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Abstract: Investigating the complex interactions between microbiota and immunity is crucial for a
fruitful understanding progress of human health and disease. This review assesses animal models,
next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-
immunity axis, evaluating their strengths and limitations. While animal models provide a compre-
hensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro
models reduce animal involvement but require specific costs and materials. When considering the en-
vironmental impact of these models, in silico approaches emerge as promising for resource reduction,
but they require robust experimental validation and ongoing refinement. Their potential is significant,
paving the way for a more sustainable and ethical future in microbiome-immunity research.
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1. Introduction

The gut microbiota (GM), a complex community of microorganisms (bacteria, archaea,
fungi and protozoa) that lives in symbiosis with the organism in the gastrointestinal tract,
plays a crucial role in interacting with the host’s immune system (IS). This bidirectional
interaction strongly influences the host’s physiology, contributing to homeostasis and
modulating both innate and adaptive immune responses [1].

The GM modulates the immune response through various mechanisms, including:

• production of metabolites such as short-chain fatty acids (SCFAs), bile acids (BAs), and
tryptophan metabolites, which influence the activity of immune cells by promoting the
production of regulatory T cells (Tregs) and effector T cells involved in the maintenance
of immune tolerance and the prevention of excessive inflammatory responses [2–4];

• interaction with intestinal epithelial cells, stimulating the synthesis of antimicrobial
molecules such as defensins, which help maintain the integrity of the intestinal barrier
and prevent the invasion of pathogenic microbes [5];

• synthesis of lipopolysaccharides and peptidoglycans that activate Toll-like receptors
(TLRs) expressed by innate immune cells, modulating cytokine production and influ-
encing inflammatory responses [6];

• physical and functional maturation of the IS in the early years of life [7].

Alterations in the normal GM composition, known as dysbiosis, have been associated
with a wide range of pathologies, including inflammatory bowel diseases (IBD), obesity,
diabetes, cardiovascular diseases, neuropsychiatric and neurodegenerative disorders. Un-
derstanding how the microbiota interacts with the IS is therefore fundamental to developing
new preventive, diagnostic and therapeutic strategies [8].

In recent years, advances in molecular biology, genomics, bioinformatics analysis
and high-throughput sequencing techniques have improved our understanding of the
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microbiota-immune axis (MIA) and how GM is involved in regulating host’s health and
various diseases [9]. This review examines animal models, next-generation in vitro models,
and in silico approaches, evaluating their strengths and limitations to better understand
the GM impact on host immunity and so on health and human diseases.

2. In Vivo Models for Studying the Microbiota-Immune System Axis

In vivo, studies of the MIA play a crucial role in understanding the GM influence on
the host’s health. By utilizing experimental models, these studies allow for the manipulation
of specific microbial compositions to examine how they affect immune responses and the
overall well-being of the organism. These approaches not only reveal the fine mechanisms of
microbiota-immune interactions but are also essential for developing innovative therapies
and treatments aimed at modulating the microbiota and, in doing so, improving human
health. Table 1 provides a comprehensive overview of the various in vivo models used to
study these interactions.

2.1. Vertebrates

Rodents

Rodent models, especially mice, have become extensively utilized in clinical re-
search [10] and are a primary choice for investigating the gut-IS interaction. Given current
ethical considerations, rodent models offer a convenient way to obtain numerous sam-
ples from various gastrointestinal (GI) sites while providing a wide range of genotypic
backgrounds [11]. Primarily, the focus was on germ-free (GF) mice models, which yielded
foundational insights into early host-microbe interactions [12]. However, there is a growing
use of mice to explore dietary impacts, disease progression and the effects of microbial
therapies. Rodent models yield an information wealth due to their anatomical, histological
and physiological similarities with the human GI tract. Nevertheless, it is essential to
acknowledge the differences, such as the circadian rhythm and lifestyle [13,14], as well as
morphological variations and dietary habits. The anatomy of different GI tract segments
in rodents diverges from that in humans, and their diet is distinct since mice and rats are
typically fed standardized vegetarian diets. This nutritional way significantly contrasts
with the more diverse human diets [15]. In fact, mice and rats are mainly herbivores and
practice coprophagy, whereas human diets vary widely based on ethnicity, geography,
culture and tradition [16].

Rats

Rats are considered preferable for microbiota studies as they provide a biological
system similar to mice but with a size that better supports some experimental approaches,
such as colonoscopy and surgical manipulation [17]. In addition, they exhibit physiological
parameters that are more closely aligned with those of humans [17]. Fritz et al. compared
various animal models used to study host-microbe interactions, noting that rats offer
several advantages [18]. These include the availability of numerous rat-specific disease
models, genetically modified rats with fully sequenced genomes and their relative ease
of maintenance. Furthermore, their rapid reproduction rate allows for the observation of
multiple generations within a short time frame, as rats typically live two to three years [18].
However, the same authors highlighted a key disadvantage: the diet and living conditions
of rats differ significantly from those of humans [18]. While mouse models share many
advantages with rat models, the significant drawback is the pronounced differences in IS
function and microbiota composition compared to humans [18].

Several rat strains are commonly utilized in scientific research, including Sprague–
Dawley [19], Wistar [20,21], Fischer 344 [22], Lewis [23], wild-type Groningen [24,25] and
BioBreeding rats [26]. The selection of a specific strain depends on the study type and the
strain’s behavioral and genetic characteristics.

In general, rat models are particularly valuable for investigating the relationship be-
tween gut dysbiosis and disease, as well as for examining the dietary and pharmaceutical
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impacts on GM. For instance, the dextran sodium sulfate (DSS) colitis murine model is
widely used in IBD research due to its simplicity, reproducibility and controllability [27].
Additionally, rat models are used to study different autoimmune, metabolic and neuro-
logical disorders such as diabetes [28], autism spectrum disorder (ASD) [29], Parkinson’s
disease [30] and depression [31]. These models are essential for understanding the differ-
ences in GM composition between rats and controls, further highlighting the significance
of the gut-immunity and gut-brain axis.

Mostly, the intestinal microbiota of rats, mice and humans are similar at the phylum
level but different at the genus level [16,18]. In rats, the dominant phyla are Firmicutes
and Bacteroidetes [18], which also constitute about 90% of bacterial species in the adult
human gut. A study that established a catalog of microbial genes found a higher pairwise
overlap between the gut metagenome of rats and humans (2.47%) compared to that between
mice and humans (1.19%) [32]. Additionally, Pan et al. highlighted the rats potential for
biomedical research, noting that 97% of functional pathways present in the human catalog
were also found in the rat catalog [32].

Li et al. conducted a study characterizing the microbiota along the longitudinal axis of
the rat GI tract, including fecal samples [33]. Their results documented that the microbial
composition in the rat GI tract is distinct from that of other murine models, such as mice.
Specifically, species richness and phylogenetic diversity increase from the upper to the
lower GI segments, with the highest levels found in the colon. In contrast, mice show
similar diversity levels between duodenal and large-intestinal samples [33].

When using rat models to study the human microbiome, one relevant difference to
consider is that inter-individual microbiota variability is significantly higher in humans
than in rats. This human variability is attributed to genetic differences, diverse diets, and
varying environmental factors, whereas laboratory rats exhibit lower variability due to their
genetic similarity, uniform diet, controlled environmental conditions, and coprophagy [33].
Furthermore, the GM profile in rats changes with age and can be categorized into three
distinct clusters: (1) before weaning, (2) the first year of life and (3) the second year of life.
These clusters share a core set of bacterial species whose relative abundance decreases with
age, while alpha-diversity increases over time [34].

Mice

Mice of the species M. musculus are commonly employed to systematically investigate
the roles of diet, pathogens and host genotype on GM diversity [35]. Although laboratory
mice are typically fed vegetarian diets, which differ from the varied diets of humans,
they still provide valuable insights due to their anatomical, histological, and physiological
similarities to humans. However, important differences must be considered when designing
experiments and evaluating results. One major difference is the relative size of the intestinal
tract compared to the overall body size, along with distinct features throughout the tract.
For example, mice possess a non-glandular forestomach, which is missing in humans. This
forestomach, lined with keratinizing squamous mucosa, covers two-thirds of the stomach
and functions primarily as a storage site for food, lacking secretory activity [36]. It is also
coated with a biofilm containing various strains of Lactobacillus spp. [37,38]. Although
L. reuteri and L. johnsonii are distributed throughout the mouse intestinal tract, evidence
suggests that the forestomach is their primary habit, with cecal populations likely derived
from the forestomach [39]. Comparative genomic analysis reveals that murine strains of
L. reuteri are significantly different from those found in humans. These strains possess
urease genes to cope with the low pH of the forestomach, along with various rodent-specific
genes essential for their persistence in mice [40].

