
20 February 2025

Isogeometric analysis with C1 hierarchical functions on planar two-patch geometries / Bracco C.; Giannelli
C.; Kapl M.; Vazquez R.. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. -
STAMPA. - 80:(2020), pp. 2538-2562. [10.1016/j.camwa.2020.03.018]

Original Citation:

Isogeometric analysis with C1 hierarchical functions on planar two-
patch geometries

Published version:
10.1016/j.camwa.2020.03.018

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La data sopra indicata si riferisce all'ultimo aggiornamento della scheda del Repository FloRe - The above-
mentioned date refers to the last update of the record in the Institutional Repository FloRe

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
The webpage https://hdl.handle.net/2158/1193764 of the repository was last updated on 2025-01-
24T11:45:29Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

https://hdl.handle.net/2158/1193764


Isogeometric analysis with C1 hierarchical functions on planar

two-patch geometries

Cesare Braccoa, Carlotta Giannellia, Mario Kaplb,∗, Rafael Vázquezc,d

aDipartimento di Matematica e Informatica “U. Dini”,
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Abstract

Adaptive isogeometric methods for the solution of partial differential equations rely on
the construction of locally refinable spline spaces. A simple and efficient way to obtain
these spaces is to apply the multi-level construction of hierarchical splines, that can be
used on single-patch domains or in multi-patch domains with C0 continuity across the
patch interfaces. Due to the benefits of higher continuity in isogeometric methods, recent
works investigated the construction of spline spaces with global C1 continuity on two or
more patches. In this paper, we show how these approaches can be combined with the
hierarchical construction to obtain global C1 continuous hierarchical splines on two-patch
domains. A selection of numerical examples is presented to highlight the features and
effectivity of the construction.

Keywords: Isogeometric analysis, Geometric continuity, Two-patch domain, Hierarchical
splines, Local refinement
2000 MSC: 65D07, 65D17, 65N30

1. Introduction

Isogeometric Analysis (IgA) is a framework for numerically solving partial differential
equations (PDEs), see [2, 14, 28], by using the same (spline) function space for describ-
ing the geometry (i.e. the computational domain) and for representing the solution of
the considered PDE. One of the strong points of IgA compared to finite elements is the
possibility to easily construct C1 spline spaces, and to use them for solving fourth order
PDEs by applying a Galerkin discretization to their variational formulation. Examples of
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fourth order problems with practical relevance (in the frame of IgA) are e.g. the bihar-
monic equation [13, 29, 49], the Kirchhoff-Love shells [1, 3, 37, 38] and the Cahn-Hilliard
equation [21, 22, 40].

Adaptive isogeometric methods can be developed by combining the IgA framework with
spline spaces that have local refinement capabilities. Hierarchical B-splines [39, 54] and
truncated hierarchical B-splines [19, 20] are probably the adaptive spline technologies that
have been studied more in detail in the adaptive IgA framework [9, 10, 17]. Their multi-level
structure makes them easy to implement, with the evaluation of basis functions obtained
via a recursive use of two-level relation due to nestedness of levels [15, 18, 26]. Hierarchical
B-splines have been successfully applied for the adaptive discretization of fourth order
PDEs, and in particular for phase-field models used in the simulation of brittle fracture
[25, 26] or tumor growth [41].

While the construction of C1 spaces is trivial in a single-patch domain, either using
B-splines or hierarchical B-splines, the same is not true for general multi-patch domains.
The construction of C1 spline spaces over multi-patch domains is based on the concept of
geometric continuity [27, 46], which is a well-known framework in computer-aided design
(CAD) for the design of smooth multi-patch surfaces. The core idea is to employ the fact
that an isogeometric function is C1-smooth if and only if the associated multi-patch graph
surface is G1-smooth [24], i.e., it is geometrically continuous of order 1.

In the last few years there has been an increasing effort to provide methods for the con-
struction of globally C1 isogeometric spline spaces over general multi-patch domains. Be-
fore giving a short overview of these existing techniques, we first point to the approach [8],
where a smooth multi-patch spline space has been generated, which is C1 (or even Cp−1)
across all interfaces but just C0 in the vicinity of an extraordinary vertex, and which has
been extended to a hierarchical setting, too.

The existing methods for the design of gobally C1 isogeometric spline spaces for pla-
nar multi-patch domains can be roughly classified into two groups depending on the used
parameterization for the domain. The first approach relies on a multi-patch parameteriza-
tion which is C1-smooth everywhere except in the neighborhood of extraordinary vertices
(i.e. vertices with valencies different to four), where the parameterization is singular, see
e.g. [45, 51, 52], or consists of a special construction, see e.g. [35, 36, 44]. The methods
[45, 51, 52] use a singular parameterization with patches in the vicinity of an extraordi-
nary vertex, which belong to a specific class of degenerate (Bézier) patches introduced in
[47], and that allow, despite having singularities, the design of globally C1 isogeometric
spaces. The techniques [35, 36, 44] are based on G1 multi-patch surface constructions,
where the obtained surface in the neighborhood of an extraordinary vertex consists of
patches of slightly higher degree [35, 44] and is generated by means of a particular subdi-
vision scheme [36]. As a special case of the first approach can be seen the constructions in
[43, 50], that employ a polar framework to generate C1 spline spaces.

The second approach, on which we will focus, uses a particular class of regular C0 multi-
patch parameterizations, called analysis-suitable G1 multi-patch parameterization [13].
The class of analysis-suitable G1 multi-patch geometries characterizes the regular C0 multi-
patch parameterizations that allow the design of C1 isogeometric spline spaces with optimal
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approximation properties, see [13, 31], and includes for instance the subclass of bilinear
multi-patch parameterizations [4, 29, 34]. An algorithm for the construction of analysis-
suitable G1 parameterizations for complex multi-patch domains was presented in [31]. The
main idea of this approach is to analyze the entire space of C1 isogeometric functions over
the given multi-patch geometry to generate a basis of this space or of a suitable subspace.
While the methods in [4, 29, 34] are mainly restricted to (mapped) bilinear multi-patch
parameterizations, the techniques [5, 30, 32, 33, 42] can also deal with more general multi-
patch geometries. An alternative but related approach comprises the constructions [11, 12]
for general C0 multi-patch parameterizations, which increase the degree of the constructed
spline functions in the neighborhood of the common interfaces to obtain C1 isogeometric
spaces with good approximation properties.

In this work, we extend for the case of two-patch domains the second approach from
above to the construction of hierarchical C1 isogeometric spaces on analysis-suitable G1

geometries, using the abstract framework for the definition of hierarchical splines detailed
in [20]. We show that the basis functions of the considered C1 space on analysis-suitable
G1 two-patch parameterizations, which is a subspace of the space [30] inspired by [33],
satisfy the required properties given in [20], and in particular that the basis functions are
locally linearly independent (see Section 3.1 for details). Note that in case of a multi-patch
domain, the general framework for the construction of hierarchical splines [20] cannot
be used anymore, since the appropriate C1 basis functions [33] can be locally linearly
dependent. Therefore, the development of another approach as [20] would be needed for
the multi-patch case, which is beyond the scope of this paper.

For the construction of the hierarchical C1 spline spaces on analysis-suitable G1 two-
patch geometries, we also explore the explicit expression for the relation between C1 basis
functions of two consecutive levels, expressing coarse basis functions as linear combinations
of fine basis functions. This relation is exploited for the implementation of hierarchical
splines as in [18, 26]. A series of numerical tests are presented, that are run with the help
of the Matlab/Octave code GeoPDEs [18, 53].

The remainder of the paper is organized as follows. Section 2 recalls the concept of
analysis-suitable G1 two-patch geometries and presents the used C1 isogeometric spline
space over this class of parameterizations. In Section 3, we develop the (theoretical)
framework to employ this space to construct C1 hierarchical isogeometric spline spaces,
which includes the verification of the nested nature of this kind of spaces, as well as the
proof of the local linear independence of the one-level basis functions. Additional details
of the C1 hierarchical construction, such as the refinement masks of the basis functions for
the different levels, are discussed in Section 4 with focus on implementation aspects. The
generated hierarchical spaces are then used in Section 5 to numerically solve the laplacian
and bilaplacian equations on two-patch geometries, where the numerical results demon-
strate the potential of our C1 hierarchical construction for applications in IgA. Finally,
the concluding remarks can be found in Section 6. The construction of the non-trivial
analysis-suitable G1 two-patch parameterization used in some of the numerical examples
is described in detail in Appendix A. For easiness of reading, we include at the end of the
paper a list of symbols with the main notation used in this work.
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2. C1 isogeometric spaces on two-patch geometries

In this section, we introduce the specific class of two-patch geometries and the C1

isogeometric spaces which will be used throughout the paper.

2.1. Analysis-suitable G1 two-patch geometries

We present a particular class of planar two-patch geometries, called analysis-suitable
G1 two-patch geometries, which was introduced in [13]. This class is of importance since
it comprises exactly those two-patch geometries which are suitable for the construction
of C1 isogeometric spaces with optimal approximation properties, see [13, 31]. The most
prominent member is the subclass of bilinear two-patch parameterizations, but it was
demonstrated in [31] that the class is much wider and allows the design of generic planar
two-patch domains.

Let k, p, r ∈ N with degree p ≥ 3 and regularity 1 ≤ r ≤ p − 2. Let us also introduce
the ordered set of internal breakpoints T = {τ1, τ2, . . . , τk}, with 0 < τi < τi+1 < 1 for all
1 ≤ i ≤ k. We denote by Sr

p the univariate spline space in [0, 1] with respect to the open
knot vector

Ξr
p = { 0, . . . , 0︸ ︷︷ ︸

(p+1)−times

, τ1, . . . , τ1︸ ︷︷ ︸
(p−r)−times

, τ2, . . . , τ2︸ ︷︷ ︸
(p−r)−times

, . . . , τk, . . . , τk︸ ︷︷ ︸
(p−r)−times

, 1, . . . , 1︸ ︷︷ ︸
(p+1)−times

}, (1)

and let N r
i,p, i ∈ I = {0, . . . , p + k(p − r)}, be the associated B-splines. Note that the

parameter r specifies the resulting Cr-continuity of the spline space Sr
p. We will also make

use of the subspaces of higher regularity and lower degree, respectively Sr+1
p and Sr

p−1,
defined from the same internal breakpoints, and we will use an analogous notation for
their basis functions. Furthermore, we denote by n, n0 and n1 the dimensions of the spline
spaces Sr

p, Sr+1
p and Sr

p−1, respectively, which are given by

n = p+ 1 + k(p− r), n0 = p+ 1 + k(p− r − 1) and n1 = p+ k(p− r − 1),

and, analogously to I, we introduce the index sets

I0 = {0, . . . , n0 − 1}, I1 = {0, . . . , n1 − 1},

corresponding to basis functions in Sr+1
p and Sr

p−1, respectively.

