

## FLORE

## Repository istituzionale dell'Università degli Studi

 di Firenze
## Proving a conjecture on prime double square tiles

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:
Original Citation:
Proving a conjecture on prime double square tiles / Michela Ascolese; Andrea Frosini. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - ELETTRONICO. - 350:(2024), pp. 71-83.
[10.1016/j.dam.2024.02.022]

Availability:
This version is available at: 2158/1354974 since: 2024-04-05T12:07:51Z

Published version:
DOI: 10.1016/j.dam.2024.02.022

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

# Proving a conjecture on prime double square tiles 

Michela Ascolese ${ }^{\mathrm{a}, *}$, Andrea Frosini ${ }^{\text {a }}$<br>${ }^{a}$ Dipartimento di Matematica e Informatica, Università degli Studi di<br>Firenze, Florence, Italy


#### Abstract

In 2013, while studying a relevant class of polyominoes that tile the plane by translation, i.e., double square polyominoes, Blondin Massé et al. found that their boundary words, encoded by the Freeman chain coding on a four letters alphabet, have specific interesting properties that involve notions of combinatorics on words such as palindromicity, periodicity and symmetry. Furthermore, they defined a notion of reducibility on double squares using homologous morphisms, so leading to a set of irreducible tile elements called prime double squares. The authors, by inspecting the boundary words of the smallest prime double squares, conjectured the strong property that no runs of two (or more) consecutive equal letters are present there. In this paper, we prove such a conjecture using combinatorics on words' tools, and setting the path to the definition of a fast generation algorithm and to the possibility of enumerating the elements of this class w.r.t. standard parameters, as perimeter and area.


Keywords: Discrete Geometry, Combinatorics on words, Tiling, Exact tile

## 1. Introduction

Algorithmic studies of planar tilings greatly benefit from the seminal works [14] and [15], where the decidability of the existence of planar tilings is addressed both with a given set of tiles and with a single one. In the first case, it has been shown that each Turing machine computation can be simulated by a planar tiling using a suitable set of tiles without rotations, starting from an initial partial configuration that models the input tape. On the other hand, if only one tile is provided, the computation becomes much easier. As a matter of fact in [15] the authors, with the aim of proving a conjecture by Shapiro [13], showed that a connected finite set of points in $\mathbb{Z}^{2}$ defines a polyomino tile, that is exact if and only if it admits a periodical tiling of the plane. This result is of great relevance since it limits the test for the exactness of a polyomino to a finite part of the plane. Relying on that, Beauquier and Nivat in [3] characterized the

[^0]boundary of an exact polyomino, regarded as a word on a four letters alphabet, using the notions of rotation and conjugation proper of combinatorics on words, thus setting a strong connection between these two research fields.
In particular, the authors showed that the boundary word $P$ of an exact polyomino can be factorized according to the equation $P=X_{1} X_{2} X_{3} \widehat{X}_{1} \widehat{X}_{2} \widehat{X}_{3}$, where, considering the word $X$ as a path, the word $\widehat{X}$ refers to the coding of the same path travelled in the opposite direction. According to [3], at most one among $X_{1}, X_{2}$ and $X_{3}$ can be empty. Exact polyominoes with such a property are addressed as pseudo-squares, while pseudo-hexagons are those exact tiles in which all the factors $X_{i}$ are non-empty words. The name is due to the property that such polyominoes tile the discrete plane by translation surrounding themselves with four, respectively six, copies of themselves.
It is easy to verify that an exact polyomino $P$ can be used to tile the plane in different ways, in general, and that it can show both a pseudo-hexagon's and a pseudo-square's behaviour, also in the same tiling. Furthermore, the arrangement of the copies of $P$ in each of its tilings has a periodical behaviour along one or two discrete directions, that are strictly related to the choice of the factors $X_{i}$ in the decomposition of the word $P$, non-unique in general. See Fig. 1 for examples.


Figure 1: Three tilings of the plane with the two-cell polyomino showing different behaviours. In (a) the polyomino acts as a pseudo-square, since it is surrounded by four copies of itself. In (b) the polyomino acts as a pseudo-hexagon, since six copies surround each polyomino. In (c) both behaviours are present. Here, the dark polyomino is surrounded by five copies of itself, but this is not the case for each element of the tiling.

Relying on these strong geometrical properties, exact polyominoes have been considered under different perspectives. Several algorithms have been defined to improve the efficiency of their detection: moving from the simplest $\mathcal{O}\left(n^{4}\right)$ strategy to find a (possible) factorization of a $n$-length boundary word, in [9] the complexity has been reduced to $\mathcal{O}\left(n^{2}\right)$, finally reaching an optimal linear time strategy in [7] in case of pseudo-squares. Specific regularity properties of the tilings induced by exact polyominoes have been studied, and provided useful tools to study the periodicity of infinite binary patterns in the discrete plane, as well as the possibility of their decomposition into simpler configurations, see $[1,2,8,11]$. On the other hand, combinatorial aspects of relevant subclasses of exact polyominoes have been considered with the aim of efficiently characterizing, enumerating and exhaustively generating them (few examples for all are $[4,5,6])$. In this work we carry on the study of tiles from this last perspective, and in particular we focus on the subclass of double square tiles.

We move from [4], where it was proved that an exact polyomino can tile the plane as a pseudo-square in at most two distinct ways, and that if two different pseudo-square factorizations of $P$ exist, then no decomposition as a pseudohexagon does. The authors refer to these exact polyominoes as double squares. In Fig. 2, three double square polyominoes are provided together with their factorizations.
Furthermore, it is shown in [6] that double squares have specific boundary properties, that are exploited using equations on words. These properties lead to the definition of two operators that allow to exhaustively generate them, and to the notion of double square reducibility through the definition of suitable homologous morphisms. Among double squares, those that can be reduced without intermediate steps to the unit square constitute the subclass of prime double squares, and are pointed out for their relevance in the exhaustive generation of double squares polyominoes. Still in [6], the following conjecture was proposed:

Conjecture 35. Let $w$ be the boundary word of a prime double square tile in a four letters alphabet $\Sigma$. Then, for any letter $\alpha \in \Sigma, \alpha \alpha$ is not a factor of $w$.

The authors of [6] put emphasis on the relevant role that prime double squares play in the exhaustive generation of all double square tiles: they defined an algorithm to generate all prime double squares starting from the unit square, relying on strong palindromicity properties of their boundary words. In this work we deepen the study of such tiles, and we prove Conjecture 35 by providing a strong combinatorial structure of the boundary word of any prime double square. Such results allow to take a step forward the characterization of prime double squares, and then to their exhaustive generation without repetitions and outliers, as intended in [6].
The paper is organized as follows: in the next section we recall basic definitions on combinatorics on words and some preliminary results to approach Conjecture 35. In Section 3, we give some properties of double squares' boundary words, mainly using the results from [6]. The proof of Conjecture 35 is in Section 4, while Section 5 is devoted to point out future combinatorial, algorithmic and geometrical research paths that originate from our main result.

## 2. Basic notions and previous results

In this section, we fix the notation and recall some basic results on exact polyominoes to introduce the study of Conjecture 35 .
A polyomino is a subset of the square grid $\mathbb{Z}^{2}$ whose boundary is a continuous, closed and non-intersecting path. We describe polyominoes by coding their boundary through a word defined on the alphabet $\Sigma=\{0,1, \overline{0}, \overline{1}\}$, whose elements correspond to the directions $\{\rightarrow, \uparrow, \leftarrow, \downarrow\}$ of steps made in the grid, respectively. We say that the letters 0 and $\overline{0}$, resp. 1 and $\overline{1}$, are opposite, since they represent opposite directions (see Example 2). We indicate by $\Sigma^{*}$ the free monoid on $\Sigma$, i.e., the set of all words defined on the alphabet $\Sigma$, with $\varepsilon$ the empty word, and $\Sigma^{+}=\Sigma^{*} \backslash\{\varepsilon\}$. We therefore call unit square the polyomino coded by the word $U=10 \overline{10}$. Given a word $w \in \Sigma^{*},|w|$ indicates its length,
$|w|_{\alpha}$ indicates the number of occurrences of the letter $\alpha$ in $w$, and $w^{n}$ indicates the concatenation of $n$ copies of the word itself. Finally, $v$ is a factor of $w$ if there exist $x, y \in \Sigma^{*}$ such that $w=x v y$. If $x=\varepsilon[$ resp. $y=\varepsilon]$, then $v$ is a prefix [resp. suffix] of $w$.
Boundary words can be considered as circular words, since the coding of the boundary of the polyomino can be defined up to the starting point.
Two words $v$ and $w$ are conjugate, say $w \equiv v$, if there exist two words $x$ and $y$ such that $v=x y$ and $w=y x$. The conjugacy is an equivalence relation, and the conjugacy class of a word $w$ contains all its cyclic shifts. So, the boundary words of a polyomino, when fixing a traveling direction, form an equivalence class w.r.t. the conjugacy relation. In the sequel, we choose the clockwise traveling direction and each boundary word in the related equivalence class to identify a polyomino. Furthermore, the conditions of closure and non-intersection of a polyomino boundary word $P$ can be stated as $|P|_{\alpha}=|P|_{\bar{\alpha}}$ and $|Q|_{\alpha} \neq|Q|_{\bar{\alpha}}$ for each $Q$ proper factor of $P$, say $Q \subsetneq P$, and $\alpha \in\{0,1\}$.
We define three operators on a word $w=w_{1} w_{2} \ldots w_{n} \in \Sigma^{*}$ :

1. the opposite of $w, \bar{w}$, is the word obtained by replacing each letter of $w$ with its opposite;
2. the reversal of $w, \tilde{w}$, is defined as $\tilde{w}=w_{n} w_{n-1} \ldots w_{1}$. A palindrome is a word s.t. $w=\tilde{w}$;
3. the hat of $w, \widehat{w}$, is the antimorphic involution given by the composition of the previous operations.

