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Abstract
Objective. This study aims to design and implement the first deep learning (DL) model to classify
subjects in the prodromic states of Alzheimer’s disease (AD) based on resting-state
electroencephalographic (EEG) signals. Approach. EEG recordings of 17 healthy controls (HCs), 56
subjective cognitive decline (SCD) and 45 mild cognitive impairment (MCI) subjects were
acquired at resting state. After preprocessing, we selected sections corresponding to eyes-closed
condition. Five different datasets were created by extracting delta, theta, alpha, beta and
delta-to-theta frequency bands using bandpass filters. To classify SCD vsMCI and HC vs SCD vs
MCI, we propose a framework based on the transformer architecture, which uses multi-head
attention to focus on the most relevant parts of the input signals. We trained and validated the
model on each dataset with a leave-one-subject-out cross-validation approach, splitting the signals
into 10 s epochs. Subjects were assigned to the same class as the majority of their epochs.
Classification performances of the transformer were assessed for both epochs and subjects and
compared with other DL models.Main results. Results showed that the delta dataset allowed our
model to achieve the best performances for the discrimination of SCD and MCI, reaching an Area
Under the ROC Curve (AUC) of 0.807, while the highest results for the HC vs SCD vsMCI
classification were obtained on alpha and theta with a micro-AUC higher than 0.74. Significance.
We demonstrated that DL approaches can support the adoption of non-invasive and economic
techniques as EEG to stratify patients in the clinical population at risk for AD. This result was
achieved since the attention mechanism was able to learn temporal dependencies of the signal,
focusing on the most discriminative patterns, achieving state-of-the-art results by using a deep
model of reduced complexity. Our results were consistent with clinical evidence that changes in
brain activity are progressive when considering early stages of AD.

1. Introduction

Alzheimer’s disease (AD) is the most common cause
of dementia in the elderly population, accounting
for up to 80% of cases worldwide [1]. In AD,

the progression of neurodegeneration is well estab-
lished by the stage of symptomatic disease. This
might represent a considerable limitation in devel-
oping disease-modifying therapies, since the major-
ity of interventions have been tested in cohorts with
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substantial synaptic and neuronal damage [2]. Thus,
a further investigation of initial stages of AD is needed
not only for prognostic purposes, but also to define
populations with still sufficient functional compens-
ation to be targeted in early clinical trials [3].

According to recent neuroimaging, neuropath-
ological and biochemical investigations, the patho-
physiological process of AD can begin decades before
cognitive impairment [4]. It is now known that bio-
logical markers, such as amyloid-beta (Aβ) protein
accumulation, which is distinctive in AD, may be
found in the brain up to 20 years before the stage of
dementia [5].

This evidence led to a new biological definition of
the disease, which assumes that the cognitive decline
in AD occurs over a long period [6] and develops as a
continuum rather than as distinct, clinically-defined
entities [7]. On this continuum, three broad phases
can be distinguished: preclinical AD, mild cognitive
impairment (MCI) due to AD and dementia due to
AD [8].

While MCI refers to a well-defined, intermedi-
ate stage between normal ageing and pathological
status [9], many patients experience a subjective cog-
nitive decline (SCD) in memory and other cog-
nitive domains prior to demonstrable impairment.
SCD is not linked to a particular disease status
itself [10]. However, it has been proved that the sub-
jective decline, even at the stage of normal cognitive
performance on mental tests, is associated with an
increased risk of positive biomarkers for Alzheimer’s
and later conversion to dementia [11–14]. In this con-
text, it has been established that SCD can occur at
late stages of preclinical AD, before MCI is reached.
This phase can be also referred to as pre-MCI or pre-
prodromal AD. In particular, since new diagnostic
guidelines have been released, SCD individuals with
pathological Aβ levels in cerebrospinal fluid could be
considered to be in AD continuum [15]. Nonetheless,
SCD constitutes a heterogeneous group, as it could
be related to conditions such as normal aging, per-
sonality traits, psychiatric conditions, neurological
and medical disorders, substance use, and medica-
tion [16].

Following these principles, many studies have
focused on recognizing biomarkers to character-
ize and identify SCD at risk of progression to
objective cognitive decline. Recently, Viviano and
Damoiseaux reviewed several works making discrim-
ination between SCD and healthy controls (HCs)
using functional neuroimaging biomarkers, also pro-
posing a model to integrate common features found
in subjects affected by SCD [17]. It has also been
noted that SCD individuals have a pattern of brain
atrophy similar to that measured in AD pathology
when compared toHCs without SCD [18].Moreover,
using 18F-fluorodeoxyglucose positron emission
tomography (PET), it was found that subjects with
SCD show glucose and neuronal hypometabolism

with respect to HCs, which is correlated with decline
in memory domain [14]. Altered activation of pre-
frontal cortex in SCD patients was detected using
functional magnetic resonance imaging (MRI), even
if there were no changes in verbal episodic memory
encoding [14]. Additionally, longitudinal studies
results have shown that it is possible to use these
markers to predict patients with SCD and MCI who
will convert to AD [19, 20]. Since Aβ burden is dis-
tinctive in the progression of AD from early stages,
Maserejian et al developed a statistical framework
based on multimodal data, including apolipoprotein
E genotype status, to predict Aβ positivity in subjects
with SCD and MCI [20]. Results on separate valid-
ation datasets indicated an estimated probability of
Aβ positivity of up to 0.75 for patients with MCI and
of 0.60 for SCD subjects.

Although the task of classifying SCD and MCI
subjects fromHCs has been addressed in several stud-
ies [21, 22], the discrimination between SCD and
MCI conditions from a functional point of view is
still poorly investigated in literature since anatom-
ical and functional changes in brain between the two
classes are subtler, making it a more challenging task
to deal with [23]. Nevertheless, the intricacy of brain
alterations in the early stages of AD makes it difficult
to recognize patterns and develop accurate indicat-
ors for diagnosing and monitoring the development
of AD on an individual basis [24, 25]. Furthermore,
whilst advanced neuroimaging methods like PET and
MRI enable to capture relevantmodifications in brain
processes related to AD, their use is limited in clinical
settings due to cost, invasiveness and time consump-
tion [26].

In this respect, electroencephalography (EEG)
can represent an alternative technique that is both
non-invasive and cost-effective, andmuchmore prac-
tical for clinical applications [26, 27]. Since EEG sig-
nals reflect functional changes in the cerebral cor-
tex, EEG-based biomarkers can be used to assess
neuronal degeneration caused by AD progression
long before actual tissue loss or behavioral symptoms
appear.