Let F(L),F(R) ∈ (Sr
p ⊗ Sr

p)
2 be two regular spline parameterizations, whose images

F(L)([0, 1]2) and F(R)([0, 1]2) define the two quadrilateral patches Ω(L) and Ω(R) via F(S)([0, 1]2) =
Ω(S), S ∈ {L,R}. The regular, bijective mapping F(S) : [0, 1]2 → Ω(S), S ∈ {L,R}, is called
geometry mapping, and possesses a spline representation

F(S)(ξ1, ξ2) =
∑
i∈I

∑
j∈I

c
(S)
i,j N

r
i,p(ξ1)N

r
j,p(ξ2), c

(S)
i,j ∈ R2.

We assume that the two patches Ω(L) and Ω(R) form a planar two-patch domain Ω =
Ω(L)∪Ω(R), which share one whole edge as common interface Γ = Ω(L)∩Ω(R). In addition,
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and without loss of generality, we assume that the common interface Γ is parameterized
by F0 : [0, 1] → Γ via

F0(ξ2) = F(L)(0, ξ2) = F(R)(0, ξ2), ξ2 ∈ [0, 1],

and denote by F the two-patch parameterization (also called two-patch geometry) consisting
of the two spline parameterizations F(L) and F(R).

Remark 1. For simplicity, we have restricted ourselves to a univariate spline space Sr
p

with the same knot multiplicity for all inner knots. Instead, a univariate spline space with
different inner knot multiplicities can be used, as long as the multiplicity of each inner
knot is at least 2 and at most p − 1. Note that the subspaces Sr+1

p and Sr
p−1 should also

be replaced by suitable spline spaces of regularity increased by one at each inner knot,
and degree reduced by one, respectively. Furthermore, it is also possible to use different
univariate spline spaces for both Cartesian directions and for both geometry mappings,
with the requirement that both patches must have the same univariate spline space in
ξ2-direction.

The two geometry mappings F(L) and F(R) uniquely determine up to a common func-
tion γ : [0, 1] → R (with γ ̸= 0), the functions α(L), α(R), β : [0, 1] → R given by

α(S)(ξ2) = γ(ξ2) det
(
∂1F

(S)(0, ξ2), ∂2F
(S)(0, ξ2)

)
, S ∈ {L,R},

and
β(ξ2) = γ(ξ2) det

(
∂1F

(L)(0, ξ2), ∂1F
(R)(0, ξ2)

)
,

satisfying for ξ2 ∈ [0, 1]
α(L)(ξ2)α

(R)(ξ2) < 0 (2)

and
α(R)∂1F

(L)(0, ξ2)− α(L)(ξ2)∂1F
(R)(0, ξ2) + β(ξ2)∂2F

(L)(0, ξ2) = 0. (3)

In addition, there exist non-unique functions β(L) and β(R) : [0, 1] → R such that

β(ξ2) = α(L)(ξ2)β
(R)(ξ2)− α(R)(ξ2)β

(L)(ξ2), (4)

see e.g. [13, 46]. The two-patch geometry F is called analysis-suitable G1 if there exist
linear polynomial functions α(S), β(S), S ∈ {L,R} with α(L) and α(R) relatively prime1 such
that equations (2)-(4) are satisfied for ξ2 ∈ [0, 1], see [13, 30]. Note that requiring that α(L)

and α(R) are relatively prime is not restrictive: if α(L) and α(R) share a common factor, it
is a factor of γ too, thus α(L) and α(R) can be made relatively prime by dividing by such a
factor. Note also that α(L) and α(R) being linear is also not restrictive, since the conditions
are valid for non polynomial parameterizations, such as splines or NURBS, see [13, 31].

1Two polynomials are relatively prime if their greatest common divisor has degree zero.
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In the following, we will only consider planar two-patch domains Ω which are described
by analysis-suitable G1 two-patch geometries F. Furthermore, we select uniquely deter-
mined linear polynomial functions α(S) and β(S), S ∈ {L,R}, by minimizing the terms

||α(L) + 1||2L2([0,1]) + ||α(R) − 1||2L2([0,1])

and
||β(L)||2L2([0,1]) + ||β(R)||2L2([0,1]).

The chosen linear polynomials α(S) and β(S), S ∈ {L,R}, will ensure later a more uniform
scaling of the basis functions, and are in case of parametric continuity, i.e. β = 0 and
α(L) = −α(R) just the simple functions β(L) = β(R) = 0 and α(L) = −1, α(R) = 1, see [33].

2.2. The C1 isogeometric space V and the subspace W
We recall the concept of C1 isogeometric spaces over analysis-suitable G1 two-patch

geometries studied in [13, 30], and especially focus on a specific subspace of the entire
space of C1 isogeometric functions.

The space V of C1 isogeometric spline functions on Ω (with respect to the two-patch
geometry F and spline space Sr

p) is given by

V = {ϕ ∈ C1(Ω) : ϕ ◦ F(S) ∈ Sr
p ⊗ Sr

p, S ∈ {L,R}}. (5)

A function ϕ : Ω → R belongs to the space V if and only if the functions f (S) = ϕ ◦ F(S),
S ∈ {L,R}, satisfy that

f (S) ∈ Sr
p ⊗ Sr

p, S ∈ {L,R}, (6)

f (L)(0, ξ2) = f (R)(0, ξ2), ξ2 ∈ [0, 1], (7)

and

α(R)(ξ2)∂1f
(L)(0, ξ2)− α(L)(ξ2)∂1f

(R)(0, ξ2) + β(ξ2)∂2f
(L)(0, ξ2) = 0, ξ2 ∈ [0, 1],

where the last equation is due to (4) further equivalent to

∂1f
(L)(0, ξ2)− β(L)(ξ2)∂2f

(L)(0, ξ2)

α(L)(ξ2)
=
∂1f

(R)(0, ξ2)− β(R)(ξ2)∂2f
(R)(0, ξ2)

α(R)(ξ2)
, ξ2 ∈ [0, 1],

(8)
see e.g. [13, 24, 34]. Therefore, the space V can be also described as

V = {ϕ : Ω → R : f (S) = ϕ ◦ F(S), S ∈ {L,R}, fulfill the equations (6)-(8)}. (9)

Note that the equally valued terms in (8) represent a specific directional derivative of
ϕ across the interface Γ. In fact, recalling that f (S) = ϕ ◦ F(S) for S ∈ {L,R}, we have

∇ϕ · (d ◦F0(ξ2)) = ∇ϕ · (d(S) ◦F0(ξ2)) =
∂1f

(S)(0, ξ2)− β(S)(ξ2)∂2f
(S)(0, ξ2)

α(S)(ξ2)
, ξ2 ∈ [0, 1],

(10)
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where d is a transversal vector to Γ given by d = d(L) = d(R) with d(S) ◦ F0(ξ2) =
(∂1F

(S)(0, ξ2), ∂2F
(S)(0, ξ2))(1,−β(S)(ξ2))

T 1
α(S)(ξ2)

, S ∈ {L,R}, see [13, 30].

The structure and the dimension of the space V heavily depends on the functions α(L),
α(R) and β, and was fully analyzed in [30] by computing a basis and its dimension for
all possible configurations. Below, we restrict ourselves to a simpler subspace W (moti-
vated by [33]), which preserves the approximation properties of V, and whose dimension
is independent of the functions α(L), α(R) and β.

The C1 isogeometric space W is defined as

W = spanΦ, Φ = ΦΩ(L) ∪ ΦΩ(R) ∪ ΦΓ0 ∪ ΦΓ1 ,

with
ΦΩ(S) =

{
ϕΩ(S)

i,j : i ∈ I \ {0, 1}; j ∈ I
}
, S ∈ {L,R}, (11)

ΦΓ0 =
{
ϕΓ0
i : i ∈ I0

}
, ΦΓ1 =

{
ϕΓ1
i : i ∈ I1

}
, (12)

where the functions ϕΩ(S′)
i,j , ϕΓ0

i and ϕΓ1
i are defined via

(
ϕΩ(S′)
i,j ◦F(S)

)
(ξ1, ξ2) =

{
N r

i,p(ξ1)N
r
j,p(ξ2) if S = S ′,

0 otherwise,
i ∈ I\{0, 1}; j ∈ I; S, S ′ ∈ {L,R},

(13)(
ϕΓ0
i ◦ F(S)

)
(ξ1, ξ2) = N r+1

i,p (ξ2)
(
N r

0,p(ξ1) +N r
1,p(ξ1)

)
+ β(S)(ξ2)

(
N r+1

i,p

)′
(ξ2)

τ1
p
N r

1,p(ξ1), i ∈ I0; S ∈ {L,R}, (14)

and (
ϕΓ1
i ◦ F(S)

)
(ξ1, ξ2) = α(S)(ξ2)N

r
i,p−1(ξ2)N

r
1,p(ξ1), i ∈ I1; S ∈ {L,R}. (15)

The construction of the functions ϕΩ(S′)
i,j , ϕΓ0

i and ϕΓ1
i guarantees that they are linearly

independent and therefore form a basis of the space W. In addition, the functions fulfill
equations (6)-(8) which implies that they are C1-smooth on Ω, and hence W ⊆ V. When
the two spaces W and V are equal, see [30] for details, the selection of the linear polynomial
functions β(S), S ∈ {L,R}, changes the basis functions, but does not affect the subspaceW.
In the case W ⊊ V, the space W can vary for different choices of β(S). Since any selection of
the functions β(S) will maintain the optimal approximation properties of W, by the unique
selection of β(S) described in Section 2.1 we uniquely determine the space W.

The basis functions ϕΩ(S′)
i,j are standard tensor-product B-splines whose support is in-

cluded in one of the two patches, while the functions ϕΓ0
i and ϕΓ1

i are combinations of
standard B-splines and their support crosses the interface Γ (see Figure 1 for an example).