Example 1. If we apply the previous operations to the word $w=101001 \overline{0} 1010 \overline{1} 010 \overline{1} 01$, we get

$$
\begin{aligned}
& \bar{w}=\overline{101001} 0 \overline{1010} 1 \overline{010} 1 \overline{01}, \\
& \tilde{w}=10 \overline{1} 010 \overline{1} 0101 \overline{0} 100101, \\
& \widehat{w}=\overline{10} 1 \overline{010} 1 \overline{0101} 0 \overline{100101} .
\end{aligned}
$$

In this case $\tilde{w} \neq w$, indeed the word $w$ is not a palindrome.
Finally, an exact polyomino is a polyomino that tiles the plane by translation. Beauquier and Nivat characterized exact polyominoes in relation to their boundary word, providing the following

Theorem 1 ([3]). A polyomino $P$ is exact if and only if there exist $X_{1}, X_{2}, X_{3} \in$ $\Sigma^{*}$ such that

$$
P=X_{1} X_{2} X_{3} \widehat{X}_{1} \widehat{X}_{2} \widehat{X}_{3},
$$

where at most one of the words is empty. This factorization may be not unique.
We refer to this decomposition as a $B N$-factorization. Starting from their BN-factorization(s), exact polyominoes can be further divided in two classes: pseudo-hexagons, if $X_{1}, X_{2}$ and $X_{3}$ are all non-empty words, and pseudo-squares, if one of the words is empty. We focus on double square polyominoes, i.e., those ones that admit two different BN -factorizations as a square, $P=A B \widehat{A} \widehat{B} \equiv$
$X Y \widehat{X} \widehat{Y}$. Due to the presence of two BN-factorizations, double squares' boundary words can be written in the general form obtained from Corollary 6 in [7],

$$
\begin{equation*}
P=w_{1} w_{2} w_{3} w_{4} w_{5} w_{6} w_{7} w_{8} \tag{1}
\end{equation*}
$$

where $A=w_{1} w_{2}, B=w_{3} w_{4}, \widehat{A}=w_{5} w_{6}, \widehat{B}=w_{7} w_{8}$ and $X=w_{2} w_{3}, Y=w_{4} w_{5}$, $\widehat{X}=w_{6} w_{7}, \widehat{Y}=w_{8} w_{1}$, with $w_{1}, \ldots, w_{8}$ non empty.
We now introduce the notion of homologous morphism. A morphism is a function $\varphi: \Sigma \rightarrow \Sigma^{*}$ s.t. $\varphi(\alpha \beta)=\varphi(\alpha) \varphi(\beta)$ with $\alpha, \beta \in \Sigma$, i.e., it preserves concatenation, and it is said to be homologous if $\varphi(\widehat{A})=\widehat{\varphi(A)}$ for all $A \in \Sigma^{*}$, i.e., it preserves the hat operation. From now on we refer to homologous morphisms only. For each exact polyomino $P=A B \widehat{A} \widehat{B}$, we can define the trivial morphism that maps the unit square in $P$ as $\varphi_{P}(1)=A, \varphi_{P}(0)=B$. In general, the boundary word of an exact polyomino can be obtained starting from the unit square through the composition of two or more morphisms (see Example 3). A double square is prime if its boundary word $P$ is such that, for any homologous morphism $\varphi$, the equality $P=\varphi(U)$ implies that either $U=P$ or $U$ is the boundary word of the unit square. This property can be rephrased saying that a double square is prime if its trivial morphism can not be obtained by composing two or more different morphisms.

Example 2. In Fig. 2 are shown three prime double squares, whose boundary words are, from left to right, $P_{(a)}=1 \overline{0} 1 \overline{0} 101010 \overline{1} 0 \overline{1} 0 \overline{101010}, P_{(b)}=1 \overline{0} 1010 \overline{1} 0 \overline{1010}$ and $P_{(c)}=1 \overline{0} 1 \overline{0} 1010 \overline{1} 0 \overline{1} 0 \overline{1010}$.


Figure 2: The diamond tile (a), the cross tile (b) and the butterfly tile (c) are three examples of prime double square tiles. Their double BN-factorizations are highlighted on the boundary with dots of different colors.

Example 3. The double square

$$
P=101001010010100 \overline{101} 00 \overline{101} 00 \overline{101001010010100} 101 \overline{00} 101 \overline{00}
$$

is not prime. The trivial morphism, $\varphi_{P}(1)=1010010100101, \varphi_{P}(0)=00 \overline{101} 00 \overline{101} 00$, can be decomposed as $\varphi_{1}(1)=10101, \varphi_{1}(0)=0 \overline{1} 0 \overline{1} 0$ and $\varphi_{2}(0)=00, \varphi_{2}(1)=$ 101. The composition $\varphi_{P}=\varphi_{1} \circ \varphi_{2}$ maps the unit square in $P$ using the diamond as intermediate step (as shown in Fig. 3).


Figure 3: The figure shows the composition of two morphisms that lead to a non-prime double square.

Now, we have introduced all the notions to state a conjecture by Blondin Massé et al. in [6], that constitutes the focus of our work.
Conjecture 35 ([6]). Let $P$ be the boundary word of a double square and $\alpha$ a symbol of the alphabet $\Sigma$. If $P$ is prime, then $\alpha \alpha$ is not a factor of $P$.
Notation: for each $\alpha \in \Sigma$, we use the notation $\alpha \alpha \subseteq w$ (resp. $\alpha \alpha \nsubseteq w$ ) to indicate that the word $w$ contains (resp. does not contain) the factor $\alpha \alpha$.
On the other hand, we indicate $w$ to be couple free if no two consecutive occurrences of a same letter of $\Sigma$ are present.
We conclude this section by stating two useful technical lemmas.
Lemma 1 ([6]). Given a double square with BN-factorizations $P=A B \widehat{A} \widehat{B} \equiv$ $X Y \widehat{X} \widehat{Y}$, if $P$ is prime then all its factors $A, B, X, Y$ are palindrome.
Lemma 2. Given $a, b, u \in \Sigma^{+}$, if bũa and b $\widehat{u} a$ are palindrome, then $b=\tilde{a}$ and $u$ is palindrome. If $\tilde{a} u \tilde{b}$ and $\bar{b} \tilde{u} \bar{a}$ are palindrome, then the same result holds.
Proof. By contradiction, let us suppose $|b|<|a|$ and $a=y \tilde{b}$ for some non-empty $y \in \Sigma^{+}$. Replacing, $b \tilde{u} y \tilde{b}$ and $b \widehat{u} y \tilde{b}$ are both palindrome if and only if $\tilde{u} y$ and $\widehat{u} y$ are palindrome at the same time, that is impossible since $u \neq \varepsilon$. If $|a|<|b|$ the proof is similar. Analogous arguments lead to the proof of the second statement.

## 3. Properties of the boundary word of prime double squares

In this section, we study the prime double squares' boundary words. In particular, we exploit some of their properties that, step by step, lead to write them in a useful general form.

Lemma 3 ([6]). Let $P=w_{1} w_{2} w_{3} w_{4} w_{5} w_{6} w_{7} w_{8}$ be the BN-factorization of (the boundary word of) a prime double square as in (1). It holds that $w_{i+4}=\bar{w}_{i}$ for all $i=1, \ldots, 4$.

It follows that the boundary word of a prime double square can be written as

$$
\begin{equation*}
P=w_{1} w_{2} w_{3} w_{4} \bar{w}_{1} \bar{w}_{2} \bar{w}_{3} \bar{w}_{4} \tag{2}
\end{equation*}
$$

Lemma 4. Let $P=A B \widehat{A} \widehat{B}$ be a prime double square and $\alpha \in \Sigma$. If $\alpha \alpha \subseteq P$, then $\alpha \alpha \subseteq A$ or $\alpha \alpha \subseteq B$.

Proof. By contradiction. Let us suppose that the BN -factorization splits $\alpha \alpha$, i.e., there exist $a_{1}, a_{2} \in \Sigma^{*}$ such that $P=A B \widehat{A} \widehat{B}=\left(a_{1} \alpha\right)\left(\alpha a_{2}\right) \widehat{A} \widehat{B}$. Since $P$ is a prime double square, its factors are both palindrome by Lemma 1, i.e., $A=\left(\alpha b_{1} \alpha\right)$ and $B=\left(\alpha b_{2} \alpha\right)$ for some $b_{1}, b_{2} \in \Sigma^{*}$. Replacing $A$ and $B$ in $P$, we get

$$
P=\left(\alpha b_{1} \alpha\right)\left(\alpha b_{2} \alpha\right)\left(\widehat{\alpha}_{1} \bar{\alpha}\right)\left(\widehat{\alpha}_{2} \bar{\alpha}\right)
$$

reaching a contradiction since the factor $\alpha \bar{\alpha}$ represents a closed path, not allowed in the boundary of a polyomino.

Corollary 1. From the previous lemma and the general form of $P$ in (2), it directly follows that the term $\alpha \alpha$ can not be split between two consecutive factors $w_{i}$ and $w_{i+1}$.

Corollary 2. If $P=w_{1} \ldots w_{8}$ is a prime double square, then $\left|w_{i}\right| \neq\left|w_{i+1}\right|$ for all $i=1, \ldots, 8$.

Proof. By contradiction. Let be $\left|w_{i}\right|=\left|w_{i+1}\right|$ for some $i$. Since $w_{i} w_{i+1}$ is a BN -factor and $P$ is prime, then, by Lemma 1, it is a palindrome, i.e., $w_{i} w_{i+1}=$ $\tilde{w}_{i+1} \tilde{w}_{i}=w_{i} \tilde{w}_{i}$. It follows that the last letter of $w_{i}$ and the first one of $w_{i+1}$ match, i.e., we can split a term $\alpha \alpha$ between two BN-factors, in contradiction with Lemma 4.
When considering the boundary word $P=w_{1} \ldots w_{8}$ of a generic (not necessarily prime) double square, the following property holds:

Property 1 ([6]). For $i=1, \ldots, 8$, there exist unique words $u_{i}, v_{i} \in \Sigma^{*}$ and unique $n_{i} \geq 0$ such that

$$
\left\{\begin{array}{l}
w_{i}=\left(u_{i} v_{i}\right)^{n_{i}} u_{i} \\
\widehat{w}_{i-3} w_{i-1}=u_{i} v_{i}
\end{array}\right.
$$

From Property 1 and Lemma 3, we can refine the generic form of the boundary word of a prime double square provided in (2).
First, we note that $w_{i+4}=\bar{w}_{i}$ and $w_{i}=\left(u_{i} v_{i}\right)^{n_{i}} u_{i}$ imply

$$
\begin{aligned}
& u_{i+4}=\bar{u}_{i}, \\
& v_{i+4}=\bar{v}_{i} \\
& n_{i+4}=n_{i}
\end{aligned}
$$

for $i=1, \ldots, 4$.

