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Proving a conjecture on prime double square tiles

Michela Ascolesea,∗, Andrea Frosinia

aDipartimento di Matematica e Informatica, Università degli Studi di
Firenze, Florence, Italy

Abstract

In 2013, while studying a relevant class of polyominoes that tile the plane by
translation, i.e., double square polyominoes, Blondin Massé et al. found that
their boundary words, encoded by the Freeman chain coding on a four letters al-
phabet, have specific interesting properties that involve notions of combinatorics
on words such as palindromicity, periodicity and symmetry. Furthermore, they
defined a notion of reducibility on double squares using homologous morphisms,
so leading to a set of irreducible tile elements called prime double squares. The
authors, by inspecting the boundary words of the smallest prime double squares,
conjectured the strong property that no runs of two (or more) consecutive equal
letters are present there. In this paper, we prove such a conjecture using com-
binatorics on words’ tools, and setting the path to the definition of a fast gener-
ation algorithm and to the possibility of enumerating the elements of this class
w.r.t. standard parameters, as perimeter and area.

Keywords: Discrete Geometry, Combinatorics on words, Tiling, Exact tile

1. Introduction

Algorithmic studies of planar tilings greatly benefit from the seminal works [14]
and [15], where the decidability of the existence of planar tilings is addressed
both with a given set of tiles and with a single one. In the first case, it has been
shown that each Turing machine computation can be simulated by a planar
tiling using a suitable set of tiles without rotations, starting from an initial
partial configuration that models the input tape. On the other hand, if only
one tile is provided, the computation becomes much easier. As a matter of fact
in [15] the authors, with the aim of proving a conjecture by Shapiro [13], showed
that a connected finite set of points in Z2 defines a polyomino tile, that is exact
if and only if it admits a periodical tiling of the plane. This result is of great
relevance since it limits the test for the exactness of a polyomino to a finite
part of the plane. Relying on that, Beauquier and Nivat in [3] characterized the
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boundary of an exact polyomino, regarded as a word on a four letters alphabet,
using the notions of rotation and conjugation proper of combinatorics on words,
thus setting a strong connection between these two research fields.
In particular, the authors showed that the boundary word P of an exact poly-
omino can be factorized according to the equation P = X1X2X3X̂1X̂2X̂3,
where, considering the word X as a path, the word X̂ refers to the coding of
the same path travelled in the opposite direction. According to [3], at most one
among X1, X2 and X3 can be empty. Exact polyominoes with such a property
are addressed as pseudo-squares, while pseudo-hexagons are those exact tiles in
which all the factors Xi are non-empty words. The name is due to the prop-
erty that such polyominoes tile the discrete plane by translation surrounding
themselves with four, respectively six, copies of themselves.
It is easy to verify that an exact polyomino P can be used to tile the plane
in different ways, in general, and that it can show both a pseudo-hexagon’s
and a pseudo-square’s behaviour, also in the same tiling. Furthermore, the
arrangement of the copies of P in each of its tilings has a periodical behaviour
along one or two discrete directions, that are strictly related to the choice of
the factors Xi in the decomposition of the word P , non-unique in general. See
Fig. 1 for examples.

(a) (b) (c)

Figure 1: Three tilings of the plane with the two-cell polyomino showing different behaviours.
In (a) the polyomino acts as a pseudo-square, since it is surrounded by four copies of itself. In
(b) the polyomino acts as a pseudo-hexagon, since six copies surround each polyomino. In (c)
both behaviours are present. Here, the dark polyomino is surrounded by five copies of itself,
but this is not the case for each element of the tiling.

Relying on these strong geometrical properties, exact polyominoes have been
considered under different perspectives. Several algorithms have been defined
to improve the efficiency of their detection: moving from the simplest O(n4)
strategy to find a (possible) factorization of a n-length boundary word, in [9]
the complexity has been reduced to O(n2), finally reaching an optimal linear
time strategy in [7] in case of pseudo-squares. Specific regularity properties
of the tilings induced by exact polyominoes have been studied, and provided
useful tools to study the periodicity of infinite binary patterns in the discrete
plane, as well as the possibility of their decomposition into simpler configura-
tions, see [1, 2, 8, 11]. On the other hand, combinatorial aspects of relevant
subclasses of exact polyominoes have been considered with the aim of efficiently
characterizing, enumerating and exhaustively generating them (few examples
for all are [4, 5, 6]). In this work we carry on the study of tiles from this last
perspective, and in particular we focus on the subclass of double square tiles.
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We move from [4], where it was proved that an exact polyomino can tile the
plane as a pseudo-square in at most two distinct ways, and that if two different
pseudo-square factorizations of P exist, then no decomposition as a pseudo-
hexagon does. The authors refer to these exact polyominoes as double squares.
In Fig. 2, three double square polyominoes are provided together with their
factorizations.
Furthermore, it is shown in [6] that double squares have specific boundary prop-
erties, that are exploited using equations on words. These properties lead to
the definition of two operators that allow to exhaustively generate them, and to
the notion of double square reducibility through the definition of suitable homol-
ogous morphisms. Among double squares, those that can be reduced without
intermediate steps to the unit square constitute the subclass of prime double
squares, and are pointed out for their relevance in the exhaustive generation of
double squares polyominoes. Still in [6], the following conjecture was proposed:

Conjecture 35. Let w be the boundary word of a prime double square tile in
a four letters alphabet Σ. Then, for any letter α ∈ Σ, αα is not a factor of w.

The authors of [6] put emphasis on the relevant role that prime double squares
play in the exhaustive generation of all double square tiles: they defined an
algorithm to generate all prime double squares starting from the unit square,
relying on strong palindromicity properties of their boundary words. In this
work we deepen the study of such tiles, and we prove Conjecture 35 by providing
a strong combinatorial structure of the boundary word of any prime double
square. Such results allow to take a step forward the characterization of prime
double squares, and then to their exhaustive generation without repetitions and
outliers, as intended in [6].
The paper is organized as follows: in the next section we recall basic definitions
on combinatorics on words and some preliminary results to approach Conjec-
ture 35. In Section 3, we give some properties of double squares’ boundary
words, mainly using the results from [6]. The proof of Conjecture 35 is in Sec-
tion 4, while Section 5 is devoted to point out future combinatorial, algorithmic
and geometrical research paths that originate from our main result.

