximumpoint (see [10,26,29]).
In our second result, we thus consider this case and obtain an improvement of (1.2),
based on the John’s ellipsoid Ea(c) related to �. This is the ellipsoid of maximum
volume contained in� (see [23,25]). It is known that, if� is convex, Ea(c) is uniquely
determined.Here, c denotes the center of Ea(c), the (positive) components of the vector
a = (a1, . . . , aN ) are the semi-axes of Ea(c), and we agree that a1 ≤ · · · ≤ aN .

Theorem 2.5 Let � be a convex domain in R
N and Ea(c) be its John’s ellipsoid. Let

z ∈ � be the maximum point in � of the solution u of (1.1). Then we have that

d�(z)

r�
≥ 1√

N
max

[

1,
m−2(a)

r�

]

,
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where

m−2(a) =
(

1

N

N
∑

i=1

a−2
i

)−1/2

is the (−2)-mean of the numbers a1, . . . , aN .

Proof The solution w of (1.1) in Ea(c) is easily computed as

w(y) = N

2

1 − ∑N
i=1

(

yi−ci
ai

)2

∑N
i=1 a

−2
i

for y ∈ Ea(c).

By proceeding as in the proof of Lemma 2.1, we then infer that

u(z) ≥ u(c) ≥ w(c) = N

2

{

N
∑

i=1

a−2
i

}−1

.

Since we already know from the proof of Theorem 1.1 that d�(z) ≥ √
2 u(z)/N , we

then obtain that d�(z) ≥ m−2(a)/
√
N . Our claim then follows by observing that (1.2)

always holds. ��

2.3 The case of general domains

If we use Lemma 2.2 in its full power, we can extend Theorem 1.1 to the case of
general smooth domains, that is by removing the mean convexity assumption. In this
case, the obtained bound obviously depends on the number M−

0 .

Corollary 2.6 (Bound for general domains) Let� be a bounded domain inRN , N ≥ 2,
with boundary of class C2. Assume that (N − 1)M−

0 r� < 1.
Let z ∈ � be any maximum point in � of the solution u of (1.1). Then we have that

d�(z)

r�
≥

√

1 − (N − 1)M−
0 r�

N
.

Proof By proceeding as in the proof of Theorem 1.1, this time we obtain the inequal-
ities

|∇u|√
u(z) − u

≤ 2

√

N + (N − 1)M−
0 G

2

and

√

u(z) ≤
√

N + (N − 1)M−
0 G

2
d�(z) ≤ r�

√

N + (N − 1)M−
0 G

2
. (2.9)
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Thus,

|∇u| ≤ 2
√

u(z)

√

N + (N − 1)M−
0 G

2
≤ r� [N + (N − 1)M−

0 G].

Thanks to our assumption onM−
0 r�, this information then gives the bound:

G ≤ N r�
1 − (N − 1)M−

0 r�
.

Thus, the claim of the corollary follows from (2.8) and by inserting this bound into
the first inequality in (2.9). ��

In alternative to the above bound on G, we may use one obtained in [30], which
works when � is of class C1,α for 0 < α ≤ 1 and satisfies the uniform exterior sphere
condition. We recall that � satisfies the uniform exterior sphere condition with radius
re if, for each p ∈ �, there exists a ball contained in R

N\� of radius re such that its
closure intersects � only at p. It then holds that

G ≤ cN diam(�)

(

1 + diam(�)

re

)

,

where diam(�) is the diameter of � and cN = max(3, N )/2 for N ≥ 2.
Since M−

0 ≤ 1/re, based on the last inequality for G and the first inequality in
(2.9), we easily derive the following result that removes the restriction onM−

0 r�.

Corollary 2.7 Let � ⊂ R
N , N ≥ 2, be a bounded domain with boundary � of class

C1,α , 0 < α ≤ 1, that satisfies the uniform exterior sphere condition with radius re.
Let z ∈ � be any maximum point in � of the solution u of (1.1). Then we have that

d�(z)

r�
≥

[

N + (N − 1) cN
diam(�)

re

(

1 + diam(�)

re

)]− 1
2

.

Corollary 2.7 should be comparedwith [31, Formula (2.21)]. Applications of Corol-
lary 2.7 to quantitative symmetry results for the Soap Bubble Theorem and Serrin’s
overdetermined problem can be found in the recent paper [33, Sections 3 and 4].

2.4 Small and large diffusion

We conclude this section by considering a problem that is associated to (1.1):

ε �vε = vε in �, vε = 1 on �,

where ε is a positive diffusion parameter. This problem is related to the torsional
rigidity u, because the function uε = Nε (1 − vε) is the solution of

− �uε + ε−1uε = N in �, uε = 0 on �. (2.10)
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This means that vε = 1− uε/(Nε) with uε → u as ε → ∞. Notice that uε is always
positive by the maximum principle.

Remark 2.8 Varadhan’s formula (see [8,42]) informs us that

−√
ε log vε(x) → d�(x) as ε → 0+.

Since this convergence is known to be uniform on �, we know that the set Cε of
maximum points of uε—which is the set of minimum points of vε—tends to the set
C0 of the maximum points of dist(·, �), in the sense that dist(Cε,C0) → 0 as ε → 0+.
In other words, we can infer that for any sequence {zε}ε>0 with zε ∈ Cε, ε > 0, it
holds that

lim
ε→0+

dist(zε, �)

r�
= 1.

In fact, by the uniform convergence of uε, any converging subsequence {zε}ε>0 con-
verges to a maximum point of dist(·, �), and hence dist(zε, �) → r� as ε → 0+.

The aim of this section is now to derive a bound similar to (1.2) for the maximum
points of uε (or the minimum points of vε) and to study its evolution in dependence
of the diffusion parameter ε as it goes to ∞.

To proceed further, we need a gradient bound for uε, similar to that of Lemma 2.2.
As a matter of fact, by a little more effort, one can obtain such a bound for any solution
of the problem

− �u = f (u) and u ≥ 0 in �, u = 0 on �, (2.11)

where f ∈ C1(R). For later use and the reader’s convenience, here below we adjust
and prove the statements contained in [14,35].

Lemma 2.9 (Gradient estimate for semilinear equations) Let � ⊂ R
N , N ≥ 2,

be a bounded domain with mean convex boundary �. Let u be a solution of class
C1(�) ∩ C2(�) of (2.11) and set

M = max
�

u.

Suppose that f ∈ C1(R) is such that

∫ M

u
f (s) ds ≥ 0 for 0 ≤ u ≤ M .

Then, the function defined by

1

2
|∇u|2 −

∫ M

u
f (σ ) dσ on �
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The location of hot spots and other extremal points 525

attains its maximum at some critical point of u, and hence it holds that

|∇u|2 ≤ 2
∫ M

u
f (σ ) dσ on �. (2.12)

Proof Up to the usual approximation argument, we can only present our proof in case
� is of class C2,γ . Set

P = 1

2
|∇u|2 −

∫ M

u
f (σ ) dσ.