By the second equation in Property 1, we can write $u_{i} v_{i}$ depending on $w_{i-1}$ and $w_{i-3}$, and replacing them in the first one we get

$$
\begin{gather*}
P=\left(\tilde{w}_{2} \bar{w}_{4}\right)^{n_{1}} u_{1}\left(\tilde{w}_{3} w_{1}\right)^{n_{2}} u_{2}\left(\tilde{w}_{4} w_{2}\right)^{n_{3}} u_{3}\left(\widehat{w}_{1} w_{3}\right)^{n_{4}} u_{4} \ldots \\
\quad \ldots\left(\widehat{w}_{2} w_{4}\right)^{n_{1}} \bar{u}_{1}\left(\widehat{w}_{3} \bar{w}_{1}\right)^{n_{2}} \bar{u}_{2}\left(\widehat{w}_{4} \bar{w}_{2}\right)^{n_{3}} \bar{u}_{3}\left(\tilde{w}_{1} \bar{w}_{3}\right)^{n_{4}} \bar{u}_{4} \tag{3}
\end{gather*}
$$

The following lemma is a rephrase of Lemma 11 in [6]:
Lemma 5 ([6]). Given the boundary word $P$ of a prime double square according to (3), there are no two consecutive exponents $n_{1}, n_{2}, n_{3}$ and $n_{4}$ that are different from zero.

Lemma 6. The boundary word $P$ of a prime double square, as in (3), can always be written in terms of the elements $u_{i}$ only, for $i=1, \ldots, 4$.

Proof. If $n_{i}=0$ for all $i$, the thesis trivially holds. So, let us assume w.l.g. $n_{1}>0$ (the other cases can be treated similarly). By Lemma 5, it follows $n_{2}=n_{4}=0$, and then $w_{2}=u_{2}$ and $w_{4}=u_{4}$. Since $w_{1}$ and $w_{3}$ are expressed in terms of $w_{2}$ and $w_{4}$ only, replacing in (3) the thesis follows.
We finally get the generic form of the boundary word of a prime double square:

$$
\begin{align*}
P= & \left(\tilde{u}_{2} \bar{u}_{4}\right)^{n_{1}} u_{1} \vdots\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} u_{2} \vdots\left(\tilde{u}_{4} u_{2}\right)^{n_{3}} u_{3} \vdots\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} u_{4} \mid  \tag{4}\\
& \left(\widehat{u}_{2} u_{4}\right)^{n_{1}} \bar{u}_{1} \vdots\left(\widehat{u}_{3} \bar{u}_{1}\right)^{n_{2}} \bar{u}_{2} \vdots\left(\widehat{u}_{4} \bar{u}_{2}\right)^{n_{3}} \bar{u}_{3} \vdots\left(\tilde{u}_{1} \bar{u}_{3}\right)^{n_{4}} \bar{u}_{4} .
\end{align*}
$$

We underline that (4) is always well defined since $n_{1}=n_{3}=0$ or $n_{2}=n_{4}=0$ (or both), see Lemma 5, and then the factors $w_{i}$ in (3) can be expressed in terms of $u_{i}$ only.
From now on, we use a vertical bar to indicate the half of the boundary word and dashed, vertical bars to separate two consecutive words $w_{i}$ and $w_{i+1}$.

Theorem 2. Let $P$ be the boundary word of a prime double square as in (4), and $\alpha \in \Sigma$. If $\alpha \alpha \subseteq P$, then $\alpha \alpha$ is entirely contained in a factor $u_{i}$, i.e., the term $\alpha \alpha$ can not be split between two consecutive factors $u_{i}$.

Proof. Let us suppose w.l.g. $\alpha \alpha \subseteq w_{1}=\left(\tilde{u}_{2} \bar{u}_{4}\right)^{n_{1}} u_{1}$. By contradiction, we suppose to split the occurrences of $\alpha$ between two factors $u_{i}$. We analyze all possible cases for the values of $n_{1}, n_{3}$ and the factors $u_{i}$.
i) We start assuming $n_{1} \geq 2$, that is the only case in which we can suppose $\alpha \alpha \subseteq \bar{u}_{4} \tilde{u}_{2}$. Since $\tilde{u}_{2}$ begins and $\bar{u}_{4}$ ends with $\alpha$, then $\widehat{u}_{2}$ begins with $\bar{\alpha}$ and $u_{4}$ ends with $\bar{\alpha}$. In this case, we get the following factors in the boundary word $P$,

$$
w_{4}\left|w_{5}=\ldots u_{4}\right| \widehat{u}_{2} \ldots
$$

and $\overline{\alpha \alpha}$ is split between two factors $w_{i}$, in contradiction with Lemma 4.
ii) Let $n_{1}>0$ and suppose $\alpha \alpha \subseteq \tilde{u}_{2} \bar{u}_{4}$. We remind that in this case $n_{2}=n_{4}=$ 0 by Lemma 5 . Since $\tilde{u}_{2}$ ends and $\bar{u}_{4}$ begins with $\alpha$, then $u_{2}$ begins with $\alpha$ and $u_{4}$ begins with $\bar{\alpha}$. We analyze the factor $w_{3}=\left(\tilde{u}_{4} u_{2}\right)^{n_{3}} u_{3}$ and we study the exponent $n_{3}$. If $n_{3}>0$, then $\bar{\alpha} \alpha \subseteq w_{3}$ because of the presence of $\tilde{u}_{4} u_{2}$, and the boundary of the polyomino intersects itself. Then, it holds $n_{3}=0$, and the BN-factor becomes $X=w_{2} w_{3} \stackrel{n_{2}=0}{=} u_{2} u_{3}$. Since $X$ is palindrome, $u_{3}$ ends with $\alpha$ and, being $n_{4}=0$, we get $\alpha \bar{\alpha} \subseteq w_{3} w_{4}=u_{3} u_{4}$, and again the border intersects itself, reaching a contradiction.
iii) We suppose to have $n_{1}>0$ and $\alpha \alpha \subseteq \bar{u}_{4} u_{1}$. Under this assumption, $u_{4}$ ends with the letter $\bar{\alpha}$ and $u_{1}$ begins with $\alpha$. By Property 1 , the factor $w_{1}$ has $\alpha$ as first letter as well; we then reach a contradiction with Corollary 1, since $\overline{\alpha \alpha} \subseteq w_{4} \bar{w}_{1}$.

Since we reached a contradiction for all possible cases, the proof is given.
Since $P$ is a circular word, from now on we suppose, w.l.g., that $\left|u_{1}\right| \leq\left|u_{i}\right|$ for $i=2,3,4$. Assuming that, it is possible to define $P$ expressed as in (4) in terms of two factors only, $u_{1}$ and $u_{3}$, and two words $k, p \in \Sigma^{*}$, with $k, p \neq \varepsilon$. It will be clear from the proof of Theorem 3 that $u_{2}=k \tilde{u_{1}}$ and $u_{4}=\widehat{u}_{1} \bar{p}$.
Relying on Lemmas 1 and 5, we get the following taxonomy according to the positive values of $n_{i}$, with $i=1, \ldots, 4$ :
a) $P=u_{1} \vdots k \tilde{u}_{1} \vdots u_{3} \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots \tilde{u}_{1} p$. This form requires $k$ and $p$ palindrome.
b) $P=\left(u_{1} k \tilde{u}_{1} p\right)^{n_{1}} u_{1} \vdots k \tilde{u}_{1} \vdots u_{3} \vdots \widehat{u}_{1} \bar{p} \mid\left(\bar{u}_{1} \bar{k} \widehat{u}_{1} \bar{p}\right)^{n_{1}} \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots \tilde{u}_{1} p$. In this case, $k$ and $p$ are palindrome.
c) $P=u_{1} \vdots\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1} \vdots u_{3} \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots\left(\widehat{u}_{3} \bar{u}_{1}\right)^{n_{2}} \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots \tilde{u}_{1} p$. In this case, $p$ is palindrome.
d) $P=u_{1} \vdots k \tilde{u}_{1} \vdots\left(\bar{p} \bar{u}_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3} \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots\left(p u_{1} \bar{k} \widehat{u}_{1}\right)^{n_{3}} \bar{u}_{3} \vdots \tilde{u}_{1} p$. In this case, $k$ and $p$ are palindrome.
e) $P=u_{1} \vdots k \tilde{u}_{1} \vdots u_{3} \vdots\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots\left(\tilde{u}_{1} \bar{u}_{3}\right)^{n_{4}} \tilde{u}_{1} p$. In this case, $k$ is palindrome.
f) $P=\left(u_{1} k \tilde{u}_{1} p\right)^{n_{1}} u_{1} \vdots k \tilde{u}_{1} \vdots\left(\overline{p u}{ }_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3} \vdots \widehat{u}_{1} \bar{p} \mid\left(\bar{u}_{1} \bar{k} \widehat{u}_{1} \bar{p}\right)^{n_{1}} \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots\left(p u_{1} \bar{k} \widehat{u}_{1}\right)^{n_{3}} \bar{u}_{3} \vdots \tilde{u}_{1} p$.

In this case, $k$ and $p$ are palindrome.
g) $P=u_{1} \vdots\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1} \vdots u_{3} \vdots\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots\left(\widehat{u}_{3} \bar{u}_{1}\right)^{n_{2}} \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots\left(\tilde{u}_{1} \bar{u}_{3}\right)^{n_{4}} \tilde{u}_{1} p$.

In this case, $k$ and $p$ are generic, non-empty words in $\Sigma^{*}$.
Theorem 3. The above seven cases a) ...g) entirely describe the possible forms in which the boundary word of a prime double square can be expressed.