Moreover, the traces and specific directional derivatives (10) of the functions ϕΓ0
i and

ϕΓ1
i at the interface Γ are equal to

ϕΓ0
i ◦ F0(ξ2) = N r+1

i,p (ξ2), ϕΓ1
i ◦ F0(ξ2) = 0,
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and
∇ϕΓ0

i · (d ◦ F0(ξ2)) = 0, ∇ϕΓ1
i · (d ◦ F0(ξ2)) = N r

i,p−1(ξ2).

Therefore, the C1 isogeometric space W can be also characterized as

W = {ϕ ∈ V : ϕ ◦ F0(ξ2) ∈ Sr+1
p and ∇ϕ · (d ◦ F0(ξ2)) ∈ Sr

p−1}. (16)

In particular, this means that not only (7) and (8) are fulfilled, but that the terms in those
equations respectively belong to the spline spaces Sr+1

p and Sr
p−1.

(a) (b)

(c) (d)

Figure 1: Example of basis functions of W on a two-patch domain: figures (a)-(b) show two basis functions
of type (13) (standard B-splines whose support is included in one of the two patches), while figures (c)
and (d) correspond to basis functions of type (14) and (15), respectively (whose supports intersect the
interface).

3. C1 hierarchical isogeometric spaces on two-patch geometries

This section introduces an abstract framework for the construction of the hierarchical
spline basis, that is defined in terms of a multilevel approach applied to an underlying
sequence of spline bases that are locally linearly independent and characterized by local
and compact supports. The C1 hierarchical isogeometric spaces on two-patch geometries
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are then defined by applying the hierarchical construction to the C1 isogeometric functions
described in the previous section. Particular attention is devoted to the proof of local
linear independence of the basis functions, cf. Section 3.2, and to the refinement mask that
explicitly identifies a two-scale relation between hierarchical functions of two consecutive
levels, cf. Section 4.2. Note that, even if the hierarchical framework can be applied with
different refinement strategies between consecutive refinement levels, we here focus on
dyadic refinement, the standard choice in most application contexts. In the following the
refinement level ℓ is denoted as a superscript associated to the corresponding symbol.

3.1. Hierarchical splines: abstract definition

Let U0 ⊂ U1 ⊂ . . . ⊂ UN−1 be a sequence of N nested multivariate spline spaces defined
on a closed domain D ⊂ Rd, so that any space Uℓ, for ℓ = 0, . . . , N − 1, is spanned by a
(finite) basis Ψℓ satisfying the following properties.

(P1) Local linear independence;

(P2) Local and compact support.

The first property guarantees that for any subdomain S, the restrictions of the (non-
vanishing) functions ψ ∈ Ψℓ to S are linearly independent. The locality of the support
instead enables to localize the influence of the basis functions with respect to delimited
areas of the domain. Note that the nested nature of the spline spaces implies the existence
of a two-scale relation between adjacent bases: for any level ℓ, each basis function in Ψℓ

can be expressed as linear combination of basis functions in Ψℓ+1.
By also considering a sequence of closed nested domains

Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1, (17)

with Ω0 ⊆ D, we can define a hierarchical spline basis according to the following definition.

Definition 1. The hierarchical spline basis H with respect to the domain hierarchy (17)
is defined as

H =
{
ψ ∈ Ψℓ : supp0ψ ⊆ Ωℓ ∧ supp0ψ ̸⊆ Ωℓ+1, ℓ = 0, . . . , N − 1

}
,

where supp0ψ = suppψ ∩ Ω0.

Note that the basis H = HN−1 can be iteratively constructed as follows.

1. H0 = {ψ ∈ Ψ0 : supp0ψ ̸= ∅};
2. for ℓ = 0, . . . , N − 2

Hℓ+1 = Hℓ+1
A ∪Hℓ+1

B ,

where

Hℓ+1
A =

{
ψ ∈ Hℓ : supp0ψ ̸⊆ Ωℓ+1

}
and Hℓ+1

B =
{
ψ ∈ Ψℓ+1 : supp0ψ ⊆ Ωℓ+1

}
.

The main properties of the hierarchical basis can be summarized as follows.
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Proposition 1. By assuming that properties (P1)-(P2) hold for the bases Ψℓ, the hierar-
chical basis satisfies the following properties:

(i) the functions in H are linearly independent,

(ii) the intermediate spline spaces are nested, namely spanHℓ ⊆ spanHℓ+1,

(iii) given an enlargement of the subdomains (Ω̂ℓ)ℓ=0,...,N̂−1, with N ≤ N̂ , such that Ω0 =

Ω̂0 and Ωℓ ⊆ Ω̂ℓ, for ℓ = 1, . . . , N − 1, then spanH ⊆ spanĤ.

Proof. The proof follows along the same lines as in [54] for hierarchical B-splines.

Proposition 1 summarizes the key properties of a hierarchical set of basis functions
constructed according to Definition 1, when the underlying sequence of bases Ψℓ satisfies
only properties (P1)-(P2).

The results in Proposition 1 remain valid when additional assumptions are consid-
ered [20]. In particular, if the basis functions in Ψℓ, for ℓ = 0, . . . , N − 1 are non-negative,
the hierarchical basis functions are also non-negative. Moreover, the partition of unity
property in the hierarchical setting can be recovered by considering the truncated basis for
hierarchical spline spaces [20]. In this case, the partition of unity property at each level ℓ
is also required together with the positiveness of the coefficients in the refinement mask.
Even if the construction of C1 functions on two patch geometries considered in the previous
section does not satisfy the non-negativity and partition of unity properties, we could still
apply the truncation mechanism to reduce the support of coarser basis functions in the
C1 hierarchical basis. Obviously, the resulting truncated basis would not satisfy the other
interesting properties of truncated hierarchical B-splines, see [19, 20].

3.2. The C1 hierarchical isogeometric space

By following the construction for the C1 isogeometric spline space presented in Sec-
tion 2, we can now introduce its hierarchical extension. We recall that instead of consider-
ing the full C1 space V at any hierarchical level, we may restrict to the simpler subspace W,
whose dimension does not depend on the functions α(L), α(R) and β, and it has analogous
approximation properties as the full space.

We consider an initial knot vector Ξr,0
p ≡ Ξr

p as defined in (1) for then introducing the
sequence of knot vectors with respect to a fixed degree p

Ξr,0
p ,Ξr,1

p . . . ,Ξr,N−1
p ,

where each knot vector

Ξr,ℓ
p = { 0, . . . , 0︸ ︷︷ ︸

(p+1)−times

, τ ℓ1 , . . . , τ
ℓ
1︸ ︷︷ ︸

(p−r)−times

, τ ℓ2 , . . . , τ
ℓ
2︸ ︷︷ ︸

(p−r)−times

, . . . , τ ℓkℓ , . . . , τ
ℓ
kℓ︸ ︷︷ ︸

(p−r)−times

, 1, . . . , 1︸ ︷︷ ︸
(p+1)−times

},

for ℓ = 1, . . . , N − 1, is obtained via dyadic refinement of the knot vector of the previous
level, keeping the same degree and regularity, and therefore kℓ = 2kℓ−1 + 1. We denote by
Sr,ℓ
p the univariate spline space in [0, 1] with respect to the open knot vector Ξr,ℓ

p , and let
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N r,ℓ
i,p , for i ∈ Iℓ = {0, . . . , p+ kℓ(p− r)}, be the associated B-splines. In addition, as in the

one-level case, Sr+1,ℓ
p and Sr,ℓ

p−1 (N r+1,ℓ
i,p and N r,ℓ

i,p−1) indicate the subspaces (and their basis
functions) of higher regularity and lower degree, respectively. We also denote by

nℓ = p+ 1 + kℓ(p− r), nℓ
0 = p+ 1 + kℓ(p− r − 1), and nℓ

1 = p+ kℓ(p− r − 1),

the dimensions of the spline spaces Sr,ℓ
p , Sr+1,ℓ

p and Sr,ℓ
p−1, respectively, and, analogously to

Iℓ, we introduce the index sets

Iℓ0 = {0, . . . , nℓ
0 − 1}, Iℓ1 = {0, . . . , nℓ

1 − 1},

corresponding to functions in Sr+1,ℓ
p and Sr,ℓ

p−1, respectively.
Let

V0 ⊂ V1 ⊂ . . . ⊂ VN−1

be a sequence of nested C1 isogeometric spline spaces, with Vℓ defined on the two-patch
domain Ω = Ω(L) ∪ Ω(R) with respect to the spline space of level ℓ. Analogously to the
construction detailed in Section 2.2, for each level 0 ≤ ℓ ≤ N − 1 let us consider the
subspace

Wℓ = spanΦℓ, with Φℓ = Φℓ
Ω(L) ∪ Φℓ

Ω(R) ∪ Φℓ
Γ0

∪ Φℓ
Γ1
,

where the basis functions are given by

Φℓ
Ω(S) =

{
ϕΩ(S)

i,j : i ∈ Iℓ \ {0, 1}; j ∈ Iℓ
}
, Φℓ

Γ0
=
{
ϕΓ0
i : i ∈ Iℓ0

}
, Φℓ

Γ1
=
{
ϕΓ1
i : i ∈ Iℓ1

}
,

with S ∈ {L,R}, directly defined as in (11) and (12) for the one-level case.
By considering a domain hierarchy as in (17) on the two-patch domain Ω ≡ Ω0, and the

sets of isogeometric functions Φℓ at different levels, we arrive at the following definition.

Definition 2. The C1 hierarchical isogeometric space WH with respect to a domain hier-
archy of the two-patch domain Ω, that satisfies (17) with Ω0 = Ω, is defined as

WH = spanW with W =
{
ϕ ∈ Φℓ : supp0ϕ ⊆ Ωℓ ∧ supp0ϕ ̸⊆ Ωℓ+1, ℓ = 0, . . . , N − 1

}
.

The basis functions are then of the same type as in the tensor-product case, only
belonging to different levels, see Figure 2 for an example.

In the remaining part of this section we want to prove that W is indeed a basis of
the C1 hierarchical isogeometric space WH . This requires to verify the properties for
the abstract definition given in Section 3.1, in particular the nestedness of the spaces
Wℓ, and that the one-level C1 bases spanning each Wℓ, for ℓ = 0, . . . , N − 1, satisfy the
hypotheses of Proposition 1, i.e. properties (P1)-(P2). The nestedness of the spaces Wℓ,
ℓ = 0, 1, . . . , N−1, easily follows from definition (16), as stated in the following Proposition.