Several studies proposed resting-state EEG
(rsEEG) rhythms as candidate biomarkers of
AD [28–31]. A more comprehensive review of
research in this field can be found in thework by Babi-
loni et al [32]. Cassani et al summarized EEG changes
related to AD progression into four main categor-
ies: slowing, complexity reduction, synchronization
decrement and neuromodulatory deficit [33]. At the
MCI stage, such EEG abnormalities were found to
be intermediate between HCs and dementia patients,
andmore severe compared to subjects with SCD [34].
Changes in relative and absolute power of theta (θ)
frequency band appear to be significant among AD,
MCI and HC at individual level [35]. Significantly
higher global delta (δ) and theta power, lower global
alpha (α) power and a higher global peak frequency
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Figure 1.Workflow of the proposed method. Firstly, raw EEG signals are preprocessed. Then, 19 channels are selected and 4
frequency bands (δ, θ, α and β) are extracted, obtaining four distinct datasets and a fifth one using the δ-to-β range. After
epoching the signals, we perform both two- and three-class classifications of epochs through LOSOCV. Finally, a majority voting
approach is used to label each subject in the test set either as HC, SCD or MCI based on the class assigned to its epochs.

have also been found in patients with SCD that have
progressed to MCI and dementia [34]. Hence, meas-
ures of EEG-recorded brain activity can represent
sensitive, non-invasive markers in the prediction of
clinical development of AD. This assumption holds
true also when comparing EEG to other neuroima-
ging methods, both structural and functional [36].

Research into the application of deep learning
(DL) models based on EEG signals is growing thanks
to the increasing availability of larger EEG datasets.
DL enables end-to-end learning from raw inputs,
thus overcoming the limitation of processing high-
dimensional volumes of data encountered by tra-
ditional machine learning (ML) approaches. In the
field of EEG data processing, DL has been used
to improve and extend existing methods, reducing
the need for domain-specific processing and fea-
ture extraction pipelines [37]. Compared with con-
volutional neural networks (CNNs) and recurrent
neural networks (RNNs), which are the most extens-
ively used architectures for time-series data classifica-
tion [38], transformers [39] have shownhigher ability
to deal with long-range dependencies and recognize
patterns in sequences of data [40], as well as employ
more interpretable decision-making processes [40,
41]. Although transformers have become the stand-
ard models in natural language processing (NLP),
recent efforts in exploring their applications on time-
series data, such as EEG or electromyography signals,
are showing interesting results [42].

In this work, we propose a DL framework based
on the transformermodel for the binary classification

of resting-state EEG signals of SCD andMCI patients.
To the best of our knowledge, this is the first study
applying DL to EEG in a well-characterized clin-
ical population at risk for AD, as MCI and SCD
patients. The same framework is then employed to
perform a multiclass classification among HC, SCD
and MCI. Figure 1 shows the implemented work-
flow. We exploited the power of self-attention mech-
anism to extract relevant information from the signal
in the temporal domain. Specifically, we firstly pre-
processed the EEG signals with a well-consolidated,
standardized pipeline [43]. Then, we filtered clean
EEG signals to extract four main frequency bands,
each used to build a new dataset from the original
one. An additional dataset was obtained by filtering
the signals in the full delta-to-beta range [0.1–30]Hz.
Employing a leave-one-subject-out cross-validation
(LOSOCV) approach, we trained and tested a model
on each dataset to label the subjects based on their
brain activity. Then, we compared the obtained res-
ults with three CNN-based models, both for the bin-
ary and multiclass classification tasks.

The rest of this paper is organized as follows:
section 2 introduces the state-of-the-art about stud-
ies dealing with the discrimination between SCD and
MCI based on biomarkers; section 3 describes the
EEG acquisition protocol, the dataset and the pre-
processing pipeline; section 4 shows the classification
methodology, detailing the transformer model and
its application to rsEEG signals; section 5 reports the
classification performances which are then discussed
in section 6. Lastly, section 7 shows the conclusions
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of this work, highlighting the limitations and pro-
posing improvements that could be made in future
studies.

2. Related works

Despite longitudinal studies have assessed the
increased risk for both SCD and MCI patients to
develop Alzheimer’s dementia, to the best of our
knowledge a limited number of works have investig-
ated changes of distinctive biomarkers to differentiate
early AD stages.

Yue et al evaluated the extent of asymmetry of hip-
pocampus and amygdala volumes fromMRI scans in
HC, SCD and MCI subjects [44]. They found signi-
ficant differences between the latter two groups only
when considering asymmetry of hippocampus, indic-
ating that thismarker could help the diagnosis of early
AD stages. On the other hand, they found significant
differences betweenHC and SCD in the volume of the
right hippocampus, right amygdala and asymmetry
of amygdala, and those differences were reflected in
the comparison of HC and MCI. In a recent study
by Li et al, an approach based on ML models was
exploited on features extracted fromMRI data to pre-
dict the scores of cognitive tests, i.e.Mini-Mental State
Examination (MMSE) or Montreal Cognitive Assess-
ment, of HC, SCD and MCI subjects, respectively.
Results showed that imaging volumetric features of
the brain weremore correlated with the scores of cog-
nitive tests than individual features extracted from
brain subregions, such as the hippocampal area [45].
Such neuroimaging-based studies, although allow to
characterize SCD and MCI effectively, still require
time-consuming and expensive techniques to acquire
data and thus are not easily replicable.

A study by Scheijbeler et al [46] used magneto-
encephalography (MEG) data to compute brain net-
work interactions in SCD andMCI patients bymeans
of a permutation index, called inverted joint permuta-
tion entropy, which was used to train a logistic regres-
sion model. The area under the ROC curve (AUC)
value obtained with this index (0.784 for SCD-MCI
classification), was higher when compared to other
MEGmarkers. However, a limited number of 18 SCD
and 18 MCI subjects was employed and thus a replic-
ation of their method on larger samples is needed.

Even fewer works have focused on the role of
EEG-derived biomarkers in the classification of SCD
andMCI, although a lot of work has been done in dis-
criminating AD subjects from bothMCI and HC [31,
47] also employing DL models [48–50].

Recently, quantitative EEG was used by
Engedal et al to predict the conversion to demen-
tia from a large dataset composed of 200 HC, SCD
and MCI subjects for whom follow-up information
was available [51]. Spectral features were extracted

from the signal to calculate a dementia index, and a
statistical pattern recognition method was employed
to evaluate the predictive power of the index, reaching
an accuracy of 69% in discriminating converters from
non-converters. However, Engedal et al predicted
conversion to dementia from EEG data of subjects
already diagnosed. Lazarou et al [25] investigated the
power of graph metrics derived from high-density
EEG (HD-EEG) to discriminate among HC, SCD,
MCI and AD individuals. They expected to find dif-
ferences in brain connectivity in terms of correlation
matrices constructed from the EEG activity. The stat-
istical analyses showed that SCD individuals present
network values intermediate to HC and MCI, under-
lying a common disconnection pattern of the brain
connectome in SCD but not to the same extent as in
MCI. Nonetheless, in the SCD vs MCI comparison,
classification performances of both local and global
network measures, evaluated with AUC values, were
lower than 60%. Similarly, Abazid et al investigated
connectivity links in the brain networks derived from
rsEEG of SCD, MCI and AD patients by exploiting
measures of statistical entropy and a support vector
machine to discriminate the classes of patients. They
demonstrated the effectiveness of the entropy meas-
ure to identify different stages of cognitive dysfunc-
tion when considering different graph parameters,
reaching high accuracy levels, over 90% [52]. How-
ever, these results depend on several stages of signal
manipulation (e.g. feature extraction, thresholding
and selection) which can highly affect the classifica-
tion performance.