2. Basic notions and previous results

In this section, we fix the notation and recall some basic results on exact poly-
ominoes to introduce the study of Conjecture 35.
A polyomino is a subset of the square grid Z2 whose boundary is a contin-
uous, closed and non-intersecting path. We describe polyominoes by coding
their boundary through a word defined on the alphabet Σ = {0, 1, 0, 1}, whose
elements correspond to the directions {→, ↑,←, ↓} of steps made in the grid,
respectively. We say that the letters 0 and 0, resp. 1 and 1, are opposite, since
they represent opposite directions (see Example 2). We indicate by Σ∗ the free
monoid on Σ, i.e., the set of all words defined on the alphabet Σ, with ε the
empty word, and Σ+ = Σ∗ \ {ε}. We therefore call unit square the polyomino
coded by the word U = 1010. Given a word w ∈ Σ∗, |w| indicates its length,
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|w|α indicates the number of occurrences of the letter α in w, and wn indicates
the concatenation of n copies of the word itself. Finally, v is a factor of w if
there exist x, y ∈ Σ∗ such that w = xvy. If x = ε [resp. y = ε], then v is a prefix
[resp. suffix ] of w.
Boundary words can be considered as circular words, since the coding of the
boundary of the polyomino can be defined up to the starting point.
Two words v and w are conjugate, say w ≡ v, if there exist two words x and y
such that v = xy and w = yx. The conjugacy is an equivalence relation, and the
conjugacy class of a word w contains all its cyclic shifts. So, the boundary words
of a polyomino, when fixing a traveling direction, form an equivalence class
w.r.t. the conjugacy relation. In the sequel, we choose the clockwise traveling
direction and each boundary word in the related equivalence class to identify
a polyomino. Furthermore, the conditions of closure and non-intersection of a
polyomino boundary word P can be stated as |P |α = |P |α and |Q|α ̸= |Q|α for
each Q proper factor of P , say Q ⊊ P , and α ∈ {0, 1}.
We define three operators on a word w = w1w2 . . . wn ∈ Σ∗:

1. the opposite of w, w, is the word obtained by replacing each letter of w
with its opposite;

2. the reversal of w, w̃, is defined as w̃ = wnwn−1 . . . w1. A palindrome is a
word s.t. w = w̃;

3. the hat of w, ŵ, is the antimorphic involution given by the composition of
the previous operations.

Example 1. If we apply the previous operations to the word w = 101001010101010101,
we get

w = 101001010101010101,
w̃ = 101010101010100101,
ŵ = 101010101010100101.

In this case w̃ ̸= w, indeed the word w is not a palindrome.

Finally, an exact polyomino is a polyomino that tiles the plane by transla-
tion. Beauquier and Nivat characterized exact polyominoes in relation to their
boundary word, providing the following

Theorem 1 ([3]). A polyomino P is exact if and only if there exist X1, X2, X3 ∈
Σ∗ such that

P = X1X2X3X̂1X̂2X̂3,

where at most one of the words is empty. This factorization may be not unique.

We refer to this decomposition as a BN-factorization. Starting from their
BN-factorization(s), exact polyominoes can be further divided in two classes:
pseudo-hexagons, if X1, X2 and X3 are all non-empty words, and pseudo-squares,
if one of the words is empty. We focus on double square polyominoes, i.e., those
ones that admit two different BN-factorizations as a square, P = ABÂB̂ ≡
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XY X̂Ŷ . Due to the presence of two BN-factorizations, double squares’ bound-
ary words can be written in the general form obtained from Corollary 6 in [7],

P = w1w2w3w4w5w6w7w8, (1)

where A = w1w2, B = w3w4, Â = w5w6, B̂ = w7w8 and X = w2w3, Y = w4w5,
X̂ = w6w7, Ŷ = w8w1, with w1, . . . , w8 non empty.
We now introduce the notion of homologous morphism. A morphism is a func-
tion φ : Σ → Σ∗ s.t. φ(αβ) = φ(α)φ(β) with α, β ∈ Σ, i.e., it preserves
concatenation, and it is said to be homologous if φ(Â) = φ̂(A) for all A ∈ Σ∗,
i.e., it preserves the hat operation. From now on we refer to homologous mor-
phisms only. For each exact polyomino P = ABÂB̂, we can define the trivial
morphism that maps the unit square in P as φP (1) = A, φP (0) = B. In gen-
eral, the boundary word of an exact polyomino can be obtained starting from
the unit square through the composition of two or more morphisms (see Exam-
ple 3). A double square is prime if its boundary word P is such that, for any
homologous morphism φ, the equality P = φ(U) implies that either U = P or
U is the boundary word of the unit square. This property can be rephrased
saying that a double square is prime if its trivial morphism can not be obtained
by composing two or more different morphisms.

Example 2. In Fig. 2 are shown three prime double squares, whose boundary
words are, from left to right, P(a) = 10101010101010101010, P(b) = 101010101010
and P(c) = 1010101010101010.

(a) (b) (c)

Figure 2: The diamond tile (a), the cross tile (b) and the butterfly tile (c) are three examples
of prime double square tiles. Their double BN-factorizations are highlighted on the boundary
with dots of different colors.

Example 3. The double square

P = 10100101001010010100101001010010100101001010010100

is not prime. The trivial morphism, φP (1) = 1010010100101, φP (0) = 001010010100,
can be decomposed as φ1(1) = 10101, φ1(0) = 01010 and φ2(0) = 00, φ2(1) =
101. The composition φP = φ1◦φ2 maps the unit square in P using the diamond
as intermediate step (as shown in Fig. 3).
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ϕ1 ϕ2

Figure 3: The figure shows the composition of two morphisms that lead to a non-prime double
square.

Now, we have introduced all the notions to state a conjecture by Blondin Massé
et al. in [6], that constitutes the focus of our work.

Conjecture 35 ([6]). Let P be the boundary word of a double square and α a
symbol of the alphabet Σ. If P is prime, then αα is not a factor of P .

Notation: for each α ∈ Σ, we use the notation αα ⊆ w (resp. αα ̸⊆ w) to
indicate that the word w contains (resp. does not contain) the factor αα.
On the other hand, we indicate w to be couple free if no two consecutive occur-
rences of a same letter of Σ are present.
We conclude this section by stating two useful technical lemmas.

