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IRREGULARITY OF THE BERGMAN PROJECTION ON SMOOTH UNBOUNDED
WORM DOMAINS

STEVEN G. KRANTZ, ALESSANDRO MONGUZZI, MARCO M. PELOSO, CATERINA STOPPATO

ABSTRACT. In this work we consider smooth unbounded worm domains Zy in C? and show that the
Bergman projection, densely defined on the Sobolev spaces H*P(Zy), p € (1,0), s = 0, does not
extend to a bounded operator Py : H%P(Z,) — H%P(Z,) when s > 0 or p # 2. The same irregularity
was known in the case of the non-smooth unbounded worm. This improved result shows that the
irregularity of the projection is not a consequence of the irregularity of the boundary but instead of the
infinite windings of the worm domain.

1. INTRODUCTION

Let ¢ be a non-negative smooth function on R such that

« ¢ is convex
« $71(0) = (—0,0].
Notice that ¢/(t) > 0 for ¢ > 0 and that there exists a > 0 such that ¢(a) = 1. For A > 0 we set

2y = {(1,22) 5 21— €= <1 log(N o)) )} (1)

Then, Z, is smooth, unbounded and pseudoconvex (see Theorem 1.1 below). Moreover, {Zy}x>0 is a
nested family of domains whose union is the unbounded non-smooth worm

W= {(21,22) Dl — ei1°g|22‘2‘2 <1, zg # O}. (2)

The domain W was studied in [[K{PS16], where three main facts were proved (see the enumerated list
below). For p € [1,00] and s > 0, given any domain €, denote by H*? = H*P(Q) the standard Sobolev
space on 2. When s = k is an integer, H*? consists of functions with k-derivatives in LP(2), and for non-
integer s, H*P can be defined by interpolation, see Section 2. For p € [1, 0], let AP(Q2) := LP(Q2) n Hol(?)
denote the Bergman space. In [[K{PS16] it was proved that:
(i) the space A%2(W) # {0}, so that the Bergman projection P : L?(W) — A?(W) is a non-trivial
orthogonal projector;
(ii) the operator P, initially defined on a dense subspace of LP(W), extends to a bounded operator
P:LP(W) — LP(W) (if and) only if p = 2;
(iii) the operator P, initially defined on a dense subspace of H*2(W), extends to a bounded operator
P: H>2(W) — H*?*(W) (if and) only if s = 0.
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The goal of this paper is to show that also in the case of the unbounded smooth worms Z), A > 0, the
Bergman projection Py on Z) cannot be extended to a bounded operator Py : H*P(Z),) — H%P(Z))
when s > 0 or p # 2. Observe that, since Z, € W for all A > 0, (i) above implies that A%(Z)) and hence
Py are non-trivial. We now state our main results.

Theorem 1.1. Let A > 0 and 2 be defined as in (1). Then Zy is smooth, unbounded, and pseudoconvex
and its boundary is strongly pseudoconvex except at the points A := {(z1,22) : 21 = 0, |22] = 1/A)}.
Moreover, the Bergman space AP(Z)) is infinite dimensional for all p € (0, 00).

Theorem 1.2. Let A > 0, Z) be defined as above, and let Py denote the Bergman projection on Zy. If
Py, initially defined on the dense subspace (L* n H*P)(Z)), p€ (1,0) and s = 0, extends to a bounded
operator

PA : Hs’p(Zk) - Hs’p(Z)\)
then necessarily s =0 and p = 2.
The problem of the regularity of the Bergman projection on worm domains has been an object of

active and intense research. In the seminal paper | ] D. Barrett considered the smoothly bounded
worm domain

Wy = {(z1,22) € € |21 — & 2212P P < 1 p(log|sP)} 3)
where 7 is smooth, non-negative, convex, 7(0) = [—u, 1], and such that W, is smooth, bounded and
pseudoconvex, see e.g. [ , Proposition 2.1]. Barrett showed that the Bergman projection on W,
does not preserve the Sobolev space H*2(W,) if s > m/u, whereas in | ] it was then shown that
the Bergman projection on W, does not preserve L if |% - % > % We further mention in particular
[ , , , , , ]. We also refer the reader to | ] for an expository
account of the subject, and to | , , | for some interesting connections between Bergman

spaces on worm domains and the Miintz-Szész problem for the Bergman space in one complex dimension.