Proposition 2. Let N ∈ N. The sequence of spaces Wℓ, ℓ = 0, 1, . . . , N −1, is nested, i.e.

W0 ⊂ W1 ⊂ . . . ⊂ WN−1.

11



(a) (b)

(c) (d)

(e) (f)

Figure 2: Example of basis functions of WH on a two-patch domain: on the left basis functions of type
(13), (14) and (15) respectively belonging to level 0 are shown, while on the right analogous basis functions
of level 1 are reported.

Proof. Let ℓ = 0, . . . , N − 2, and ϕ ∈ Wℓ ⊂ Vℓ. By definition (5) the spaces Vℓ are
nested, hence ϕ ∈ Vℓ ⊂ Vℓ+1. Since the spline spaces Sr+1,ℓ

p and Sr,ℓ
p−1 are nested, too,

we have ϕ ◦ F0 ∈ Sr+1,ℓ
p ⊂ Sr+1,ℓ+1

p and ∇ϕ · (d ◦ F0) ∈ Sr,ℓ
p−1 ⊂ Sr,ℓ+1

p−1 , which implies that
ϕ ∈ Wℓ+1.

The locality and compactness of the support of these functions in (P2) comes directly

12



by construction and by the same property for standard B-splines, see (13)-(15) and Fig-
ure 1. The property of local linear independence in (P1) instead is proven in the following
Proposition.

Proposition 3. The set of basis functions Φℓ = Φℓ
Ω(L)∪Φℓ

Ω(R)∪Φℓ
Γ0
∪Φℓ

Γ1
, is locally linearly

independent, for ℓ = 0, . . . , N − 1.

Proof. Since we have to prove the statement for any hierarchical level ℓ, we just remove
the superscript ℓ in the proof to simplify the notation. Recall that the functions in Φ are
linearly independent. It is well known that the functions in ΦΩ(L)∪ΦΩ(R) are locally linearly
independent, as they are (mapped) standard B-splines. Furthermore, it is also well known,
or easy to verify, that each of the following sets of univariate functions is locally linearly
independent

(a) {N r
0,p +N r

1,p, N
r
1,p} ∪ {N r

i,p}i∈I\{0,1},

(b) {N r+1
i,p }i∈I0 ,

(c) {N r
i,p−1}i∈I1 .

We prove that the set of functions Φ is locally linearly independent, which means that, for
any open set Ω̃ ⊂ Ω the functions of Φ that do not vanish in Ω̃ are linearly independent
on Ω̃. Let Ĩ0 ⊂ I0, Ĩ1 ⊂ I1 and Ĩ

(S)
j ⊂ I, j ∈ I \ {0, 1}, S ∈ {L,R}, be the sets of indices

corresponding to those functions ϕΓ0
i , ϕΓ1

i and ϕΩ(S)

j,i , respectively, that do not vanish on Ω̃.
Then the equation∑

i∈Ĩ0

µ0,iϕ
Γ0
i (x) +

∑
i∈Ĩ1

µ1,iϕ
Γ1
i (x) +

∑
S∈{L,R}

∑
j∈I\{0,1}

∑
i∈Ĩ(S)

j

µ
(S)
j,i ϕ

Ω(S)

j,i (x) = 0, x ∈ Ω̃ (18)

has to imply µ0,i = 0 for all i ∈ Ĩ0, µ1,i = 0 for all i ∈ Ĩ1, and µ
(S)
j,i = 0 for all i ∈ Ĩ

(S)
j ,

j ∈ I \ {0, 1}, S ∈ {L,R}. Equation (18) implies that∑
i∈Ĩ0

µ0,i

(
ϕΓ0
i ◦ F(S)

)
(ξ1, ξ2) +

∑
i∈Ĩ1

µ1,i

(
ϕΓ1
i ◦ F(S)

)
(ξ1, ξ2)

+
∑

j∈I\{0,1}

∑
i∈Ĩ(S)

j

µ
(S)
j,i

(
ϕΩ(S)

j,i ◦ F(S)
)
(ξ1, ξ2) = 0,

for (ξ1, ξ2) ∈ Ω̃(S) and S ∈ {L,R}, where Ω̃(S) ⊆ (0, 1)2 are the corresponding parameter

domains for the geometry mappings F(S) such that the closure of Ω̃ is

cl(Ω̃) = cl
(
F(L)(Ω̃(L)) ∪ F(R)(Ω̃(R))

)
.
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By substituting the functions ϕΓ0
i ◦F(S), ϕΓ1

i ◦F(S) and ϕΩ(S)

j,i ◦F(S) by their corresponding
expressions, we obtain∑

i∈Ĩ0

µ0,i

(
N r+1

i,p (ξ2)
(
N r

0,p(ξ1) +N r
1,p(ξ1)

)
+ β(S)(ξ2)

(
N r+1

i,p

)′
(ξ2)

τ1
p
N r

1,p(ξ1)

)
+
∑
i∈Ĩ1

µ1,i

(
α(S)(ξ2)N

r
i,p−1(ξ2)N

r
1,p(ξ1)

)
+

∑
j∈I\{0,1}

∑
i∈Ĩ(S)

j

µ
(S)
j,i N

r
j,p(ξ1)N

r
i,p(ξ2) = 0,

for (ξ1, ξ2) ∈ Ω̃(S) and S ∈ {L,R}, which can be rewritten as(
N r

0,p(ξ1) +N r
1,p(ξ1)

)(∑
i∈Ĩ0

µ0,iN
r+1
i,p (ξ2)

)
+N r

1,p(ξ1)
(τ1
p

∑
i∈Ĩ0

µ0,iβ
(S)(ξ2)

(
N r+1

i,p

)′
(ξ2)

)
(19)

+N r
1,p(ξ1)

(∑
i∈Ĩ1

µ1,iα
(S)(ξ2)N

r
i,p−1(ξ2)

)
+

∑
j∈I\{0,1}

N r
j,p(ξ1)

( ∑
i∈Ĩ(S)

j

µ
(S)
j,i N

r
i,p(ξ2)

)
= 0.

Now, since Ω̃ and Ω̃(S) are open, for each i ∈ Ĩ0 there exists a point (ξ
(S)
1 , ξ

(S)
2 ) ∈ Ω̃(S), with

S ∈ {L,R}, such that ϕΓ0
i does not vanish in a neighborhood Q ⊂ Ω̃(S) of the point. Due

to the fact that the univariate functions N r
0,p+N

r
1,p, N

r
1,p and N

r
j,p, j ∈ I\{0, 1} are locally

linearly independent and that N r
0,p(ξ

(S)
1 ) +N r

1,p(ξ
(S)
1 ) ̸= 0, we get that∑

i∈Ĩ0

µ0,iN
r+1
i,p (ξ2) = 0, for ξ2 such that (ξ

(S)
1 , ξ2) ∈ Q.

This equation and the local linear independence of the univariate functions {N r+1
i,p }i∈Ĩ0

imply that µ0,i = 0. Applying this argument for all i ∈ Ĩ0, we obtain µ0,i = 0, i ∈ Ĩ0, and
the term (19) simplifies to

N r
1,p(ξ1)

(∑
i∈Ĩ1

µ1,iα
(S)(ξ2)N

r
i,p−1(ξ2)

)
+

∑
j∈I\{0,1}

N r
j,p(ξ1)

( ∑
i∈Ĩ(S)

j

µ
(S)
j,i N

r
i,p(ξ2)

)
= 0. (20)

Similarly, we can obtain for each i ∈ Ĩ1∑
i∈Ĩ1

µ1,i α
(S)(ξ2)N

r
i,p−1(ξ2) = 0, for ξ2 such that (ξ

(S)
1 , ξ2) ∈ Q, (21)

with the corresponding points (ξ
(S)
1 , ξ2) ∈ Ω̃ and neighborhoods Q ⊂ Ω̃. Since the function

α(S) is just a linear function which never takes the value zero, see (2), equation (21) implies
that ∑

i∈Ĩ1

µ1,iN
r
i,p−1(ξ2) = 0, for ξ2 such that (ξ

(S)
1 , ξ2) ∈ Q.
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The local linear independence of the univariate functions {N r
i,p−1}i∈Ĩ1 implies as before that

µ1,i = 0, i ∈ Ĩ1, and therefore the term (20) simplifies further to∑
j∈I\{0,1}

N r
j,p(ξ1)

( ∑
i∈Ĩ(S)

j

µ
(S)
j,i N

r
i,p(ξ2)

)
= 0.

Finally, µ
(S)
j,i = 0, i ∈ Ĩ

(S)
j , j ∈ I \ {0, 1}, S ∈ {L,R}, follows directly from the fact that the

functions in ΦΩ(L) ∪ ΦΩ(R) are locally linearly independent.

Finally, we have all what is necessary to prove the main result.

Theorem 1. W is a basis for the C1 hierarchical space WH .

Proof. The result holds because the spaces in Definition 2 satisfy the hypotheses in Propo-
sition 1. In particular, we have the nestedness of the spaces by Proposition 2, and for the
basis functions in Φℓ the local linear independence (P1) by Proposition 3, and the local
and compact support (P2) by their definition in (13)-(15).

Remark 2. In contrast to the here considered C1 basis functions for the case of analysis-
suitable G1 two-patch geometries, the analogous C1 basis functions for the multi-patch
case based on [33] are, in general, not locally linearly dependent. Due to the amount of
notation needed and to their technicality, we do not report here counterexamples, but what
happens, even in some basic domain configurations, is that the basis functions defined in the
vicinity of a vertex may be locally linearly dependent. As a consequence, the construction
of a hierarchical C1 space requires a different approach, whose investigation is beyond the
scope of the present paper.

4. Refinement mask and implementation

In this section we give some details about practical aspects regarding the implemen-
tation of isogeometric methods based on the hierarchical space WH . First, we recall how
the C1 basis functions of one level can be expressed as linear combinations of standard
B-splines. Then, we specify the refinement masks, which allow to write the basis func-
tions of Φℓ as linear combinations of the basis functions of Φℓ+1. The refinement masks
are important, as they are needed, for instance, for knot insertion algorithms and some
operators in multilevel preconditioning. Finally, we focus on the implementation of the
hierarchical space in the open Octave/Matlab software GeoPDEs [53], whose principles can
be applied almost identically to any other isogeometric code. The implementation employs
the refinement masks for the evaluation of basis functions too.