We then compute:

∇P = ∇2u ∇u + f (u)∇u and �P = |∇2u|2 − f (u)2.

In the last identity, we have used the differential equation in (2.11) and its gradient.
We then easily get the identity:

|∇u|2�P − |∇P|2 + 2 f (u) 〈∇u,∇P〉 = |∇u|2|∇2u|2 − |∇2u ∇u|2.

Thus, we have that

|∇u|2�P − |∇P|2 + 2 f (u) 〈∇u,∇P〉 ≥ 0 in �, (2.13)

since |∇2u ∇u|2 ≤ |∇u|2|∇2u|2. Next, we also have that

Pν = |∇u| uνν + f (0) uν

= |∇u| {(N − 1) |∇u|M − f (0)} + f (0) |∇u|
= (N − 1) |∇u|2M on �,

from (2.4), (2.11), and since ν = ∇u/|∇u| on �. Thus, Pν ≥ 0 on �, being as � mean
convex. As observed before, this inequality and (2.13) tell us that the maximum of
P cannot be attained at a boundary point, by the strong maximum principle and the
Hopf boundary lemma.

All in all, the maximum of P must be attained at a critical point of u at which

P = −
∫ M

u
f (σ ) dσ ≤ 0,

and hence P ≤ 0 on �. ��
Based on Lemma 2.9, we obtain the following estimate.

Theorem 2.10 Let � be a bounded domain with mean convex boundary �. Let f ∈
C1(R) and set

F(s) =
∫ s

0
f (σ ) dσ, s ∈ R.
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If z ∈ � is any (global) maximum point in � of the solution u of (2.11), then we
have that

r� ≥ d�(x) ≥ 1√
2

∫ u(x)

0

ds√
F(u(z)) − F(s)

for x ∈ �. (2.14)

Proof Take x ∈ � and let y ∈ � be such that |x − y| = d�(x). Then, compute:

d

dτ

∫ u(x)

u(x+τ(y−x))

ds√
2 [F(u(z)) − F(s)]

= ∇u(x + τ(y − x)) · (x − y)√
2 [F(u(z)) − F(u(x + τ(y − x)))] ≤ |x − y| = d�(x),

thanks to (2.12). Integrating in τ on [0, 1] thus gives (2.14), since u(y) = 0. ��
Next, we choose f (σ ) = N − σ/ε, that gives 2F(s) = ε [N 2 − (N − s/ε)2], and

analyse the behavior of the points in Cε as ε → ∞.

Corollary 2.11 Let � be a bounded domain with mean convex boundary �. For ε > 0,
let uε be the solution of (2.10).

If zε ∈ Cε, then it holds that

d�(zε) ≥ √
ε cosh−1

[

N

N − uε(zε)/ε

]

,

where cosh−1 : [1,∞) → [0,∞) is the inverse function of the hyperbolic cosine
cosh : [0,∞) → [1,∞).

Proof The inequality follows by setting x = zε and f (σ ) = N − σ/ε in (2.14), and
by computing the integral. ��
Remark 2.12 By proceeding further, we have that

d�(zε) ≥ √
ε cosh−1

[

N

N − qε(r�)/ε

]

, (2.15)

where

qε(r) = N hε(0)
∫ r

0

(∫ s

0
σ N−1hε(σ ) dσ

)

ds

sN−1hε(s)2

and

hε(σ ) =
∫ π

0
e

σ√
ε
cos θ

(sin θ)N−2dθ.

In fact, by comparing uε to the solution wr of (2.10) in the ball Br (x) with r =
d�(x), we infer that uε ≥ wr on Br (x), and hence uε(x) ≥ wd�(x)(x). Thus, by taking
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an incenter x�, we have that wr�(x�) ≤ uε(x�) ≤ uε(zε). Corollary 2.11 then gives
(2.15) since wr�(x�) = qε(r�).

It is easily seen that, as ε → ∞, qε(r�) → r2�/2, and hence the right-hand side of
(2.15) tends to r�/

√
N , in accordance with (1.2).

3 On the location of hotspots in a grounded heat conductor

In this section, we shall treat the parabolic case and the case of the first eigenfunction,
which are intimately connected.

3.1 The hot spot for large times

As is well known, the first Dirichlet eigenfunction ψ1 of −� in �, that we assume to
have unitary norm in L2(�), controls the behaviour of the solution of (1.4) for large
times. We shall denote by λ1(�) the eigenvalue corresponding to ψ1. We know that
ψ1 is a solution of the problem:

�u + λ u = 0 in �, u = 0 on �, (3.1)

for some λ ∈ R. If λ = λ1(�), ψ1 can be assumed to be positive in �. The following
inequality holds for bounded domainswithmean convex boundary and directly follows
from Lemma 2.9, by choosing f (u) = λ1(�) u:

|∇ψ1|2 ≤ λ1(�) (M2
1 − ψ2

1 ) on � with M1 = max
�

ψ1. (3.2)

Proof of Theorem 1.2 Let y be the nearest point to z in �. Then (1.5) follows from:

π

2
=

∫ 1

0

d

dθ
arcsin

[

ψ1(y + θ(z − y))

M1

]

dθ

=
∫ 1

0

∇ψ1(y + θ(z − y)) · (z − y)
√

M2
1 − ψ1(y + θ(z − y))2

dθ ≤ √

λ1(�) |z − y|

= √

λ1(�) d�(z).

Here, we have used Cauchy-Schwarz inequality and (3.2).
Let Br� be a maximal ball contained in �. Then, we have that

λ1(�) ≤ λ1(Br�) = λ1(B)

r2�
, (3.3)

by the monotonicity and the scaling properties of λ1. Therefore, (1.6) easily follows
from (1.5). ��
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Remark 3.1 Theorem 1.2 greatly improves [13, Theorems 2.7 and 2.8]. In particular,
inequality (1.6) may be compared to [13, Ineq. (1.7)]:

d�(z)

r�
≥

(

N

2

)N−1
ωN−1

ωNλ1(B)N

[

2 r�
diam(�)

]N2−1

,

that was obtained for bounded convex domains in R
N , by an argument reminescent

of that used to prove Alexandrov–Bakelman–Pucci maximum principle.
Notice that unlike in (1.6) the right-hand side in the last inequality depends on the

eccentricity 2r�/diam(�) of the convex domain �, that becomes arbitrarily small for
long and thin domains.

Also, we have that

(

N

2

)N−1
ωN−1

ωNλ1(B)N

[

2 r�
diam(�)

]N2−1

≤
(

N

2

)N−1
ωN−1

ωNλ1(B)N
≤ π

2
√

λ1(B)
,

thanks to the explicit value of λ1(B).