The phylogenetic composition of bacterial communities in humans and mice is similar
at the phylum level, with Bacteroidetes and Firmicutes being the dominant bacterial phyla
in the murine intestinal tract [41,42]. This similarity extends to many other mammals,
regardless of their diet as herbivores or carnivores [41,42]. However, there are remarkable
differences between the human and mouse intestinal microbiota. One key difference is that
the murine intestinal tract harbors significant populations of the phylum Deferribacteres,
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which in humans is present only in trace amounts in the stomach [43]. Additionally, mice
show a unique member of the Firmicutes, known as segmented filamentous bacteria (SFB)
or “Candidatus arthromitus” [44], which significantly impacts the IS maturation [45–47] but
its role in humans is not yet fully understood.

A comparative study involving 16 human subjects and 3 commonly used mouse lines
found that while their microbiota appeared similar, it was quantitatively very different [48].
Although there are 80 shared microbial gut genera between humans and mice [15], signifi-
cant variations exist in the genera observed in mouse datasets. For instance, genera such as
Faecalibacterium, Sucinivibrio and Dialister were missing in some laboratory mice [48,49] but
detected in other more comprehensive studies [15]. These discrepancies can be attributed to
the use of different mouse strains and providers, as well as variations in analytical methods.
For example, differences in microbial composition analysis can arise from using different
16S rRNA gene-based primers, targeted variable regions and sequencing platforms [15].

Guinea Pigs

Guinea pigs (Cavia porcellus), native to South America [50], offer an alternative to the
more commonly used rat and mouse models in experimental research on humans. Their
suitability as models for studying gastrointestinal dynamics stems from the similarities
between their intestinal E-cadherin and that of humans [51]. Despite this, research on guinea
pigs’ GM is less extensive compared to studies involving rats and mice. Metagenomic
analysis revealed that guinea pigs possess a higher proportion of Akkermansia spp. and
methanogenic bacteria relative to human microbiota [51]. Nevertheless, Bacteroidetes and
Firmicutes are the predominant microbial phyla in the guinea pig GI tract, similar to rats,
mice and typical vertebrate gut microbiomes, including humans [51,52]. However, there
are prominent differences at the genus level, which may be attributed to variations in GI
anatomy, diet and coprophagy. Despite these differences, guinea pigs have proven valuable
for studying various human diseases, especially infections, due to their similar symptoms
and immune responses to those observed in humans. Given these similarities and the
overall resemblance of guinea pigs to other rodent models, Cavia porcellus is considered a
promising model for investigating the MIA and its role in human diseases [53].

Rabbit (Oryctolagus cuniculus)

The rabbit model (Oryctolagus cuniculus) has not yet replaced the murine model, which
remains favored due to its lower cost, high fertility [54], reduced maintenance costs, smaller
size, availability of inbred strains, ease of breeding, and the wide availability of commercial
immunological reagents and numerous knockout (KO) and transgenic models. However,
the rabbit model shows some aspects making it preferable in some studies compared to
mice [55].

Historically, rabbits have been extensively used for studying infectious agents such
as Vibrio cholerae [56] and many other pathogens [57–59]. A recent review by Esteves
et al. highlights the rabbits’ advantages over rats and mice, especially their sophisticated
adaptive immune system, which provides insights into human biology and yields valuable
clinical and research reagents. Additionally, rabbits are excellent models for studying
diseases such as syphilis and tuberculosis, which produce pathology similar to that seen
in human patients [60]. The similarity between rabbit IS and rodents has been known
for years, with several studies published on this model and its role in immunological
contexts [61]. Additionally, rabbits offer advantages in size; they are intermediate between
rodents and larger, more expensive animal models like primates. This size allows for
rapid blood sampling and greater access to various cells and tissues from a single animal.
Furthermore, rabbits have a longer lifespan than rodents, and their IS genes are more
similar to those of humans than those of rodents [62,63]. Regarding their GM, rabbits have
been characterized at various life stages and in different parts of the GI tract. Similar to
humans, Firmicutes is the most abundant phylum, although the species within this phylum
are less abundant in rabbits compared to humans [64–66]. Additionally, GF models, similar
to those used for rodents, are now common also in this species [67].
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Pigs

Domestic and miniature pigs have become standard model species in various areas
of translational research. Miniature or micro pigs are more desirable and frequently used
in research due to their smaller size, making them easier to handle and manipulate, and
also less costly [68,69]. The pigs’ attractiveness as research models comes from their
comparable size, physiology and developmental trajectories relative to humans, as well as
the ability to manipulate their genome [70]. The applications of this model are numerous,
including gastrointestinal physiology and immuno-ontogeny [71]. As omnivores with a GI
structure similar to humans, the well-characterized fecal microbiota of young and adult
domestic pigs [72] shows compositional similarities with the human microbiota [73,74].
This similarity is mainly evident in studies of diet-induced obesity, where changes in
microbiota composition, such as an increase in the Firmicutes to Bacteroidetes ratio, are
observed in both lean and obese humans and in pig obesity models [75,76]. Supporting
the similarity of pigs to humans, Furet et al. conducted a comparative analysis of human
microbiota across various farm animals, including horses, cows, goats, sheep, rabbits, and
pigs, using real-time polymerase chain reaction (PCR). This study found that while humans
and all other farm animals could be distinguished from one another, pigs and rabbits
had more compositionally similar fecal microbiota to humans in terms of metabolically
active intestinal bacteria [75]. Notably, apart from rodents, pigs appear to be the only
other host species stably colonized with human microbiota [77]. Unlike “humanized”
mice [78], pigs born via cesarean section (i.e., not colonized by bacteria at birth) and later
colonized with human GM develop relatively normal gastrointestinal morphology without
evident immune system development deficiencies [79]. Remarkably, pigs colonized with
human GM at birth develop the same or a higher number of IgA- and IgG-producing cells,
CD4+ helper T cells (Th), and MHC class II antigen-presenting cells in the small and large
intestines compared to control pigs experimentally colonized with porcine GM in a similar
manner [80].

From the MIA perspective, although some porcine host defense polypeptides are spe-
cific and α-defensins are missing [81], most immune system proteins share structural and
functional similarities with their human counterparts. In fact, the porcine IS is more similar
to humans in >80% of the accounted parameters, whereas mice were more similar to hu-
mans in <10% [82]. The generation of porcine bone marrow-derived macrophages provides
a model system for studying macrophage functional genomics that more closely resembles
human biology than traditional mouse models [83]. Twitchell et al. used a gnotobiotic (Gn)
porcine (Yorkshire crossbred) model of enteric dysbiosis to investigate the poor efficacy
of the rotavirus vaccine in neonates from low- and middle-income countries (Twitchell
et al. 2016). They colonized Gn pigs with human GM (of healthy and unhealthy neonates)
and assessed the GM influence on vaccine immunogenicity and the microbiota’s response
to human rotavirus (HRV) exposure. Their findings demonstrated that the compromised
enteric immunity observed in human neonates could be replicated in the Gn pig model
with an unhealthy human GM, suggesting potential future applications of this model for
studying the microbiota’s role in various pathological stages related to the gut-immune
axis [83].

Despite the advantages of this model, such as large litters, the possibility of standard-
izing housing conditions, high genomic and proteomic sequence homologies with human
counterparts, and similar physiology to humans as omnivores, there are notable limitations
associated with using pigs in microbiota studies [84,85]. The primary challenges associated
with pigs are related to their size and the expense of housing and feeding them which com-
plicate the acquisition of large sample sizes due to spatial and budgetary constraints [68,69].
Additionally, while genetic manipulation is possible, generating knockout and transgenic
pigs is significantly more complex compared to rodents [84].
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Other Mammals

Regarding the use of other large mammals in the MIA study, models such as Non-
Human Primates (NHPs) and dogs (Canis familiaris) have been investigated.

For the dog model, the gastrointestinal tract is more similar in size and structure to the
human GI tract compared to that of rodents discussed earlier. This similarity is relevant for
translational research, as privately owned dogs are often exposed to the same environmental
influences as humans [86]. The canine, human and mouse fecal microbiota show a high
degree of metabolic and phylogenetic similarity [87]. Additionally, dogs (and cats) develop
chronic inflammatory conditions that closely resemble human IBD [88]. These animals
have been used as models to study the associations between specific compositional changes
and the incidence of idiopathic canine IBD in different studies [87,89]. Regarding the IS
responses, the canine model has been shown to be very similar to humans in terms of the
proportion of T cells (CD8+ and CD4+) and B cells in the blood [90,91], the concentration of
immunoglobulins [92], and the expression of T cell co-stimulatory molecules [93]. However,
some unusual characteristics have been observed, such as the expression of CD4 by canine
neutrophils, which warrants further investigation [94].