4.1. Representation of the basis with respect to Sr
p ⊗ Sr

p

We describe the strategy shown in [30] to represent the spline functions of Section 2.2,

namely ϕΩ(S′)
i,j ◦F(S), ϕΓ0

i ◦F(S) and ϕΓ1
i ◦F(S), S ∈ {L,R}, with respect to the spline space
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Sr
p ⊗ Sr

p, using a vectorial notation. Let us first introduce the vectors of functions N0, N1

and N2, given by

N0(ξ1, ξ2) = [N r
0,p(ξ1)N

r
j,p(ξ2)]j∈I, N1(ξ1, ξ2) = [N r

1,p(ξ1)N
r
j,p(ξ2)]j∈I,

and
N2(ξ1, ξ2) = [N r

i,p(ξ1)N
r
j,p(ξ2)]

T
i∈I\{0,1},j∈I,

which represent the whole basis of Sr
p ⊗ Sr

p. Let us also introduce, the vectors of functions

ϕΓ0
(x) = [ϕΓ0

i (x)]i∈I0 , ϕΓ1
(x) = [ϕΓ1

i (x)]i∈I1 ,

ϕΩ(S)(x) = [ϕΩ(S)

i,j (x)]i∈I\{0,1}; j∈I for S ∈ {L,R},

and finally, for S ∈ {L,R}, the vectors of functions ϕ̂
(S)

Γ0
, ϕ̂

(S)

Γ1
, ϕ̂

(S)

Ω(S) , given by

ϕ̂
(S)

Γ0
(ξ1, ξ2) = [ϕΓ0

i ◦ F(S)(ξ1, ξ2)]i∈I0 , ϕ̂
(S)

Γ1
(ξ1, ξ2) = [ϕΓ1

i ◦ F(S)(ξ1, ξ2)]i∈I1 ,

ϕ̂
(S)

Ω(S)(ξ1, ξ2) = [ϕΩ(S)

i,j ◦ F(S)(ξ1, ξ2)]i∈I\{0,1}; j∈I.

Since the basis functions ϕΩ(S)

i,j are just the “standard” isogeometric functions, the spline

functions ϕ̂
(S)

Ω(S)(ξ1, ξ2) automatically belong to the basis of the spline space Sr
p ⊗ Sr

p, while

an analysis of the basis functions in ϕ̂
(S)

Γ0
(ξ1, ξ2) and ϕ̂

(S)

Γ1
(ξ1, ξ2), leads to the following

representation ϕ̂
(S)

Γ0
(ξ1, ξ2)

ϕ̂
(S)

Γ1
(ξ1, ξ2)

ϕ̂
(S)

Ω(S)(ξ1, ξ2)

 =

 B̂ B̃(S) 0
0 B(S) 0
0 0 In(n−2)

 N0(ξ1, ξ2)
N1(ξ1, ξ2)
N2(ξ1, ξ2)

 , S ∈ {L,R}, (22)

where Im denotes the identity matrix of dimension m, and the other blocks of the matrix
take the form B̂ = [̂bi,j]i∈I0,j∈I, B̃

(S) = [̃b
(S)
i,j ]i∈I0,j∈I, and B

(S) = [b
(S)
i,j ]i∈I1,j∈I. In fact, these

are sparse matrices, and by defining the index sets

J0,i = {j ∈ I : supp(N r
j,p) ∩ supp(N r+1

i,p ) ̸= ∅}, for i ∈ I0,

and
J1,i = {j ∈ I : supp(N r

j,p) ∩ supp(N r
i,p−1) ̸= ∅}, for i ∈ I1,

it can be seen that the possible non-zero entries are limited to b̂i,j, b̃
(S)
i,j , i ∈ I0, j ∈ J0,i,

and b
(S)
i,j , i ∈ I1, j ∈ J1,i, respectively.

For the sake of completeness, we explain how to compute these coefficients as suggested
in [30]. Let us denote by ζm, with m ∈ I, the Greville abscissae of the univariate spline

space Sr
p. Then, for each S ∈ {L,R} and for each i ∈ I0 or i ∈ I1, the linear factors b̂i,j,
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b̃
(S)
i,j , j ∈ J0,i, and b

(S)
i,j , j ∈ J1,i, can be obtained by solving the following systems of linear

equations (
ϕΓ0
i ◦ F(L)

)
(0, ζm) =

∑
j∈J0,i

b̂i,jN
r
j,p(ζm), m ∈ J0,i,

τ1∂1

(
ϕΓ0
i ◦ F(S)

)
(0, ζm)

p
+
(
ϕΓ0
i ◦ F(S)

)
(0, ζm) =

∑
j∈J0,i

b̃
(S)
i,j N

r
j,p(ζm), m ∈ J0,i,

and
τ1∂1

(
ϕΓ1
i ◦ F(L)

)
(0, ζm)

p
=
∑
j∈J1,i

b
(S)
i,j N

r
j,p(ζm), m ∈ J1,i,

respectively, see [30] for more details. Note that the coefficients b̂i,j, i ∈ I0, are exactly the

spline coefficients of the B-spline N r+1
j,p for the spline representation with respect to the

space Sr
p, and can also be computed by simple knot insertion.

4.2. Refinement masks

Let us recall the notations and assumptions from Section 3.2 for the multi-level setting
of the spline spaces Wℓ, ℓ = 0, 1, . . . , N − 1, where the upper index ℓ refers to the specific
level of refinement. We will use the same upper index in an analogous manner for further
notations, which have been mainly introduced in Sections 2.2 and 4.1 for the one-level case,

such as for the vectors of functions N0, N1, N2 and ϕ̂
(S)

Γ0
, ϕ̂

(S)

Γ1
, ϕ̂

(S)

Ω(S) , S ∈ {L,R}, and for

the transformation matrices B̂, B̃(S) and B(S), S ∈ {L,R}.
Let R+ be the set of non-negative real numbers. Based on basic properties of B-splines,

there exist refinement matrices (refinement masks) Λr,ℓ+1
p ∈ Rnℓ×nℓ+1

+ , Λr+1,ℓ+1
p ∈ Rnℓ

0×nℓ+1
0

+

and Λr,ℓ+1
p−1 ∈ Rnℓ

1×nℓ+1
1

+ such that

[N r,ℓ
i,p (ξ)]i∈Iℓ = Λr,ℓ+1

p [N r,ℓ+1
i,p (ξ)]i∈Iℓ+1 ,

[N r+1,ℓ
i,p (ξ)]i∈Iℓ0 = Λr+1,ℓ+1

p [N r+1,ℓ+1
i,p (ξ)]i∈Iℓ+1

0
,

and
[N r,ℓ

i,p−1(ξ)]i∈Iℓ1 = Λr,ℓ+1
p−1 [N r,ℓ+1

i,p−1 (ξ)]i∈Iℓ+1
1
.

These refinement matrices are banded matrices with a small bandwidth. Furthermore,
using an analogous notation to Section 4.1 for the vectors of functions, the refinement mask
between the tensor-product spaces Sr,ℓ

p ⊗ Sr,ℓ
p and Sr,ℓ+1

p ⊗ Sr,ℓ+1
p is obtained by refining in

each parametric direction as a Kronecker product, and can be written in block-matrix form
as Nℓ

0(ξ1, ξ2)
Nℓ

1(ξ1, ξ2)
Nℓ

2(ξ1, ξ2)

 = (Λr,ℓ+1
p ⊗Λr,ℓ+1

p )

 Nℓ+1
0 (ξ1, ξ2)

Nℓ+1
1 (ξ1, ξ2)

Nℓ+1
2 (ξ1, ξ2)

 =

 Θℓ+1
00 Θℓ+1

01 Θℓ+1
02

0 Θℓ+1
11 Θℓ+1

12

0 0 Θℓ+1
22

 Nℓ+1
0 (ξ1, ξ2)

Nℓ+1
1 (ξ1, ξ2)

Nℓ+1
2 (ξ1, ξ2)

 .
(23)
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Note that in case of dyadic refinement (as considered in this work), we have Θℓ+1
02 = 0.

The following Proposition provides the relation between basis functions of two consecu-
tive levels, which can be interpreted as follows: while the refinement of standard B-splines
of level ℓ of course gives B-splines of level ℓ+1, by refining basis functions of level ℓ of the
other two types we obtain functions of the respective type and standard B-splines of level
ℓ+ 1.

Proposition 4. It holds that
ϕℓ

Γ0
(x)

ϕℓ
Γ1
(x)

ϕℓ
Ω(L)(x)

ϕℓ
Ω(R)(x)

 =


Λr+1,ℓ+1

p 0 B̃(L),ℓΘℓ+1
12 B̃(R),ℓΘℓ+1

12

0 1
2
Λr,ℓ+1

p−1 B(L),ℓΘℓ+1
12 B(R),ℓΘℓ+1

12

0 0 Θℓ+1
22 0

0 0 0 Θℓ+1
22




ϕℓ+1
Γ0

(x)

ϕℓ+1
Γ1

(x)

ϕℓ+1
Ω(L)(x)

ϕℓ+1
Ω(R)(x)

 . (24)

Proof. The idea of the proof is based on first writing the basis functions of level ℓ in terms
of standard B-splines of the same level by using (22), and then of level ℓ+1 by (23). Then,
the same functions are written in terms of B-splines of level ℓ + 1, using the expressions
given by (13)-(15). Comparing the two expressions, and using again (13)-(15), we finally
show that the result is a combination of basis functions of level ℓ+ 1.