Indeed, none of the above cited studies addressed
the SCD vs MCI classification task by using DL
approaches. Thus, we adapted an end-to-end model
mainly employed in NLP, the transformer, and the
self-attention mechanism, to classify resting-state
EEG signals in a dataset of HC, SCD and MCI sub-
jects by focusing on the global patterns of the brain
oscillatory activity.

3. Materials

Resting-state EEG recordings of 17 HC, 56 SCD and
45 MCI subjects were collected at IRCCS Don Carlo
Gnocchi in Florence, Italy. Table 1 reports clinical-
demographic information of the study population.
Patients with SCD and MCI who self-referred to
the Regional Reference Center for Alzheimer’s Dis-
ease and Cognitive Disorders of Careggi Hospital,
Florence were enrolled in the ‘PRedicting the EVol-
ution of SubjectIvE Cognitive Decline to Alzheimer’s
Disease With machine learning (PREVIEW)’ project,
an ongoing prospective cohort study started in Octo-
ber 2020.

Patients were classified as SCD according to
the terminology proposed by the SCD initiative
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Table 1. Clinical-demographic characteristics of the study population. HC: healthy controls; SCD: subjective cognitive decline; MCI:
mild cognitive impairment; MMSE: mini-mental state examination; TIB: Italian brief intelligence Test; SD: standard deviation.

Characteristics HC (n= 17) SCD (n= 56) MCI (n= 45)

Age (mean± SD) 64.29± 4.77 66.26± 8.72 74.26± 8.20
Females (%) 41.2 78.3 54.3
Age onset (mean± SD) — 55.15± 8.04 62.09± 9.97
Years of education (mean± SD) 15.50± 3.78 12.58± 3.47 10.18± 4.17
MMSE (mean± SD) 28.92± 1.19 27.48± 2.28 27.52± 2.13
TIB (mean± SD) — 107.22± 20.48 111.00± 6.01

working group [10], which requires the subject to
self-experience a persistent decline in cognitive capa-
city in comparison with a previously normal status
and unrelated to an acute event, as well as normal
age-, gender-, and education-adjusted performances
on standardized cognitive tests. Patients were clas-
sified as MCI according to the National Institute
on Aging-Alzheimer’s Association workgroups cri-
teria for the diagnosis of MCI [9], specifically requir-
ing: cognitive concern reflecting a change in cogni-
tion reported by the clinician or the patient, object-
ive evidence of impairment in one or more cog-
nitive domains (all patients underwent an extens-
ive neuropsychological investigation, with estimation
of premorbid intelligence, and assessment of depres-
sion), preservation of independence in functional
abilities and no signs of dementia. The study was
approved by a local ethics committee and individual
informed consent was obtained. Experimental pro-
cedures were conformed to the Declaration of Hel-
sinki and national guidelines.

Data were acquired using EBNeuro’s GalNt sys-
tem (EBNeuro, Florence, Italy) with 64 channels
digitized at a sampling rate of 512Hz. Among the
64 electrodes, 61 electrodes covered the whole scalp
to record EEG while the remaining ones recorded
electrooculographic and electrocardiographic activ-
ity, and thus were not considered for further analysis.
The electrodes were placed according to the 10–10
montage system and electrode-skin impedance was
set below 5 kΩ. Subjects were sat in a reclined chair
for approximately 20min.

The acquisition protocol was structured to
include both closed and open eyes conditions. Spe-
cifically, each subject was asked to open the eyes at
irregular intervals and when the signal registered
drowsiness. However, since it is known that the two
conditions show very different signal properties (e.g.
higher alpha band power in the eyes-closed (EC)
condition) and according to previous studies, such as
Lazarou et al [25], we extracted and employed only
the EC epochs of the original signal for all the subjects
(mean length= 15.03± 1.41min), which represent
the largest part of the protocol.

Raw data were preprocessed offline using Mat-
lab R2019b (The Mathworks, Natick, MA, USA)

and EEGLAB toolbox v.2021.0. Even though it is
still not clear whether heavy signal preprocessing
is needed when employing DL methods [53], a
systematic review on EEG classification carried out by
Roy et al pointed out how most published papers in
this field still preprocess the EEG data before feed-
ing it to deep models [37]. In this work, a stand-
ardized pipeline, the PREP pipeline [43], was adap-
ted and employed as a first step to clean the signal.
This pipeline uses a robust re-referencing algorithm
to interpolate noisy channels and leverages routines
from the cleanlinemethod to remove line noise com-
ponents [43]. Although the biggest advantage of this
approach is that it removes only deterministic line
components, while preserving substantial spectral
energy, it can present some drawbacks due to the
assumption of signal stationarity [43]. To overcome
these limitations, a 50Hz notch filter was further
applied to ensure line noise cleaning. Thismethod can
be safely applied on our data since high frequencies
of the signal, which could be distorted, were not ana-
lyzed [43].

The EEG data recorded from scalp electrodes
can be considered summations of real EEG signals
and artifacts, which are independent of each other.
Independent component analysis has been widely
used to remove EEG artifacts, such as eye blinks
and muscle activity [54]. Thus, a semi-automatic
method employing EEGLAB’s ICLabel [55] and
manual choice of independent components to retain
has then been applied to the signals. Lastly, epochs
with excessive noise or artifacts were visually inspec-
ted and removed. Figure 2 shows an example of the
EEG signal of the first subject before and after apply-
ing the preprocessing pipeline.

A cluster of 19 channels, namely Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1,O2, was then selected. Since these channels evenly
cover the scalp area, this EEG pattern is the most
employed in the literature for similar studies [56] and
has been proven to ensure sufficient quality along
with possible comparison with previous rsEEG find-
ings of other projects [30]. Subsequently, the signals
were bandpass filtered between 0.1Hz and 45Hz.

Four main frequency bands, namely delta (δ)
[0.1–4]Hz, theta (θ) [4–8]Hz, alpha (α) [8–13]Hz
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Figure 2. Sample EEG recordings of subject 1. (top) 5 s window of raw EEG signal. (bottom) Same window after preprocessing.

and beta (β) [13–30]Hz were extracted from each
EEG signal using designed bandpass filters, and each
related dataset was created. Furthermore, in order to
assess which frequency band was the most distinct-
ive in the classification of HC, SCD andMCI, we also
filtered the signals in the entire range [0.1–30]Hz,
and an additional dataset (all-band) was generated.
Gamma (γ) band [30–70]Hz was excluded from the
analysis since the EEG signal in this band can be sig-
nificantly contaminated with muscle artifacts [57].
To design filters, we used the pop_eegfiltnew function
from EEGLAB, which has a heuristic for automatic-
ally determining the filter length and order. This func-
tion employs a zero-phase Hamming windowed sinc
finite impulse response filter [58].