Lemma 1 ([6]). Given a double square with BN-factorizations P = ABÂB̂ ≡
XY X̂Ŷ , if P is prime then all its factors A,B,X, Y are palindrome.

Lemma 2. Given a, b, u ∈ Σ+, if bũa and bûa are palindrome, then b = ã and
u is palindrome. If ãub̃ and bũa are palindrome, then the same result holds.

Proof. By contradiction, let us suppose |b| < |a| and a = yb̃ for some non-empty
y ∈ Σ+. Replacing, bũyb̃ and bûyb̃ are both palindrome if and only if ũy and ûy
are palindrome at the same time, that is impossible since u ̸= ε. If |a| < |b| the
proof is similar. Analogous arguments lead to the proof of the second statement.

2

3. Properties of the boundary word of prime double squares

In this section, we study the prime double squares’ boundary words. In partic-
ular, we exploit some of their properties that, step by step, lead to write them
in a useful general form.

Lemma 3 ([6]). Let P = w1w2w3w4w5w6w7w8 be the BN-factorization of (the
boundary word of) a prime double square as in (1). It holds that wi+4 = wi for
all i = 1, . . . , 4.
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It follows that the boundary word of a prime double square can be written as

P = w1w2w3w4w1w2w3w4. (2)

Lemma 4. Let P = ABÂB̂ be a prime double square and α ∈ Σ. If αα ⊆ P ,
then αα ⊆ A or αα ⊆ B.

Proof. By contradiction. Let us suppose that the BN-factorization splits αα,
i.e., there exist a1, a2 ∈ Σ∗ such that P = ABÂB̂ = (a1α)(αa2)ÂB̂. Since
P is a prime double square, its factors are both palindrome by Lemma 1, i.e.,
A = (αb1α) and B = (αb2α) for some b1, b2 ∈ Σ∗. Replacing A and B in P , we
get

P = (αb1α)(αb2α)(αb̂1α)(αb̂2α),

reaching a contradiction since the factor αα represents a closed path, not allowed
in the boundary of a polyomino. 2

Corollary 1. From the previous lemma and the general form of P in (2), it
directly follows that the term αα can not be split between two consecutive factors
wi and wi+1.

Corollary 2. If P = w1 . . . w8 is a prime double square, then |wi| ≠ |wi+1| for
all i = 1, . . . , 8.

Proof. By contradiction. Let be |wi| = |wi+1| for some i. Since wiwi+1 is a
BN-factor and P is prime, then, by Lemma 1, it is a palindrome, i.e., wiwi+1 =
w̃i+1w̃i = wiw̃i. It follows that the last letter of wi and the first one of wi+1

match, i.e., we can split a term αα between two BN-factors, in contradiction
with Lemma 4. 2

When considering the boundary word P = w1 . . . w8 of a generic (not necessarily
prime) double square, the following property holds:

Property 1 ([6]). For i = 1, . . . , 8, there exist unique words ui, vi ∈ Σ∗ and
unique ni ≥ 0 such that {

wi = (uivi)
niui,

ŵi−3wi−1 = uivi.

From Property 1 and Lemma 3, we can refine the generic form of the boundary
word of a prime double square provided in (2).
First, we note that wi+4 = wi and wi = (uivi)

niui imply

ui+4 = ui,
vi+4 = vi,
ni+4 = ni,

for i = 1, . . . , 4.
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By the second equation in Property 1, we can write uivi depending on wi−1 and
wi−3, and replacing them in the first one we get

P =(w̃2w4)
n1u1(w̃3w1)

n2u2(w̃4w2)
n3u3(ŵ1w3)

n4u4 . . .

. . .(ŵ2w4)
n1u1(ŵ3w1)

n2u2(ŵ4w2)
n3u3(w̃1w3)

n4u4.
(3)

The following lemma is a rephrase of Lemma 11 in [6]:

Lemma 5 ([6]). Given the boundary word P of a prime double square accord-
ing to (3), there are no two consecutive exponents n1, n2, n3 and n4 that are
different from zero.

Lemma 6. The boundary word P of a prime double square, as in (3), can
always be written in terms of the elements ui only, for i = 1, . . . , 4.

Proof. If ni = 0 for all i, the thesis trivially holds. So, let us assume w.l.g.
n1 > 0 (the other cases can be treated similarly). By Lemma 5, it follows
n2 = n4 = 0, and then w2 = u2 and w4 = u4. Since w1 and w3 are expressed in
terms of w2 and w4 only, replacing in (3) the thesis follows. 2

We finally get the generic form of the boundary word of a prime double square:

P =(ũ2u4)
n1u1

... (ũ3u1)
n2u2

... (ũ4u2)
n3u3

... (û1u3)
n4u4|

(û2u4)
n1u1

... (û3u1)
n2u2

... (û4u2)
n3u3

... (ũ1u3)
n4u4.

(4)

We underline that (4) is always well defined since n1 = n3 = 0 or n2 = n4 = 0
(or both), see Lemma 5, and then the factors wi in (3) can be expressed in terms
of ui only.
From now on, we use a vertical bar to indicate the half of the boundary word
and dashed, vertical bars to separate two consecutive words wi and wi+1.

Theorem 2. Let P be the boundary word of a prime double square as in (4),
and α ∈ Σ. If αα ⊆ P , then αα is entirely contained in a factor ui, i.e., the
term αα can not be split between two consecutive factors ui.