Remark 3.2 (The Lane-Emden equation) As an interesting instance in the semilinear
case,we just comment on theLane-Emdenequation,widely studied in the literature, for
instance, in connection with the large time behavior of the porous medium equation.
The problem we have in mind occurs in the minimization of the Dirichlet energy
functional on the unit sphere of Lq(�):

λq(�) = inf

{∫

�

|∇v|2dx : v ∈ W 1,2
0 (�) and

∫

�

|v|qdx = 1

}

.

This variational problemhas solution for 1 < q < 2∗, where 2∗ is the critical Sobolev’s
exponent, that equals∞ for N = 2 and 2N/(N−2) for N ≥ 3. The relevantminimizer
u is the Lq(�)-normalized solution of the problem

− �u = λq(�) |u|q−2u in �, u = 0 on �. (3.4)

It has been recently proved that, for 1 < q < 2, the positive least energy solution of
(3.4) are isolated in the L1(�)-topology (see [11] for all the details).

Wemay use for u Lemma 2.9 and the same arguments used in the proof of Theorem
2.10, and obtain:

d�(z) ≥
√

q

2λq(�)

(

max
�

u

)1−q/2 ∫ 1

0

dσ√
1 − σ q

. (3.5)

For q = 2 we recover (1.5).
Moreover, similarly to (3.3), we get that λq(�) ≤ r−2+N (1−2/q)

� λq(B). Thus, by
the fact that

|�|1/q max
�

u ≥ ‖u‖Lq (�) = 1,
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we arrive at the following extended version of (1.6):

d�(z)

r�
≥

√

q

2 λq(B)

∫ 1

0

dσ√
1 − σ q

(

r N�
|�|

) 1
q − 1

2

for 1 < q ≤ 2.

3.2 The hot spot at any fixed time

We now turn to the parabolic case, that concerns the problem (1.4). As already men-
tioned, the initial distribution of temperature g is a non-negative function of class
C1(�) and vanishes on �. It is well-known that a bounded solution u = u(x, t) of
class C1(� × [0,∞)) × C2(� × (0,∞)) of (1.4) exists and is unique under suitable
sufficient conditions on � and g (see [22]).

It may be interesting to consider the case in which g ≡ 1 (or when g does not vanish
on �). We need a little more care in this instance, since the data on ∂(� × (0,∞)) is
discontinuous. Nevertheless, it is easy to see that a bounded solution of class C0(� ×
(0,∞)) × C2(� × (0,∞)) exists and is unique.

The strong maximum principle tell us that

0 < u < max
�

g in � × (0,∞)

and, once a Hopf boundary lemma is applicable (see [6] for optimal conditions), the
maximum

M(t) = max
x∈�

u(x, t)

is attained for every t > 0 at internal points, that are called hot spots—the maximum
points of the temperature u. We shall denote byH(t) the set of hot spots at time t > 0,
that is

H(t) = {x ∈ � : u(x, t) = M(t)}.

Versions of Lemmas 2.2 and 2.9 are obtained in [35,36] for the solution of (1.4).
Here below, we use some of those ideas to obtain ad hoc estimates instrumental to
our aims. In what follows, φ1 is the first Dirichlet eigenfunction, that we normalize by
requiring that

max
�

φ1 = 1.

We first recall the following estimate from [36, Lemma 1].

Lemma 3.3 Let � be a bounded domain in R
N , N ≥ 2, and suppose that g is a

non-negative function of class C1(�), such that g ≡ 0 on �.
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Let u = u(x, t) be a bounded solution of class C1(�×[0,∞))×C2(�× (0,∞))

of (1.4). If

sup
�

(

g

φ1

)

< ∞,

then

u(x, t) ≤ sup
�

(

g

φ1

)

φ1(x) e
−λ1(�)t for (x, t) ∈ � × (0,∞).

Proof The function defined by

sup
�

(

g

φ1

)

φ1(x) e
−λ1(�)t , (x, t) ∈ � × (0,∞),

is a solution of the heat equation and is zero on � × [0,∞). Moreover, it bounds g
from above on � × {0}, by construction. The claim then follows from the maximum
principle. ��

As already declared in the introduction, in this sectionwe limit our description to the
fairly general case of mean convex boundaries, that considerably simplifies matters.

Lemma 3.4 (A bound for the gradient of u) Let � be a bounded domain with mean
convex boundary �. Suppose that u ∈ C1(� × [0,∞)) × C2(� × (0,∞)) is the
solution of (1.4) with g ∈ C1(�) and g �≡ 0. Then, for α ∈ R, the function Q, defined
on � × [0,∞) by

Q(x, t) = 1

2
e2αt

{|∇u(x, t)|2 + α u(x, t)2
}

for (x, t) ∈ � × [0,∞),

attains its maximum value either at a critical point of u or at a point in � × {0}.
Proof As usual, up to an approximation argument we can assume that � is of class
C2,γ , so that the standard regularity theory gives that u has Hölder continuous second
derivatives on � (see [22]).

Next, as explained in [35], Q satisfies the differential inequality

|∇u|2(�Q − Qt )− e−2αt |∇Q|2+ 2α u ∇u · ∇Q ≥ 0 in � × (0,∞).

Indeed, straightforward computations with the help of the first equation in (1.4) give:

|∇u|2(�Q − Qt )− e−2αt |∇Q|2+ 2α u ∇u · ∇Q

= e2αt {|∇2u|2|∇u|2−|∇2u ∇u|2}.

Thus, since the equation is parabolic away from the critical points of u, for any
T > 0 the maximum principle insures that the maximum value of Q on � × [0, T ]
can be attained either on (� × {0}) ∪ (� × [0, T ]) or at a critical point of u.
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Next, suppose by contradiction that (x0, t0) is a point in � × (0, T ] at which Q
attains its maximum value. Then by the Hopf boundary lemma we must have that
either Q is constant on � × [0, t0] or Qν < 0 at (x0, t0). Thus, in the latter case

0 > Qν = e2αt0 |∇u| uνν and hence uνν < 0 at (x0, t0).

On the other hand, the first two equations in (1.4) and the identity (2.4) give that

0 = ut = �u = uνν − (N − 1)M |∇u| on �. (3.6)

Thus,uνν ≥ 0 on�, since� ismean convex, andhencewehave reached a contradiction
at (x0, t0). Therefore, Q must be constant, say Q0, on � × [0, t0]. Now, since g �≡ 0
and Q is continuous on � × [0, t0], Q0 must be positive. Thus, in particular we must
have that

e2αt |∇u(x, t)|2 = Q0 > 0 and 0 = Qν = e2αt |∇u(x, t)| uνν(x, t)

for (x, t) ∈ � × [0, t0]. This information, together with (3.6), gives that M ≡ 0 on
�, and this is a contradiction, being � compact (e.g. H ≡ 0 contradicts Minkowski’s
identity

∫

�
H 〈x, ν(x)〉 dSx = |�|).