On the other hand, NHPs exhibit high similarity to humans in terms of anatomical
structure, physiological metabolism, and immune system; however, few studies have sys-
tematically compared intestinal commensal microbiomes between humans and NHPs [95].
To date, studies have highlighted how primates (including monkeys) display immune
responses very similar to those of humans, making them excellent models for vaccine and
immunomodulatory therapy research [96]. Furthermore, a comparative study by Nagpal
et al. GM microbiota appears to be more similar to that of NHPs compared to mice and
rats [16]. In this scenario, Li et al. in 2020 demonstrated that short-term antibiotic-treated
rhesus macaques can be used to study the host-microbiome niche of the intestinal mucosa
and immune balance [97].

Despite the positive aspects that make the aforementioned models useful for research,
both approaches have notable drawbacks, such as size and costs [98] Additionally, they
present an even more pronounced issue regarding ethical consent for their use [99].

Zebrafish (Danio rerio)

The zebrafish (Danio rerio) is a freshwater omnivore from the carp family, native
to the aquatic environments of India, Myanmar, Bangladesh, and Nepal [100]. Its use
in research spans various fields, including embryology, tissue regeneration, molecular
genetics, reproductive biology, and toxicology, thanks to several key advantages. These
include its high reproductive rate, short lifespan, fully sequenced genome, transparent
embryos and larvae and suitability for high-throughput in vivo screenings [101–103].

Mostly valuable for GM characterization, the zebrafish model is favored due to its
genetic similarity to humans [104], structural and functional parallels between its intes-
tine and those of mammals [105], optical transparency that enables advanced imaging
techniques [106], and the ability to separately study the innate and adaptive immune
systems [107,108]. These characteristics collectively make zebrafish an essential tool for
exploring the complex interactions between the microbiota and host health. The GM role
in the zebrafish immune system is pivotal for its development and function [109,110]. For
example, Bates and colleagues highlighted that the microbiota helps regulate the number
of neutrophils by modulating their production and activity through specific receptors and
genes such as Myd88 and alkaline phosphatase [111]. Additionally, serum amyloid A (SAA),
produced and secreted by intestinal epithelial cells, guides the behavior and migration
of neutrophils, decreasing inflammation and defending against bacterial infections [112].
Brugman et al. further highlighted the critical IS role in managing the microbiota, showing
that in wild zebrafish, the adaptive immune system controls Vibrio species overgrowth
and that T lymphocytes are essential for maintaining microbiota balance and preventing
bacterial overgrowth [113].
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In addition, recent studies have explored the SCFAs’ impact on intestinal inflammation
with promising outcomes. Cholan et al. discovered that zebrafish intestinal bacteria pro-
duce SCFAs, and that butyrate reduces inflammation through the hydroxycarboxylic acid
receptor (hcar1) [114]. Morales Fénero et al. demonstrated that a mix of acetate, propionate,
and butyrate alleviates intestinal inflammation caused by 2,4,6-trinitrobenzene sulfonic acid
(TNBS) in zebrafish larvae. This treatment improved survival rates, preserved intestinal
function and decreased inflammatory cytokines and neutrophil recruitment, although it
did not prevent tissue damage or restore goblet cells. Despite TNBS-induced dysbiosis,
SCFAs maintained normal bacterial levels. These findings indicate that zebrafish could
serve as a valued model for studying SCFAs’ therapeutic potential in treating intestinal
inflammation [115].

2.2. Invertebrates

Galleria mellonella

The invertebrate model of Galleria mellonella, or greater wax moth, is increasingly
used as an alternative to rodent models for studies on bacterial and fungal virulence, viral
infections, toxins and antimicrobial drugs due to the absence of ethical constraints, short life
cycle, ease of handling and simple laboratory requirements [116–118]. Its immune system
is structurally and functionally like that of mammals, making it a useful model for studying
innate immune responses [116,119–121]. The cellular response involves hemocytes, the
immune cells present in the hemolymph (equivalent to blood in vertebrates), responsible
for processes such as phagocytosis, nodulation, and encapsulation [122–124]. As for the
humoral response, it includes the release of antimicrobial peptides (AMPs) [125] and
reactive oxygen and nitrogen species (ROS and RNS) [126,127]. Moreover, Galleria mellonella
larvae develop a form of immune memory that enhances responses to repeated exposures to
the same pathogen, although it is not comparable to the mammals’ adaptive immunity [128].
For instance, repeated infections with Pseudomonas entomophila improve immune responses,
including increased hemolymph defensive activity, AMP presence, and expression of
immunity-related genes, though this increased resistance is specific to P. entomophila and no
other pathogens [129].

Recent studies highlight that Galleria mellonella cationic protein 8 (GmCP8), a recently
identified AMP, shows antibacterial action against various pathogens and antifungal ac-
tion against Candida albicans. This peptide damages the cell membranes of pathogens
and inhibits specific proteases. Furthermore, the direct GmCP8 injection improves the
survival of infected larvae, highlighting its role in humoral immunity [130]. Additionally,
research by Gallorini et al. introduces a novel approach for immunophenotyping hemo-
cytes from infected Galleria mellonella larvae. By detecting cell membrane markers typically
expressed by human immune cells during inflammation and infection—such as CD14,
CD44, CD80, CD163, and CD200—this study demonstrated significant analogies between
Galleria mellonella larvae and humans.

This advancement provides a valuable tool for pre-clinical evaluations of antimicrobial
compounds, facilitating drug discovery and supporting clinical trials [131]. Studies on
the Galleria mellonella microbiota reveal that an intact GM, dominated by Enterococcus,
increases resistance to oral infections through the activation of AMPs and other immune
responses, underscoring its role in strengthening defenses against specific pathogens [132].
Additionally, feeding larvae with polyethylene, polystyrene and beeswax shows significant
changes in the microbiota, with an increase in Pseudomonas strains [133]. This promising
result requires further investigation into potential multi-kingdom synergies in the plastic
biodegradation process.

Caenorhabditis elegans

Caenorhabditis elegans (C. elegans) is a small nematode widely used in laboratory studies
of embryonic development and cell differentiation due to its transparency. This organism
has a constant number of somatic cells and a nervous system composed of only 302 neurons,
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allowing for the study of complex behaviors. Sharing many genes with humans, it is a
valuable model for genetic research which began in 1962, thanks to Sydney Brenner, who
received the Nobel Prize in 2002 for his work.

This nematode was the first multicellular organism to have its genome sequenced in
1998, highlighting its fundamental role in developmental biology, genetics, and neurobiol-
ogy. In addition to its well-established roles, C. elegans is a prominent model for studying
immunity and host-microbiota interactions [134]. It possesses an innate immune system
with evolutionarily conserved signaling mechanisms, such as the DAF-2 receptors and TLR
(TOL-1) [135,136]. Since it lacks adaptive immunity and mobile immune cells, intestinal
epithelial cells play a crucial role in defending it against ingested pathogens [137].

The C. elegans microbiota is predominantly composed of Gammaproteobacteria and Bac-
teroidetes [138]. Research by Singh and Luallen has analyzed factors influencing interactions
between C. elegans and its microbiome, providing insights relevant to human biology [139].
For instance, interactions between C. elegans, the protective symbiont Pseudomonas lurida
MYb11, and the pathogen Bacillus thuringiensis Bt679 have shown that the nematode’s
immune competence significantly affects its fitness under pathogen stress [140]. The protec-
tive action of these interactions can be evaluated through proteomic analysis, highlighting
various pathways involved [141].

In addition, recent studies have highlighted the C. elegans utility for researching the
effects of probiotics on obesity and diabetes. Various bacterial strains, such as Lactobacilli,
exhibit probiotic properties in C. elegans models [142]. For instance, Lactococcus lactis subsp.
Lactis improves locomotion and reduces lipid accumulation without significantly increasing
longevity [143]. Similarly, Lactobacillus cremoris subsp. Cremoris has beneficial effects by
stimulating the SKN-1/Nrf2 signaling pathway [144]. In summary, C. elegans serves as
a valuable model for probiotic research, providing crucial insights into the mechanisms
through which strains like Lactococcus lactis and Lactobacillus cremoris enhance health. This
model highlights significant molecular signaling pathways, such as PMK-1/p38 MAPK and
SKN-1/Nrf2, which play essential roles in locomotion and lipid reduction. Overall, the versa-
tile C. elegans applications in genetic, developmental and immunological studies underscore
its relevance in advancing our understanding of microbiota-immune interactions.