Hence, five different datasets were constructed
from the original one, respectively corresponding to
specific frequency intervals.

4. Methods

To address the clinical problem of discriminating
early stages of AD, we propose an EEG classification
method based on the self-attention mechanism and
the transformer architecture [39].

Although firstly employed in NLP, transformers
have also been proven effective in computer vision
tasks [59–62], offering a valid alternative to CNNs
and RNNs. In this context, a model called vision
transformer (ViT), proposed by Dosovitskiy et al in
2020 [63], has yielded interesting results on multiple
image recognition benchmarks when compared to
state-of-the-art models [64].

Following this path, recent studies have also partly
introduced the attention mechanism to EEG decod-
ing [65–69]. In the work by Wei et al, the integra-
tion of an attention module downstream of a CNN

6
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Figure 3. Original transformer architecture. Reproduced
with permission from [39].

improved the classification accuracy of MCI and
HC [70]. However, these approaches work on hybrid
architectures that still heavily rely on CNNs and
RNNs to learn discriminative information from EEG,
thus not exploiting the computational advantages of
transformers at its fullest. Song et al [71] imple-
mented a variant of the ViT called spatial-temporal
tiny transformer (S3T) to convert the input EEG
signal into a discernible representation for motor
imagery EEG (MI-EEG) classification purposes. In
their model, both spatial and temporal features were
captured by applying attention firstly on the EEG
channels and then on the EEG time series. The out-
put was a new representation of data that could be
classified using a fully-connected layer. As ViT, S3T
almost completely disengages fromusing convolution
layers or recurrent layers and relies on the attention
mechanism to learn informative features from raw
EEG signals. One single convolution operation is kept
to learn global positional dependencies of signal seg-
ments. Compared to baseline DLmodels, the authors
reached state-of-the-art results using models with a
smaller amount of parameters, thus alleviating com-
putational burden and improving scalability.

4.1. Transformer
As shown in figure 3, the core of a transformer
consists of an encoder and a decoder with sev-
eral blocks of the same type. The encoder gener-
ates encodings of inputs, while the decoder generates

the output sequence from the encodings. Each trans-
former block is composed of an attention layer, a
feed-forward neural network, shortcut connection
and layer normalization. The attention layer is based
on the concept of self-attention, which computes
an attention function of the inputs to retrieve the
dependencies of each element to the others.

Specifically, the input vector is first transformed
into three different vectors: the query vector q, the
key vector k and the value vector v with dimen-
sions dq= dk= dv. Vectors derived from different
inputs are then merged together into three different
matrices, namelyQ,K andV. Subsequently, the atten-
tion function between different input vectors is calcu-
lated according to equation (1)

Attention(Q,K,V) = softmax

(
Q ·KT

√
dk

)
·V. (1)

The function computes scores between each pair
of inputs, and these values impact how much atten-
tion we give to other inputs when encoding the cur-
rent input. These scores are normalized for gradi-
ent stability and then translated into probabilities
using the softmax function. Finally, each value vec-
tor is multiplied by the sum of the probabilities.
The subsequent layer focuses on vectors with higher
probability.

The original transformer employs layers of multi-
head attention (MHA), which generalize the concept
of attention by computing different representation
subspaces using H randomly initialized query, key
and value matrices, where H is the chosen number
of heads. These representations are then concatenated
to feed the classification layer. This method allows
the model to focus on one or more specific input
positions without influencing the attention on other
equally important positions at the same time.

ViT directly applies the MHA mechanism to
sequences of image patches for image classification
tasks [63]. Few modifications are implemented to
the original architecture, even though only the trans-
former encoder module is kept. In such model,
sequences of image patches are treated as sequences
of words in NLP. 2D images are reshaped into a series
of patches of dimension xp ∈ RN×(P2·C) whereC is the
number of image channels, (P, P) is the resolution of
each image patch, andN is the total number of result-
ing patches. A similar approach was proposed by Cor-
donnier et al, but images were divided into patches of
dimension 2× 2 pixels, thus limiting its use only to
small-resolution images [72].

The sequence of patches is then flattened and lin-
early projected to have a sequence of patch embed-
dings, which are added to extra learnable embed-
dings and positional embeddings before being fed
to the encoder stack. Since MHA is permutation-
equivariant with respect to its inputs, the latter are
used to retain spatial information on the position of
each patch in the original image.

7
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Figure 4. EEG epoch classification pipeline. Each EEG segment of C= 19 channels and D= 5120 datapoints is used as input to
our model, which uses a convolutional layer to compress the signal, extract slices and embed the information. k= 31 is the size of
the kernel, emb= 6 is the embeddings’ dimension and CLS is the classification token prepended to the input. Attention
mechanism is then applied on the temporal domain and, after global average pooling, a linear layer is used to classify the input
EEG epoch.

Lastly, a multilayer perceptron head performs the
classification of the resulting encoded representation.

4.2. Proposed model
Following the work by Song et al [71], we implemen-
ted a pipeline to classify EEG epochs, as shown in
figure 4, by designing and training a modified version
of the S3T on EC rsEEG signals of SCD andMCI sub-
jects. The same pipeline was followed for the classi-
fication of HC, SCD and MCI. For this second task,
the last fully connected layer was composed of three
output units.

The major difference between the two architec-
tures concerns the way attention is applied to the sig-
nals. The proposed model dismisses the spatial atten-
tion module, which is used to weight the information
encoded by each EEG channel, and prioritizes the
temporal domain of the signal. This difference is due
to the fact that the objective of this work is to clas-
sify resting-state signals, instead of MI signals as in
Song et al [71]. In fact, while different MI processes
activate different areas of the cerebral cortex, and thus
spatial channel information was revealed to be of fun-
damental importance when engaging in a MI classi-
fication task [73, 74], resting-states reflect the spon-
taneous brain activity, thus there is not an established
spatial correlation also when investigating cognitive
decline associated with AD [75].

Consequently, our model aims to exploit MHA
to understand if temporal dependencies of the
EEG sequences can highlight discriminative patterns
among HC, SCD and MCI subjects. The MHA layer
is included in an encoder block, which combines it
with a feed-forward module, a normalization layer
and dropout. The encoder block is replicated a num-
ber of times specified by the depth parameter, which

was set to 2, whereas the number of heads was set to
3. It is worth noting that this configuration is of low
complexity and reduced computational cost since it
requires fewer parameters than traditional CNNs and
RNNs. A graphical representation of the implemen-
ted transformer model is shown in figure 5 with ref-
erence to SCD vsMCI classification.