All in all, Q cannot attain its maximum value on � × (0, T ] and hence that value
can be attained either at a critical point of u or initially. ��

We are now in position to prove our estimate on the location of hot spots.

Proof of Theorem 1.3 Set λ = λ1(�) and φ = φ1 to make notations simpler. By
choosing α = λ in Lemma 4.2, we have that either

[

|∇u|2 + λ u2
]

e2λt ≤ max
�

[

|∇g|2 + λ g2
]

or
[

|∇u|2 + λ u2
]

e2λt ≤ λ u(ξ, τ )2e2λτ

for some critical point (ξ, τ ) of u in � × (0,∞). Now, Lemma 3.3 gives that

u(ξ, τ ) ≤ φ(ξ) sup
�

(

g

φ

)

e−λτ ≤ sup
�

(

g

φ

)

e−λτ ,

being φ normalized. Hence, we infer that

|∇u|2 + λ u2 ≤ K 2
� e−2λt in � × (0,∞),

where

K� = √

λ1(�) max

⎧

⎨

⎩

sup
�

g

φ1
,max

�

√

g2 + |∇g|2
λ1(�)

⎫

⎬

⎭

,
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that yields:

|∇u|
√

(K� e−λt )2 − (
√

λu)2
≤ 1 in � × (0,∞).

Next, as usual, take z(t) ∈ H(t) and let y(t) be the nearest point to z(t) in �. Since

√
λ M(t) eλt

K�

≤ arcsin

(√
λ M(t) eλt

K�

)

= arcsin

(√
λ u(z(t), t) eλt

K�

)

,

by setting ξ(t) = y(t) + θ [z(t) − y(t)], we then have that
√

λ M(t) eλt

K�

≤
∫ 1

0

d

dθ
arcsin

(√
λ u(ξ(t), t) eλt

K�

)

dθ

= √
λ

∫ 1

0

∇u(ξ(t), t) · [z(t) − y(t)]
√

(K� e−λt )2 − [√λu(ξ(t), t)]2
dθ

≤ √
λ |z(t) − y(t)|

= √
λ d�(z(t)).

Thus, (1.7) follows, by observing that K� ≤ K
√

λ1(B)/r�, thanks to (3.3). ��

Remark 3.5 The spectral formula informs us that

u(x, t) =
∑

n∈N
ĝn ψn(x) e

−λn(�)t in L2(�),

where {ψn}n∈N is a basis in L2(�) of eigenfunctions of −� in �. Since ψ1 is propor-
tional to φ1 and ψ1 has unit norm in L2(�), we have that

u(x, t) = φ1(x) e−λ1(�)t

‖φ1‖22

∫

�

g φ1dy +
∞
∑

n=2

ĝn ψn(x) e
−λn(�)t ,

and hence

u(x, t) = φ1(x) e−λ1(�)t

‖φ1‖22

∫

�

g φ1dy + O(e−λ2(�)t ) as t → ∞.

It is thus interesting to compare (1.7) to (1.5) or (1.6).
We can do that by choosing g = φ1, that satisfies the assumptions of Theorem 1.3.

In this case u(x, t) = φ1(x) e−λ1(�) t solves the problem (1.4) and the hot spots are
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the maximum points of φ1. We have that (1.7) yields that, for any maximum point z
of φ1, d�(z)/r� ≥ K−1. We also have that

K ≤ √

λ1(B) max

⎧

⎨

⎩

1,max
�

√

φ2
1 + |∇φ1|2

λ1(�)

⎫

⎬

⎭

= √

λ1(B);

in the last inequality we have used (3.2). Thus, we obtain the bound

d�(z)

r�
≥ 1√

λ1(B)
.

This bound is poorer than (1.6). However (1.7) appears to be consistent for large
times.

Remark 3.6 In general, we have that

M(t) eλ1(�)t → max
�

g as t → 0+

and

M(t) eλ1(�)t → ‖φ1‖−2
2

∫

�

g φ1dy as t → ∞,

by the spectral formula. The bound in (1.7) can then be computed in the limit cases,
accordingly.

Remark 3.7 Notice that, if g ≡ 1, similarly to what derived in Sect. 2.4, we have that

lim
t→0+ d�(z(t)) = r�,

for any hot spot z(t). This follows from the Varadhan’s formula (see [42] or [9]):

lim
t→0+ 4t log[1 − u(x, t)] = −d�(x)2, x ∈ �,

where the convergence is uniform on �.

4 Quasilinear and semilinear isotropic operators

In this section, we shall extend our results to nonlinear settings. We will consider in
more detail the situation of the torsional rigidity function for isotropic quasilinear
elliptic operators. Then we will turn to the case in which the source term is semilinear,
i.e. it only depends on the function u. This instance also takes care of various examples
of eigenfunctions for nonlinear operators.

123



534 R. Magnanini, G. Poggesi

All proofs rely on ad hoc gradient bounds. These are already present in the literature,
and hence we will just recall their statements adapted to our aims and notations, rather
then offering their often elaborate proofs.

4.1 Quasilinear isotropic setting

We will work in a variational framework, that proves to be quite convenient in this
case. Thus, the solutionswewill consider will generally be critical points of variational
integrals of type

∫

�

[
(|∇v|) − F(v)] dy, (4.1)

among all the functions v ∈ W 1,p
0 (�) with p > 1.

Our assumptions on 
 and F are sufficient to fit those considered by Caffarelli,
Garofalo and Segala in [14]. Thus, F : R → R is a non-negative primitive of f ∈
C1(R).

Also, for the sake of brevity, we will only deal with [14, Assumption (A)] for 
.
Therefore, here, 
 : [0,∞) → R is a function of class C1([0,∞)) ∩ C2((0,∞))

such that 
(0) = 
′(0) = 0 and, if we denote by ∇ξ
 and ∇2
ξ 
, the gradient and

Hessian matrix of the function R
N\{0} � ξ �→ 
(|ξ |), and by e and E the smallest

and largest eigenvalues of ∇2
ξ 
, it holds that

c (a + |ξ |)p−1 ≤|∇ξ
(|ξ |)| ≤ C (a + |ξ |)p−1,

c (a + |ξ |)p−2 ≤e(|ξ |) ≤ E(|ξ |) ≤ C (a + |ξ |)p−2,
(4.2)

for every ξ �= 0 and some constants p > 1, a ≥ 0, and 0 < c ≤ C .
For notational convenience, we set φ = 
′, so that φ(0) = 0 and


(σ) =
∫ σ

0
φ(s) ds, σ ∈ [0,∞).