Drosophila melanogaster

Drosophila melanogaster, commonly known as the fruit fly, is a valuable model organism
in biological research due to its low maintenance costs, simple genetics, short generation
times, and fully sequenced genome. It is especially useful for genetic and immunological
studies. Similar to other organisms, Drosophila melanogaster possesses an innate immune sys-
tem that is divided into humoral and cellular immunity [145]. The humoral immunity relies
on the production of AMPs that protect the organism against microbial infections [146–148].
These AMPs, whose expression is regulated by NFκB-mediated immune signals, are made
in specific tissues such as the fat body and released into the hemolymph [145]. Positively
charged AMPs interact with negatively charged microbial membranes, destabilizing them
and causing pathogen death. This process, known as the systemic immune response,
is crucial for contrasting infections [149]. A notable discovery is the identification of a
new antibacterial peptide with an O-glycosylated substitution. This post-translational
modification enhances the peptide’s antibacterial activity compared to its natural form,
highlighting the relevance of glycosylation for the peptide’s full biological effectiveness.
Additionally, this defense system is highly regulated and can be activated in response to
danger signals such as bacterial invasion, documenting the dynamic nature of Drosophila’s
IS and its adaptability to microbe-rich environments [150]. On the other hand, cellular
immunity involves hemocytes, which are abundant and diverse in Drosophila larvae [151].
These include plasmatocytes, crystal cells, and lamellocytes [151–155].

Immune signals activated in Drosophila melanogaster trigger the expression of immune
response genes that are central to innate immunity. These signals start with the recogni-
tion of pathogen-associated molecular patterns (PAMPs) by host cell receptors, starting
signal transduction mediated by adaptor proteins. The main immune signaling path-
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ways in Drosophila are NFκB/Toll, NFκB/Imd, JAK/STAT and JNK [154]. The NFκB/Toll
and NFκB/Imd pathways activated, respectively, by Gram-positive bacteria and fungi,
and Gram-negative bacteria, lead to the synthesis of antimicrobial peptides [156]. The
JAK/STAT pathway, activated by the association of Unpaired (Upd 1, 2, or 3) ligands with
the Domeless (Dome) receptor, involves the phosphorylation of STAT, which regulates the
expression of genes related to homeostatic and developmental processes [157]. Finally, the
JNK pathway, induced by stress factors, activates the transcription factors AP-1 and FOXO,
stimulating the production of antimicrobial proteins and involving responses to oxidative
stress, homeostasis, embryogenesis, and apoptosis [158].

Drosophila melanogaster is also an excellent model for studying GM due to its simplicity.
The microbiota is dominated by Proteobacteria and Firmicutes phyla and varies with the fly’s
age and development [159]. Microbiota transmission occurs primarily through contami-
nated eggshells, which larvae ingest upon hatching, allowing microorganisms to colonize
the larval gut and increase in diversity and abundance as the larvae develop. The resi-
dent microbiota provides numerous benefits, including strengthening intestinal integrity,
shaping the epithelium, energy harvesting, protection against pathogens, and regulating
host immunity [160–164]. The interaction between GM and IS during infections is more in-
triguing, suggesting complex relationships between pathogens and microbiota-dependent
immune responses [165]. Studies on Drosophila have shown that the GM improves host
survival in the presence of bacterial pathogens such as Pseudomonas aeruginosa and Serratia
marcescens [166–168], by stimulating local production of antimicrobial compounds like
ROS and AMPs and enhancing the intestinal epithelium’s ability to regenerate during
and after infection [169]. Further investigations have revealed that the Drosophila GM
can modulate the JAK/STAT, JNK and Imd signaling pathways, which are crucial for
intestinal stem cell homeostasis and local immune responses [170]. Additionally, some GM
species can transform bile acids and dietary substances into metabolites that influence the
intestinal environment and immune balance, inducing basal immune responses through
ROS [171–176].

To summarize, Drosophila melanogaster is an excellent model for studying the microbiota-
immunity axis. Its simplicity, combined with the wealth of available genetic and immuno-
logical data, allows for a detailed exploration of the mechanisms through which the mi-
crobiota contributes to host health and immune defense. These studies not only enhance
our understanding of microbiota-immunity dynamics but also suggest new therapeutic
strategies for combating infections and other microbiota-related diseases.

Table 1. Overview of animal models for studying gut microbiome-immunity interactions: Compara-
tive analysis of advantages, disadvantages, and research applications.

Animal Model Advantages Disadvantages Applications

Rats

Closer physiology to humans;
larger size allows complex

studies; available disease models;
easy maintenance; great overlap

with the human microbiome.

Different diet/living
conditions from humans; less

microbiota variability.

Gut dysbiosis [27–31];
dietary/pharmaceutical effects [27];

microbiota analysis across GI
tract [33]; age-related changes [34]

Mice (M. musculus)

Anatomical/physiological
similarity to humans; similar
bacterial composition at the

phylum level.

Dietary and anatomical
differences affect microbiota;
some unique bacteria (e.g.,
SFB, Deferribacteres) not

found in humans.

Diet-pathogens interactions and
genotype effects on GM [35];

comparative microbial
analysis [15,48]; immune system

maturation [45–47]

Guinea pigs (Cavia
porcellus)

Intestinal E-cadherin similarity;
comparable microbial phyla and
immune responses to humans.

Limited research; genus-level
microbiota differences.

Human diseases models [53];
microbiota-immune axis

exploration [53]
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Table 1. Cont.

Animal Model Advantages Disadvantages Applications

Rabbit (Oryctolagus
cuniculus)

Immune system similar to human;
intermediate size;

well-characterized gut microbiota.

Higher costs and
maintenance.

Infectious diseases (e.g., syphilis,
TB) [60]; immune system

research [60,62,63]; GM studies across
life stages [64–66]

Pigs

Similar size and GI structure to
humans; well-characterized

microbiota; stable human
microbiota colonization;

gnotobiotic models.

Size and cost; complex genetic
manipulation.

GI physiology and immune
ontogeny [70,71]; diet-induced

obesity; human microbiota
colonization and immune

responses [75–77,79,80]; vaccine
efficacy and enteric immunity [83]

Non-Human
Primates

High physiological and immune
similarity to humans; similar gut

microbiota.

High cost and size; ethical
considerations.

Immune responses studies [96];
host-microbiome interactions [97]

Dogs (Canis
familiaris)

Similar GI structure and immune
responses to humans; comparable
chronic inflammatory conditions

(e.g., IBD).

Unique immune traits; high
cost; ethical concerns.

GM and immune responses
research [87,89]; comparative

immune system studies [90–93].

Zebrafish (Danio
rerio)

Genetic and structural parallels to
humans; optical transparency;

separate innate/adaptive immune
systems.

Limited immune complexity;
challenges in clinical

translation.

Microbiota in immune system
development [109–111,113]; SCFA

and intestinal inflammation [114,115].

Galleria mellonella
No ethical constraints; short life
cycle; similar immune system to

mammals

Differences in the adaptive
immunity compared to

mammals.

Pathogens virulence [116,125–127];
immune memory [129]; antimicrobial

studies [131]; microbiota
research [132,133].

Caenorhabditis
elegans (C. elegans)

Transparency for studies; simple
nervous system; genetically
tractable; conserved innate

immunity.

Lack of adaptive immunity
and mobile immune cells.

Microbiota-immunity
interactions [134,139–141]; probiotic

research [142–144].

Drosophila
melanogaster

Low maintenance; simple
genetics; well-documented
immune pathways; simple
microbiota dominated by

Proteobacteria and Firmicutes.

Lacks of adaptive immunity.
Pathogens immune response

[149,156–158]; GM and immune
signalling studies [166–168,170–176].

SFB = segmented filamentous bacteria; GM = Gut microbiome; GI = Gastrointestinal; TB = Tubercolosis; IBD = in-
testinal bowel disease.

3. In Vitro Models
3.1. 2D Models

The animal models discussed previously are invaluable for expanding the understand-
ing of the complex relationship between GM and IS. Specifically, GF and Gnotobiotic (GN)
rodents are the most commonly used models to study MIA under both physiological and
pathological conditions, and to establish causal links between specific bacteria and changes
in immune responses [177]. However, these models have limitations, making translating
data from animal systems to humans challenging. Besides ethical considerations, high costs
and the time-consuming and labor-intensive nature of animal studies; in detail, animals
often fail to accurately represent human conditions due to interspecies differences in gut
topology and immune system, as well as differences in microbiome profile and molecular
mechanisms involved in disease onset and progression [178].