We first show the refinement relation for the functions ϕℓ
Γ0
. For this, let us consider the

corresponding spline functions ϕ̂
(S),ℓ

Γ0
, S ∈ {L,R}. On the one hand, using first relation (22)

and then relation (23) with the fact that Θℓ+1
02 = 0, we obtain

ϕ̂
(S),ℓ

Γ0
(ξ1, ξ2) =

[
B̂ℓ B̃(S),ℓ 0

] [
Nℓ

0(ξ1, ξ2) Nℓ
1(ξ1, ξ2) Nℓ

2(ξ1, ξ2)
]T

=
[
B̂ℓ B̃(S),ℓ 0

] Θℓ+1
00 Θℓ+1

01 0
0 Θℓ+1

11 Θℓ+1
12

0 0 Θℓ+1
22

 Nℓ+1
0 (ξ1, ξ2)

Nℓ+1
1 (ξ1, ξ2)

Nℓ+1
2 (ξ1, ξ2)

 ,
which is equal to[

B̂ℓΘℓ+1
00 B̂ℓΘℓ+1

01 + B̃(S),ℓΘℓ+1
11

] [ Nℓ+1
0 (ξ1, ξ2)

Nℓ+1
1 (ξ1, ξ2)

]
+ B̃(S),ℓΘℓ+1

12 Nℓ+1
2 (ξ1, ξ2). (25)

On the other hand, from (14) the functions ϕ̂
(S),ℓ

Γ0
possess the form

ϕ̂
(S),ℓ

Γ0
(ξ1, ξ2) =

[
N r+1,ℓ

i,p (ξ2)
]
i∈Iℓ0

(
N r,ℓ

0,p(ξ1)+N
r,ℓ
1,p(ξ1)

)
+
τ ℓ1
p
β(S)(ξ2)

[(
N r+1,ℓ

i,p

)′
(ξ2)

]
i∈Iℓ0

N r,ℓ
1,p(ξ1).

By refining the B-spline functions N r+1,ℓ+1
i,p (ξ2), we obtain

ϕ̂
(S),ℓ

Γ0
(ξ1, ξ2) = Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(
N r,ℓ

0,p(ξ1) +N r,ℓ
1,p(ξ1)

)
+
τ ℓ1
p
β(S)(ξ2)Λ

r+1,ℓ+1
p

[(
N r+1,ℓ+1

i,p

)′
(ξ2)

]
i∈Iℓ+1

0

N r,ℓ
1,p(ξ1).
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Then, refining the B-spline functions N r,ℓ
0,p(ξ1) +N r,ℓ

1,p(ξ1) and N
r,ℓ
1,p(ξ1) leads to

ϕ̂
(S),ℓ

Γ0
(ξ1, ξ2) = Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(∑
j∈Iℓ+1 λ

ℓ+1
0,j N

r,ℓ+1
j,p (ξ1) +

∑
j∈Iℓ+1 λ

ℓ+1
1,j N

r,ℓ+1
j,p (ξ1)

)
+
τ ℓ1
p
β(S)(ξ2)Λ

r+1,ℓ+1
p

[(
N r+1,ℓ+1

i,p

)′
(ξ2)

]
i∈Iℓ+1

0

∑
j∈Iℓ+1

λℓ+1
1,j N

r,ℓ+1
j,p (ξ1),

where λℓ+1
i,j are the entries of the refinement matrix Λr,ℓ+1

p . Since we refine dyadically, we

have λℓ+1
0,0 = 1, λℓ+1

0,1 = 1
2
, λℓ+1

1,0 = 0, λℓ+1
1,1 = 1

2
and τ ℓ+1

1 =
τℓ1
2
, and we get

ϕ̂
(S),ℓ

Γ0
(ξ1, ξ2) =

(
Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(
N r,ℓ+1

0,p (ξ1) +N r,ℓ+1
1,p (ξ1)

)
+
τ ℓ+1
1

p
β(S)(ξ2)Λ

r+1,ℓ+1
p

[(
N r+1,ℓ+1

i,p

)′
(ξ2)

]
i∈Iℓ+1

0

N r,ℓ+1
1,p (ξ1)

)
+

(
Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(∑
j∈Iℓ+1\{0,1}(λ

ℓ+1
0,j + λℓ+1

1,j )N
r,ℓ+1
j,p (ξ1)

)
+
τ ℓ1
p
β(S)(ξ2)Λ

r+1,ℓ+1
p

[(
N r+1,ℓ+1

i,p

)′
(ξ2)

]
i∈Iℓ+1

0

∑
j∈Iℓ+1\{0,1}

λℓ+1
1,j N

r,ℓ+1
j,p (ξ1)

)
,

which is equal to

ϕ̂
(S),ℓ

Γ0
(ξ1, ξ2) = Λr+1,ℓ+1

p ϕ̂
(S),ℓ+1

Γ0
(ξ1, ξ2)

+

(
Λr+1,ℓ+1

p

[
N r+1,ℓ+1

i,p (ξ2)
]
i∈Iℓ+1

0

(∑
j∈Iℓ+1\{0,1}(λ

ℓ+1
0,j + λℓ+1

1,j )N
r,ℓ+1
j,p (ξ1)

)
(26)

+
τ ℓ1
p
β(S)(ξ2)Λ

r+1,ℓ+1
p

[(
N r+1,ℓ+1

i,p

)′
(ξ2)

]
i∈Iℓ+1

0

∑
j∈Iℓ+1\{0,1}

λℓ+1
1,j N

r,ℓ+1
j,p (ξ1)

)
.

By analyzing the two equal value terms (25) and (26) with respect to the spline represen-
tation in ξ1-direction formed by the B-splines N r,ℓ+1

j,p (ξ1), j ∈ I, one can observe that the
first terms in both equations only contain these B-splines with index j = 0, 1, while the
second terms only contain these B-splines with indices j ̸= 0, 1. Therefore, both first terms
and both second terms each must coincide. This leads to

ϕ̂
(S),ℓ

Γ0
(ξ1, ξ2) = Λr+1,ℓ+1

p ϕ̂
(S),ℓ+1

Γ0
(ξ1, ξ2) + B̃(S),ℓΘℓ+1

12 Nℓ+1
2 (ξ1, ξ2),

which directly implies the refinement relation for the functions ϕℓ
Γ0
.

The refinement for the functions ϕℓ
Γ1

can be proven similarly. Considering the spline

functions ϕ̂
(S),ℓ

Γ1
, S ∈ {L,R}, we get, on the one hand, by using relations (22) and (23) and
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the fact that Θℓ+1
02 = 0

ϕ̂
(S),ℓ

Γ1
(ξ1, ξ2) =

[
0 B(S),ℓ 0

] [
Nℓ

0(ξ1, ξ2) Nℓ
1(ξ1, ξ2) Nℓ

2(ξ1, ξ2)
]T

=
[
0 B(S),ℓ 0

]  Θℓ+1
00 Θℓ+1

01 0
0 Θℓ+1

11 Θℓ+1
12

0 0 Θℓ+1
22

 Nℓ+1
0 (ξ1, ξ2)

Nℓ+1
1 (ξ1, ξ2)

Nℓ+1
2 (ξ1, ξ2)


= B(S),ℓΘℓ+1

11 Nℓ+1
1 (ξ1, ξ2) +B(S),ℓΘℓ+1

12 Nℓ+1
2 (ξ1, ξ2). (27)

On the other hand, from (15) the functions ϕ̂
(S),ℓ

Γ1
can be expressed as

ϕ̂
(S),ℓ

Γ1
(ξ1, ξ2) = α(S)(ξ2)

[
N r,ℓ

i,p−1(ξ2)
]
i∈Iℓ1

N r,ℓ
1,p(ξ1),

and after refining the B-spline functions N r,ℓ
1,p(ξ1) and N

r,ℓ
i,p−1(ξ2), i ∈ Iℓ1 we obtain that this

is equal to

ϕ̂
(S),ℓ

Γ1
(ξ1, ξ2) = α(S)(ξ2) Λ

r,ℓ+1
p−1

[
N r,ℓ+1

i,p−1 (ξ2)
]
i∈Iℓ+1

1

∑
j∈Iℓ+1

λℓ+1
1,j N

r,ℓ+1
j,p (ξ1),

where λℓ+1
i,j are again the entries of the refinement matrix Λr,ℓ+1

p . Recalling that λℓ+1
1,0 = 0

and λℓ+1
1,1 = 1

2
, we get

ϕ̂
(S),ℓ

Γ1
(ξ1, ξ2) = α(S)(ξ2) Λ

r,ℓ+1
p−1

[
N r,ℓ+1

i,p−1 (ξ2)
]
i∈Iℓ+1

1

(1
2
N r,ℓ+1

1,p (ξ1) +
∑

j∈Iℓ+1\{0,1}

λℓ+1
1,j N

r,ℓ+1
j,p (ξ1)

)
=

1

2
Λr,ℓ+1

p−1 ϕ̂
(S),ℓ+1

Γ1
(ξ1, ξ2) + α(S)(ξ2) Λ

r,ℓ+1
p−1

[
N r,ℓ+1

i,p−1 (ξ2)
]
i∈Iℓ+1

1

∑
j∈Iℓ+1\{0,1}

λℓ+1
1,j N

r,ℓ+1
j,p (ξ1).

(28)

Considering the two equal value terms (27) and (28), one can argue as for the case of the

functions ϕ̂
(S),ℓ

Γ0
, that both first terms and both second terms each must coincide. This

implies

ϕ̂
(S),ℓ

Γ1
(ξ1, ξ2) =

1

2
Λr,ℓ+1

p−1 ϕ̂
(S),ℓ+1

Γ1
(ξ1, ξ2) +B(S),ℓΘℓ+1

12 Nℓ+1
2 (ξ1, ξ2),

which finally shows the refinement relation for the functions ϕℓ
Γ1
.

Finally, the relation for the functions ϕℓ
Ω(S) , S ∈ {L,R}, directly follows from rela-

tion (23), since they correspond to “standard” B-splines.

4.3. Details about the implementation

The implementation of GeoPDEs is based on two main structures: the mesh, that
contains the information related to the computational geometry and the quadrature, and
that did not need any change; and the space, with the necessary information to evaluate
the basis functions and their derivatives. The new implementation was done in two steps:
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we first introduced the space of C1 basis functions of one single level, as in Section 2.2,
and then we added the hierarchical construction.

For the space of one level, we created a new space structure that contains the numbering
for the basis functions of the three different types, namely ΦΩ(S) ,ΦΓ0 and ΦΓ1 . Note that the
number of basis functions of each type is easily obtained from (11)-(12) and the cardinality
of the sets of indices I, I0 and I1. The evaluation of the basis functions, and also matrix
assembly, is performed using the representation of C1 basis functions in terms of standard
tensor-product B-splines, as in Section 4.1. Indeed, one can first assemble the matrix for
tensor-product B-splines, and then multiply on each side this matrix by the same matrix
given in (22), in the form

K
(S)
W = B(S)K

(S)
S (B(S))⊤, with B(S) =

 B̂ B̃(S) 0
0 B(S) 0
0 0 In(n−2)

 , for S = L,R,

where K
(S)
S represents the stiffness matrix for the standard tensor-product B-spline space

on the patch Ω(S), and K
(S)
W is the contribution to the stiffness matrix for the W space

from the same patch. Obviously, the same can be done at the element level, by restricting
the matrices to suitable submatrices using the indices of non-vanishing functions on the
element.