Similarly to the original transformer architec-
ture, the proposed model also needs some inform-
ation on the position of inputs in the time series.
This is achieved by Song et al by using a convolu-
tional layer on the time dimension before compres-
sion, rather than positional encodings as in the ori-
ginal model [71]. Instead, we use a convolutional
layer to embed channels’ information, compressing it
to a single channel representation, and to extract slices
from EEG sequences as shown in figure 4. Then, we
encode the positions of all slices in the sequence, and
the vector of positions is linearly added to the input.
Furthermore, we prepend an extra-learnable classific-
ation token to each input sequence, which is used to
predict the final class after being updated by atten-
tion, as in the ViT [63]. Compared to the original S3T
model, this position encoding method requires fewer
parameters and avoids the use of an additional convo-
lutional layer, which increases the complexity of the
model. After the global average pooling, a classifica-
tion head composed of a fully-connected layer, after
layer normalization, is then used to classify the new
representation of the input.

4.3. Experimental details
After preprocessing, on each dataset, namely the all-
band dataset and delta, theta, alpha and beta data-
sets, LOSOCV was performed, meaning in each fold
all of the subjects except one were used to train the

8
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Figure 5. Proposed transformer architecture. CLS is the classification token, h= 3 is the number of heads used by multi-head
attention and Depth= 2 indicates the number of times the transformer encoder block is repeated. A legend for uncaptioned
blocks is provided on the bottom right corner.

model, and the remaining subject was used to test it.
This cross-validation strategy is the most used across
studies that employ rsEEG for AD diagnosis and pro-
gression analysis [33].

We split the EEG signal of each subject into epochs
of 10 s,meaning ourmodels were trained onwindows
of N = 10 s · 512Hz = 5120 data points. Each epoch
was associated to the label of the corresponding sub-
ject. Since the duration of the recording was different
for each subject, the number of epochs generated per
subject was variable. However, in order to improve
the learning capabilities of the model, the number of
EEG epochs of the majority classes, i.e. the SCD in
the two-way and both SCD andMCI in themulticlass
classification, has been reduced by random sampling
for being equal to the number of epochs of theminor-
ity class in the training set.

Furthermore, all the epochs were normalized
using z-score normalization, which was revealed to
be an optimal normalization technique for giving
models the ability to make classification across an
inter-subject population [76], and effective in clas-
sification problems, as well [77]. For each subject,
per-channel mean and standard deviation were com-
puted and used to normalize the signal.

The Adam optimizer was used in the train-
ing process (lr= 10e− 4, β1= 0.9, β2= 0.999,
eps= 1e− 08). The batch size was set to 8, whereas
the total number of training iterations was set to
250. We selected cross-entropy as loss function. We
also implemented an early-stop mechanism in order
to prevent the overfitting of the model during the
training. Specifically, the training of the model was
stopped if the loss on the validation set did not
decrease for 15 consecutive epochs.

First, we evaluated the ability of each model to
classify EEG epochs in each class. Then, we imple-
mented a hard voting mechanism to predict the label
for each subject, according to equation (2), where Lpi
is the predicted label for a subjectmade by the ith clas-
sifier and lni is the predicted label for the nth epoch of
the same subject made by the ith classifier

Lpi =mode(l1i, l2i, . . ., lni). (2)

In other words, in the two-class problem, given
a subject, if the number of epochs labeled as class c
was higher than 50% of the total number of epochs
of that subject, then the subject was assigned to c. If
exactly one half of the epochs were labeled as SCD
and the other half as MCI, the subject was classified
as MCI in order to reduce the number of false neg-
atives. In the multiclass problem, if the number of
epochs labeled as class c was higher than the number
of epochs labeled as the other two classes, then the
subject was assigned to c. As in the first case, if, for
a given subject, different classes had the same num-
ber of assigned epochs, the subject was assigned to the
class which corresponded to the highest level of pro-
gression of impairment.

5. Results

5.1. SCD vsMCI classification
Different metrics were employed to evaluate the per-
formances of the models. To compute all the metrics,
we considered the MCI class as positive and the SCD
class as negative.

To estimate the epoch-level classification per-
formances, we gathered the predictions and the true

9
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Table 2. Confusion Matrix.

Predicted Class

SCD MCI

True Class SCD TN FP
MCI FN TP

labels from all the cross-validation test sets, and
computed the percentage of correct predictions per
class. We evaluated the results in terms of accuracy
(equation (3)), sensitivity (equation (4)), specificity
(equation (5)) and F1-score (equation (6)), where TP,
TN, FP and FN are considered according to the con-
fusionmatrix reported in table 2.We also reported the
AUC scores, whereas the corresponding ROC plots
are shown in figure 6. Due to dataset imbalance, the
reported F1-score has been weighted by the number
of samples in each class

Accuracy=
TP+TN

TP+TN+ FP+ FN
(3)

Sensitivity=
TP

TP+ FN
(4)

Specificity=
TN

TN+ FP
(5)

F1− score=
2 ∗TP

2 ∗TP+ FN+ FP
. (6)

The classification results are reported in table 3
for all the datasets. The best performances have been
reached by the transformer model on delta and theta
bands. Specifically, an accuracy of 67.4% and a F1-
score of 67.3% were obtained for delta, whereas a
value of 65.0% was obtained for both metrics on
theta. AUC scores on delta as well as on theta were
higher than 0.8, revealing that both the classifiers have
an overall excellent diagnostic accuracy in discrimin-
ating SCD and MCI [78].

Subsequently, we evaluated the capabilities of
the models on the classification of patients, which
is the main objective of this study, as previously
described in section 4. We report the classification
performances for all the datasets in terms of accuracy
(equation (3)), sensitivity (equation (4)), specificity
(equation (5)) and F1-score (equation (6)). The res-
ults are detailed in table 4. On the delta band, the
model reached the highest value for all the computed
metrics, with an accuracy and F1-score of 76.2%, a
sensitivity of 73.3% and a specificity of 78.6%. It is
worth noting that, when considering the epochs’ clas-
sification task, both single-band delta and Theta data-
sets perform better than the all-band dataset, uphold-
ing the idea that changes in particular EEG rhythms
are more discriminative of SCD and MCI conditions

and easier to be detected by our model. On patient-
level classification, delta outperforms all the other
datasets.

Lastly, in order to demonstrate the efficacy of the
entire workflow, we selected the best-performing fre-
quency bands (i.e. delta and theta) and constructed
two supplementary HD-EEG datasets, following the
same pipeline as in figure 1, but skipping the chan-
nel selection step. Specifically, the new EEG segments
used as input to the transformer model had dimen-
sions C= 61 channels and D= 5120 datapoints. We
used the same LOSOCV approach and computed
all the metrics in order to compare the results with
the previous datasets. On the HD-EEG delta data-
set, we obtained an accuracy of 62.8% and F1-score
of 62.7% on epochs’ classification, while 67.3% and
67.4% were obtained for accuracy and F1-score on
patients’ classification. On the HD-EEG theta data-
set, we obtained 59.8% and 59.7% for accuracy and
F1-score on epochs’ classification, respectively. On
patients’ classification, accuracy reached a value of
61.5%, whereas we obtained 61.2% for F1-score.
Although, even in this case, the delta band shows the
best results, all the metrics are lower when compared
to the 19-channel datasets, meaning the information
added by using more EEG channels is not useful for
our model to perform the classification of SCD and
MCI subjects.