Proof. Let us suppose w.l.g. αα ⊆ w1 = (ũ2u4)
n1u1. By contradiction, we

suppose to split the occurrences of α between two factors ui. We analyze all
possible cases for the values of n1, n3 and the factors ui.

i) We start assuming n1 ≥ 2, that is the only case in which we can suppose
αα ⊆ u4ũ2. Since ũ2 begins and u4 ends with α, then û2 begins with
α and u4 ends with α. In this case, we get the following factors in the
boundary word P ,

w4|w5 = . . . u4|û2 . . .

and αα is split between two factors wi, in contradiction with Lemma 4.
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ii) Let n1 > 0 and suppose αα ⊆ ũ2u4. We remind that in this case n2 = n4 =
0 by Lemma 5. Since ũ2 ends and u4 begins with α, then u2 begins with
α and u4 begins with α. We analyze the factor w3 = (ũ4u2)

n3u3 and we
study the exponent n3. If n3 > 0, then αα ⊆ w3 because of the presence of
ũ4u2, and the boundary of the polyomino intersects itself. Then, it holds
n3 = 0, and the BN-factor becomes X = w2w3

n2=0
= u2u3. Since X is

palindrome, u3 ends with α and, being n4 = 0, we get αα ⊆ w3w4 = u3u4,
and again the border intersects itself, reaching a contradiction.

iii) We suppose to have n1 > 0 and αα ⊆ u4u1. Under this assumption, u4

ends with the letter α and u1 begins with α. By Property 1, the factor w1

has α as first letter as well; we then reach a contradiction with Corollary 1,
since αα ⊆ w4w1.

Since we reached a contradiction for all possible cases, the proof is given. 2

Since P is a circular word, from now on we suppose, w.l.g., that |u1| ≤ |ui| for
i = 2, 3, 4. Assuming that, it is possible to define P expressed as in (4) in terms
of two factors only, u1 and u3, and two words k, p ∈ Σ∗, with k, p ̸= ε. It will
be clear from the proof of Theorem 3 that u2 = kũ1 and u4 = û1p.
Relying on Lemmas 1 and 5, we get the following taxonomy according to the
positive values of ni, with i = 1, . . . , 4:

a) P = u1

... kũ1

... u3

... û1p|u1

... kû1

... u3

... ũ1p. This form requires k and p palin-
drome.

b) P = (u1kũ1p)
n1u1

... kũ1

... u3

... û1p|(u1kû1p)
n1u1

... kû1

... u3

... ũ1p. In this case, k
and p are palindrome.

c) P = u1

... (ũ3u1)
n2kũ1

... u3

... û1p|u1

... (û3u1)
n2kû1

... u3

... ũ1p. In this case, p is
palindrome.

d) P = u1

... kũ1

... (pu1kũ1)
n3u3

... û1p|u1

... kû1

... (pu1kû1)
n3u3

... ũ1p. In this case, k
and p are palindrome.

e) P = u1

... kũ1

... u3

... (û1u3)
n4 û1p|u1

... kû1

... u3

... (ũ1u3)
n4 ũ1p. In this case, k is

palindrome.

f) P = (u1kũ1p)
n1u1

... kũ1

... (pu1kũ1)
n3u3

... û1p|(u1kû1p)
n1u1

... kû1

... (pu1kû1)
n3u3

... ũ1p.

In this case, k and p are palindrome.

g) P = u1

... (ũ3u1)
n2kũ1

... u3

... (û1u3)
n4 û1p|u1

... (û3u1)
n2kû1

... u3

... (ũ1u3)
n4 ũ1p.

In this case, k and p are generic, non-empty words in Σ∗.

Theorem 3. The above seven cases a) . . . g) entirely describe the possible forms
in which the boundary word of a prime double square can be expressed.
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Proof. P is a prime double square, then its BN-factors A = w1w2, B = w3w4,
X = w2w3 and Y = w4w1 are all palindrome by Lemma 1; we further remind
that ui is a prefix of wi by Property 1. Then, for any possible value of ni and
by the hypothesis on the mutual lengths |ui|, in particular |u1| is minimum, we
can always express u2 = kũ1 and u4 = û1p for some proper words k, p ∈ Σ∗,
see the BN-factors expressed as in (4). We notice that we can not deduce an
analogous form for the word u3, since we do not know the relative lengths w.r.t.
u2 and u4. Let us now consider all the possible cases on the values ni and study
the boundary word we get for each one.

a) n1 = n2 = n3 = n4 = 0,

P = u1

... kũ1

... u3

... û1p|u1

... kû1

... u3

... ũ1p.

Since w1w2 and w4w1 are palindrome, we get k and p palindrome. Fur-
thermore, k, p ̸= ε to avoid to split a term αα between two factors u1ũ1

or û1u1, in contradiction with Theorem 2.

b) n1 > 0, n2 = n3 = n4 = 0,

P = (u1k̃ũ1p)
n1u1

... kũ1

... u3

... û1p|(u1k̂û1p)
n1u1

... kû1

... u3

... ũ1p.

Since w1w2 and w4w1 are palindrome, we deduce that p and k are palin-
drome too. In particular, if n1 is odd, the palindromicity of p follows from
w1w2 and the palindromicity of k from w4w1, vice versa if n1 is even.
Moreover, p, k ̸= ε as discussed in case a).

c) n2 > 0, n1 = n3 = n4 = 0,

P = u1

... (ũ3u1)
n2kũ1

... u3

... û1p|u1

... (û3u1)
n2kû1

... u3

... ũ1p.

As in case b), we deduce p palindrome from w4w1. Again, k, p ̸= ε.

d) n3 > 0, n1 = n2 = n4 = 0,

P = u1

... kũ1

... (p̂u1kũ1)
n3u3

... û1p|u1

... kû1

... (p̃u1kû1)
n3u3

... ũ1p.

Similarly, k is palindrome from w1w2 and p is palindrome from w4w1.
Moreover, they are not empty.

e) n4 > 0, n1 = n2 = n3 = 0,

P = u1

... kũ1

... u3

... (û1u3)
n4 û1p|u1

... kû1

... u3

... (ũ1u3)
n4 ũ1p.

We get that k is palindrome from w1w2. Again, k, p ̸= ε.
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f) n1, n3 > 0, n2 = n4 = 0,

P = (u1k̃ũ1p)
n1u1

... kũ1

... (p̂u1kũ1)
n3u3

... û1p|(u1k̂û1p)
n1u1

... kû1

... (p̃u1kû1)
n3u3

... ũ1p.

The word p is palindrome from w4w1 while k is palindrome from w1w2,
or vice versa, depending on the parity of n1. Both are not empty.

g) n2, n4 > 0, n1 = n3 = 0,

P = u1

... (ũ3u1)
n2kũ1

... u3

... (û1u3)
n4 û1p|u1

... (û3u1)
n2kû1

... u3

... (ũ1u3)
n4 ũ1p.