For these reasons, in vitro models have been developed. Research in this area began
with traditional cell cultures in culture plates. Cultivating a cellular monolayer to test
with metabolites or bacterial extracts is easy to achieve, inexpensive, reproducible and
provides raw results for preliminary studies. Indeed, there are numerous studies in which
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metabolites or bacterial extracts have been tested to study their interactions with human
intestinal or immune cells [179,180]. The effects on the cells are then assessed through
various tests, including permeability assays, reactive oxygen species (ROS) production, cell
viability assays, and more [178].

In this regard, the most commonly used cell lines for studying the effects of the
microbiota on intestinal cells are Caco-2, HT-29-MTX, T84, LS174T, and CCD 841 CoN. In a
study by Lock et al., the Caco-2 and HT-29 lines were used to test the effect of conditioned
media and microbial by-products from in vitro cultured microbiota on the human host,
mimicking intestinal inflammation and cellular immunomodulation [181]. However, Pan
et al. (2015) highlighted some disadvantages of using these lines. Caco-2 cells, originating
from cancer cells, are homogeneous and do not produce significant amounts of mucin
under normal growth conditions. HT-29 cells have a mucus layer, which is useful for
microbiota research; however, they have similar drawbacks to Caco-2, as they are colon
cancer-transformed cells and are not typically used to study barrier function due to their
inability to form appropriate tight junctions. The T84 line, on the other hand, shares similar
advantages and disadvantages but, unlike HT-29, T84 has been an excellent model for
testing the effects of microbes and stress factors on epithelial barrier function due to its
high transepithelial resistance (TER) properties [179].

The immune cell lines used to study immune responses to microbiota-produced
metabolites mainly include macrophages (THP-1) and lymphocytes (Jurkat) [182]. Overall,
when using these tumor cell lines, several factors must be considered, including culture
conditions, the number of passages and whether they express the desired genes/proteins
before determining if they are suitable for microbiological investigations [183].

Studying interactions with live bacteria in monolayer cultures poses challenges due
to contamination risks, leading researchers to often use bacterial products instead. An
advancement in this area is the development of co-culture systems, including Transwell
co-culture systems and other devices that separate cells from live bacteria. These systems
facilitate the study of interactions between live bacteria and host cells while decreasing
contamination risks. For example, Magryś et al. employed a co-culture system of intestinal
epithelial cells and macrophages to investigate how postbiotic fractions from L. rham-
nosus and L. plantarum modulate immune responses to pro-inflammatory stimuli [184].
Zoumpopoulou et al. utilized a Transwell co-culture system with intestinal epithelial
cells, dendritic cells, and various bacterial strains to study interactions while controlling
contamination and experimental conditions [185].

Therefore, working with monolayer cells offers significant advantages, including high
experimental reproducibility, continuous monitoring of culture conditions, accessibility,
cost-effectiveness, and avoidance of ethical concerns. The general disadvantages of the
above cell types include the lack of cellular diversity and the presence of a static environ-
ment far from the dynamics of the intestinal tract [186,187]. Another negative effect to
consider, which is increasingly discussed, is the use of laboratory plastics, which have
proven negative impacts on the environment, humans, and other organisms [188].

3.2. 3D Models

The 3D models currently used for studying the microbiota and its relationship with
the immune system are spheroids and organoids. However, for several years, these two
terms were often confused. For this reason, in 2012, the Intestinal Stem Cell Consortium
established that a spheroid refers to a 3D culture that is only epithelial, whereas an organoid
is a structure containing multiple cell types [189,190]. Unlike organoids, spheroids have
much shorter lifespans in culture due to their irregular morphology, frequent disaggre-
gation, and central hypoxia that leads to central necrosis [191]. So, spheroids are less
commonly used in research in this field compared to organoids. Indeed, as previously
mentioned, intestinal organoids are spherical culture systems derived from self-organizing
pluripotent or adult stem cells that can differentiate into intestinal epithelial cells, produc-
ing structures akin to villi and crypts, thereby mimicking the architecture of the intestinal
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epithelium [186]. This model more faithfully replicates the intestinal architecture compared
to two-dimensional systems. Moreover, since organoids can also be derived from patient
biopsies, they are increasingly considered for personalized medicine applications [192].
To achieve three-dimensionality, various gels or scaffolds are used to support cell growth.
These self-organized 3D tissue constructs exhibit an in vivo-like architecture, regional speci-
fication, and diverse cell subtypes, more closely mirroring the main characteristics of native
human tissues than cell lines and animal models [193]. They are now widely used to study
the microbiota in both physiology and pathology [194].

Regarding their use, several studies have aimed to create structures that simulate the
human intestinal environment as closely as possible by combining intestinal organoids
with IS. For instance, Dijkstra et al. developed a co-culture of tumor organoids and pe-
ripheral blood lymphocytes from patients with colorectal cancer [195]. In addition to the
immune system, the microbiota can be introduced into the organoid. Microinjection has
been a popular yet complex approach to achieve this goal in recent years [178]. Individual
microbial species, pools of different microorganisms, or even fecal samples can be microin-
jected into the lumen of organoids, transforming them into miniaturized intestines [186].
Williamson et al. designed a microinjection platform using 3D-printed components. Their
study injected a treated human fecal homogenate into the organoid, documenting that the
microbial community persisted for up to four days [196]. Additionally, several protocols
have been published to guide the use of this method [197].

However, this procedure requires specialized equipment, trained personnel, incurs
high costs, and poses challenges for reproducibility [178]. Even setting up an organoid
culture is non-trivial, as replicating the microstructures of the human intestine, such as villi,
is complex [195]. Moreover, like organoid creation, microinjection lacks standardized guide-
lines, making it difficult to ensure data reproducibility and comparability. A significant
drawback of organoid systems is the lack of inter-organ communication. Human organoid
systems essentially mimic a part of the human body, not the entire body. Thus, they are
limited to reproducing the microphysiology of a specific organ or tissue, a limitation that
must be considered before delving into this exciting field. Nonetheless, efforts are already
underway to overcome this limitation [198]. Recent advancements in tissue engineering
have led to improved 3D tissue models that allow the integration of different cell types and
better mimic the in vivo microenvironment. The advent of organoid research has further
enhanced in vitro models, enabling better recapitulation of tissues’ complexity such as the
intestinal epithelium. However, these models usually do not allow for mechanical signals
such as fluid flow and peristalsis-like mechanical deformations [199].

3.3. Microfluidic/On-Chip Models

One of the most promising applications of organoids to date involves culturing them
under perfusion in microfluidic devices [200,201]. Recent progress in bioengineering, mil-
lifluidics and microfluidics has led to the development of increasingly sophisticated devices
that approximate the complexity of the human intestine [186]. Microfluidics is defined as
the technology of systems that process or manipulate small amounts of fluids [202]. By
2010, nearly 10,000 articles had been published on this technology, but it has more recently
been applied to biological studies in vitro [203]. It offers numerous advantages, such as the
use of very small quantities of samples and reagents, high resolution and sensitivity, and
compact analytical device sizes [204]. As a result, lab-on-a-chip platforms and organs-on-
chips have become crucial technologies for studying biological processes. They enable fine
control over cellular environments, including perfusion, nutrient supply, waste removal,
and the maintenance of pH and oxygen gradients [200].

Today, various models on the market can mimic the complex interactions occurring
in our bodies due to the connection between different tissues. For instance, Beaurivage
et al. developed a model for IBD evaluation, using a commercial platform and demon-
strating the complexity and versatility of these technologies [205]. Kim et al. documented
that a microfluidic gut-on-chip technology, which exposed cultured cells to physiological
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movements similar to peristalsis and fluid flow, could induce human Caco-2 cells to un-
dergo spontaneous morphogenesis and produce three-dimensional villus-like intestinal
structures [206]. Additionally, Kasendra et al. recently developed a small intestine-on-chip
device using biopsy-derived organoids [207].