Once the C1 space of one level is in place, the next step is the implementation of
the hierarchical C1 space, which can be done following [18]. As explained in that paper,
although the details were given for standard hierarchical B-splines, the same data structures
and algorithms are valid for the abstract construction of hierarchical splines from [20], that
we summarized in Section 3.1. As before, the structure for the hierarchical mesh does not
differ from the case of hierarchical B-splines, and the differences are in the space structure.

For the space, it is first necessary to complete the space structure of one single level, that
we have just described, with some functionality to compute the support of a given basis
function, as explained in [18, Section 5.1]. This can be easily done from the analogous
functions for B-splines combined with the knowledge of the matrix B(S). Second, the
hierarchical structures are constructed following the description in the same paper, except
that for the evaluation of basis functions, and in particular for matrix assembly, we make
use of the refinement masks of Section 4.2. The support functionality contains all the
necessary information to compute the set of active functions when applying the refinement
algorithms in [18], while the refinement masks also give us the two-level relation, stored in
the matrix Cℓ+1

ℓ of that paper, that is used both during matrix assembly and to compute
the refinement matrix after enlargement of the subdomains.

5. Numerical examples

We present now some numerical examples to show the good performance of the hier-
archical C1 spaces for their use in combination with adaptive methods. We consider two
different kinds of numerical examples: the first three tests are run for Poisson problems
with an automatic adaptive scheme, while in the last numerical test we solve the bilaplacian
problem, with a pre-defined refinement scheme.
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5.1. Poisson problem

The first three examples are tests on the Poisson equation{
−∆u = f in Ω,

u = g on ∂Ω.

The goal is to show that using the C1 space basis does not spoil the properties of the
local refinement, and that the behavior is similar to the one obtained using spaces with
C0 continuity across the interfaces. The employed isogeometric algorithm is based on the
adaptive loop (see, e.g., [6])

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

In particular, for the examples we solve the variational formulation of the problem imposing
the Dirichlet boundary condition by Nitsche’s method, and the problem is to find uh ∈ WH

such that for every test function vh ∈ WH it holds∫
Ω

∇uh · ∇vh −
∫
ΓD

∂uh
∂n

vh −
∫
ΓD

uh
∂vh
∂n

+

∫
ΓD

γ

hQ
uhvh =

∫
Ω

fvh −
∫
ΓD

g
∂vh
∂n

+

∫
ΓD

γ

hQ
gvh,

where hQ is the local element size, and the penalization parameter is chosen as γ = 10(p+1),
with p the degree. The error estimate is computed with a residual-based estimator, given
by

ε(uh) =

(∑
Q∈M

ε2Q(uh)

)1/2

, with ε2Q(uh) =

(
h2Q

∫
Q

|f +∆uh|2 + hQ

∫
∂Q∩Γ

s
∂uh
∂nΓ

{2
)1/2

,

where the sum is over all the elements of the mesh M, nΓ is the unit normal vector of the
interface Γ, and J·K denotes the jump across the interface. Note that for C1 functions the
jump term does not need to be computed. The marking of the elements at each iteration
is done using Dörfler’s strategy (when not stated otherwise, we set the marking parameter
equal to 0.75). The refinement step of the loop dyadically refines all the marked elements.
Although optimal convergence can be only proved if we refine using a refinement strategy
that guarantees that meshes are admissible [9], previous numerical results show also a good
behavior of non-admissible meshes [6].

For each of the three examples we report the results for degrees p = (3, 3), (4, 4), with C1

smoothness across the interface, and with a regularity r equal to degree minus two within
the single patches. We compare the results for the adaptive scheme with those obtained by
refining uniformly, to show the benefits of local refinement. We also compare them with
the ones obtained by employing the same adaptive scheme for hierarchical spaces with
C0 continuity across the interface, while the same regularity within the patches as above
is kept, to validate the optimal convergence of the adaptive scheme with C1 continuity
spaces.

22



Example 1. For the first numerical example we consider the classical L-shaped domain
[−1, 1]2 \ (0, 1)× (−1, 0) defined by two patches as depicted in Figure 3(a), and the right-
hand side f and the boundary condition g are chosen such that the exact solution is given
by

u(ρ, θ) = ρ
4
3 sin

(
4

3
θ

)
,

with ρ and θ the polar coordinates. As it is well known, the exact solution has a singularity
at the reentrant corner.

(a) Domain used in the Examples 1 and 4. (b) Domain used in the Examples 2 and 3.

Figure 3: The two domains used in the numerical examples.

We start the adaptive simulation with a coarse mesh of 4×4 elements on each patch, and
we use Dörfler’s parameter equal to 0.90 for the marking of the elements. The convergence
results are presented in Figure 4. It can be seen that the error in H1 semi-norm and the
estimator converge with the expected rate, in terms of the degrees of freedom, both for
the C1 and the C0 discretization, and that this convergence rate is better than the one
obtained with uniform refinement. The effectivity index of the residual estimator, that is,
the ratio between the estimated error and the exact error is around 10, as already observed
in previous works [6, 17]. Moreover, the errors for the C1 and the C0 discretizations are very
similar, although slightly better for the C1 case, which maintains the optimal convergence
rate. Note that, since the spaces only differ near the interface, the difference in the error
between the two discretizations is very small.

We also show in Figure 5 the final meshes obtained with the different discretizations. It
is clear that the adaptive method correctly refines the mesh in the vicinity of the reentrant
corner, where the singularity occurs, and the refinement gets more local with higher degree.

Example 2. In the second example the data of the problem are chosen in such a way that
the exact solution is

u(x, y) = (−120x+ x2 − 96y − 8xy + 16y2)12/5 cos(πy/20),
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Figure 4: Error in H1 semi-norm and estimator for Example 1 with p = (3, 3) and p = (4, 4), compared
with C0 case (left) and with global refinement case (right).

defined on the domain shown in Figure 3(b). The geometry of the domain is given by
two bicubic Bézier patches, and the control points are chosen following the algorithm in
[31], in such a way that the geometry is given by an analysis-suitable G1 parametrization,
see Appendix A for details. Note that we have chosen the solution such that it has a
singularity along the interface. In this example we start the adaptive simulation with
a coarse mesh of 8 × 8 elements on each patch. We present the convergence results in
Figure 6. As before, both the (relative) error and the estimator converge with optimal
rate, and both for the C0 and the C1 discretizations, with slightly better result for the C1

spaces. We note that, since the singularity occurs along a line, optimal order of convergence
for higher degrees cannot be obtained without anisotropic refinement, as it was observed
in the numerical examples in [16, Section 4.6].

We also present in Figure 7 the finest meshes obtained with the different discretizations,
and it can be observed that the adaptive method correctly refines near the interface, where
the singularity occurs.

Example 3. We consider the same domain as in the previous example, and the right-hand
side and the boundary condition are chosen in such a way that the exact solution is given
by

u(x, y) = (y − 1.7)12/5 cos(x/4).

In this case the solution has a singularity along the line y = 1.7, that crosses the interface
and is not aligned with the mesh.

The convergence results, that are presented in Figure 8, are very similar to the ones
of the previous example, and show optimal convergence rates for both the C1 and the C0

discretizations. As before, we also present in Figure 9 the finest meshes obtained with the
different discretizations. It is evident that the adaptive algorithm successfully refines along
the singularity line.
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(a) p = (3, 3), C0 functions on the
interface: NDOF=1648.

(b) p = (3, 3), C1 functions on the
interface: NDOF=1623.

(c) p = (4, 4), C0 functions on the
interface: NDOF=833.

(d) p = (4, 4), C1 functions on the
interface: NDOF=833.

Figure 5: Hierarchical meshes for Example 1, with p = (3, 3) and p = (4, 4). Apparently the meshes are
the same for the C0 and C1 case, but there are some differences in the finest levels.

Condition number. To show that C1 continuity does not reduce the performance of
the method compared to C0 continuity, we have also analyzed the condition number of
the corresponding stiffness matrices. In Figure 10 we show the condition number of the
stiffness matrix for the numerical tests of Example 1 and Example 2. The reported results
correspond, both for the C0 and the C1 case, to the solutions obtained by applying the
inexpensive diagonal scaling as preconditioner. The results show a good behavior of the
C1 spaces, with a condition number very similar to the C0 ones. Note that, due the local
nature of the refinement, in many cases the condition number may remain low even without
using a more suitable preconditioner.
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Figure 6: Relative error in H1 semi-norm and corresponding estimator for Example 2 with p = (3, 3) and
p = (4, 4), compared with C0 case (left) and with global refinement case (right).

5.2. Bilaplacian problem

In the last example we consider the solution of the bilaplacian problem, given in strong
form by 

∆2u = f in Ω,
u = g1 on ∂Ω,

∂u

∂n
= g2 on ∂Ω.

It is well known that the weak formulation of the problem in direct form requires the trial
and test functions to be in H2(Ω). For the discretization with a Galerkin method, this
can be obtained if the discrete basis functions are C1, and this is the main advantage of
the construction of the C1 hierarchical basis. The solution of the problem with C0 basis
functions, instead, requires to use a mixed variational formulation or some sort of weak
enforcement of the C1 continuity across the interface, like with a Nitsche’s method.

Example 4. For the last numerical test we solve the bilaplacian problem in the L-shaped
domain as depicted in Figure 3(a). The right-hand side and the boundary conditions are
chosen in such a way that the exact solution is given, in polar coordinates (ρ, θ), by

u(ρ, θ) = ρz+1(C1 F1(θ)− C2 F2(θ)),

where value in the exponent is chosen equal to z = 0.544483736782464, which is the
smallest positive solution of

sin(zω) + z sin(ω) = 0,

with ω = 3π/2 for the L-shaped domain, see [23, Section 3.4]. The other terms are given
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(a) p = (3, 3), C0 functions on the
interface: NDOF=16310

(b) p = (3, 3), C1 functions on the
interface: NDOF=15741

(c) p = (4, 4), C0 functions on the
interface: NDOF=6357

(d) p = (4, 4), C1 functions on the
interface: NDOF=7347

Figure 7: Hierarchical meshes for Example 2, with p = (3, 3) and p = (4, 4).

by

C1 =
1

z − 1
sin

(
3(z − 1)π

2

)
− 1

z − 1
sin

(
3(z + 1)π

2

)
,

C2 = cos

(
3(z − 1)π

2

)
− cos

(
3(z + 1)π

2

)
,

F1(θ) = cos((z − 1)θ)− cos((z + 1)θ),

F2(θ) =
1

z − 1
sin((z − 1)θ)− 1

z + 1
sin((z + 1)θ).