5.2. HC vs SCD vsMCI classification
Then, we assessed the performances of our model on
the classification of HC, SCD and MCI subjects. As
for the SCD vs MCI classification, we reported the
results for both epochs and patients. In particular,
table 5 reports the performances on epochs in terms
of accuracy (equation (3)), F1-score (equation (6))
and AUC, and figure 7 shows the corresponding ROC
curves. Specifically, the micro-average ROC curve is
reported aggregating, for each dataset, the contribu-
tion of all classes.

The best performances have been reached by the
transformer model on alpha and theta bands. Spe-
cifically, an accuracy of 48.8% and a F1-score of
49.4% were obtained for alpha, whereas values of
48.6% and 49.8% were obtained on the theta band
for the samemetrics, respectively. AUC scores on both
bands were higher than 0.7, revealing that the classi-
fiers have an overall acceptable diagnostic accuracy in
discriminating HC, SCD and MCI [78].

Also in this case, we evaluated the capabilit-
ies of the models to classify individual subjects.
Table 6 reports the performances in terms of accur-
acy (equation (3)) and F1-score (equation (6)), show-
ing that the theta band has the highest discriminatory
power with an accuracy of 54.2% and a F1-score of
54.9%.
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Figure 6. ROC curves for SCD vsMCI classification on the cumulative test set.

Table 3. Per epoch classification performances. Metrics are computed on the cumulative test confusion matrix. No information rate
(NIR)= 0.553. The 95% confidence interval (CI) was calculated for each set with the Clopper–Pearson method for a binomial
distribution (accuracy> NIR, ∗∗∗ p ⩽ 0.001, ∗∗ p ⩽ 0.01, ∗ p ⩽ 0.05). F1-score is weighted for the number of samples per class.

Dataset Accuracy CI AUC Sensitivity Specificity F1-score

Alpha 0.628 [0.618, 0.638]∗∗∗ 0.779 0.602 0.650 0.629
Beta 0.619 [0.608, 0.628]∗∗∗ 0.744 0.598 0.635 0.619
Delta 0.674 [0.664, 0.683]∗∗∗ 0.807 0.620 0.717 0.673
Theta 0.650 [0.640, 0.660]∗∗∗ 0.802 0.591 0.698 0.650
All-band 0.642 [0.632, 0.652]∗∗∗ 0.779 0.561 0.707 0.640

Table 4. Per patient classification performances. Metrics are computed on the cumulative test confusion matrix. No information rate
(NIR)= 0.554. The 95% confidence interval (CI) was calculated for each set with the Clopper–Pearson method for a binomial
distribution (accuracy> NIR, ∗∗∗ p ⩽ 0.001, ∗∗ p ⩽ 0.01, ∗ p ⩽ 0.05). F1-score is weighted for the number of samples per class.

Dataset Accuracy CI Sensitivity Specificity F1-score

Alpha 0.653 [0.552, 0.745]∗ 0.644 0.661 0.654
Beta 0.624 [0.552, 0.718] 0.600 0.643 0.624
Delta 0.762 [0.667, 0.841]∗∗∗ 0.733 0.786 0.762
Theta 0.673 [0.573, 0.763]∗∗ 0.600 0.732 0.672
All-band 0.673 [0.573, 0.763]∗∗ 0.578 0.750 0.671

As in the SCD vs MCI classification task, we
obtained two 61-channel datasets corresponding to
the bands with the best performances, namely theta
and alpha, and compared the results with the corres-
ponding 19-channel datasets. For alpha, we obtained
an accuracy of 49.6% and a F1-score of 50.1%

on epochs’ classification and 55.1% and 55.3% on
patients’ classification, respectively. For theta we
obtained an accuracy of 45.9% and a F1-score of
47.1% on epochs’ classification and 48.3% and 49.8%
on patients’ classification. These results show that,
even in the HC vs SCD vs MCI classification task,
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Table 5. Per epoch HC vs SCD vsMCI classification performances. Metrics are computed on the cumulative test confusion matrix. No
information rate (NIR)= 0.473. The 95% confidence interval (CI) was calculated for each set with the Clopper–Pearson method for a
binomial distribution (accuracy> NIR, ∗∗∗ p ⩽ 0.001, ∗∗ p ⩽ 0.01, ∗ p ⩽ 0.05). F1-score is weighted for the number of samples per
class.

Dataset Accuracy CI AUC F1-score

Alpha 0.488 [0.479, 0.498]∗∗∗ 0.750 0.494
Beta 0.446 [0.436, 0.455] 0.693 0.448
Delta 0.449 [0.440, 0.458] 0.662 0.470
Theta 0.486 [0.476, 0.495]∗∗∗ 0.745 0.498
All-band 0.443 [0.434, 0.452] 0.681 0.455

Figure 7. ROC curves for HC vs SCD vsMCI classification on the cumulative test set.

Table 6. Per patient HC vs SCD vsMCI classification
performances. Metrics are computed on the cumulative test
confusion matrix. No information rate (NIR)= 0.475. The 95%
confidence interval (CI) was calculated for each set with the
Clopper–Pearson method for a binomial distribution (accuracy>
NIR, ∗∗∗ p ⩽ 0.001, ∗∗ p ⩽ 0.01, ∗ p ⩽ 0.05). F1-score is
weighted for the number of samples per class.

Dataset Accuracy CI F1-score

Alpha 0.500 [0.407, 0.593] 0.503
Beta 0.500 [0.407, 0.593] 0.503
Delta 0.500 [0.407, 0.593] 0.527
Theta 0.542 [0.448, 0.634] 0.549
All-band 0.517 [0.423, 0.610] 0.532

using an higher number of EEG channels does not
have a significant impact on the performances of our
model. In fact, although there was a small increase

in the results on alpha, on theta, which is the best-
performing band on subject-wise classification, our
transformer continues to give the highest results con-
sidering the dataset with 19 channels.

5.3. Performance comparison with CNN-based
models
In order to compare our model with state-of-the-art
EEG classificationmodels, we conducted experiments
with some recent CNN-based models, namely Deep-
ConvNet [79], EEGNet [80] and EEG-TCNet [81].
These architectures were mainly developed for MI-
based EEG signals decoding, aswell as for the classific-
ation and interpretation of EEG-based BCIs. Park et al
employed them in the field of the identification of
preclinical AD from EEG to overcome the limitation
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Table 7. SCD vsMCI classification performance comparison in terms of overall accuracy on the cumulative test set of the DL models. No
information rate (NIR) for epochs classification= 0.553; NIR for patients classification= 0.554. The 95% confidence interval (CI) was
calculated for each set with the Clopper–Pearson method for a binomial distribution (accuracy> NIR, ∗∗∗ p ⩽ 0.001, ∗∗ p ⩽ 0.01, ∗

p ⩽ 0.05).