To include the microbiota in gut-on-chip systems, different approaches have been
used. Most studies have employed single strains of pathogens [208], probiotics [209] or
combinations of both [210]. Co-cultivation of human and microbial cells under aerobic
conditions is the most utilized practice. However, to more accurately mimic the human
intestinal environment, several platforms have been developed to include an anaerobic
compartment with selected strict anaerobes or a more diverse microbiota derived from fecal
samples [211]. For instance, Jalili-Firoozinezhad and coll. used a microfluidic gut-on-chip
to co-culture intestinal epithelium with stable communities of both human aerobic and
anaerobic microbiota. This system allows for real-time control and assessment of physi-
ologically relevant oxygen gradients. By establishing a trans-luminal hypoxia gradient,
this chip improved intestinal barrier function and enabled a more representative microbial
diversity compared to aerobic co-culture conditions [212].

In another development, Marzorati et al. created the Host-Microbiota Interaction
(HMI) module, a microfluidic system designed to study the response of a monolayer of
Caco-2 cells to metabolic products from bacterial biofilms. This module features two flow
chambers separated by a semipermeable membrane, with bacteria introduced into the
upper chamber [213]. Additionally, gut-on-chip models have been applied to study non-
bacterial components of the microbiota, such as viruses, parasites, and phages, as well as
live biotherapeutic products (LBPs) and microbial toxins [214].

The IS integration into these models has already begun and continues to be studied
and implemented. There are already several lab-on-chip models that incorporate intestinal
and immune cells, especially for studying IBD [180,215]. Generally, these models are quite
complex and usually rely on the most common stacked microfluidic channels separated by
a porous membrane [199].

Despite their advantages and potential, these models show some limitations. Many lab-
on-chip systems face challenges related to productivity, limited readout techniques, and the
need for specialized equipment. Although they are less expensive than in vivo studies, costs
can still be significant [199]. Another issue is the variability in parameter values between
individuals and different regions of the intestinal tract, which complicates the identification
of key factors influencing GM composition [216]. Additionally, microfluidic and lab-on-
chip technologies face technical hurdles, such as accurately replicating MIA and modeling
variations in microbiome composition along the mucosal-luminal axis. Nevertheless, with
ongoing advancements and optimizations, these models have the potential to greatly
enhance scientific research and deepen our understanding of gut, microbiota, and immune
system interactions [217].

4. In Silico Models

The advent of computational technologies has significantly transformed research, en-
abling the use of in silico models to explore the intricate MIA interactions. These models are
pivotal in investigating the dynamic relationships between GM and host biology, enhancing
our comprehension of MIA and the influence of gut microbes on host’s biology [218].

The main goals of in silico models include:

1. Simulation of Microbial Ecosystems: In-silico models allow scientists to simulate the
complex GM ecosystem. By using computational techniques, researchers can model
the growth, interaction, and metabolic processes of diverse microbial communities,
providing insights that are challenging to obtain through traditional experimental
methods [219,220].

2. Host-microbe interaction: these models simplify the study of host-microbe interactions
at multiple levels, from molecular to systemic. They can integrate multi-omics data to
predict how microbial metabolites affect host cells and vice versa [221,222].
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3. Immune system modulation: understanding how GM influences the host’s IS is crucial
for developing therapeutic strategies. In-silico models can simulate immune responses
to various stimuli, helping to identify potential targets for immunomodulation [223].

4. Disease modeling: computational models are essential for exploring how disruptions
in the GM contribute to inflammatory and autoimmune diseases [224]. They enable
the identification of microbial signatures associated with these diseases and predict
the effects of potential treatments.

In the next sections, we will explore three prominent types of in silico models used
to study the MIA: multi-species ecosystem models, machine learning-based models and
agent-based simulation tools (Figure 1). Each of these approaches brings unique strengths and
capabilities to the table, offering diverse perspectives and methodologies for advancing our
understanding of the complex interactions within the GM and its impact on immune function.
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Figure 1. Schematic overview of the main in-silico models and tools to study metabolic interactions,
disease etiology and disease modeling. The figure summarizes the three prominent types of in-silico
models used to evaluate the MIA that will be discussed in detail in the next paragraphs: (1) multi-
species ecosystem models/Genome scale metabolic models (GEMs), (2) machine learning-based
models and (3) agent-based simulation (ABS) tools.

4.1. Multi-Species Ecosystem Models

Traditionally, microbiome research has focused on identifying and quantifying the
microbial communities present in the gut, focusing on taxonomy but often neglecting the
intricate network of interactions among these microbes and their effects on the environment,
namely the host. To gain a thorough, system-level understanding of the microbiome
and its communication with the host IS, it is crucial to consider these interactions [225].
Computational multi-omics approaches have been instrumental in this regard [226,227],
allowing for the analysis of the diverse and dynamic GM populations. In fact, the data
integration from genomics, proteomics and metabolomics, has led to the development of in
silico models that enable the evaluation of host-microbe interactions at various levels, from
molecular to systemic, predicting the effects of microbial metabolites on host cells and vice
versa in both physiological and pathological conditions [228,229].

Indeed, the need to employ systems biology to investigate the microbiome has driven
the development and analysis of in silico system-level metabolic models [222,230]. We
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know that microbiome metabolism is a complex composite of the metabolic activity of
billions of microbial cells from various species. By treating the entire microbiome as a
single supra-organism [231], in silico models can be constructed directly from metagenomic
data. This approach is particularly suitable when (i) many gut-dwelling species are difficult
to isolate and sequence, making community-level models essential; (ii) for studying the
overall activity of the microbiome and its interactions with the host [232], considering the
overall metabolism of this network as a co-metabolism. These models can, for instance, be
used to explore the potential exchange of metabolites between the microbial community
and the gut environment. Furthermore, integrating these models with human metabolic
models enables the examination of metabolic dependencies between GM and host, similar
to the study of interactions between a single microbial endosymbiont and its host [232].

For instance, Genome-scale metabolic modeling (GSMM) is a modeling approach
that has been used to study microbial metabolism in the human gut and the interactions
between microbes and host [221,233–235]. Genome-scale metabolic models (GEMs) of
human microbes provide a robust framework that integrates multiple omics datasets such
as transcriptomic, proteomic, metagenomic, metabolomics and fluxomics (a branch of
systems biology that analyzes the metabolic fluxes within a biological system, namely the
rate at which metabolites are produced, consumed and transformed within a community
of microbes), providing a comprehensive system biology platform to analyze and infer
diet-microbiome, microbe-microbe and host-microbiome interplays under physiological
conditions and to build condition-specific personalized community models of the gut
microbiome [236] to study the effect of microbial changes on disease. For instance, the
integration of metagenomic data of patients with Crohn’s disease with genome-scale
metabolic models has allowed the construction of personalized in silico microbiotas for the
prediction of SCFA levels as a consequence of different dietary treatments [236].

By combining multiple single-species models that provide insights into the metabolic
functions of individual species, such as topology and constraint-based models [230,237],
the human microbiome can be studied as an ecosystem community model. Using various
computational approaches, such as reverse ecology, it is possible to predict the type and
extent of interactions within the community and its environment [231]. This includes
inferring whether a bacterial species can influence the metabolism of host tissue cells,
thereby enhancing our understanding of the microbiome-host metabolic interplay.

According to Garjan et al., there are six primary computational methods used to
predict microbial disease: path-based methods [238], random walk methods [239,240],
bipartite local models [241], matrix factorization [242,243], machine learning-based meth-
ods [244] and network-based methods [245,246]. These techniques aim to predict links
between microbes and diseases. However, topology and constraint-based methods can
complement these approaches by offering insights into the structural organization and
functional limitations within microbial communities. Though being mainly used to model
single organisms or cells, it is possible to integrate them with metagenomic data to study
the microbiome and its interaction with the host on a system level (Figure 2). One such
integration has led to the development of the Microbiome Modeling Toolbox [247], through
which we can determine pairwise metabolic interactions regarding metabolic exchanges
between two metabolic reconstructions, such as microbe-microbe and host-microbe, and to
build and simulate a personalized microbial community model in different conditions, e.g.,
under different diet regimens, using specific microbes and their relative abundance [248]
within a sample.

Lastly, by merging the predictive capabilities of machine learning-based methods
with the structural understanding provided by topology [249] and constraint analysis [250]
mentioned above, researchers can gain a more holistic view of how microbial communities
impact disease. This integrated approach has led to the development of machine learning
software that enhances our understanding of the complex interactions that exist between
GM and health [251].
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Figure 2. Integration of single-species models with host metabolism models to study interactions
between the gut microbiota (GM) and the host through a comprehensive supra-organism model.
(A) Each colored network represents the metabolic model of a single microbial species. (B) By
combining multiple single-species models, a multi-species model can be constructed, simulating
functional exchanges between different microbial species within a community. (C) Integrating this
multi-species model with host biological data creates a microbe-host model, enabling the study of
interactions between microbes and the host.