In the next section we prove Theorem 1.1, whereas in Section 3 we introduce the tools that we need
to deal with Sobolev spaces on smoothly bounded domains. In Section 4 we prove Theorem 1.2 and in
the final Section 5 we discuss some open problems and future work.

2. THE UNBOUNDED SMOOTH WORM

Consider the domains Zy. It is clear that they are unbounded, that Z), € Z,, if 0 < A < X and that
Us=0 21 = W. It is also immediate to see that

ZyC{z: 0 <|21] <2} x {22 |22 > 1/(e¥?N)}.

Since Z) € W, where W is as in (2), | , Proposition 2.3] gives that A?(Z)) is infinite dimensional.
Similar calculations also show that also the spaces AP(Z)) are infinite dimensional, p € (0, c0]. Explicitly,
for a € C, for z = (z,,22) € W, let

L(Z) — log (Zle—ilog|22|2) n i10g|22|2, Ea(21722) = eOtL(Z)7

where log(z) denotes the principal branch of the logarithm on C\(—00,0]. Then L,E, € Hol(V) by

[ , Lemma 2.2]. Moreover, for j € Z, me N, ce R,c > log2, a = Rea + Z(% + %), setting
Ea(2)2}
Fa c,j,m e N
1G5 (2) (L(Z) - C)m
and arguing as in | , Proposition 2.3], it is simple to see that Fy ¢ jm € AP (W) if Rea > —2/p and

m > 1/p, where p € (0,0]. Hence, AP(W) is infinite dimensional.
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The argument to show that Z is smooth and pseudoconvex is standard, but we repeat it for the sake
of completeness. Letting p denote the defining function of Z) we observe that

p(z1,22) = |21 — 198128 |2 1 4 g(log(A|22])72)
= |21]? = 2Re (zre” 98 1221%) 4 G(log(A|z2])72),
so that

ap(Zh 2o) = (21 o e—ilog|zz\27 _Zz Im (Zle—iloglzz\2) _ Zi¢/(10g(A|22|)_2)>-
2 2
Let (z1,22) € bZx be such that 0,,p(21, 22) = 0. Then z; = e'1°812" 5o that ¢(log(A|zz|)2) = 1. The
assumptions on ¢ imply that d,,p # 0 at such points. Thus Z, is smooth, and it is clearly unbounded
since it contains points (z1, z2) with |25| arbitrarily large.
In order to show that Z) is pseudoconvex, arguing as in | ], we observe that locally a branch of
arg z9 is defined and that the local defining function e®'® = p equals

|21|QeargZ§ —2Re (z1e1°8 Zg) + qﬁ(log()\|22|)72)eargz§.
The first two terms are plurisubharmonic, while the third one satisfies the differential inequality
A(9(log(Al=a) )™ ) = A(¢(log(Az2) %)) ™8 + g(log(Alz2]) A (e 7) >0,

since ¢ is smooth and convex. Hence, Z) is pseudoconvex. Moreover, the defining function is strictly
plurisubharmonic at every boundary point where z; # 0.
Next, at (21, 22) € bZ), the complex tangent space is spanned by the vector

. (2Im (zlef“og‘mﬁ) + ¢/(10g(/\|22|)2)> _

(7 — el l=l)

<
Il
RS
S
N =
~__
I

Since

i —1 20?2 1 —1 2o|? —
051721/) = 17 85132%) = E_e logl 2‘ ’ 832321) = |Z |2 <2Re (216 log\ 2| ) + (b//(log(/\|22|) 2))5
2 2

and 2Re(zre 08 1221") = |22 + ¢(log(A|22])~2) on the boundary, the Levi form is given by

L,(z50)

= (v1,v2) i Femtloell o
TR cdeterle L (122 + (log(Az2]) ) + ¢ (log(Mz2) ) ) \B2

2 etloslal” 2 1 2 2 " —2
v + 201 Re (i————72) + [l —5 (I21]* + 6(10g(A22])2) + ¢ (log(Az2]) ™))

zZ9 |ZQ|2
— of = 201 Tm (21e =) 4 (1= (log(Az2)) ™)) (J21]? + d(log(Az2l) ) + ¢ (log(Alz2) ™))
= 2Im (21075 1=) ¢/ (log (A|z2]) 72) + (¢')*(log(A|z2]) ™)
+ (1= 6(0g(N22)) 7)) (|21]? + 6(log(Alz2]) %) + ¢ (log(A]22]) 72) ).