As seen in the previous cases, k, p ̸= ε. Moreover, in this case k and p are
generic words in Σ∗. 2

4. Proof of the conjecture

We will prove Conjecture 35 relying on the results of the previous section, in
particular the final forms a) . . .g) of the boundary word of a prime double
square P (Theorem 3). We start analyzing case a), where ni = 0 for all i, and
then we show how to generalize the results to the remaining cases. From now
on, P is assumed to be prime.

Lemma 7. Let P be as in case a), and α ∈ Σ. If αα ⊆ u1, and u3, k and p
are couple free, then P is not a prime double square.

Proof. Let us suppose there is only one occurrence αα ⊆ u1, i.e., u1 = aααb for
some a, b ∈ Σ∗ and a and b couple free. Then

P = aααb
... kb̃ααã

... u3

... b̂ααâp|aααb
... kb̂ααâ

... u3

... b̃ααãp.

We are assuming that P is a prime double square, so w2w3 and w3w4 are
palindrome being BN-factors (see Lemma 1), and since αα ̸⊆ a, b, k and u3, we
get 

kb̃ = ũ3a,

u3b̂ = pa,

k, p palindrome, since P is in form a).

It holds that |k| = |p| = |u3| and b̃a and u3 are both palindrome. We can
prove these properties by considering the factors’ lengths and proceeding by
contradiction: let us suppose first |k| < |u3|, so that u3 = yk for some y ∈ Σ+.
Replacing above, we obtain b = ãy and ykŷa = pa. From this second condition
and the palindromicity of p, we get y = ε and so u3 = k, contradiction. Then
|u3| < |k| holds, and there exists k′ ∈ Σ+ such that k = ũ3k

′. Then, we obtain
a = k′b̃ and u3b̂ = pk

′
b̂, that leads to u3 = pk

′
. Finally, the factor k = ũ3k

′ =

11



k̂′pk′ is palindrome if and only if k′ = ε, reaching again a contradiction. So,
|k| = |u3|.
Moving on, it follows |a| = |b|, with b = ã, and k = p = u3. Replacing in P , we
get

P = aααã
... u3aααã

... u3

... aααâu3|aααâ
... u3aααâ

... u3

... aααãu3.

Finally, P can be obtained from the boundary word of the cross, Q = 101010101010,
through the morphism φ(0) = u3, φ(1) = aααã = u1. It follows that P is not
prime.
Let us now conclude the proof by considering the case where u1 contains more
occurrences of two consecutive equal letters, i.e., u1 = aααcββb with a and
b couple free and c ∈ Σ∗. We underline that c is not couple free in general,
and can contain an arbitrary number of consecutive equal letters as its factors.
Replacing u1 in P we get

P = aααcββb
... kb̃ββc̃ααã

... u3

... b̂ββĉααâp| . . . b̃ββc̃ααãp.

By the palindromicity of w2w3 and the assumption that a, b, u3 and k are couple
free, we immediately argue α = β, and then, following the same argument used
in case of only one occurrence of αα ⊆ u1, we get u3 = p = k palindrome and
b = ã; moreover, c is palindrome too. Replacing in P , we get the final form

P = aααcααã
... u3aααcααã

... u3

... aααcααâu3| . . . aααcααãu3,

that can be obtained from the cross through the morphism φ′(0) = u3, φ′(1) =
aααcααã = u1, that easily generalizes φ. Even in this case, P is not prime. 2

Remark 1. The morphisms φ and φ′ obtained in the proof of Lemma 7 are well
defined and preserve the hat operation, since u1 and u3 are both palindrome.

It is easy to verify that, as shown in the proof of Lemma 7, when considering
more occurrences of couples of consecutive equal letters in a factor of P the
morphisms, if any, that map a prime double square into P are a simple gener-
alization of the morphism obtained by considering one occurrence of two equal
letters only. It is sufficient to explicitly write the first and last occurrence of
consecutive equal letters in the considered factor and then carry on a similar
proof. For this reason, the next results will be provided adding this further
hypothesis.

Lemma 8. Let P be a double square as in case a), and α ∈ Σ. P is not prime
when any of the following conditions verifies:

i) u1 is couple free and αα ⊆ p, or

ii) u1 is couple free and αα ⊆ k, or

iii) u1 is couple free and αα ⊆ u3.
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Proof. Since P is in form a), then each exponent ni in (4) equals 0, and w.l.g.
we can assume that only one occurrence of αα appears in p, respectively k and
u3, as shown in the proof of Lemma 7. We proceed with a full case analysis:

i) The factor p can be written as the palindrome aααã. Since u1 and a are
couple free, and w3w4 is palindrome, it follows u3 = aααb̃ for suitable
b, c ∈ Σ∗ s.t. a = cb. Then

P = u1

... kũ1

... cbααb̃
... û1cbααb̃c̃|u1

... kû1

... cbααb̂
... ũ1cbααb̂ĉ.

By the palindromicity of w2w3, we argue that k = bααd for some d ∈ Σ∗.
We conclude that d = b̃, since k is palindrome by hypothesis. Replacing
again in P , we get

P = u1

... bααb̃ũ1

... cbααb̃
... û1cbααb̃c̃|u1

... bααb̂û1

... cbααb̂
... ũ1cbααb̂ĉ

and, by the palindromicity of w2w3 and w3w4, we observe that ũ1c and
û1c are both palindrome, and then c = ε and u1 = ũ1. We get the final
form

P = u1

... bααb̃u1

... bααb̃
... u1bααb̃|u1

... bααb̂u1

... bααb̂
... u1bααb̂.

A morphism can now be defined mapping the cross in P , i.e., φ(0) =
bααb̃ = aααâ = u3, φ(1) = u1. Then P is not prime.

ii) Assuming αα ⊆ k, the palindrome factor can be written as k = aααã,
with a couple free. The boundary word is

P = u1

... aααãũ1

... u3

... û1p|u1

... aααâû1

... u3

... ũ1p.

Using the same argument as in case i), and the palindromicity of w2w3,
we get u3 = bααã and a = cb, then

P = u1

... cbααb̃c̃ũ1

... bααb̃c̃
... û1bααb̃|u1

... cbααb̂ĉû1

... bααb̂ĉ
... ũ1bααb̂.