It is clear that 
 is strictly convex and φ is strictly increasing. Under these assump-
tions a relevant critical point of the functional is thus a weak solution of the problem

− div

{

φ(|∇u|) ∇u

|∇u|
}

= f (u) in �, u = 0 on �. (4.3)

Due to [41, Theorem 1], and our assumptions on 
, if u ∈ W 1,p(�) ∩ L∞(�) is
a weak solution of (4.3), then we have that u ∈ C1,γ (�), and this regularity can be
brought up to the (sufficiently smooth) boundary thanks to [28].

From convex analysis we know that, being
(σ) ≥ c1 σ p/p with p > 1, the Young
conjugate function � associated to 
 is well defined by

�(τ) = max
σ≥0

[τ σ − 
(σ)] for τ ≥ 0. (4.4)
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Thus, by definition, the Young’s inequality holds true:


(σ) + �(τ) ≥ σ τ for any σ, τ ≥ 0.

If we setψ = � ′, it turns out thatψ is the inverse function ofφ, that isφ(ψ(τ)) = τ

and ψ(φ(σ)) = σ for every σ, τ ≥ 0.
An important case study occurs when


(σ) = 1

p
σ p for σ ∈ [0,∞), p > 1. (4.5)

In this instance, the Young’s conjugate of
 is simply given by�(τ) = τ p′
/p′, where

p′ is the conjugate exponent of p, that is 1/p + 1/p′ = 1. With this choice of 
,
problem (4.3) is nothing else than the p-laplacian case:

− �pu = f (u) in �, u = 0 on �; (4.6)

here we (formally) denote:

�pu = div{|∇u|p−2∇u}.

We shall refer to this case as that of the torsional rigidity of a long straight bar
with cross section � for an (isotropic) elasto-plastic material. In fact, in the physical
model, the relevant material changes its properties in dependence of the parameter p.
For values of p near 2, the material has an elastic behavior, whereas when p increases,
the material gradually acquires plastic properties. Thus, in this sense, we are working
in an elasto-plastic setting.

4.2 Torsional rigidity in the elasto-plastic setting

This section is dedicated to present the proof of Theorem 1.4 and to detail some
of its consequences. In other words, we will consider the solution of (1.9), that for
convenience we rewrite here with the new adopted notation:

− div

{

φ(|∇u|) ∇u

|∇u|
}

= N in �, u = 0 on �. (4.7)

In the set up described in Sect. 4.1, the (weak) solution of (4.7) when � is a ball
Br (x) is easily computed as

wr (y) = �(r) − �(|y − x |) for y ∈ Br (x).

We can then derive the companion to Lemma 2.1.
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Lemma 4.1 (A bound from below) Let � ⊂ R
N , N ≥ 2, be a bounded domain with

boundary �. Let u ∈ C0(�) ∩ C1,γ (�), 0 < γ ≤ 1, be the (weak) solution of (4.7).
Then

u(x) ≥ �(d�(x)) for every x ∈ �. (4.8)

Proof We proceed as usual: for x ∈ � we let r = d�(x) and consider the ball
B = Br (x). Thus, we obtain the comparison u ≥ wr on Br (x), and hence at x we
get:

u(x) ≥ wr (x) = �(r) − �(0) = �(d�(x)),

as claimed. ��
We now need a counterpart of Lemma 2.2. To avoid further difficulties, we shall

limit our discussion to the case inwhich� is amean convex surface.Wewill thus adapt
[34] to our framework. The statement of Lemma 4.7 here below is slightly different
from those contained in [34] or [14], because we chose to present the relevant P-
function in terms of the Young conjugate. We think that the ensuing estimate becomes
more instructive.

Lemma 4.2 (Gradient estimate) Let � ⊂ R
N , N ≥ 2, be a bounded domain with

mean convex boundary �. Let u ∈ W 1,p(�) ∩ L∞(�) be the weak solution of (4.7).
Then the function defined by

P = �(φ(|∇u|)) + N

[

u − max
�

u

]

on �

attains its maximum at some critical point of u, and hence it holds that

�(φ(|∇u|)) ≤ N

[

max
�

u − u

]

on �.

Proof Asalreadyobserved, by [28,41],weknow thatu ∈ C1,γ (�) for someγ ∈ (0, 1].
Moreover, since we assume that � is sufficiently regular (up to an approximation
argument), the strong comparison principle (see [19]) together with a standard barrier
argument ensure that |∇u| is strictly positive on �. Thus, u gains sufficient extra
regularity in a neighborhood of �, since it solves a uniformly elliptic equation.

First set

P = �(φ(|∇u|)) + β
[

u − max
�

u
]

,

where β ∈ R is to be determined. Notice that

d

dσ
�(φ(σ)) = σ φ′(σ ).
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Once this remark is done, the proof is obtained by an adaptation of the calculations
in [34] to our framework. Indeed, we have that

tr[A(|∇u|)∇2P] − a(|∇u|) |∇P|2

+b(|∇u|) (∇u · ∇P)2 + c(|∇u|)∇u · ∇P ≥ N 2β (β/N − 1)
|∇u| ε(|∇u|)

φ(|∇u|)
and

Pν = |∇u|
{

φ′(|∇u|) 〈∇2u ∇u,∇u〉
|∇u|2 + β

}

on �.

In the first inequality we have set:

ε(σ ) = e(σ )

E(σ )
= σ φ′(σ )

φ(σ )
for σ ∈ [0,∞) (4.9)

and

A(ξ) = I + ε(|ξ |) − 1

|ξ |2 ξ ⊗ ξ, c(σ ) = N
(2β/N − 1) ε(σ ) + 1

σ φ(σ)
,

a(σ ) = σ ε′(σ ) + ε(σ )

σ φ(σ ) ε(σ )2
, b(σ ) = σ ε′(σ ) + ε(σ ) [1 − ε(σ )2]

2 σ 3φ(σ) ε(σ )2
.

Next, since

uνν = 〈∇2u ∇u,∇u〉
|∇u|2 on �,

by the identity (2.4) and (4.7), we obtain that

φ′(|∇u|) 〈∇2u ∇u,∇u〉
|∇u|2 = −N + (N − 1) φ(|∇u|)M on �,

so that

Pν = |∇u| {β − N + (N − 1) φ(|∇u|)M} on �.

Now, since M ≥ 0, if we choose β ≥ N we have that

tr[A(|∇u|)∇2P] − a(|∇u|) |∇P|2 + b(|∇u|) (∇u · ∇P)2 + c(|∇u|)∇u · ∇P ≥ 0,

away from the critical points of u in �, and Pν ≥ 0 on �. By the strong maximum
principle and the Hopf boundary lemma, the last two inequalities give that the maxi-
mum of P must be attained at a critical point of u, at which P ≤ 0. Thus, P ≤ 0 on
� for any β ≥ N , and hence our claim follows by choosing β = N . ��
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Proof of Theorem 1.4 We can apply Lemma 4.2 and, since M = u(z), obtain that

|∇u| ≤ ψ(�−1(N [u(z) − u])) on �.