Proof. $P$ is a prime double square, then its BN-factors $A=w_{1} w_{2}, B=w_{3} w_{4}$, $X=w_{2} w_{3}$ and $Y=w_{4} \bar{w}_{1}$ are all palindrome by Lemma 1 ; we further remind that $u_{i}$ is a prefix of $w_{i}$ by Property 1 . Then, for any possible value of $n_{i}$ and by the hypothesis on the mutual lengths $\left|u_{i}\right|$, in particular $\left|u_{1}\right|$ is minimum, we can always express $u_{2}=k \tilde{u}_{1}$ and $u_{4}=\widehat{u}_{1} \bar{p}$ for some proper words $k, p \in \Sigma^{*}$, see the BN-factors expressed as in (4). We notice that we can not deduce an analogous form for the word $u_{3}$, since we do not know the relative lengths w.r.t. $u_{2}$ and $u_{4}$. Let us now consider all the possible cases on the values $n_{i}$ and study the boundary word we get for each one.
a) $n_{1}=n_{2}=n_{3}=n_{4}=0$,

$$
P=u_{1} \vdots k \tilde{u}_{1} \vdots u_{3} \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots \tilde{u}_{1} p .
$$

Since $w_{1} w_{2}$ and $w_{4} \bar{w}_{1}$ are palindrome, we get $k$ and $p$ palindrome. Furthermore, $k, p \neq \varepsilon$ to avoid to split a term $\alpha \alpha$ between two factors $u_{1} \tilde{u}_{1}$ or $\widehat{u}_{1} \bar{u}_{1}$, in contradiction with Theorem 2.
b) $n_{1}>0, n_{2}=n_{3}=n_{4}=0$,

$$
P=\left(u_{1} \tilde{k} \tilde{u}_{1} p\right)^{n_{1}} u_{1} \vdots k \tilde{u}_{1} \vdots u_{3} \vdots \widehat{u}_{1} \bar{p} \mid\left(\bar{u}_{1} \widehat{k} \widehat{u}_{1} \bar{p}\right)^{n_{1}} \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots \tilde{u}_{1} p .
$$

Since $w_{1} w_{2}$ and $w_{4} \bar{w}_{1}$ are palindrome, we deduce that $p$ and $k$ are palindrome too. In particular, if $n_{1}$ is odd, the palindromicity of $p$ follows from $w_{1} w_{2}$ and the palindromicity of $k$ from $w_{4} \bar{w}_{1}$, vice versa if $n_{1}$ is even. Moreover, $p, k \neq \varepsilon$ as discussed in case a).
c) $n_{2}>0, n_{1}=n_{3}=n_{4}=0$,

$$
P=u_{1} \vdots\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1} \vdots u_{3} \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots\left(\widehat{u}_{3} \bar{u}_{1}\right)^{n_{2}} \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots \tilde{u}_{1} p
$$

As in case $\mathbf{b}$ ), we deduce $p$ palindrome from $w_{4} \bar{w}_{1}$. Again, $k, p \neq \varepsilon$.
d) $n_{3}>0, n_{1}=n_{2}=n_{4}=0$,

$$
P=u_{1} \vdots k \tilde{u}_{1} \vdots\left(\widehat{p} \bar{u}_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3} \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots\left(\tilde{p} u_{1} \bar{k} \widehat{u}_{1}\right)^{n_{3}} \bar{u}_{3} \vdots \tilde{u}_{1} p
$$

Similarly, $k$ is palindrome from $w_{1} w_{2}$ and $p$ is palindrome from $w_{4} \bar{w}_{1}$. Moreover, they are not empty.
e) $n_{4}>0, n_{1}=n_{2}=n_{3}=0$,

$$
P=u_{1} \vdots k \tilde{u}_{1} \vdots u_{3} \vdots\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots\left(\tilde{u}_{1} \bar{u}_{3}\right)^{n_{4}} \tilde{u}_{1} p .
$$

We get that $k$ is palindrome from $w_{1} w_{2}$. Again, $k, p \neq \varepsilon$.
f) $n_{1}, n_{3}>0, n_{2}=n_{4}=0$,

$$
P=\left(u_{1} \tilde{k} \tilde{u}_{1} p\right)^{n_{1}} u_{1} \vdots k \tilde{u}_{1} \vdots\left(\widehat{p} \bar{u}_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3} \vdots \widehat{u}_{1} \bar{p} \mid\left(\bar{u}_{1} \widehat{\kappa} \widehat{u}_{1} \bar{p}\right)^{n_{1}} \bar{u}_{1} \vdots \bar{\kappa} \widehat{u}_{1} \vdots\left(\tilde{p} u_{1} \bar{k} \widehat{u}_{1}\right)^{n_{3}} \bar{u}_{3} \vdots \tilde{u}_{1} p .
$$

The word $p$ is palindrome from $w_{4} \bar{w}_{1}$ while $k$ is palindrome from $w_{1} w_{2}$, or vice versa, depending on the parity of $n_{1}$. Both are not empty.
g) $n_{2}, n_{4}>0, n_{1}=n_{3}=0$,

$$
P=u_{1} \vdots\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1} \vdots u_{3} \vdots\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots\left(\widehat{u}_{3} \bar{u}_{1}\right)^{n_{2}} \bar{k} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots\left(\tilde{u}_{1} \bar{u}_{3}\right)^{n_{4}} \tilde{u}_{1} p .
$$

As seen in the previous cases, $k, p \neq \varepsilon$. Moreover, in this case $k$ and $p$ are generic words in $\Sigma^{*}$.

## 4. Proof of the conjecture

We will prove Conjecture 35 relying on the results of the previous section, in particular the final forms $\mathbf{a}$ ) $\ldots \mathbf{g}$ ) of the boundary word of a prime double square $P$ (Theorem 3). We start analyzing case $\mathbf{a}$ ), where $n_{i}=0$ for all $i$, and then we show how to generalize the results to the remaining cases. From now on, $P$ is assumed to be prime.

Lemma 7. Let $P$ be as in case a), and $\alpha \in \Sigma$. If $\alpha \alpha \subseteq u_{1}$, and $u_{3}, k$ and $p$ are couple free, then $P$ is not a prime double square.

Proof. Let us suppose there is only one occurrence $\alpha \alpha \subseteq u_{1}$, i.e., $u_{1}=a \alpha \alpha b$ for some $a, b \in \Sigma^{*}$ and $a$ and $b$ couple free. Then

$$
P=a \alpha \alpha b \vdots k \tilde{b} \alpha \alpha \tilde{a}: u_{3}: \widehat{b} \overline{\alpha \alpha} \widehat{a} \bar{p} \mid \overline{a \alpha \alpha} \bar{b}: \widehat{k} \hat{b} \overline{\alpha \alpha} \widehat{a}: \bar{u}_{3}: \tilde{b} \alpha \alpha \tilde{a} p .
$$

We are assuming that $P$ is a prime double square, so $w_{2} w_{3}$ and $w_{3} w_{4}$ are palindrome being BN-factors (see Lemma 1 ), and since $\alpha \alpha \nsubseteq a, b, k$ and $u_{3}$, we get

$$
\left\{\begin{array}{l}
k \tilde{b}=\tilde{u}_{3} a \\
u_{3} \widehat{b}=\overline{p a}, \\
k, p \text { palindrome, since } P \text { is in form a). }
\end{array}\right.
$$

It holds that $|k|=|p|=\left|u_{3}\right|$ and $\tilde{b} a$ and $u_{3}$ are both palindrome. We can prove these properties by considering the factors' lengths and proceeding by contradiction: let us suppose first $|k|<\left|u_{3}\right|$, so that $u_{3}=y k$ for some $y \in \Sigma^{+}$. Replacing above, we obtain $b=\tilde{a} y$ and $y k \hat{y} \bar{a}=\overline{p a}$. From this second condition and the palindromicity of $\bar{p}$, we get $y=\varepsilon$ and so $u_{3}=k$, contradiction. Then $\left|u_{3}\right|<|k|$ holds, and there exists $k^{\prime} \in \Sigma^{+}$such that $k=\tilde{u}_{3} k^{\prime}$. Then, we obtain $a=k^{\prime} \tilde{b}$ and $u_{3} \widehat{b}=\bar{p} \bar{k} \widehat{b}$, that leads to $u_{3}=\bar{p} \bar{k}^{\prime}$. Finally, the factor $k=\tilde{u}_{3} k^{\prime}=$
$\widehat{k}^{\prime} \bar{p} k^{\prime}$ is palindrome if and only if $k^{\prime}=\varepsilon$, reaching again a contradiction. So, $|k|=\left|u_{3}\right|$.
Moving on, it follows $|a|=|b|$, with $b=\tilde{a}$, and $k=\bar{p}=u_{3}$. Replacing in $P$, we get

$$
P=a \alpha \alpha \tilde{a} \vdots u_{3} a \alpha \alpha \tilde{a} \vdots u_{3} \vdots \overline{a \alpha \alpha} \widehat{a} u_{3} \mid \overline{a \alpha \alpha} \widehat{a}: \bar{u}_{3} \overline{a \alpha \alpha} \widehat{a}: \bar{u}_{3} \vdots a \alpha \alpha \tilde{a} \bar{u}_{3} .
$$

Finally, $P$ can be obtained from the boundary word of the cross, $Q=1010 \overline{1} 0 \overline{1010} 1 \overline{0}$, through the morphism $\varphi(0)=u_{3}, \varphi(1)=a \alpha \alpha \tilde{a}=u_{1}$. It follows that $P$ is not prime.
Let us now conclude the proof by considering the case where $u_{1}$ contains more occurrences of two consecutive equal letters, i.e., $u_{1}=a \alpha \alpha c \beta \beta b$ with $a$ and $b$ couple free and $c \in \Sigma^{*}$. We underline that $c$ is not couple free in general, and can contain an arbitrary number of consecutive equal letters as its factors. Replacing $u_{1}$ in $P$ we get

$$
P=a \alpha \alpha c \beta \beta b: k \tilde{b} \beta \beta \tilde{c} \alpha \alpha \tilde{a}: u_{3}: \widehat{b} \bar{\beta} \hat{c} \widehat{\alpha} \bar{\alpha} \bar{p} \mid \ldots \tilde{b} \beta \beta \tilde{c} \alpha \alpha \tilde{a} p .
$$

By the palindromicity of $w_{2} w_{3}$ and the assumption that $a, b, u_{3}$ and $k$ are couple free, we immediately argue $\alpha=\beta$, and then, following the same argument used in case of only one occurrence of $\alpha \alpha \subseteq u_{1}$, we get $u_{3}=\bar{p}=k$ palindrome and $b=\tilde{a}$; moreover, $c$ is palindrome too. Replacing in $P$, we get the final form

$$
P=a \alpha \alpha c \alpha \alpha \tilde{a} \vdots u_{3} a \alpha \alpha c \alpha \alpha \tilde{a} \vdots u_{3} \vdots \overline{a \alpha \alpha c \alpha \alpha} \widehat{a} u_{3} \mid \ldots a \alpha \alpha c \alpha \alpha \tilde{a} \bar{u}_{3},
$$

that can be obtained from the cross through the morphism $\varphi^{\prime}(0)=u_{3}, \varphi^{\prime}(1)=$ $a \alpha \alpha c \alpha \alpha \tilde{a}=u_{1}$, that easily generalizes $\varphi$. Even in this case, $P$ is not prime.

Remark 1. The morphisms $\varphi$ and $\varphi^{\prime}$ obtained in the proof of Lemma 7 are well defined and preserve the hat operation, since $u_{1}$ and $u_{3}$ are both palindrome.