Epochs Patients

Model Dataset Accuracy CI Accuracy CI

Transformer Delta 0.674 [0.664, 0.683]∗∗∗ 0.762 [0.667, 0.841]∗∗∗

Theta 0.650 [0.640, 0.660]∗∗∗ 0.673 [0.573, 0.763]∗∗

EEGNet Delta 0.726 [0.716, 0.735]∗∗∗ 0.733 [0.635, 0.816]∗∗∗

Theta 0.669 [0.659, 0.678]∗∗∗ 0.683 [0.583, 0.772]∗∗

DeepConvNet Delta 0.590 [0.580, 0.600]∗∗∗ 0.653 [0.552, 0.745]∗

Theta 0.589 [0.579, 0.599]∗∗∗ 0.594 [0.492, 0.691]
EEG-TCNet Delta 0.673 [0.664, 0.683]∗∗∗ 0.703 [0.604, 0.790]∗∗

Theta 0.693 [0.683, 0.702]∗∗∗ 0.683 [0.583, 0.772]∗∗

Table 8.HC vs SCD vsMCI classification performance comparison in terms of overall accuracy on the cumulative test set of the DL
models. No information rate (NIR) for epochs classification= 0.473; NIR for patients classification= 0.475. The 95% confidence
interval (CI) was calculated for each set with the Clopper–Pearson method for a binomial distribution (accuracy> NIR, ∗∗∗ p ⩽ 0.001,
∗∗ p ⩽ 0.01, ∗ p ⩽ 0.05).

Epochs Patients

Model Dataset Accuracy CI Accuracy CI

Transformer Alpha 0.488 [0.479, 0.498]∗∗∗ 0.500 [0.407, 0.593]
Theta 0.486 [0.476, 0.495]∗∗∗ 0.542 [0.448, 0.634]

EEGNet Alpha 0.472 [0.462, 0.481] 0.483 [0.390, 0.577]
Theta 0.451 [0.442, 0.461] 0.424 [0.333, 0.518]

DeepConvNet Alpha 0.479 [0.469, 0.488] 0.492 [0.398, 0.585]
Theta 0.476 [0.467, 0.486] 0.500 [0.407, 0.593]

EEG-TCNet Alpha 0.467 [0.458, 0.477] 0.500 [0.407, 0.593]
Theta 0.495 [0.486, 0.505]∗∗∗ 0.508 [0.415, 0.602]

of high inter-subject variability, which affects the pos-
sibility of extracting robust handcrafted features [82].
However, to our knowledge, they have never been
used for the specific task of discriminating SCD from
MCI. It is worth noting that these models are char-
acterized by a higher number of parameters than our
transformer. Indeed, while the transformer contains
a total of 5.2 k parameters, DeepConvNet, EEGNet
and TCNet have 298.6 k, 9.8 k and 14.1 k parameters,
respectively.

The models’ parameters were adjusted to take
EEG epochs of dimension C×D in input as our
transformer model. The comparison was performed
on the best-performing datasets for both classifica-
tion tasks, i.e. delta and theta for SCD vs MCI and
alpha and theta for HC vs SCD vs MCI. Results are
reported in tables 7 and 8, respectively. For SCD vs
MCI classification, all the models reached compar-
able performances in terms of accuracy, which was
always significantly higher than no-information rate
for epoch classification. For the delta band, the classi-
fication accuracy of patients was 76.2% for the trans-
former, while the same metric has values of 73.3%
for EEGNet, 65.3% for DeepConvNet and 70.3% for
EEG-TCNet. In all the cases, except for DeepCon-
vNet, the accuracy was always significantly higher
than no-information rate (p⩽ 0.001 for transformer
and EEGNet, p⩽ 0.01 for EEG-TCNet).

Concerning the HC vs SCD vsMCI classification,
the epochs’ classification accuracy was significantly
higher than no-information rate for the transformer,
for both alpha and theta bands, and EEG-TCNet, for
the theta band only (p⩽ 0.001 for all the cases). How-
ever, patients’ classification accuracy was not signi-
ficantly higher than the no-information rate, except
for the transformer which reached a near signific-
ance (p= 0.08), with a value of 54.2% against 48.3%
for EEGNet, 49.2% for DeepConvNet and 50.0% for
EEG-TCNet.

6. Discussion

In this work we propose the first DL framework
based on the attention mechanism to discriminate
between SCD and MCI using rsEEG signals. Previ-
ous studies that have addressed the task of discrimin-
ating SCD and MCI patients in the AD continuum,
with statistical or traditional ML approaches, have
highlighted that this problem is much more challen-
ging than other classification tasks in the same field.
This evidence can be deducted both from works that
employMRI data [23, 44] and EEGdata [25]. It is also
supported by other works in literature [31, 47–50],
some of which show in general better classification
performances than those obtained in this work but
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considering different classes of subjects, e.g. HC vs
SCD, HC vsMCI or MCI vs AD.

For the SCD vs MCI classification task, by com-
paring the results on all the test sets gathered from
a LOSOCV approach, we found that delta and theta
bands had the best performances with AUC val-
ues of 0.807 and 0.802, respectively. Furthermore,
the other classification metrics, i.e. accuracy, sens-
itivity, specificity and F1-score, were the highest on
delta, reporting a value of 67.4% for accuracy and
67.3% for F1-score on epoch-wise classification and
a value of 72.6% for both accuracy and F1-score on
patient-wise classification. On the same band, the
model reached good sensitivity and specificity values,
respectively of 73.3% and 78.6%, showing it is cap-
able of discriminating SCD and MCI subjects when
they have that specific condition. For both delta and
theta bands, the classification accuracy was signific-
antly higher than the no-information rate (p⩽ 0.001
and p⩽ 0.01 for epoch-wise and patient-wise clas-
sifications, respectively), assessing that the classifier
model performed better than one could do by always
predicting the most common class. Indeed, changes
in relative power in the lower frequencies (δ and θ)
indicate a diffuse slowing of brain oscillations, which
is a hallmark feature in the progression of AD [33].
In this context, EEG spectral analysis revealed that
higher delta and theta powers are associatedwith clin-
ical progression of SCD patients towards MCI and
dementia, mainly when considering EC resting-state
activity, as it has been done in this study [34].

Our results uphold this evidence, showing that
changes in delta and theta are particularly useful in
characterizing the brain activity of subjects affected
by SCD or MCI, both when compared to other com-
mon EEG rhythms and to the all-band dataset, which
includes the signals filtered in the range [0.1–30]Hz.
Furthermore, the MHA mechanism well captures
temporal dependencies of rsEEG, highlighting their
importance in the discrimination between SCD and
MCI. This is supported also by a recent work by
Wei et al, who employed the attention mechanism to
classifyMCI andHC using EEG signals recorded dur-
ing cognitive tasks [70]. In fact, this approach allowed
to improve the performances of a traditional CNN by
almost 10%, suggesting that the use of this technique
should be further investigated.