Set

χ(σ) =
∫ σ

0

ds

ψ(�−1(N s))
. (4.10)

We take as before x ∈ � and y ∈ � such that |x − y| = dist(x, �) and compute:

χ(u(z)) − χ(u(z) − u(x)) =
∫ 1

0

d

dt
χ(u(z) − u(x + t (y − x)) dt

=
∫ 1

0

∇[u(z) − u(x + t (y − x))] · (y − x)

ψ(�−1(N [u(z) − u(x + t (y − x))])) dt
≤ |x − y| = d�(x).

Thus, choosing x = z gives that

χ(u(z)) ≤ d�(z).

Now notice that, by the change of variables Ns = �(t), we have that

χ(σ) = 1

N
�−1(N σ).

Therefore, we pick an incenter of � and by Lemma 4.1 obtain that �(r�) ≤
u(x�) ≤ u(z), and hence

1

N
�−1(N �(r�)) ≤ 
(u(z)) ≤ d�(z).

Our claim is proved. ��
When the number a in (4.2) is zero, the right-hand side of (1.10) can be bounded

from below by a quantity that only depends on N and the constants c and C . In the
following corollary, we will carry out this case. For completeness, in Remark 4.4
below, we shall briefly sketch how to obtain a similar estimate, which however is not
independent on r�, when a > 0.

Corollary 4.3 Set 1 < p < ∞. Under the assumptions of Theorem 1.4, if (4.2) holds
with a = 0, then we have that

d�(z)

r�
≥

( c

NC

)1/p
.
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In particular, in the case of the p-laplacian, it holds that

d�(z)

r�
≥ 1

N 1/p .

Proof For notational convenience, we set r = r� and d = d�(z). From (4.4) and (4.2),
we have that

C1−p′

p′ τ p′ ≤ �(τ) ≤ c1−p′

p′ τ p′
for τ ≥ 0.

Thus, (1.10) gives that

NC1−p′

p′ r p
′ ≤ N �(r) ≤ �(N d) ≤ c1−p′

N p′

p′ d p′
,

that yields our claim. In the case of the p-laplacian we have that c = C . ��
Remark 4.4 When a > 0, similar calculations give the inequality:

[

NC1−p′
r p

′ − Np′a r + N (p′ − 1)C ap′ ]+ ≤ N �(r) ≤ �(N d)

≤ [

N p′
c1−p′

d p′ − Np′a d + N (p′ − 1) c a p′ ]+
.

Thus, we can conclude that

d�(z)

r�
≥ μN ,p(r�, a, c,C),

for some μN ,p(r�, a, c,C) ∈ [0, 1).
Remark 4.5 If z p is a maximum point for the solution of (4.6) with f ≡ N , then,
modulo a subsequence, we have that there exists a point z such that

r� ≥ d�(z) = lim
p→∞ dist(z p, �) ≥ lim

p→∞
1

N 1/p r� = r�.

Thus, z p converges to an incenter x� as p → ∞.

Remark 4.6 It is not difficult to obtain an analog of Corollary 2.6 in the elasto-plastic
setting by analysing the proofs of Lemma 4.2 and Theorem 1.4.

4.3 The quasilinear-semilinear isotropic case

One can obtain a gradient estimate of the type of Lemma 2.9 for the general quasilinear
operators considered in this section. The useful reference is now [14, Theorem 1.6].
In other words, we can consider a positive solution (if any) of the problem

− div

{

φ(|∇u|) ∇u

|∇u|
}

= f (u) in �, u = 0 on �, (4.11)
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where f is a non-linearity of class C1(R). The following lemma adapts [14, Theorem
1.6] to our aims and notations.

Lemma 4.7 (Gradient estimate) Let � ⊂ R
N , N ≥ 2, be a bounded domain with

mean convex boundary �. Let u be a weak solution of (4.11) and suppose that u is of
class C1,γ (�) for some γ ∈ (0, 1] and C2 near �. Then the function defined by

P = �(φ(|∇u|)) −
∫ M

u
f (σ ) dσ on �

attains its maximum at some critical point of u, and hence it holds that

�(φ(|∇u|)) ≤
∫ M

u
f (σ ) dσ on �.

Remark 4.8 Based on this lemma and thanks to the now usual arguments (see Theorem
2.10), for any maximum point z ∈ � we obtain the inequalities:

r� ≥ d�(z) ≥
∫ u(z)

0

dσ

ζ
(

∫ u(z)
u(z)−σ

f (s) ds
) with ζ = ψ ◦ �−1. (4.12)

If the operator in (4.11) satisfies a comparison principle and the function of u(z)
at the right-hand side of (4.12) is monotone increasing, we may obtain a bound from
below for d�(z) in terms of r�. To this aim, for any fixed x ∈ �we must compare u to
the radially symmetric positive solution (if any) wr (y− x) of (4.11) in the ball Br (x),
with r = d�(x). For the records, w(τ) = wr (τ ) must satisfy the ODE problem:

−[τ N−1φ(w′)]′ = τ N−1 f (w) in (0, r), w(r) = 0, w′(0) = 0.

Therefore, after simple manipulations eventually we get:

d�(z) ≥
∫ 1

0

wr�(0) dσ

ζ
(

wr�(0)
∫ 1
1−σ

f (wr�(0) s) ds
) .

Remark 4.9 An interesting case in which a comparison principle does not hold occurs
if we choose


(σ) = σ p

p
and f (s) = λ|s|p−2s.

This choice corresponds to the problem:

−�pu = λ |u|p−2u and u > 0 in �, u = 0 on �.
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The eigenvalue λ = λ1,p(�) is the sharp constant in the Sobolev-Poincaré inequal-
ity:

λ1,p(�)

∫

�

|u|pdx ≤
∫

�

|∇u|pdx for every u ∈ W 1,p
0 (�).

Thanks to the formula (4.12), we thus get:

d�(z) ≥ 2

p

[

p − 1

λ1,p(�)

]1/p ∫ π/2

0
(tan θ)2/p−1dθ = 1

p

[

p − 1

λ1,p(�)

]1/p

β(1/p, 1/p′),

where β is Euler’s beta function. The definition of λ1,p(�) and its scaling property
give that

λ1,p(�) ≤ λ1,p(Br�) ≤ λ1,p(B)

r p�
.

Therefore, by using Euler’s gamma function, we conclude that

d�(z)

r�
≥ 1

p

[

p − 1

λ1,p(B)

]1/p

�(1/p)�(1/p′).

The constant at the right-hand side only depends on N and p.