It is easy to verify that, as shown in the proof of Lemma 7, when considering more occurrences of couples of consecutive equal letters in a factor of $P$ the morphisms, if any, that map a prime double square into $P$ are a simple generalization of the morphism obtained by considering one occurrence of two equal letters only. It is sufficient to explicitly write the first and last occurrence of consecutive equal letters in the considered factor and then carry on a similar proof. For this reason, the next results will be provided adding this further hypothesis.

Lemma 8. Let $P$ be a double square as in case $\boldsymbol{a}$ ), and $\alpha \in \Sigma$. $P$ is not prime when any of the following conditions verifies:
i) $u_{1}$ is couple free and $\alpha \alpha \subseteq p$, or
ii) $u_{1}$ is couple free and $\alpha \alpha \subseteq k$, or
iii) $u_{1}$ is couple free and $\alpha \alpha \subseteq u_{3}$.

Proof. Since $P$ is in form a), then each exponent $n_{i}$ in (4) equals 0 , and w.l.g. we can assume that only one occurrence of $\alpha \alpha$ appears in $p$, respectively $k$ and $u_{3}$, as shown in the proof of Lemma 7 . We proceed with a full case analysis:
i) The factor $p$ can be written as the palindrome $a \alpha \alpha \tilde{a}$. Since $u_{1}$ and $a$ are couple free, and $w_{3} w_{4}$ is palindrome, it follows $u_{3}=\overline{a \alpha \alpha} \tilde{b}$ for suitable $b, c \in \Sigma^{*}$ s.t. $\bar{a}=c b$. Then

$$
P=u_{1} \vdots k \tilde{u}_{1} \vdots c b \overline{\alpha \alpha} \tilde{b}: \widehat{u}_{1} c b \overline{\alpha \alpha} \tilde{b} \tilde{c} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \bar{c} \bar{b} \alpha \alpha \widehat{b} \vdots \tilde{u}_{1} \bar{c} \bar{c} \alpha \alpha \widehat{b} \widehat{c} .
$$

By the palindromicity of $w_{2} w_{3}$, we argue that $k=b \overline{\alpha \alpha} d$ for some $d \in \Sigma^{*}$. We conclude that $d=\tilde{b}$, since $k$ is palindrome by hypothesis. Replacing again in $P$, we get

$$
P=u_{1} \vdots b \overline{\alpha \alpha} \tilde{b} \tilde{u}_{1} \vdots c b \overline{\alpha \alpha} \tilde{b} \vdots \widehat{u}_{1} c b \overline{\alpha \alpha} \tilde{b} \tilde{c} \mid \bar{u}_{1} \vdots \bar{b} \alpha \alpha \widehat{b} \widehat{u}_{1} \vdots \bar{c} \bar{b} \alpha \alpha \widehat{b}: \tilde{u}_{1} \bar{c} \bar{b} \alpha \alpha \widehat{b} \widehat{c}
$$

and, by the palindromicity of $w_{2} w_{3}$ and $w_{3} w_{4}$, we observe that $\tilde{u}_{1} c$ and $\widehat{u}_{1} c$ are both palindrome, and then $c=\varepsilon$ and $u_{1}=\tilde{u}_{1}$. We get the final form

$$
P=u_{1} \vdots b \overline{\alpha \alpha} \tilde{b} u_{1} \vdots b \overline{\alpha \alpha} \tilde{b} \vdots \bar{u}_{1} b \overline{\alpha \alpha} \tilde{b} \mid \bar{u}_{1} \vdots \bar{b} \alpha \alpha \widehat{b} \bar{u}_{1} \vdots \bar{b} \alpha \alpha \widehat{b} \vdots u_{1} \bar{b} \alpha \alpha \widehat{b}
$$

A morphism can now be defined mapping the cross in $P$, i.e., $\varphi(0)=$ $b \overline{\alpha \alpha} \tilde{b}=\overline{a \alpha \alpha} \widehat{a}=u_{3}, \varphi(1)=u_{1}$. Then $P$ is not prime.
ii) Assuming $\alpha \alpha \subseteq k$, the palindrome factor can be written as $k=a \alpha \alpha \tilde{a}$, with $a$ couple free. The boundary word is

$$
P=u_{1} \vdots a \alpha \alpha \tilde{a} \tilde{u}_{1} \vdots u_{3} \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \overline{a \alpha \alpha} \widehat{a} \widehat{u}_{1} \vdots \bar{u}_{3} \vdots \tilde{u}_{1} p .
$$

Using the same argument as in case i), and the palindromicity of $w_{2} w_{3}$, we get $u_{3}=b \alpha \alpha \tilde{a}$ and $a=c b$, then

$$
P=u_{1} \vdots c b \alpha \alpha \tilde{b} \tilde{c} \tilde{u}_{1} \vdots b \alpha \alpha \tilde{b} \tilde{c}: \widehat{u}_{1} b \alpha \alpha \tilde{b} \mid \bar{u}_{1} \vdots \bar{c} \bar{b} \overline{\alpha \alpha} \widehat{b} \widehat{c} \widehat{u}_{1} \vdots \bar{b} \overline{\alpha \alpha} \widehat{b} \widehat{c}: \tilde{u}_{1} \bar{b} \overline{\alpha \alpha} \widehat{b}
$$

From the palindromicity of the BN-factor $w_{2} w_{3}$, it follows that $\tilde{c} \tilde{u}_{1}$ is palindrome, and then from the palindrome $w_{3} w_{4}$ we argue $c=\varepsilon$ and $u_{1}=\tilde{u}_{1}$. In the end, the boundary word is

$$
P=u_{1} \vdots b \alpha \alpha \tilde{b} u_{1} \vdots b \alpha \alpha \tilde{b}: \bar{u}_{1} b \alpha \alpha \tilde{b} \mid \bar{u}_{1} \vdots \bar{b} \overline{\alpha \alpha} \widehat{b} \bar{u}_{1} \vdots \bar{b} \overline{\alpha \alpha} \widehat{b} \vdots u_{1} \bar{b} \overline{\alpha \alpha} \widehat{b} .
$$

A morphism mapping the cross in $P$ can now be defined, i.e., $\varphi(0)=$ $b \alpha \alpha \tilde{b}=a \alpha \alpha \tilde{a}=u_{3}, \varphi(1)=u_{1}$. Then $P$ is not prime.
iii) We replace $u_{3}=a \alpha \alpha b$, with $a, b$ couple free, in the boundary word,

$$
P=u_{1} \vdots k \tilde{u}_{1} \vdots a \alpha \alpha b \vdots \widehat{u}_{1} \bar{p} \mid \bar{u}_{1} \vdots \bar{k} \widehat{u}_{1} \vdots \overline{a \alpha \alpha} \bar{b} \vdots \tilde{u}_{1} p,
$$

and then proceed as in previous cases. Since $w_{2} w_{3}$ and $k$ are palindrome, $k=\tilde{b} \alpha \alpha b$, while we deduce $\bar{p}=a \alpha \alpha \tilde{a}$ from the palindromicity of the BN-factor $w_{3} w_{4}$. We get
and since $b \tilde{u}_{1} a$ and $b \widehat{u}_{1} a$ are both palindrome (see $w_{2} w_{3}$ and $w_{3} w_{4}$ ), it holds $b=\tilde{a}$ and $u_{1}=\tilde{u}_{1}$ (Lemma 2).
The final form of the boundary word is

$$
P=u_{1} \vdots a \alpha \alpha \tilde{a} u_{1} \vdots a \alpha \alpha \tilde{a} \vdots \bar{u}_{1} a \alpha \alpha \tilde{a} \mid \bar{u}_{1} \vdots \overline{a \alpha \alpha} \widehat{a} \bar{u}_{1} \vdots \overline{a \alpha \alpha} \widehat{a} \vdots u_{1} \overline{a \alpha \alpha} \widehat{a} .
$$

A morphism mapping the cross in $P$ can now be defined, i.e., $\varphi(0)=$ $a \alpha \alpha \tilde{a}=u_{3}, \varphi(1)=u_{1}$. Then $P$ is not prime.

Corollary 3. Let $P$ be a double square as in case a), and $\alpha \in \Sigma$. If $\alpha \alpha \subseteq P$ and $u_{1}$ is couple free, then $\alpha \alpha \subseteq p, k, u_{3}$.

Lemma 9. Let $P$ be a double square as in case a). $P$ is not prime when any of the following conditions verifies:
i) $u_{1}$ and $p$ are not couple free, while $u_{3}$ and $k$ are, or
ii) $u_{1}$ and $k$ are not couple free, while $u_{3}$ and $p$ are, or
iii) $u_{1}, p$ and $k$ are not couple free, while $u_{3}$ is.

Proof. Again, the proof proceeds by contradiction, assuming that only one occurrence of two consecutive equal letters is in the analyzed factors.
i) Let us assume $u_{1}=a \alpha \alpha b$ and $p=c \beta \beta \tilde{c}$ (recall that $p$ is palindrome), with $\alpha, \beta \in \Sigma$, and $a, b, c$ that are couple free.
Since the BN-factors $w_{2} w_{3}$ and $w_{3} w_{4}$ are palindrome and $\alpha \alpha, \beta \beta \nsubseteq a, b, c, k, u_{3}$, we deduce $\alpha=\beta, k \tilde{b}=\tilde{u}_{3} a$ and $\widehat{c}=\bar{b} \tilde{u}_{3}$. Replacing in $P$ we obtain
$P=a \alpha \alpha b: \tilde{u}_{3} a \alpha \alpha \tilde{a}: u_{3}: \hat{b} \overline{\alpha \alpha} \widehat{a} u_{3} \widehat{b} \overline{\alpha \alpha} \bar{b} \tilde{u}_{3} \mid \overline{a \alpha \alpha} \bar{b}: \widehat{u}_{3} \overline{a \alpha \alpha} \widehat{a}: \bar{u}_{3}: \tilde{b} \alpha \alpha \tilde{a} \bar{u}_{3} \tilde{b} \alpha \alpha b \widehat{u}_{3}$.
By the palindromicity of $w_{1} w_{2}$ and $w_{3} w_{4}$, it follows that $b \tilde{u}_{3} a$ and $\widehat{a} u_{3} \widehat{b}$ are palindrome too. Since $b=\tilde{a}$ and $u_{3}=\tilde{u}_{3}$ by Lemma 2, then $P$ can be expressed as

$$
P=a \alpha \alpha \tilde{a} \vdots u_{3} a \alpha \alpha \tilde{a} \vdots u_{3} \vdots \overline{a \alpha \alpha} \widehat{a} u_{3} \overline{a \alpha \alpha} \widehat{a} u_{3} \mid \overline{a \alpha \alpha} \widehat{a}: \bar{u}_{3} \overline{a \alpha \alpha \widehat{a}} \vdots \bar{u}_{3} \vdots a \alpha \alpha \tilde{a} \bar{u}_{3} a \alpha \alpha \tilde{a} \bar{u}_{3} .
$$