4.2. Machine Learning-Based Models

Machine learning-based models have emerged as powerful tools for MIA exploration,
offering unique capabilities in handling large-scale datasets and uncovering complex
patterns within them [252]. These models provide a promising approach to simulate and
predict the intricate interactions between the GM and the host immune system [253].

The computational methodology for predicting the human-microbial interactions in-
volves exploring the global landscape of potential inter-species protein interactions within
different human microbiomes and assessing their impact on human cellular pathways [254].
This approach aims to estimate the influence of these interactions on the host and provides
insights into the complex network of relationships between human and microbial proteins,
which includes the interactions between viruses and human proteins. By using compu-
tational tools and protein interaction mapping techniques, researchers can predict and
analyze these interactions, shedding light on the intricate dynamics of the GM-immunity
axis [255].

Machine learning-based models stand out due to their ability to integrate various
types of biological data, including genomics, proteomics and metabolomics, to generate
comprehensive predictions about host-microbe interactions. These models are principally
adept at identifying patterns and correlations that might be overlooked by traditional
analytical methods. For instance, by employing computational predictions based on
sequence similarities, gene-order conservation, and protein structural data, researchers can
capture interactome networks and identify potential links between different diseases [256].
This integrative approach allows for the identification of shared molecular pathways and
interactions with gut microbes that may underlie disease relationships, providing valuable
insights into the etiology, treatment, and development of many microbe-related diseases.

One of the significant advantages of machine learning algorithms is their ability to
handle the complexity and heterogeneity of microbial communities’ data. By processing
large datasets, these models can discern subtle patterns and associations that inform our
understanding of how specific microbial populations influence immune responses. For
example, machine learning models can predict microbial disease associations, shedding
light on how dysbiosis can impact the host IS and overall health.

Moreover, these software tools can incorporate network-based methods, offering in-
sights into how microbiota can influence immune responses and vice versa [231]. Network-
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based approaches allow researchers to map out the interactions between different microbial
species and the host immune system, highlighting key nodes and pathways that may be
critical for maintaining immune homeostasis. These insights are crucial for unraveling the
molecular commonalities between clinically related diseases, such as autoimmune diseases,
even when they do not share disease genes.

Furthermore, machine learning models can integrate topology and constraint-based
methods, enhancing our understanding of how microbial communities impact immune
responses and overall health [257]. Topology-based approaches focus on the structural
properties of biological networks [258], identifying critical connections and hubs that play
essential roles in mediating host-microbe interactions. Constraint-based models, on the
other hand, use mathematical frameworks to simulate metabolic networks, predicting
how changes in microbial composition can influence metabolic outputs and, consequently,
immune function [250,259].

In addition to predictive modeling, machine learning approaches are useful for hy-
pothesis generation and experimental design. By analyzing large datasets, these models
can generate new hypotheses about potential mechanisms of MIA interactions, managing
experimental studies [260,261]. For instance, machine learning algorithms can identify can-
didate microbial metabolites that might modulate immune responses [262,263], providing
targets for experimental validation and therapeutic development [264,265].

Another area where machine learning-based models excel is in the personalization
of medicine. By integrating patient-specific data, these models can predict individual
responses to targeted therapies for microbiota-related diseases such as IBD [266], enabling
the development of personalized treatment strategies. This is particularly relevant in the
context of diseases like IBD and other autoimmune disorders [266], where GM plays a
significant role in disease progression and response to treatment [267].

In addition, the integration of machine learning with high-throughput sequencing
technologies has facilitated the discovery of novel microbial species and functional genes
that may be critical for immune modulation [268,269]. These discoveries expand our
understanding of GM diversity and functional capacity, providing new avenues for thera-
peutic intervention.

Overall, the application of machine learning-based models in studying the GM-
immunity axis represents a significant advancement in our ability to understand and
manipulate this complex system. By leveraging the power of computational tools, re-
searchers can gain deeper insights into the interactions between the GM and the immune
system, paving the way for novel therapeutic strategies and improved disease management.

4.3. Agent-Based Simulation Tools

Over recent decades, different mathematical and computational models have been
developed to simulate and describe the processes and characteristics of the immune sys-
tem. These models can generally be categorized into two broad classes based on their
modeling approach: top-down and bottom-up approaches [270]. The top-down approach
focuses on estimating the average behavior at a macroscopic level, thereby modeling entire
populations rather than individual entities. This approach allows for the representation
of a large number of entities. The most traditional and widely recognized top-down
models involve ordinary and partial differential equations, including stochastic differ-
ential equations which incorporate random components to reflect individual variability
or environmental fluctuations caused by statistical noise [271]. Nevertheless, these mod-
els overlook individual interactions, though having the advantage of being grounded in
well-established mathematical theory, facilitating, in some cases, analytical studies and
asymptotic analysis, i.e., the understanding of the behavior of algorithms as their input
increases [272,273]. However, for complex biological scenarios, these models can become
unwieldy, necessitating approximations.

On the other hand, the bottom-up approach operates at a microscopic level, where
individual entities (agents) and their interactions are explicitly modeled, with the system’s
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overall behavior emerging from the collective local interactions [270]. This approach allows
for more precise modeling of localized immunological processes, reducing the need for the
broad assumptions typical of top-down models. In this context, agent-based simulation
(ABS) tools are the most commonly used bottom-up methods in immunology studies [274].

While machine learning (ML) techniques have proven invaluable in analyzing large
datasets and predicting patterns within the microbiome [275], ABS tools offer a complemen-
tary approach by enabling detailed modeling of interactions among individual microbial
agents and their environment [276].

ABS is a computational methodology that focuses on the behaviors and interactions of
autonomous agents to explore the emergent properties of complex systems [277]. In the
context of GM research, each agent can represent an individual microorganism or a group
of microorganisms, each with distinct characteristics and behavioral rules [278]. These
agents interact with each other and their environment, allowing researchers to simulate and
analyze how various factors—such as diet, antibiotics and host immune responses—affect
the overall dynamics of the microbial community.

The primary advantage of ABS tools lies in their ability to model the non-linear interac-
tions and stochastic events that drive the behavior of the microbiota [279]. Unlike traditional
modeling techniques, which often rely on averaged parameters and assumptions of ho-
mogeneity, ABS captures the diversity and individuality of microbial entities [280]. This
approach provides a more nuanced understanding of how specific interactions contribute
to the stability, resilience, and functionality of the gut microbiome [281].

By using ABS tools, researchers can conduct virtual experiments to test hypotheses,
explore “what-if” scenarios, and predict the outcomes of interventions [282]. These simula-
tions can illuminate the underlying mechanisms of microbial interactions with the host IS
and offer insights into the emergent behaviors of the microbiota as a whole [283]. These
computational tools are essential, for instance, to explore how dysbiosis contributes to
the immune responses that underlie diseases such as IBD, diabetes and even neurological
disorders. They enable the identification of microbial signatures associated with these
diseases and predict the effects of potential treatments.

There are various computational software tools and modeling techniques available
to simulate immune responses and potential associations between microbes and disease.
These tools allow researchers to model and analyze the interactions within the immune
system accurately. Among these, NetLogo has been widely used to dive into the study of
immunological dynamics. In fact, NetLogo stands out as a free and open-source program-
ming language and integrated modeling suite that is quite easy to use for beginners due
to the fact that it supports 2D or 3D drawn agents, as well as supplying many examples
and how-tos [270]. This program can be used to model basic innate and adaptive immune
responses and inflammation, but also to model autoimmune diseases such as Multiple
Sclerosis [284].