From the palindromicity of the BN-factor w2w3, it follows that c̃ũ1 is
palindrome, and then from the palindrome w3w4 we argue c = ε and
u1 = ũ1. In the end, the boundary word is

P = u1

... bααb̃u1

... bααb̃
... u1bααb̃|u1

... bααb̂u1

... bααb̂
... u1bααb̂.

A morphism mapping the cross in P can now be defined, i.e., φ(0) =
bααb̃ = aααã = u3, φ(1) = u1. Then P is not prime.
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iii) We replace u3 = aααb, with a, b couple free, in the boundary word,

P = u1

... kũ1

... aααb
... û1p|u1

... kû1

... aααb
... ũ1p,

and then proceed as in previous cases. Since w2w3 and k are palindrome,
k = b̃ααb, while we deduce p = aααã from the palindromicity of the
BN-factor w3w4. We get

P = u1

... b̃ααbũ1

... aααb
... û1aααã|u1

... b̂ααbû1

... aααb
... ũ1aααâ,

and since bũ1a and bû1a are both palindrome (see w2w3 and w3w4), it
holds b = ã and u1 = ũ1 (Lemma 2).

The final form of the boundary word is

P = u1

... aααãu1

... aααã
... u1aααã|u1

... aααâu1

... aααâ
... u1aααâ.

A morphism mapping the cross in P can now be defined, i.e., φ(0) =
aααã = u3, φ(1) = u1. Then P is not prime. 2

Corollary 3. Let P be a double square as in case a), and α ∈ Σ. If αα ⊆ P
and u1 is couple free, then αα ⊆ p, k, u3.

Lemma 9. Let P be a double square as in case a). P is not prime when any
of the following conditions verifies:

i) u1 and p are not couple free, while u3 and k are, or

ii) u1 and k are not couple free, while u3 and p are, or

iii) u1, p and k are not couple free, while u3 is.

Proof. Again, the proof proceeds by contradiction, assuming that only one
occurrence of two consecutive equal letters is in the analyzed factors.

i) Let us assume u1 = aααb and p = cββc̃ (recall that p is palindrome), with
α, β ∈ Σ, and a, b, c that are couple free.

Since the BN-factors w2w3 and w3w4 are palindrome and αα, ββ ̸⊆ a, b, c, k, u3,
we deduce α = β, kb̃ = ũ3a and ĉ = bũ3. Replacing in P we obtain

P = aααb
... ũ3aααã

... u3

... b̂ααâu3b̂ααbũ3|aααb
... û3aααâ

... u3

... b̃ααãu3b̃ααbû3.

By the palindromicity of w1w2 and w3w4, it follows that bũ3a and âu3b̂
are palindrome too. Since b = ã and u3 = ũ3 by Lemma 2, then P can be
expressed as

P = aααã
... u3aααã

... u3

... aααâu3aααâu3|aααâ
... u3aααâ

... u3

... aααãu3aααãu3.
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So, the morphism φ(0) = u3, φ(1) = aααã = u1 maps the butterfly
Q = 1010101010101010 in P , preventing it from being prime.

As already observed, the case of more occurrences of couples of the same
letter in u1 and p can be treated similarly.

ii) Let u1 = aααb and k = cββc̃, with a, b, c couple free. Replacing in P , we
obtain

P = aααb
... cββc̃b̃ααã

... u3

... b̂ααâp|aααb
... cββĉb̂ααâ

... u3

... b̃ααãp.

Since w2w3 and w3w4 are palindrome, and αα, ββ ̸⊆ a, b, c, p, u3, we de-
duce α = β, c = ũ3a and âp = bũ3, i.e.,

P = aααb
... ũ3aααãu3b̃ααã

... u3

... b̂ααbũ3|aααb
... û3aααâu3b̂ααâ

... u3

... b̃ααbû3.

We further see that ãu3b̃ and bũ3a are both palindrome (see w2w3 and
w4w1) then, by Lemma 2, b = ã and u3 is palindrome. We finally get

P = aααã
... u3aααãu3aααã

... u3

... aααâu3|aααâ
... u3aααâu3aααâ

... u3

... aααãu3.

Again, the morphism φ(0) = u3, φ(1) = aααã = u1 maps the butterfly
Q = 1010101010101010 in P , preventing it from being prime.

iii) Let u1 = aααb, k = cββc̃ and p = dγγd̃, with a, b, c, d couple free. Re-
placing in P , we obtain

P = aααb
... cββc̃b̃ααã

... u3

... b̂ααâdγγd̂|aααb
... cββĉb̂ααâ

... u3

... b̃ααãdγγd̃.

As seen in the previous cases, from the palindromicity of the BN-factors
w2w3 and w3w4 we deduce β = γ = α, c = ũ3a and d̂ = bũ3, and then
b = ã and u3 = ũ3 (Lemma 2). The final form of the boundary word is

P = aααã
... u3aααãu3aααã

... u3

... aααâu3aααâu3|

aααâ
... u3aααâu3aααâ

... u3

... aααãu3aααãu3.

The morphism φ(0) = u3, φ(1) = aααã = u1 maps the butterfly Q =
10101010101010101010 in P , preventing it from being prime. 2

Remark 2. Since the morphisms we defined in the proofs of Lemmas 8 and 9
map 0, 1 in u1, u3, and k, p result to be equal, unless opposite, to u1 or u3 or
their concatenation (as in Lemma 9), we can generalize these results when more
couples of consecutive equal letters occur in one or more factors of P , using the
same reasoning employed in the proof of Lemma 7.
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The analysis of the possible positions in P of the factor αα continues, and three
more lemmas are provided. We choose to set them separately since the proofs,
even though all proceeding by contradiction, are different.

Lemma 10. Let P be a double square as in case a). If u1 and u3 are not couple
free, while k and p are, then P is not prime.

Proof. Let us assume that only one occurrence of a couple of consecutive equal
letters is both in u1 and u3, say u1 = aααb and u3 = cββd, with α, β ∈ Σ, and
a, b, c, d couple free. Replacing in P , we get

P = aααb
... kb̃ααã

... cββd
... b̂ααâp|aααb

... kb̂ααâ
... cββd

... b̃ααãp.