So, the morphism $\varphi(0)=u_{3}, \varphi(1)=a \alpha \alpha \tilde{a}=u_{1}$ maps the butterfly $Q=1010 \overline{1} 0 \overline{1} 0 \overline{1010} 1 \overline{0} 1 \overline{0}$ in $P$, preventing it from being prime.
As already observed, the case of more occurrences of couples of the same letter in $u_{1}$ and $p$ can be treated similarly.
ii) Let $u_{1}=a \alpha \alpha b$ and $k=c \beta \beta \tilde{c}$, with $a, b, c$ couple free. Replacing in $P$, we obtain

$$
P=a \alpha \alpha b \vdots c \beta \beta \tilde{c} \tilde{b} \alpha \alpha \tilde{a}: u_{3} \vdots \hat{b} \overline{\alpha \alpha} \overline{a p} \mid \overline{a \alpha \alpha} \bar{b} \vdots \bar{c} \overline{\beta \beta} \widehat{c} \bar{b} \overline{\alpha \alpha \widehat{a}}: \bar{u}_{3}: \tilde{b} \alpha \alpha \tilde{a} p
$$

Since $w_{2} w_{3}$ and $w_{3} w_{4}$ are palindrome, and $\alpha \alpha, \beta \beta \nsubseteq a, b, c, p, u_{3}$, we deduce $\alpha=\beta, c=\tilde{u}_{3} a$ and $\widehat{a} \bar{p}=\bar{b} \tilde{u}_{3}$, i.e.,
$P=a \alpha \alpha b: \tilde{u}_{3} a \alpha \alpha \tilde{a} u_{3} \tilde{b} \alpha \alpha \tilde{a}: u_{3}: \widehat{b} \overline{\alpha \alpha} \bar{b} \tilde{u}_{3} \mid \overline{a \alpha \alpha} \bar{b}: \widehat{u}_{3} \overline{a \alpha \alpha \widehat{a}} \bar{u}_{3} \widehat{b} \overline{\alpha \alpha} \widehat{a}: \bar{u}_{3}: \tilde{b} \alpha \alpha b \widehat{u}_{3}$.
We further see that $\tilde{a} u_{3} \tilde{b}$ and $\bar{b} \tilde{u}_{3} \bar{a}$ are both palindrome (see $w_{2} w_{3}$ and $w_{4} \bar{w}_{1}$ ) then, by Lemma $2, b=\tilde{a}$ and $u_{3}$ is palindrome. We finally get
$P=a \alpha \alpha \tilde{a}: u_{3} a \alpha \alpha \tilde{a} u_{3} a \alpha \alpha \tilde{a}: u_{3} \vdots \overline{a \alpha \alpha} \widehat{a} u_{3} \mid \overline{a \alpha \alpha} \widehat{a}: \bar{u}_{3} \overline{a \alpha \alpha} \widehat{a} \bar{u}_{3} \overline{a \alpha \alpha} \widehat{a}: \bar{u}_{3} \vdots a \alpha \alpha \tilde{a} \bar{u}_{3}$.

Again, the morphism $\varphi(0)=u_{3}, \varphi(1)=a \alpha \alpha \tilde{a}=u_{1}$ maps the butterfly $Q=1010 \overline{1} 0 \overline{1} 0 \overline{1010} 1 \overline{0} 1 \overline{0}$ in $P$, preventing it from being prime.
iii) Let $u_{1}=a \alpha \alpha b, k=c \beta \beta \tilde{c}$ and $p=d \gamma \gamma \tilde{d}$, with $a, b, c, d$ couple free. Replacing in $P$, we obtain

$$
P=a \alpha \alpha b: c \beta \beta \tilde{c} \tilde{b} \alpha \alpha \tilde{a}: u_{3}: \widehat{b} \overline{\alpha \alpha} \hat{a} \bar{d} \overline{\gamma \gamma} \widehat{d} \mid \overline{a \alpha \alpha} \bar{b}: \bar{c} \overline{\beta \beta} \widehat{c} \widehat{b} \overline{\alpha \alpha} \widehat{a}: \bar{u}_{3}: \tilde{b} \alpha \alpha \tilde{a} d \gamma \gamma \tilde{d}
$$

As seen in the previous cases, from the palindromicity of the BN-factors $w_{2} w_{3}$ and $w_{3} w_{4}$ we deduce $\beta=\gamma=\alpha, c=\tilde{u}_{3} a$ and $\widehat{d}=\bar{b} \tilde{u}_{3}$, and then $b=\tilde{a}$ and $u_{3}=\tilde{u}_{3}$ (Lemma 2). The final form of the boundary word is

$$
\begin{aligned}
P= & a \alpha \alpha \tilde{a} \vdots u_{3} a \alpha \alpha \tilde{a} u_{3} a \alpha \alpha \tilde{a} \vdots u_{3} \vdots \overline{a \alpha \alpha} \widehat{a} u_{3} \overline{a \alpha \alpha} \widehat{a} u_{3} \mid \\
& \overline{a \alpha \alpha} \widehat{a}: \bar{u}_{3} \overline{a \alpha \alpha} \widehat{a} \bar{u}_{3} \overline{a \alpha \alpha} \widehat{a} \vdots \bar{u}_{3} \vdots a \alpha \alpha \tilde{a} \bar{u}_{3} a \alpha \alpha \tilde{a} \bar{u}_{3} .
\end{aligned}
$$

The morphism $\varphi(0)=u_{3}, \varphi(1)=a \alpha \alpha \tilde{a}=u_{1}$ maps the butterfly $Q=$ $101010 \overline{1} 0 \overline{1} 0 \overline{101010} 1 \overline{0} 1 \overline{0}$ in $P$, preventing it from being prime.

Remark 2. Since the morphisms we defined in the proofs of Lemmas 8 and 9 map 0,1 in $u_{1}, u_{3}$, and $k, p$ result to be equal, unless opposite, to $u_{1}$ or $u_{3}$ or their concatenation (as in Lemma 9), we can generalize these results when more couples of consecutive equal letters occur in one or more factors of $P$, using the same reasoning employed in the proof of Lemma 7.

The analysis of the possible positions in $P$ of the factor $\alpha \alpha$ continues, and three more lemmas are provided. We choose to set them separately since the proofs, even though all proceeding by contradiction, are different.

Lemma 10. Let $P$ be a double square as in case $\boldsymbol{a}$ ). If $u_{1}$ and $u_{3}$ are not couple free, while $k$ and $p$ are, then $P$ is not prime.

Proof. Let us assume that only one occurrence of a couple of consecutive equal letters is both in $u_{1}$ and $u_{3}$, say $u_{1}=a \alpha \alpha b$ and $u_{3}=c \beta \beta d$, with $\alpha, \beta \in \Sigma$, and $a, b, c, d$ couple free. Replacing in $P$, we get

$$
P=a \alpha \alpha b: k \tilde{b} \alpha \alpha \tilde{a}: c \beta \beta d: \widehat{b} \overline{\alpha \alpha} \widehat{a} \bar{p} \mid \overline{a \alpha \alpha} \bar{b}: \widehat{k} \bar{b} \overline{\alpha \alpha} \widehat{a}: \bar{c} \overline{\beta \beta d}: \tilde{b} \alpha \alpha \tilde{a} p .
$$

Looking at the palindrome $w_{2} w_{3}$ and $w_{3} w_{4}$, we deduce (respectively) $\beta=\alpha$ and $\beta=\bar{\alpha}$, that give a contradiction. Then, a double square $P$ containing such configurations of couples $\alpha \alpha$ is not prime. If more than one occurrence of couples of equal letters are in $u_{1}$ or $u_{3}$ (or both), a similar proof holds.

Lemma 11. The following statements hold:
i) if $u_{1}, u_{3}$ and $k$ are not couple free, while $p$ is, then $P$ is not a prime double square.
ii) If $u_{1}, u_{3}$ and $p$ are not couple free, while $k$ is, then $P$ is not a prime double square.

Proof. Let us again assume that only one occurrence of a couple of consecutive equal letters is in the analyzed factors.
i) Let $u_{1}=a \alpha \alpha b, u_{3}=c \beta \beta d$ and $k=e \lambda \lambda \tilde{e}$, with $\alpha, \beta, \lambda \in \Sigma$ and $a, b, c, d$, $e$ couple free. From the palindromicity of the BN-factors $w_{2} w_{3}$ and $w_{3} w_{4}$, we have $\lambda=\beta=\bar{\alpha}, e=\tilde{d}, c=\overline{p a}, \tilde{e} \tilde{b}=\tilde{c} a$. Moreover, we highlight that $\widehat{d b}$ is palindrome. So, $P$ can be written as

$$
P=a \alpha \alpha b: \tilde{d} \overline{\alpha \alpha} d \tilde{b} \alpha \alpha \tilde{a}: \overline{p a \alpha \alpha} d: \widehat{b} \overline{\alpha \alpha} \bar{a} \overline{\bar{p}} \mid \overline{a \alpha \alpha} \bar{b}: \widehat{d} \alpha \alpha \bar{d} \hat{b} \overline{\alpha \alpha} \widehat{a}: p a \alpha \alpha \bar{d}: \tilde{b} \alpha \alpha \tilde{a} p .
$$