5 Anisotropic case: Wulff-type functionals

Our analysis can be extended to a class of anisotropic problems. However, the proof
of the corresponding Theorem 1.4 needs some more detail. To avoid unnecessary
complications, we shall present it for the minimizer u of the Wulff-type functional

∫

�

[
(H(∇v)) − N v] dx, (5.1)

among all the functions v ∈ W 1,p
0 (�) with p > 1. Here, H : RN → [0,∞) is a

suitable norm (see Sect. 5.1 for some definitions and relevant properties of H ).
Whenever convenient, we will adopt the notation 
H = 
 ◦ H for short. The

assumptions for 
 are those stated in Sect. 4.1. In particular, we require that 
H

satisfies (4.2).
The strict convexity of the functional in (5.1) makes sure that a minimizer u exists

and is unique, and also satisfies the Dirichlet problem

− div{∇
H (∇u)} = N in �, u = 0 on �, (5.2)

or, more explicitly, the problem
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− div
{

φ(H(∇u))∇ξ H(∇u)
} = N in �, u = 0 on �, (5.3)

in the weak sense.
Before stating and proving the main results of this section, we need to recall some

definitions, notations and relevant properties related to the norm H .

5.1 Anisotropic norm, ball, curvature and distance

We assume that H : RN → [0,∞) is a norm on R
N , that is, it holds that

(i) H(ξ) ≥ 0 for ξ ∈ R
N and H(ξ) = 0 if and only if ξ = 0;

(ii) H(t ξ) = |t | H(ξ) for ξ ∈ R
N and t ∈ R;

(iii) H satisfies the triangle inequality.

Associated to H , we consider the dual norm on R
N defined by the polar function:

Ho(η) = sup
ξ �=0

〈ξ, η〉
H(ξ)

, η ∈ R
N , (5.4)

where the angle brackets denote the scalar product in RN . Also, we have that

H(ξ) = sup
ξ �=0

〈η, ξ 〉
Ho(η)

for ξ ∈ R
N .

Thanks to (5.4), it holds that

|〈ξ, η〉| ≤ H(ξ) Ho(η) , for any ξ, η ∈ R
N . (5.5)

For convenience in this section, we shall drop the dependence on the norm H in
the relevant notation. For instance, we will simply denote by B and B0 the unit balls
in the norms H and Ho, that is we set

B = {ξ ∈ R
N : H(ξ) < 1} and Bo = {η ∈ R

N : Ho(η) < 1}.

Notice that H and Ho are nothing else than the support functions of Bo and B,
respectively (see [18] and [39, Section 1.7]). By the homogeneity of the norms H and
Ho, we can define the corresponding balls centered at a point x ∈ R

N and with radius
r > 0:

Br (x) = {ξ ∈ R
N : H(ξ − x) < r} = x + r B,

Bo
r (x) = {η ∈ R

N : H(η − x) < r} = x + r Bo.

The sets Bo
r (η) or Br (ξ) are also named Wulff shapes of H or Ho.

When H ∈ C1(RN\{0}), the homogeneity property (ii) of the norm H is equivalent
to the so-called Euler’s identity:

〈∇ξ H(ξ), ξ 〉 = H(ξ) , for any ξ ∈ R
N , (5.6)
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where the left-hand side is taken to be 0 when ξ = 0. By the same homogeneity, we
have that

∇ξ H(t ξ) = sgn(t)∇ξ H(ξ) for ξ �= 0 and t �= 0. (5.7)

Later on we will also use the following properties (see [16, Section 3.1] or [7,44]).
The identity

H(∇ηH
o(η)) = 1 for η �= 0 (5.8)

holds true. Moreover, the map H ∇ξ H is invertible and it holds that

H ∇ξ H =
(

H0 ∇ηH
0
)−1

.

By (5.8), (5.7), and the homogeneity of H , the last formula is equivalent to

H0(η)∇ξ H
(

∇ηH
0 (η)

)

= η. (5.9)

If we denote as usual by ν(x) the normal unit vector at a point x ∈ � pointing
inward to �, the corresponding anisotropic inner normal νa(x) to � is then defined
by

νa(x) = ∇ξ H(ν(x))

If the solution u of (5.2) is of class C1(�), being ν(x) = ∇u(x)/|∇u(x)|, we can
infer that

νa(x) = ∇ξ H(∇u(x)), (5.10)

by the 0-homogeneity of ∇ξ H . If u ∈ C2(�), then the anisotropic mean curvature of
� (with respect to the inner normal) is defined as

Ma(x) = − 1

N − 1
div[νa(x)] = − 1

N − 1
div

[∇ξ H(∇u(x))
]

, x ∈ �.

We shall say that � is H-mean convex if it is of class C2 and Ma ≥ 0 on �.
An identity analogous to (2.4) also holds for the so-called anisotropic laplacian

�au = div
[

H(∇u)∇ξ H (∇u)
]

,

that corresponds to the choice 
(σ) = σ 2/2 in (5.2). In fact, if we notice that for the
first and second anisotropic normal derivatives we have that

uνa = 〈∇u, νa〉 = 〈∇u,∇ξ H(∇u)〉 = H(∇u)
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and

uνaνa = 〈(∇2u) νa, νa〉 = 〈(∇2u)∇ξ H(∇u),∇ξ H(∇u)〉, (5.11)

we obtain the identity (see also [44]):

�au = uνaνa − (N − 1)H(∇u)Ma on �. (5.12)

The anisotropic distance of x ∈ � to the boundary � is the function defined by

do�(x) = min
y∈�

Ho(x − y), x ∈ �. (5.13)

Formore details on the anisotropic distance and, more in general, inMinkowski spaces
we refer to [18] (for treatments in Finsler and Riemaniann geometries see also [27]
and [38]).

In what follows, we shall just use the fact that, by definition (5.13), for any x ∈ � it
holds that Bo

r ⊂ � for r = do�(x) and, being any anisotropic ball Bo
r (x) a convex set,

if x0 is a point on � realizing the minimum in (5.13), the line segment joining x0 to x
is contained in Bo

r (x) ⊂ �. In particular, as noticed in [18], due to the Minkowskian
structure of the space, x0 is joined to x by a geodesic, which is a segment issuing from
x0 to x that goes along the anisotropic normal direction νa = ∇ξ H(ν(x0)).

5.2 The anisotropic torsional rigidity in aWulff shape

In the set up described in the previous section, the solution of (5.3) in the Wulff shape
Bo
r (x) is easily computed.

Lemma 5.1 (Solution in the Wulff shape) Let H be a norm in R
N such that H ∈

C1(RN\{0}) and Bo is strictly convex. Let wr : Bo
r (x) → [0,∞) be the function

defined by

wr (y) = �(r) − �
(

Ho(y − x)
)

for y ∈ Bo
r (x),

where � is as usual the Young’s conjugate of 
. Then wr is of class C1(RN ) and is
a weak solution of the problem (5.2).