On the other hand, we found that adding more
spatial details by using all available 61 EEG channels,
instead of a cluster of 19 channels, not only did not
improve the performances of the model, but all the
metrics reported lower values for both epochs’ and
patients’ classification performed on delta and theta
datasets. Hence, we showed that more spatial inform-
ation increases the complexity and redundancy of
the signal pattern produced by the selected 19 chan-
nels, which already holds enough information for the
model to distinguish between the two classes.

In order to further assess the performance of our
model, we added a control group of 17 healthy sub-
jects and conducted a multiclass classification to dis-
criminate HC, SCD and MCI simultaneously. We
found that, in this case, the best-performing fre-
quency bands were alpha and theta both on epochs’
and patients’ classification tasks. Specifically, on
alpha the AUC was 0.750, and slightly lower for
theta as shown by the ROC curves in figure 7. How-
ever, theta reported the best performances in terms
of accuracy and F1-score when classifying subjects.
In addition, alpha and theta bands were the only
ones that reached classification accuracies signific-
antly higher than no-information rate (p⩽ 0.001 for
both bands). These results are in line with evidence
reported in literature that both SCD and MCI sub-
jects are characterized by lower amplitude of posterior
alpha rhythms in rsEEG in relation to cognitive func-
tions when compared to controls [83] and that this
feature, along with higher amplitude of δ–θ rhythms,
is related to worsening of impairment over time [30].

Also in relation to this task, single-band datasets
performed better than the all-band dataset, show-
ing that specific EEG rhythms can be strong pro-
gnostic biomarkers for cognitive impairment in the
context of AD. Furthermore, we conducted experi-
ments using HD-EEG alpha and theta datasets and
showed that, as in the previous case, increasing the
number of channels does not significantly improve
the capabilities of ourmodel in discriminating among
the three classes of subjects, since marginally higher
results were obtained on alpha but not on theta.

In terms of classification performances, we com-
pared the transformer with three DL models based
onCNNs for both binary andmulticlass classification
tasks. The results reported in tables 7 and 8 show that
all the models achieve overall good performances. In
particular, focusing on the patients’ binary classific-
ation, all the classifiers, except DeepConvNet on the
theta band, reach good accuracy levels (>70%), sig-
nificantly higher than the no-information rate (p⩽
0.001 for transformer and EEGNet; p⩽ 0.01 for EEG-
TCNet). The classification accuracy of patients in
the multiclass approach, instead, was not signific-
antly higher than the no-information rate in any
case. Nevertheless, accuracy higher than 50% was
achieved only by the transformer and EEG-TCNet
on the theta band; in these cases, the performance
on epochs’ classification was significantly higher than
no-information rate (p⩽ 0.001), meaning that both
models uncovered a pattern underlying EEG data
which allows the discrimination ofHC, SCDandMCI
subjects.

We also performed statistical analysis in order to
assess the significance of our results on the cumulat-
ive test set. One-way ANOVAwas carried out for each
group of data (i.e. SCD vs MCI on delta and theta
bands, and HC vs SCD vs MCI on alpha and theta
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bands), considering the model as factor. The analysis
did not reach the statistical significance (p< 0.05) in
all the cases, except for the SCD vsMCI classification
on delta band (p= 0.023).

This result should be interpreted considering that
we conducted the study implementing a LOSOCV
approach which, in any case, allows an estimation
of the generalization capabilities of the implemented
models on the data of unseen subjects [84].

Despite the performances of the transformer for
the specific classification tasks are not outperform-
ing when compared to the results obtained by CNN-
based models, the use of this model still brings
advantages that are worth considering. In fact, as
already reported in the previous section, the trans-
former model is less complex, with 5.2 k of train-
able parameters, when compared to DeepConvNet,
EEGNet and EEG-TCNet, which have 298.6 k, 9.8 k
and 14.1 k parameters, respectively. As evidenced by
a recent survey by Hu et al, reducing the complex-
ity of DL models while guaranteeing, at the same
time, a sufficient level of expressive capacity by the
model itself for a given task, is an open research prob-
lem [85]. In this perspective, the transformer model
already demonstrated classification capabilities com-
parable with more complex models.

In addition, the attention mechanism implemen-
ted by the transformer, which is perfectly suited for
the classification of temporal signals, may allow the
exploration of its interpretability and explainabil-
ity capabilities by analyzing temporal dependencies
in the EEG signals exploiting the attention weights
[86, 87].

The results obtained in this work are very prom-
ising, mostly considering that the works that discrim-
inate between SCD and MCI subjects have addressed
the problem by employing data whose acquisition is
still time- and cost-consuming or by relying on tech-
niques that are highly dependent on signal manipula-
tion and feature extraction.

7. Conclusion

In this studywe presented the first DL framework that
employs the attention mechanism implemented by
the transformer model to classify patients affected by
early-stage conditions of AD at individual level, using
resting-state EEG signal. SCD might represent a pre-
clinical manifestation of AD, but several of its aspects
remain unclear. In particular, the boundary between
SCD and MCI, which is the first clinically diagnosed
stage of the disease, is very blurry [4]. Although stud-
ies based on neuroimaging methods have investig-
ated the possibility of identifying SCD and MCI in
the progression of AD, reporting interesting results,
they still require expensive and time-consuming dia-
gnostic tools [21, 45].

In this context, the prognostic power of resting-
state EEG has been investigated to address the need

for non-invasive and cost-aware markers to strat-
ify patients in the Alzheimer’s continuum [30, 88].
Since spectral analyses conducted by previous stud-
ies revealed a correlation between clinical progres-
sion of the disease and signal alterations in specific
frequency bands [34, 35, 89], e.g. power spectrum
shifts from high-frequency components (α, β, and γ)
towards low-frequency components (δ and θ) [33],
we hypothesized that our model would perform bet-
ter when trained on signals corresponding to these
ranges. The implemented workflow and the obtained
results confirmed our hypothesis, also revealing that
EEG signals should be further taken into considera-
tion as a clinical biomarker for the characterization
of SCD and MCI subjects at risk for AD. Our con-
clusion is that DL might indeed be the key to move
from using EEG for a mere characterization of pro-
dromic states of AD to use it as a predictive tool easy
to acquire and process. Early identifying the preclin-
ical stages of AD has become fundamental; as evid-
enced by Rabin et al, risky subjects might represent a
target population for disease-modifying therapies in
the future [90]. In addition, populations in the ini-
tial stages of AD might be targeted in early clinical
trials, in order to drive the research towards novel
pharmacological approaches to slow the progression
to dementia [91].

Nonetheless, a further improvement of the pro-
posed model, which could include the application of
a spatial attention module on the EEG channels, is
worth exploring.Moreover, a deeper interpretation of
the results of this study could be provided by lever-
aging the attention weights in order to better under-
stand the model’s decision processes. Future works
may also focus on novel approaches for signal analysis
and processing for classification pipelines, in order to
remove all the irrelevant information from the input
signals. Finally, the availability of a larger cohort of
subjects would allow to further assess the effective-
ness of our method and improve its generalization
capabilities.
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