Similarly, $d \tilde{b}=\widehat{a} \bar{p} a$ from $w_{2} w_{3}$ palindrome, and

$$
P=a \alpha \alpha \tilde{a} \overline{p a \alpha \alpha} \widehat{a} \bar{p} a \alpha \alpha \tilde{a} \overline{p a \alpha \alpha} d \widehat{b} \overline{\alpha \alpha} \widehat{a} \bar{p} \mid \overline{a \alpha \alpha} \widehat{a} p a \alpha \alpha \tilde{a} p \overline{a \alpha \alpha} \widehat{a} p a \alpha \alpha \bar{d} \tilde{b} \alpha \alpha \tilde{a} p,
$$

with $\widehat{d b}$ palindrome and $d \tilde{b}=\widehat{a} \bar{p} a$.
We underline that the factor $w=\overline{p a \alpha \alpha a} p a \alpha \alpha \tilde{a}$ is such that $|w|_{1}=|w|_{\overline{1}}$ and $|w|_{0}=|w|_{\overline{0}}$; we then conclude that the boundary of the polyomino intersects itself, reaching a contradiction.
ii) Let $u_{1}=a \alpha \alpha b, u_{3}=c \beta \beta d$ and $p=e \gamma \gamma \tilde{e}$, with $a, b, c, d, e$ couple free. From the palindromicity of $w_{2} w_{3}$ and $w_{3} w_{4}$, we have $\beta=\bar{\gamma}=\alpha, d=b k$, $\widehat{d b}=\widehat{e} \bar{a}$ and $\bar{e}=c$. Moreover, we highlight that $\tilde{a} c=\tilde{c} a$ is palindrome. So, $P$ can be written as

$$
P=a \alpha \alpha b: k \tilde{b} \alpha \alpha \tilde{a}: c \alpha \alpha b k: \vdots \widehat{b \alpha \alpha} \bar{a} c \alpha \alpha \tilde{c} \mid \overline{a \alpha \alpha} \bar{b}: \widehat{k} \widehat{b} \overline{\alpha \alpha} \widehat{a}: \overline{c \alpha \alpha} \overline{b k}: \tilde{b} \alpha \alpha \tilde{a} \overline{c \alpha \alpha} \hat{c}
$$

with $\tilde{c} a$ palindrome and $\tilde{c} \bar{a}=b k \widehat{b}\left(\right.$ see $\left.w_{3} w_{4}\right)$.
We underline that the factor $w=\widehat{a} c \alpha \alpha \tilde{c} \overline{a \alpha \alpha} \overline{b k}=\bar{b} k \tilde{b} \alpha \alpha b k \widehat{b} \overline{\alpha \alpha} \overline{b k}$ is such that $\left|w^{\prime}\right|_{1}=\left|w^{\prime}\right|_{\overline{1}}$ and $\left|w^{\prime}\right|_{0}=\left|w^{\prime}\right|_{\overline{0}}$, with $w^{\prime}=\tilde{b} \alpha \alpha b k \widehat{b} \overline{\alpha \alpha} \overline{b k}$; we then conclude that the boundary of the polyomino intersects itself, reaching a contradiction.

Lemma 12. If $u_{1}, u_{3}, p$ and $k$ are not couple free, then $P$ is not a prime double square.

Proof. The result can be obtained providing a morphism $\varphi$ that maps the cross in $P$. By contradiction, let $u_{1}=a \alpha \alpha b, u_{3}=c \beta \beta d, p=e \gamma \gamma \tilde{e}$ and $k=f \lambda \lambda \tilde{f}$, with $a, b, c, d, e, f$ couple free. Replacing in $P$, we get

$$
P=a \alpha \alpha b \vdots f \lambda \lambda \tilde{f} \tilde{b} \alpha \alpha \tilde{a}: c \beta \beta d: \widehat{b} \overline{\alpha \alpha \hat{a} e \gamma \gamma} \mid \overline{a \alpha \alpha} \bar{b}: \overline{f \lambda \lambda} \widehat{f} \widehat{b} \overline{\alpha \alpha} \widehat{a}: \bar{c} \overline{\beta \beta d}: \tilde{b} \alpha \alpha \tilde{a} e \gamma \gamma \tilde{e} .
$$

From $w_{2} w_{3}$ and $w_{3} w_{4}$ palindrome, we get $\beta=\lambda=\bar{\gamma}, f=\tilde{d}, \bar{e}=c, \tilde{f} \tilde{b}=\tilde{c} a$ and $\widehat{a} \bar{e}=\bar{b} \tilde{d}$. The boundary word is now

$$
P=a \alpha \alpha \tilde{a} c \beta \beta \tilde{c} a \alpha \alpha \tilde{a} c \beta \beta \tilde{c} \overline{a \alpha \alpha} \widehat{a} c \beta \beta \tilde{c} \mid \overline{a \alpha \alpha} \widehat{a} \bar{c} \overline{\beta \beta} \widehat{c} a \alpha \alpha \widehat{a} \bar{c} \overline{\beta \beta} \widehat{c} a \alpha \alpha \tilde{a} \bar{c} \overline{\beta \beta} \widehat{c}
$$

A non-trivial morphism can be defined as $\varphi(0)=c \beta \beta \tilde{c}=u_{3}, \varphi(1)=a \alpha \alpha \tilde{a}=u_{1}$, thus showing that $P$ is not prime.
We underline again that similar proofs lead to the definition of analogous morphisms when considering more couples of consecutive equal letters in $u_{1}, u_{3}, k$ or $p$. The following example shows one of the possible situations:

Example 4. We consider a generalization of the proof of Lemma 9, case i), assuming that the non-couple free factors of the boundary word $P$ have an arbitrary number of occurrences of consecutive equal letters. We assume by hypothesis that $P$ is the boundary word of a prime double square, and for each factor we explicitly write the first and last occurrence of consecutive equal letters.
We consider the factors $u_{1}=a \alpha \alpha b \beta \beta c$ and $p=d \gamma \gamma e \gamma \gamma \tilde{d}$, with $\alpha, \beta, \gamma \in \Sigma$, $a, c, d, k$ and $u_{3}$ couple free, e palindrome. Replacing in $P$, we obtain

$$
P=a \alpha \alpha b \beta \beta c \vdots k \tilde{c} \beta \beta \tilde{b} \alpha \alpha \tilde{a} \vdots u_{3} \vdots \widehat{c} \widehat{\beta \beta} \widehat{b} \overline{\alpha \alpha} \widehat{a} \bar{d} \overline{\gamma \gamma e \gamma \gamma} \widehat{d} \mid \ldots
$$

The palindromicity of $w_{2} w_{3}$, together with the hypothesis on the couple free factors, immediately lead to $\alpha=\beta, k \tilde{c}=\tilde{u}_{3} a$ and $b$ palindrome, while the palindromicity of $w_{3} w_{4}$ gives $\gamma=\beta, d=\bar{u}_{3} \tilde{c}$ and $\bar{b} \widehat{\alpha} \bar{\alpha} \widehat{a} \bar{d} \bar{\gamma} \gamma e$ palindrome. Replacing
again in $P$ and imposing the palindromicity of $w_{1} w_{2}$ and $w_{3} w_{4}$, we find that $c \tilde{u}_{3} a$ and $\bar{b} \overline{\alpha \alpha} \widehat{a} u_{3} \widehat{c} \alpha \alpha e$ are both palindrome. Focusing on the latter, more cases occur:

- $|e|<|b|$, so that $\bar{b}=\overline{e \alpha \alpha x}$ for some $x \in \Sigma^{+}$, and then $\overline{x \alpha \alpha} \widehat{a} u_{3} \widehat{c}$ is palindrome. Since $\widehat{a} u_{3} \widehat{c}$ is couple free, it must hold $\left|a u_{3} c\right| \leq|x|<|b|$ and so $\left|u_{3}\right|<\left|u_{1}\right|$, in contradiction with the hypothesis on the mutual lengths of the factors $u_{i}$.
$-|b|<|e|$, so that $\bar{e}=\overline{x \alpha \alpha} \bar{b}$ for some $x \in \Sigma^{+}$, and then $\widehat{a} u_{3} \widehat{c} \overline{\alpha \alpha x}$ is palindrome. We further remind that $e$ is palindrome too. First, we notice that $x \neq b$, otherwise we reach the same contradiction of the previous case. So, by the palindromicity of $e$, there exists a palindrome $y \in \Sigma^{+}$such that $x=b \alpha \alpha y$ and $\widehat{a} u_{3} \widehat{c} \overline{\alpha \alpha} \bar{b} \overline{\alpha \alpha y}$ is palindrome. Being $a, c$ and $u_{3}$ all couple free, two cases occur: $\bar{y}=\bar{c} \tilde{u}_{3} \bar{a}$ or $\bar{y}=\overline{z \alpha \alpha c} \tilde{u}_{3} \bar{a}$ for some $z \in \Sigma^{+}$, with $\bar{b} \overline{\alpha \alpha z}$ palindrome. This second case in analogous to the previous one, replacing $y=x$ and $z=y$. Then, we can assume w.l.g. $\bar{y}=\bar{c} \tilde{u}_{3} \bar{a}$ (otherwise, by iteration, we finally get that $y$ is concatenation of the palindromes $b, \alpha \alpha$ and $c \widehat{u}_{3} a$ ). Therefore, we have shown that $\bar{c} u_{3} \bar{a}$ and c $\tilde{u}_{3} a$ are palindrome at the same time, that is, $c=\tilde{a}$ and $u_{3}$ is palindrome (by Lemma 2). Furthermore, $u_{1}$ is palindrome too. Replacing in the other factors, we find out that $p=\bar{u}_{3} u_{1} \bar{u}_{3} u_{1} \bar{u}_{3}, k=u_{3}$ and $u_{1}, u_{3}$ are palindrome. So, it is possible to define the non-trivial morphism $\varphi(0)=u_{3}$, $\varphi(1)=u_{1}$ that maps the double square $Q=1010 \overline{1} 0 \overline{1} 0 \overline{1} 0 \overline{1010} 1 \overline{0} 1 \overline{0} 1 \overline{0}$ in $P$, thus showing that it is not prime. More in general, $p=\left(\bar{u}_{3} u_{1}\right)^{t} \bar{u}_{3}$ for some $t \geq 1$ when the factor $y$ is concatenation of more palindromes, and then $Q=1010 \overline{1}(0 \overline{1})^{t} 0 \overline{1010} 1(\overline{0} 1)^{t} \overline{0}$.
- We can conclude that $b=e$, and so $\bar{c} u_{3} \bar{a}$ and cu $u_{3}$ are palindrome at the same time, that is, $c=\tilde{a}$ and $u_{3}$ palindrome (by Lemma 2). Furthermore, $u_{1}$ is palindrome too. As in the previous case, it is possible to define the non-trivial morphism $\varphi(0)=u_{3}, \varphi(1)=u_{1}$ that maps the butterfly in $P$, thus showing that the double square is not prime.

Since we reached a contradiction for all possible cases, it follows that $P$ is not prime.

Theorem 4. If $P$ is the boundary word of a prime double square s.t. $n_{i}=0$ for all $i$, then $P$ is couple free.