Proof We can always assume that x = 0. It is clear that wr = 0 on ∂Bo
r (x). The

C1(RN )-regularity of wr follows from our assumptions on H and 
 and [16, Lemma
3.1]. Moreover, we compute:

∇wr (η) = −ψ(Ho(η))∇ηH
o(η) for η ∈ Bo

r (x),

where ψ = � ′. Thus, (5.8) and (5.7) give that

−φ(H(∇wr ))∇ξ H(∇wr ) = φ(ψ(Ho(η)))∇ξ H
(∇ηH

o(η)
)
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= Ho(η)∇ξ H
(∇ηH

o(η)
)

,

since φ and ψ are inverse of one another. Our claim follows from (5.9). ��
We can now derive an anisotropic version of Lemma 2.1.

Lemma 5.2 (A bound from below) Let � ⊂ R
N , N ≥ 2, be a bounded domain with

boundary �.
Let u ∈ C0(�) ∩ C1,γ (�), 0 < γ ≤ 1, be the solution of (5.3). Then

u(x) ≥ �(do�(x)) for every x ∈ �. (5.14)

Proof We proceed as usual. For x ∈ � we let r = do�(x) and consider the ball Bo
r (x).

Thus, we obtain the comparison (see, e.g., [15, Lemma 4.2]) u ≥ wr on Bo
r (x), and

hence at x we get:

u(x) ≥ wr (x) = �(r) − �(0) = �(do�(x)),

as claimed. ��
Next, we generalize (5.12) to the case of the operator in (5.3).

Proposition 5.3 Let H ∈ C2(RN\{0}) and let v be a function of class C2 and such
that ∇v �= 0 in a neighborhood of �. Then, it holds that

div
{

φ(H(∇v))∇ξ H(∇v)
} = −(N − 1) φ(H(∇v))Ma + φ′(H(∇v))vνaνa on �.

In particular, if u is the solution of (5.3), then

φ′(H(∇u))uνH νH = −N + (N − 1) φ(H(∇u))Ma on �. (5.15)

Proof By the Leibnitz formula for products, we have that

div
{

φ(H(∇v))∇ξ H(∇v)
}

= φ(H(∇v))

H(∇v)
�av + H(∇v)∇

[

φ(H(∇v))

H(∇v)

]

· ∇ξ H(∇v) = φ(H(∇v))

H(∇v)
�av

+H(∇v) φ′(H(∇v)) − φ(H(∇v))

H(∇v)
〈(∇2v)∇ξ H(∇v),∇ξ H(∇v)〉

= φ(H(∇v))

H(∇v)

[

�av − vνaνa

] + φ′(H(∇v))vνaνa ,

where we have also used (5.11). Identity (5.12) then gives the first claim, and hence
(5.15) follows at once. ��

Wenowneed a counterpart ofLemma2.2. To avoid further difficulties,we shall limit
our discussion to the case in which� is H -mean convex.Wewill use facts contained in
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546 R. Magnanini, G. Poggesi

[17]. The statement of Lemma 5.4 here below is slightly different from that contained
in [17], because more naturally we chose to present the relevant P-function in terms
of the Young conjugate.

Lemma 5.4 (Gradient estimate) Let � ⊂ R
N , N ≥ 2, be a bounded domain with

H-mean convex boundary �. Let u ∈ W 1,p(�) ∩ L∞(�) be the weak solution of
(5.3). Then the function defined on � by

P = � (φ (H(∇u))) + N

[

u − max
�

u

]

attains its maximum at some critical point of u. In particular, it holds that

� (φ (H(∇u))) ≤ N

[

max
�

u − u

]

on �.

Proof The necessary regularity can be obtained as in the proof of Lemma 4.2. Next,
by taking advantage of [17, Proposition 4.1] with B = 
 (the relevant regularity
assumptions there assumed can be relaxed by an appropriate approximation argument),
we have that the function P satisfies the maximum principle away from the critical
points of u in �. In other words, we have that the maximum of P is attained either on
� or at a critical point of u at which P ≤ 0.

Thus, we are left to prove that P cannot attain its maximum on �. Suppose that P
is not constant and attains its maximum at a point x ∈ �. Notice that, by the Hopf
lemma (see [19] or [15]), � does not contain any critical point of u. Hence, we can
apply the Hopf lemma to P in some neighborhood of x , and infer that Pνa (x) < 0.

On the other hand, we compute that

∇P = � ′(φ(H(∇u))) φ′(H(∇u)) [∇2u]∇ξ H(∇u) + N ∇u

= H(∇u) φ′(H(∇u))[∇2u]∇ξ H(∇u) + N ∇u.

Hence, (5.6), (5.10), and (5.11) give that

Pνa = H(∇u) φ′(H(∇u))〈[∇2u]∇ξ H(∇u),∇ξ H(∇u)〉 + N 〈∇u,∇ξ H(∇u)〉
= H(∇u)

{

φ′(H(∇u))uνaνa + N
} = (N − 1) H(∇u) φ(H(∇u))Ma ≥ 0 on �,

being Ma ≥ 0 on �. Therefore, we reached a contradiction, which means that either
the maximum of P is attained at a critical point of u or P is constant on �. In any
case, we conclude that P ≤ 0 on �. ��

We define the anisotropic inradius ro� by

ro� = max
�

do� (5.16)

and call anisotropic incenter a point xo� that attains the maximum.
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Proof of Theorem 1.5 The proof runs similarly to that of Theorem 1.4. We can apply
Lemma 5.4 and obtain that

H(∇u) ≤ ψ(�−1(N [u(z) − u])) on �. (5.17)

By using the function χ defined in (4.10), if we take x ∈ � and y ∈ � such that
do�(x) = Ho(x − y), we can compute:

χ(u(z)) − χ(u(z) − u(x)) =
∫ 1

0

d

dt
χ(u(z) − u(x + t (y − x)) dt

=
∫ 1

0

〈∇[u(z) − u(x + t (y − x))], (y − x)〉
ψ(�−1(N [u(z) − u(x + t (y − x))])) dt .

Next, we apply (5.5) and infer that

χ(u(z)) − χ(u(z) − u(x))

≤
∫ 1

0

H (∇[u(x + t (y − x))])
ψ(�−1(N [u(z) − u(x + t (y − x))]))H0(y − x) dt ≤ H0(y − x) = do�(x),

where in the second inequality we used (5.17). Thus, choosing x = z gives that
χ(u(z)) ≤ do�(z).

The rest of the proof runs as that of Theorem1.4, provided x� and d�(z) are replaced
by xo� and do�(z), and Lemma 4.1 is replaced by Lemma 5.2. ��
Remark 5.5 It is clear that, repeating the arguments used in the proof of Corollary 4.3
yields

do�(z)

ro�
≥

( c

NC

)1/p
.
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