The exact solution has a singularity at the reentrant corner, and it is the same kind of
singularity that one would encounter for the Stokes problem.

For our numerical test we start with a coarse mesh of 8 × 8 elements on each patch.
In this case, instead of refining the mesh with an adaptive algorithm we decided to refine
following a pre-defined strategy: at each refinement step, a region surrounding the reen-
trant corner, and composed of 4× 4 elements of the finest level, is marked for refinement,

27



103 104

10−3

10−2

10−1

100

101

1

2

1

1.5

NDOF

p = 3, C1 (error) (estimator)

p = 3, C0 (error) (estimator)

p = 4, C1 (error) (estimator)

p = 4, C0 (error) (estimator)

103 104 105

10−3

10−2

10−1

100

101

1

2

1

1.5

NDOF

p = 3, adap. (error) (estimator)

p = 3, unif. (error) (estimator)

p = 4, adap. (error) (estimator)

p = 4, unif. (error) (estimator)

Figure 8: Error in H1 semi-norm and estimator for Example 3 with p = (3, 3) and p = (4, 4), compared
with C0 case (left) and with global refinement case (right).

see Figure 11(a). We remark that the implementation of the adaptive algorithm with a
residual-based estimator would require computing fourth order derivatives at the quadra-
ture points, and several jump terms across the interface, that is beyond the scope of the
present work.

In Figure 11(b) we show the error obtained in H2 semi-norm when computing with C1

hierarchical splines of degrees 3 and 4 and regularity r equal to degree minus two within the
single patches, for the local refinement described above, and with C1 isogeometric splines
of the same degree and inner regularity r with global uniform refinement. It is obvious
that the hierarchical spaces perform much better, as we obtain a lower error with many
less degrees of freedom. In this case we do not see a big difference between the results
obtained for degrees 3 and 4, but this is caused by the fact that we are refining by hand,
and the asymptotic regime has not been reached yet.

6. Conclusions

We presented the construction of C1 hierarchical functions on two-patch geometries and
their application in isogeometric analysis. After briefly reviewing the characterization of
C1 tensor-product isogeometric spaces, we investigated the properties needed to effectively
use these spaces as background machinery for the hierarchical spline model. In particular,
the local linear independence of the one-level basis functions and the nested nature of the
considered C1 splines spaces was proved. We also introduced an explicit expression of
the refinement masks under dyadic refinement, that among other things is useful for the
practical implementation of the hierarchical basis functions. The numerical examples show
that optimal convergence rates are obtained by the local refinement scheme for second
and fourth order problems, even in presence of singular solutions. In future work we
plan to generalize the construction to the multi-patch domain setting of [33], but this will
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(a) p = (3, 3), C0 functions on the
interface: NDOF=8388

(b) p = (3, 3), C1 functions on the
interface: NDOF=8336

(c) p = (4, 4), C0 functions on the
interface: NDOF=6356

(d) p = (4, 4), C1 functions on the
interface: NDOF=6601

Figure 9: Hierarchical meshes for Example 3, with p = (3, 3) and p = (4, 4).

require a different strategy with respect to the approach presented in this work since the
basis functions of a single level may be locally linearly dependent in the neighborhood of
extraordinary points. A possible approach is to express the single level basis functions as
in the setting of spline manifolds [48], and define different refinement strategies for marked
elements depending on the type of chart they belong to.
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Figure 11: Hierarchical mesh (a) and comparison of the results obtained by local refinement and C1 space
with global refinement (b) on Example 4.

Appendix A. Geometry of the curved domain

The geometry in Fig.3(a) for the examples in Section 5 is generated by following the
algorithm in [31]. This technique is based on solving a quadratic minimization problem with

linear side constraints, and constructs from an initial multi-patch geometry F̃ an analysis-
suitable G1 multi-patch parameterization F possessing the same boundary, vertices and
first derivatives at the vertices as F̃.

In our case, the initial geometry F̃ is given by the two patch parameterization consisting
of two quadratic Bézier patches F̃(L) and F̃(R) (i.e. without any internal knots) with the

control points c̃
(S)
i,j , S ∈ {L,R}, specified in Table A.1. This parameterization is not
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analysis-suitable G1.

c̃
(L)
i,j c̃

(R)
i,j

(0, 0) (−3, 1/3) (−6,−2) (0, 0) (13/5, 1) (6,−1)
(−2, 5/2) (−13/4, 53/20) (−5, 2) (−2, 5/2) (39/20, 3) (4, 11/3)
(0, 6) (−3, 17/3) (−7, 8) (0, 6) (3, 5) (11/2, 13/2)

Table A.1: Control points c̃
(S)
i,j , S ∈ {L,R}, of the initial non-analysis-suitable G1 two-patch parameteri-

zation F̃.

Applying the algorithm in [31] (by using Mathematica), we construct an analysis-
suitable G1 two-patch geometry F with bicubic Bézier patches F(L) and F(R). Their control
points c

(S)
i,j , S ∈ {L,R}, are given in Table A.2, where for presenting some of their coordi-

nates the notations D = 99170 and

C1 = 333939/D, C2 = 47387036/(22.5D),
C3 = −15800567/(5D), C4 = 242128576/(67.5D),
C5 = 57452423/(45D), C6 = 81952942/(22.5D),

are used.

c
(L)
i,j

(0, 0) (−2, 2/9) (−4,−4/9) (−6,−2)
(−4/3, 5/3) (−127/50, 44/25) (−98/25, 37/25) (−16/3, 2/3)
(−4/3, 11/3) (C3, C4) (−89/25, 189/50) (−17/3, 4)

(0, 6) (−2, 52/9) (−13/3, 58/9) (−7, 8)

c
(R)
i,j

(0, 0) (26/15, 2/3) (56/15, 1/3) (6,−1)
(−4/3, 5/3) (C1, C2) (87/25, 113/50) (14/3, 19/9)
(−4/3, 11/3) (C5, C6) (29/10, 4) (9/2, 83/18)

(0, 6) (2, 16/3) (23/6, 11/2) (11/2, 13/2)

Table A.2: Control points c
(S)
i,j , S ∈ {L,R}, of the resulting analysis-suitable G1 two-patch parameteriza-

tion F.
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List of symbols

Spline space

p Spline degree, p ≥ 3
r Spline regularity, 1 ≤ r ≤ p− 2
Ξr
p Open knot vector

τi internal breakpoints of knot vector Ξr
p

T Ordered set of internal breakpoints τi
k Number of different internal breakpoints of knot vector Ξr

p

Srp Univariate spline space of degree p and regularity r on [0, 1] over knot
vector Ξr

p

Sr+1
p , Srp−1 Univariate spline spaces of higher regularity and lower degree, re-

spectively, defined from same internal breakpoints as Srp
Nr

i,p, N
r+1
i,p , Nr

i,p−1 B-splines of spline spaces Srp, Sr+1
p and Srp−1, respectively

n, n0, n1 Dimensions of spline spaces Srp, Sr+1
p and Srp−1, respectively

I, I0, I1 Index sets of B-splines Nr
i,p, N

r+1
i,p and Nr

i,p−1, respectively

J0,i, J1,i Index subsets of I related to B-splines Nr+1
i,p and Nr

i,p−1, for i ∈ I0
and i ∈ I1, respectively

ζm Greville abscissae of spline space Srp, m ∈ I
N0, N1, N2 Vectors of tensor-product B-splines Nr

i,pN
r
j,p

Geometry

(S) Upper index referring to specific patch, S ∈ {L,R}
Ω(S) Quadrilateral patch
Ω Two-patch domain Ω = Ω(L) ∪ Ω(R)

Γ Common interface of two-patch domain Ω
F(S) Geometry mapping of patch Ω(S)

F Two patch geometry F = (F(L),F(R))
F0 Parameterization of interface Γ
d Specific transversal vector to Γ
ξ1, ξ2 Parameter directions of geometry mappings

c
(S)
i,j Spline control points of geometry mapping F(S)

α(S), β(S), β Gluing functions of two-patch geometry F
γ Scalar function, γ ̸= 0

C1 isogeometric space

V Space of C1 isogeometric spline functions on Ω
W Subspace of V
Φ Basis of W
ΦΩ(S) , ΦΓ0

, ΦΓ1
Parts of basis Φ, Φ = ΦΩ(L) ∪ ΦΩ(R) ∪ ΦΓ0

∪ ΦΓ1

ϕΩ(S)

i,j Basis functions of ΦΩ(S) , i ∈ I \ {0, 1}, j ∈ I

ϕΓ0
i Basis functions of ΦΓ0

, i ∈ I0
ϕΓ1
i Basis functions of ΦΓ1

, i ∈ I1

ϕ̂
(S)

Γ0
, ϕ̂

(S)

Γ1
, ϕ̂

(S)

Ω(S) Vectors of spline functions ϕΓ0
i ◦ F(S), ϕΓ1

i ◦ F(S) and ϕΩ(S)

i,j ◦ F(S),
respectively

B̂, B̃(S), B(S) Transformation matrices

b̂i,j , b̃
(S)
i,j , b

(S)
i,j Entries of matrices B̂, B̃(S) and B

(S)
, respectively

B(S) Block matrix assembled by the matrices B̂, B̃(S), B(S) and the iden-
tity matrix In(n−2)
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Hierarchical space

ℓ Upper index referring to specific level

Λr,ℓ+1
p , Λr+1,ℓ+1

p , Λr,ℓ+1
p−1 Refinement matrices for B-splines Nr,ℓ

i,p , N
r+1,ℓ
i,p and Nr,ℓ

i,p−1, respectively

λℓ+1
i,j Entries of refinement matrix Λr,ℓ+1

p

Θℓ+1
ij Block matrices of refinement mask Λr,ℓ+1

p ⊗ Λr,ℓ+1
p , 0 ≤ i ≤ j ≤ 2

WH C1 hierarchical isogeometric spline space
W Basis of WH

Most notations in the paragraphs “Spline space” and “C1 isogeometric space” can be directly extended
to the hierarchical setting by adding the upper index ℓ to refer to the considered level.
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