Proof. The proof directly follows from the previous lemmas, where a complete analysis of the possible positions of consecutive equal letters inside the form a) of $P$ is carried on. Assuming that the factor $u_{1}$ is couple free, Lemma 8 shows that if two consecutive equal letters occur in $P$, then the double square is not prime. So, we need to suppose that $\alpha \alpha \subseteq u_{1}$ for some $\alpha \in \Sigma$. Let us now consider the factor $u_{3}$ : following the proofs of Lemmas 10 and 11, it holds that, in case $u_{3}$ is not couple free, an occurrence of two consecutive equal letters
is present in both factors $k$ and $p$ or in none of them, otherwise $P$ is not the boundary word of a polyomino. In the first case, Lemmas 9 and 12 show how to define a morphism so that $P$ is a non-prime double square. In the second case, Lemma 7 proves that the existence of a prime double square such that $\alpha \alpha \subseteq u_{1}$ and $u_{3}, k$ and $p$ are all couple free is not possible.

Generalizing Theorem 4 to the forms $\boldsymbol{b}) \ldots \boldsymbol{g}$ ) of the word $P$
We indicate here, for each form of the boundary word of a prime double square from a) to $\mathbf{g}$ ), the BN-factors involved in the lemmas leading to the proof of Theorem 4. As a matter of fact, it is possible to follow the lemmas' sequence according to the new indicated factors to obtain the related version of Theorem 4 for each remaining case from b) to g). Hence, Conjecture 35 is proved in Theorem 5. The BN-factors are the following:

Case a) $A=u_{1} k \tilde{u}_{1}, B=u_{3} \widehat{u}_{1} \bar{p}, X=k \tilde{u}_{1} u_{3}, Y=\widehat{u}_{1} \overline{p u}_{1}$.
Case b) $A=\left(u_{1} k \tilde{u}_{1} p\right)^{n_{1}} u_{1} k \tilde{u}_{1}, B=u_{3} \widehat{u}_{1} \bar{p}, X=k \tilde{u}_{1} u_{3}, Y=\widehat{u}_{1} \bar{p}\left(\bar{u}_{1} \bar{k} \widehat{u}_{1} \bar{p}\right)^{n_{1}} \bar{u}_{1}$.
Case c) $A=u_{1}\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1}, B=u_{3} \widehat{u}_{1} \bar{p}, X=\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1} u_{3}, Y=\widehat{u}_{1} \overline{p u}_{1}$.
Case d) $A=u_{1} k \tilde{u}_{1}, B=\left(\overline{p u}_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3} \widehat{u}_{1} \bar{p}, X=k \tilde{u}_{1}\left(\overline{p u}_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3}, Y=$ $\widehat{u}_{1} \overline{p u}_{1}$.

Case e) $A=u_{1} k \tilde{u}_{1}, B=u_{3}\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \bar{p}, X=k \tilde{u}_{1} u_{3}, Y=\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \overline{p u}_{1}$.
Case f) $A=\left(u_{1} k \tilde{u}_{1} p\right)^{n_{1}} u_{1} k \tilde{u}_{1}, B=\left(\overline{p u}_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3} \widehat{u}_{1} \bar{p}, X=k \tilde{u}_{1}\left(\overline{p u}_{1} k \tilde{u}_{1}\right)^{n_{3}} u_{3}$, $Y=\widehat{u}_{1} \bar{p}\left(\bar{u}_{1} \bar{k} \widehat{u}_{1} \bar{p}\right)^{n_{1}} \bar{u}_{1}$.

Case g) $A=u_{1}\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1}, B=u_{3}\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \bar{p}, X=\left(\tilde{u}_{3} u_{1}\right)^{n_{2}} k \tilde{u}_{1} u_{3}, Y=$ $\left(\widehat{u}_{1} u_{3}\right)^{n_{4}} \widehat{u}_{1} \overline{p u}_{1}$.

Focusing on case a), we notice that $A$ and $Y$ are palindrome by construction, while $B$ and $X$ begin or end with the words $k, p$ or $u_{3}$. As seen in all proofs of the previous lemmas, when including a couple $\alpha \alpha$ in $P$ we compare $u_{3}, p$ and $k$ by the palindromicity of $B$ and $X$. Through this procedure, we can write $k$ and $p$ as a concatenation of $u_{3}$ and $u_{1}$ (as highlighted in Remark 2). Then, after replacing, through the palindromicity of the BN-factors $A$ and $Y$ we deduce that $\tilde{u}_{1}=u_{1}$ and $\tilde{u}_{3}=u_{3}$ are both palindrome, and finally provide a well-defined homologous morphism $\varphi$ that allows us to reach a contradiction and conclude the proof.
We can generalize this procedure analyzing the BN-factors in the other cases:
b) $B$ and $X$ allow to compare $k, p$ and $u_{3}$, while $A$ and $Y$ give the palindromicity of $u_{1}, u_{3}$.
c) $A$ and $B$ allow to compare $k, p$ and $u_{3}$, while $X$ and $Y$ give the palindromicity of $u_{1}, u_{3}$.
d) $B$ and $X$ allow to compare $k, p$ and $u_{3}$, while $A$ and $Y$ give the palindromicity of $u_{1}, u_{3}$.
e) $B, X$ and $Y$ allow to compare $k, p$ and $u_{3}$, while $A$ gives the palindromicity of $u_{1}, u_{3}$.
f) $B$ and $X$ allow to compare $k, p$ and $u_{3}$, while $A$ and $Y$ give the palindromicity of $u_{1}, u_{3}$.
g) $B$ and $Y$ allow to compare $k, p$ and $u_{3}$, while $A$ and $X$ give the palindromicity of $u_{1}, u_{3}$.

After these observations, we can conclude that the results obtained in case a) admit a generalization to all the remaining cases. So, we can state the final theorem and solve Conjecture 35:
Theorem 5. If $P$ is the boundary word of a prime double square and $\alpha \in \Sigma$, then $\alpha \alpha \nsubseteq P$.

The following example is related to case $\mathbf{g}$ ), when $u_{1}$ is not couple free while $u_{3}, p$ and $k$ are. In this case we are able, similarly to case a), to define a morphism that leads to the non primality of $P$.

Example 5. Let us consider $P$ having the form $\boldsymbol{g}$ ). We assume that $u_{1}$ is not couple free, while $u_{3}, p$ and $k$ are. We can map in $P$ the double square $Q=$ $1(01)^{n_{2}} 010(\overline{1} 0)^{n_{4}} \overline{1} 0 \overline{1}(\overline{01})^{n_{2}} \overline{010}(1 \overline{0})^{n_{4}} 1 \overline{0}$, depicted in Fig 4, through the morphism $\varphi(0)=u_{3}=k=\bar{p}, \varphi_{1}=u_{1}$. The proof is similar to Lemma 7 .


Figure 4: The polyomino $Q$ can be used as an intermediate step to define the trivial morphism from the unit square to a double square $P$ in form $\mathbf{g}$ ), with $n_{2}=4, n_{4}=3$ and s.t. $\alpha \alpha \subseteq u_{1}$ only. Notice that varying the values $n_{2}$ and $n_{4}$ is equivalent to extend or reduce the length of the sides of the polyomino (between dots), in this case starting from the butterfly.

## 5. Conclusion

In this paper, we consider Conjecture 35 in [6], and we prove it by showing through a full case analysis that there are no couples of consecutive equal letters in the boundary word of a prime double square polyomino. The study of
double square tiles would greatly benefit from the characterization of their prime elements: in particular, such a result would constitute a step toward the definition of an algorithm that directly generates all of them, without repetitions or pruning steps. The final aim is to enhance the performances of the algorithm defined in [6], by reducing the size of the explored space. As a matter of fact, it could also be interesting moving the spot to pseudo-hexagon polyominoes and performing a similar inspection.
From a combinatorial perspective, Theorem 5 may lead to the definition of a general form characterizing the boundary of a prime double square, coded as a word on a four letters alphabet. Usually, similar expressions lead to the definition of a growth law according to some parameters, like perimeter or area. Consequently, such a result could open a further research line, considering the possibility of the complete characterization and generation of all double squares, as well as their enumeration.

## References

[1] Ascolese, M., Frosini, A., On the Decomposability of Homogeneous Binary Planar Configurations with Respect to a Given Exact Polyomino, Lect. Notes Comput. Sci., 13493: 139-152 (2022)
[2] Battaglino, D., Frosini, A., Rinaldi, S., A decomposition theorem for homogeneous sets with respect to diamond probes, Computer Vision and Image Understanding, 117(4): 319-325 (2013)
[3] Beauquier, D., Nivat, M., On translating One Polyomino To Tile the Plane, Discrete Comput. Geom. 6: 575-592 (1991)
[4] Blondin Massé, A., Brlek, S., Labbé, S., A parallelogram tile fills the plane by translation in at most two distinct ways, Discrete Appl. Math. 160 (7-8): 1011-1018 (2012)
[5] Blondin Massé, A., Frosini, A., Rinaldi, S., Vuillon, L., On the shape of permutomino tiles, Discrete Appl. Math., 161: 2316-2327 (2013)
[6] Blondin Massé, A., Garon, A., Labbé, S., Combinatorial properties of double square tiles, Theor. Comput. Sci. 502: 98-117 (2013)
[7] Brlek, S., Provençal, X., Fédou, J.M., On the tiling by translation problem, Discrete Appl. Math. 157: 464-475 (2009)
[8] Frosini, A., Nivat, M., Binary Matrices under the Microscope: A Tomographical Problem, Theoret. Comput. Sci. 370: 201-217 (2007)
[9] Gambini, I., Vuillon, L., An algorithm for deciding if a polyomino tiles the plane by translations, Theoret. Inform. Appl. 41: 147-155 (2007)
[10] Nivat, M.: Invited talk at the International Colloquium on Automata, Languages and Programming (ICALP), Bologna (1997)
[11] Nivat, M., Sous-ensembles homogènes de $\mathbb{Z}^{2}$ et pavages du plan, C.R. Acad. Sci. Paris. Ser. I, 335: 83-86 (2002)
[12] Schattschneider, D., Will it tile? Try the Conway Criterion!, Mathematics Magazine 53: 224-233 (1980)
[13] Shapiro, H.D., Theoretical Limitations on the Efficient Use of Parallel Memories, IEEE Trans. Comput. C-27: 421-428 (1978)
[14] Wang, H., Games, Logic and Computers, Scientific American 213: 98-107 (1965)
[15] Wijshoff, H.A.G., van Leeuwen, J., Arbitrary versus periodic storage schemes and tesselations of the plane using one type of polyomino, Inf. Control. 62: 1-25 (1984)


[^0]:    * Corresponding author

    Email addresses: michela.ascolese@unifi.it (Michela Ascolese), andrea.frosini@unifi.it (Andrea Frosini)