Looking at the palindrome w2w3 and w3w4, we deduce (respectively) β = α
and β = α, that give a contradiction. Then, a double square P containing
such configurations of couples αα is not prime. If more than one occurrence of
couples of equal letters are in u1 or u3 (or both), a similar proof holds. 2

Lemma 11. The following statements hold:

i) if u1, u3 and k are not couple free, while p is, then P is not a prime double
square.

ii) If u1, u3 and p are not couple free, while k is, then P is not a prime double
square.

Proof. Let us again assume that only one occurrence of a couple of consecutive
equal letters is in the analyzed factors.

i) Let u1 = aααb, u3 = cββd and k = eλλẽ, with α, β, λ ∈ Σ and a, b, c, d,
e couple free. From the palindromicity of the BN-factors w2w3 and w3w4,
we have λ = β = α, e = d̃, c = pa, ẽb̃ = c̃a. Moreover, we highlight that
db̂ is palindrome. So, P can be written as

P = aααb
... d̃ααdb̃ααã

... paααd
... b̂ααâp|aααb

... d̂ααdb̂ααâ
... paααd

... b̃ααãp.

Similarly, db̃ = âpa from w2w3 palindrome, and

P = aααãpaααâpaααãpaααdb̂ααâp|aααâpaααãpaααâpaααdb̃ααãp,

with db̂ palindrome and db̃ = âpa.

We underline that the factor w = paααâpaααã is such that |w|1 = |w|1
and |w|0 = |w|0; we then conclude that the boundary of the polyomino
intersects itself, reaching a contradiction.
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ii) Let u1 = aααb, u3 = cββd and p = eγγẽ, with a, b, c, d, e couple free.
From the palindromicity of w2w3 and w3w4, we have β = γ = α, d = bk,
db̂ = êa and e = c. Moreover, we highlight that ãc = c̃a is palindrome.
So, P can be written as

P = aααb
... kb̃ααã

... cααbk
... b̂ααâcααc̃|aααb

... kb̂ααâ
... cααbk

... b̃ααãcααĉ,

with c̃a palindrome and c̃a = bkb̂ (see w3w4).

We underline that the factor w = âcααc̃aααbk = bkb̃ααbkb̂ααbk is such
that |w′|1 = |w′|1 and |w′|0 = |w′|0, with w′ = b̃ααbkb̂ααbk; we then
conclude that the boundary of the polyomino intersects itself, reaching a
contradiction. 2

Lemma 12. If u1, u3, p and k are not couple free, then P is not a prime double
square.

Proof. The result can be obtained providing a morphism φ that maps the cross
in P . By contradiction, let u1 = aααb, u3 = cββd, p = eγγẽ and k = fλλf̃ ,
with a, b, c, d, e, f couple free. Replacing in P , we get

P = aααb
... fλλf̃ b̃ααã

... cββd
... b̂ααâeγγê|aααb

... fλλf̂ b̂ααâ
... cββd

... b̃ααãeγγẽ.

From w2w3 and w3w4 palindrome, we get β = λ = γ, f = d̃, e = c, f̃ b̃ = c̃a and
âe = bd̃. The boundary word is now

P = aααãcββc̃aααãcββc̃aααâcββc̃|aααâcββĉaααâcββĉaααãcββĉ.

A non-trivial morphism can be defined as φ(0) = cββc̃ = u3, φ(1) = aααã = u1,
thus showing that P is not prime. 2

We underline again that similar proofs lead to the definition of analogous mor-
phisms when considering more couples of consecutive equal letters in u1, u3, k
or p. The following example shows one of the possible situations:

Example 4. We consider a generalization of the proof of Lemma 9, case i),
assuming that the non-couple free factors of the boundary word P have an arbi-
trary number of occurrences of consecutive equal letters. We assume by hypoth-
esis that P is the boundary word of a prime double square, and for each factor
we explicitly write the first and last occurrence of consecutive equal letters.
We consider the factors u1 = aααbββc and p = dγγeγγd̃, with α, β, γ ∈ Σ,
a, c, d, k and u3 couple free, e palindrome. Replacing in P , we obtain

P = aααbββc
... kc̃ββb̃ααã

... u3

... ĉββb̂ααâdγγeγγd̂| . . .

The palindromicity of w2w3, together with the hypothesis on the couple free
factors, immediately lead to α = β, kc̃ = ũ3a and b palindrome, while the palin-
dromicity of w3w4 gives γ = β, d = u3c̃ and bα̂αâdγγe palindrome. Replacing
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again in P and imposing the palindromicity of w1w2 and w3w4, we find that
cũ3a and bααâu3ĉααe are both palindrome. Focusing on the latter, more cases
occur:

- |e| < |b|, so that b = eααx for some x ∈ Σ+, and then xααâu3ĉ is
palindrome. Since âu3ĉ is couple free, it must hold |au3c| ≤ |x| < |b| and
so |u3| < |u1|, in contradiction with the hypothesis on the mutual lengths
of the factors ui.

- |b| < |e|, so that e = xααb for some x ∈ Σ+, and then âu3ĉααx is palin-
drome. We further remind that e is palindrome too. First, we notice that
x ̸= b, otherwise we reach the same contradiction of the previous case.
So, by the palindromicity of e, there exists a palindrome y ∈ Σ+ such
that x = bααy and âu3ĉααbααy is palindrome. Being a, c and u3 all cou-
ple free, two cases occur: y = cũ3a or y = zααcũ3a for some z ∈ Σ+,
with bααz palindrome. This second case in analogous to the previous one,
replacing y = x and z = y. Then, we can assume w.l.g. y = cũ3a
(otherwise, by iteration, we finally get that y is concatenation of the palin-
dromes b, αα and cû3a). Therefore, we have shown that cu3a and cũ3a
are palindrome at the same time, that is, c = ã and u3 is palindrome (by
Lemma 2). Furthermore, u1 is palindrome too. Replacing in the other
factors, we find out that p = u3u1u3u1u3, k = u3 and u1, u3 are palin-
drome. So, it is possible to define the non-trivial morphism φ(0) = u3,
φ(1) = u1 that maps the double square Q = 10101010101010101010 in P ,
thus showing that it is not prime. More in general, p = (u3u1)

tu3 for
some t ≥ 1 when the factor y is concatenation of more palindromes, and
then Q = 10101(01)t010101(01)t0.