Since such diseases rely on a dysregulation of immunity, which can be considered as a
communicative system that maintains internal homeostasis by detecting and processing
environmental signals, during the last years there has been a growing need to manage this
complexity through complex computational tools that allow “dry-laboratory” experiments
to be complementary to traditional in vivo/in vitro ones [285]. Several immune simulators
have been developed to offer a programming framework capable of integrating existing
immunological knowledge and modeling various aspects of immune dynamics. The
Microscopic Stochastic Immune System Simulator (MiStImm) is one such tool that uses an
agent-based modeling technique to simulate components of adaptive immunity, including
T cells, B cells, antibodies, interleukins, danger signals, self-cells, foreign antigens and their
interactions [286]. All of these major components, referred to as “agents”, represent the
nodes of a dynamic immune network, where the links signify possible interactions between
different elements. The immune network evolves over time, driven by random events in
a step-by-step manner. In fact, the model simulated by MiStImm has a stochastic nature,
which allows for random interactions, being useful for simulating key immune processes in
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which events happen randomly, like B cell affinity maturation and the selection of specific T
cell clones [286]. Another tool, C-ImmSim, integrates the amino acid sequence of antigenic
epitopes with lymphocyte receptors to simulate the immunological response [287]. C-
ImmSim is the evolution ofIMMSIM, which enables the implementation and simulation of
detailed immune response models [288]. With C-ImmSim many features not included in
the previous version allow the study of humoral and cellular immunity as well as chemical
mediators of cell communication such as cytokines. This computational tool can be used
to study complex aspects of immunity that happen in a specific environment, such as
thymus and bone marrow, while taking into account, compared to MiStImm, a wider
range of cellular and molecular entities [287]. Furthermore, the Basic Immune Simulator
(BIS) is an agent-based model that studies interactions between cells of the innate and
adaptive immune systems in response to microbial infections [289]. Platforms like the ones
mentioned above integrate others like SIMMUNE [290], Reactive Animation [291,292] and
SIS (Synthetic Immune System) [293], which are designed to simulate immune reactions by
allowing users to define interaction rules. The aim of these simulators is to make it easy
to modify and explore different rules to study their effects on immune responses. While
some simulators are more flexible than others, IMMSIM, for instance, enables users to
adjust parameter values to alter specific aspects of immunity, like turning off the humoral
responses to study the consequent outcome [294]. Reactive Animation offers even greater
flexibility by allowing users to select between different theoretical models of uncertain
interactions. Although the effectiveness of these platforms varies, some have contributed
valuable insight to immunological research. For instance, IMMSIM has been used to study
immune tolerance [295] and autoimmunity [287].

Another type of simulator, known as disease simulator, provides a versatile program-
ming framework that can be adapted to model various diseases, being specifically designed
to replicate different host-pathogen interactions and being generally more user-friendly
and easier to calibrate compared to immune simulators. Users can fine-tune parameters
such as cytokine binding rates and infection spread rates to simulate various diseases.
Examples of such simulators include CyCells [296], PathSim [297] and the MASyV modules
ma_immune and ma_virions [296].

These are just some examples of the main tools that provide a robust platform to
explore the dynamics of immune responses in various contexts and scenarios. Overall,
these computational software tools are instrumental in advancing our comprehension
of immune responses in general by facilitating the simulation and analysis of complex
immune system behaviors, interactions, and responses to different stimuli.

ABS tools have not only been used to study immunological disorders in general and
responses to microbial stimuli deriving from bacterial or viral pathogens but also represent
a valuable means to predict and study immunological consequences in response to stimuli
related to the GI content, such as commensal microbes. In this regard, the ENteric Immunity
Simulator (ENISI) is a simulator of the gastrointestinal immune mechanisms in response to
resident commensal bacteria and/or invading pathogens and the effect on the development
of intestinal lesions and immunopathologies [298,299]. This tool is developed to model
the competing inflammatory and regulatory immune pathways in the gut as individual
immune cells interact with both commensal and foreign bacteria. For instance, ENISI
has been utilized to replicate a standard inflammatory response to foreign bacteria and
the immunopathological consequences of autoimmunity against microbiota, involving
106 cells [299]. ENISI represents a clear example of how such agent-based simulators are
crucial to test the plausibility of in vitro experiments and in vitro/in silico observations,
leading to the conduction of low-cost, preliminary experiments of proposed interventions,
treatments [223] and potential immunological mechanisms not yet studied in vitro [299].
In fact, with ENISI and other ABS tools, immunologists can explore and better understand
the complexities of enteric disease pathology. By simulating immune responses within an
in silico gut environment, these tools allow researchers to test and develop hypotheses
regarding the interactions between immune cells, commensal bacteria and pathogens.
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These simulation platforms are particularly valuable for investigating the dynamics of
inflammatory and regulatory pathways [299], providing a controlled and customizable
environment in which various scenarios can be modeled. Researchers can use such ABS
tools to conduct preliminary computational experiments, refining their approaches before
transitioning to more costly and time-consuming in vitro or in vivo studies. Moreover,
ENISI’s capacity to model specific immune responses and disease outcomes [223] facilitates
the identification of potential therapeutic interventions, offering insights that can inform
experimental designs and drive forward more targeted and efficient investigations in the
laboratory. By bridging the gap between computational simulations and experimental
in-vivo/in-vitro research, ENISI serves as a versatile tool in advancing our understanding
of gut immunity and disease.

5. Conclusions

The exploration of diverse models for studying microbiota-immune system inter-
actions reveals a nuanced landscape, with each model offering distinct advantages and
limitations (Table 2). In vivo models provide a comprehensive biological context essential
for understanding the intricate dynamics of the microbiome within an entire organism.
However, they present significant ethical and practical challenges, such as high costs and
inherent variability, which can complicate their use. Conversely, in vitro models, including
two-dimensional and three-dimensional systems as well as advanced gut-on-chip models,
offer the opportunity to reduce animal use while allowing for greater experimental control.
Although these models are less expensive than in vivo studies, they still require specialized
materials and advanced technological infrastructure. Nonetheless, in vitro models remain
critical for mechanistic studies, enabling the isolation of specific variables and contributing
to a deeper understanding of microbiota-immune system interactions.

Table 2. Comparative Analysis of in Vivo, In Vitro, and In Silico Models: Advantages and Disadvan-
tages in Studying Gut Microbiota-Immune System Interactions.

Models Used for Studying the Gut
Microbiota-Immune System Interaction Advantages Disadvantages

In Vivo
Comprehensive biological context;

manipulates microbial compositions;
insights into dynamic interactions.

Ethical concerns; high cost;
labor-intensive; variability; limited

human applicability.

In Vitro
Ethical; high experimental control;
cost-effective; detailed mechanistic

studies.

Lacks full biological complexity; requires
advanced technology; some models don’t

replicate gut environment.

In Silico
Cost-effective; large-scale simulations;

models complex interactions; aids
experimental design.

Requires robust data for accuracy;
potential oversimplification of biological

processes.

In silico approaches emerge as well promising for the future of microbiome research.
These computational models offer a sustainable, cost-effective solution that significantly
reduces the environmental impact of experimental research. In silico methods can integrate
data from in vivo and in vitro models to conduct large-scale simulations and generate
accurate predictions, providing a powerful tool for understanding complex biological
interactions. However, the success of in silico models depends on robust experimental
validation and continuous optimization to ensure their accuracy and reliability.

Looking forward, the future of MIA research is likely to focus on the increasing impor-
tance of in silico models, given their sustainability and efficiency. The integration of in vivo,
in vitro, and in silico methods promises to offer a more comprehensive and multidimen-
sional perspective, but with a strategic emphasis on the in silico approach. This approach
can accelerate scientific discoveries while promoting more ethical and environmentally
sound research practices. Future studies should prioritize the development and refinement
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of in silico models, with the goal of harnessing their full potential to revolutionize our
understanding of the role of the microbiome in health and disease.

6. Search Strategy from Repository

We conducted a comprehensive literature search focusing on publications that discuss
in vivo, in vitro, and in silico models. Our aim was to identify studies that investigate
the current and future approaches to understanding gut microbiome-immunity dynamics,
particularly those that bridge experimental and computational models.

We utilized the PubMed database, leveraging the Medical Subject Headings (MeSH)
tool to ensure a precise and targeted search. For our search, we selected the following
key MeSH headings: “Gut Microbiota”, “Immune System”, “Models, Biological”, and
“Computational Biology”. To enhance the focus of our search, we used boolean opera-
tors to combine these headings. The combinations included: (“Gut Microbiota” [Mesh])
AND “Immune System” [Mesh]; (“Gut Microbiota” [Mesh]) AND “Models, Biological”
[Mesh]; (“Gut Microbiota” [Mesh]) AND “Computational Biology” [Mesh]; (“Immune
System” [Mesh]) AND “Models, Biological” [Mesh]; (“Immune System” [Mesh]) AND
“Computational Biology” [Mesh].

Throughout the selection process, we prioritized studies that offered comprehensive
data, including Meta-Analyses and Systematic Reviews, as these sources consolidate ex-
isting knowledge and provide broader insights into the field. We also included recent
Randomized Controlled Trials to capture current experimental approaches and Reviews
that explore future implications and emerging trends in gut microbiome research. This
search strategy ensured a thorough and well-rounded selection of publications, encompass-
ing various study designs and methodologies, to provide a comprehensive overview of the
state and future directions of research on gut microbiome-immunity.
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