- We can conclude that b = e, and so cu3a and cu3a are palindrome at the
same time, that is, c = ã and u3 palindrome (by Lemma 2). Furthermore,
u1 is palindrome too. As in the previous case, it is possible to define the
non-trivial morphism φ(0) = u3, φ(1) = u1 that maps the butterfly in P ,
thus showing that the double square is not prime.

Since we reached a contradiction for all possible cases, it follows that P is not
prime.

Theorem 4. If P is the boundary word of a prime double square s.t. ni = 0
for all i, then P is couple free.

Proof. The proof directly follows from the previous lemmas, where a complete
analysis of the possible positions of consecutive equal letters inside the form
a) of P is carried on. Assuming that the factor u1 is couple free, Lemma 8
shows that if two consecutive equal letters occur in P , then the double square
is not prime. So, we need to suppose that αα ⊆ u1 for some α ∈ Σ. Let us
now consider the factor u3: following the proofs of Lemmas 10 and 11, it holds
that, in case u3 is not couple free, an occurrence of two consecutive equal letters
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is present in both factors k and p or in none of them, otherwise P is not the
boundary word of a polyomino. In the first case, Lemmas 9 and 12 show how to
define a morphism so that P is a non-prime double square. In the second case,
Lemma 7 proves that the existence of a prime double square such that αα ⊆ u1

and u3, k and p are all couple free is not possible. 2

Generalizing Theorem 4 to the forms b) . . . g) of the word P

We indicate here, for each form of the boundary word of a prime double square
from a) to g), the BN-factors involved in the lemmas leading to the proof of
Theorem 4. As a matter of fact, it is possible to follow the lemmas’ sequence
according to the new indicated factors to obtain the related version of Theorem 4
for each remaining case from b) to g). Hence, Conjecture 35 is proved in
Theorem 5. The BN-factors are the following:

Case a) A = u1kũ1, B = u3û1p, X = kũ1u3, Y = û1pu1.

Case b) A = (u1kũ1p)
n1u1kũ1, B = u3û1p, X = kũ1u3, Y = û1p(u1kû1p)

n1u1.

Case c) A = u1(ũ3u1)
n2kũ1, B = u3û1p, X = (ũ3u1)

n2kũ1u3, Y = û1pu1.

Case d) A = u1kũ1, B = (pu1kũ1)
n3u3û1p, X = kũ1(pu1kũ1)

n3u3, Y =
û1pu1.

Case e) A = u1kũ1, B = u3(û1u3)
n4 û1p, X = kũ1u3, Y = (û1u3)

n4 û1pu1.

Case f) A = (u1kũ1p)
n1u1kũ1, B = (pu1kũ1)

n3u3û1p, X = kũ1(pu1kũ1)
n3u3,

Y = û1p(u1kû1p)
n1u1.

Case g) A = u1(ũ3u1)
n2kũ1, B = u3(û1u3)

n4 û1p, X = (ũ3u1)
n2kũ1u3, Y =

(û1u3)
n4 û1pu1.

Focusing on case a), we notice that A and Y are palindrome by construction,
while B and X begin or end with the words k, p or u3. As seen in all proofs of
the previous lemmas, when including a couple αα in P we compare u3, p and k
by the palindromicity of B and X. Through this procedure, we can write k and
p as a concatenation of u3 and u1 (as highlighted in Remark 2). Then, after
replacing, through the palindromicity of the BN-factors A and Y we deduce that
ũ1 = u1 and ũ3 = u3 are both palindrome, and finally provide a well-defined
homologous morphism φ that allows us to reach a contradiction and conclude
the proof.
We can generalize this procedure analyzing the BN-factors in the other cases:

b) B and X allow to compare k, p and u3, while A and Y give the palindromicity
of u1, u3.

c) A and B allow to compare k, p and u3, while X and Y give the palindromicity
of u1, u3.

d) B and X allow to compare k, p and u3, while A and Y give the palindromicity
of u1, u3.
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e) B,X and Y allow to compare k, p and u3, while A gives the palindromicity
of u1, u3.

f) B and X allow to compare k, p and u3, while A and Y give the palindromicity
of u1, u3.

g) B and Y allow to compare k, p and u3, while A and X give the palindromicity
of u1, u3.

After these observations, we can conclude that the results obtained in case a)
admit a generalization to all the remaining cases. So, we can state the final
theorem and solve Conjecture 35:

Theorem 5. If P is the boundary word of a prime double square and α ∈ Σ,
then αα ̸⊆ P .

The following example is related to case g), when u1 is not couple free while u3, p
and k are. In this case we are able, similarly to case a), to define a morphism
that leads to the non primality of P .

Example 5. Let us consider P having the form g). We assume that u1 is
not couple free, while u3, p and k are. We can map in P the double square Q =
1(01)n2010(10)n4101(01)n2010(10)n410, depicted in Fig 4, through the morphism
φ(0) = u3 = k = p, φ1 = u1. The proof is similar to Lemma 7.

n2

n4

n2

n4

Figure 4: The polyomino Q can be used as an intermediate step to define the trivial morphism
from the unit square to a double square P in form g), with n2 = 4, n4 = 3 and s.t. αα ⊆ u1

only. Notice that varying the values n2 and n4 is equivalent to extend or reduce the length
of the sides of the polyomino (between dots), in this case starting from the butterfly.

5. Conclusion

In this paper, we consider Conjecture 35 in [6], and we prove it by showing
through a full case analysis that there are no couples of consecutive equal let-
ters in the boundary word of a prime double square polyomino. The study of
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double square tiles would greatly benefit from the characterization of their prime
elements: in particular, such a result would constitute a step toward the defini-
tion of an algorithm that directly generates all of them, without repetitions or
pruning steps. The final aim is to enhance the performances of the algorithm
defined in [6], by reducing the size of the explored space. As a matter of fact, it
could also be interesting moving the spot to pseudo-hexagon polyominoes and
performing a similar inspection.
From a combinatorial perspective, Theorem 5 may lead to the definition of
a general form characterizing the boundary of a prime double square, coded
as a word on a four letters alphabet. Usually, similar expressions lead to the
definition of a growth law according to some parameters, like perimeter or area.
Consequently, such a result could open a further research line, considering the
possibility of the complete characterization and generation of all double squares,
as well as their enumeration.
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