It follows that the boundary points {(0, z2) : |z2] = 1/A\} are of weak pseudoconvexity. This proves
Theorem 1.1. g
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3. SOBOLEV SPACES ON SMOOTHLY BOUNDED DOMAINS AND ON Z)

In this section we collect the results on Sobolev spaces on smoothly bounded domains and prove a few
properties that we shall need later. We begin by recalling the definition and a few standard results from
the theory of function spaces on smoothly bounded domains, see e.g. | , Chapter 3] and | ]. In
what follows the space H*P?(R?) is defined by means of the Fourier transform F on R? and D’(Q) is the
dual of the space C () of smooth functions with compact support in Q. Namely,

(R = {fe D'RY: F((1L+ 67 1FS) e PRY}.
Definition 3.1. Let 2 be a smoothly bounded domain in R? s > 0 and p € (1,00). We define
Hr(©) = {f e D(9): 3F € HP®RY | By = £, flreri@) = W{|Flire = Fo = f1}.

We also denote by H;"(2) the closure of C*(€) in the H*P(Q)-norm. Then, for s < 0 and p € (1, ©),
we define H*P((2) as the dual of H, ** (Q), where p’ = p/(p — 1) is the exponent conjugate to p.'

When s = k is a non-negative integer the space H*?({)) has a natural characterization. On the space
C*(Q) consider the norm
[Yllwre () = Z 0% L) < o0
|| <k
and define W*»(€) as the closure of C*(Q) with respect to this norm. Then W**(Q) is isomorphic to
H®P(Q), with equivalence of norms, see e.g. | ].
Using the complex interpolation method we have that, when s > 0,
H*P(Q) = [H™P(Q), H* 17 (Q)] (4)

where 6 € (0,1) and s = k + 6, cf. | ] or | ], so that [WkP(Q), Wk+LP(Q)]y is isomorphic as
Banach space to H5?(Q), s = k + 6. For the complex interpolation method we refer to | ]

Since ) is a bounded, smooth domain, the multiplier operator f — xqf is bounded on H*?(R?) when
0<s< %, p € (1,00). This fact in turn implies the key property that C®(£2) is dense in H*?({) when
0<s< % — see | , Theorem 3.4.3].

We now prove a result that is probably well known, but for which we do not know a precise reference.

Lemma 3.2. For —1/p' < s < 1/p, the spaces H?(Q) and H=5? () are mutually dual with respect to
the L2(Q) pairing of duality.

Proof. Observe that, by duality, we may assume that 0 < s < 1/p. Since H5P(Q2) = H?(Q2) in the given
range, H—*¥ () = (H*P(2))* with the L*-pairing of duality.

Conversely, let £ € (H‘S’p/(Q))*. Since the multiplication f ~ yqf is bounded on H*?(R?), H*P(Q)
can be identified with the subspace of H*?(R%) of functions vanishing on Q¢. Therefore also H % (1)
can be identified with the elements of (H“’(Rd))* — H~*? (R%) that annihilate functions of H®?(R?)
vanishing on Q°. Therefore, by the Hahn-Banach theorem, there exists L € (H‘S’p/ (Rd))* = H*P(R?)
with the same norm, that agrees with £ on H—*¥' (). Hence there exists F' € H*?(R?) such that

l(u) = § Fu = §o,(xaF)u, where xoF € H*P(Q); that is, (H_S’p/(Q))’k = H>P(Q). ]

Next we need an extension of a result by E. Ligocka, namely [ , Theorem 2]. We denote by

H;"P(Q) the subspace of H*?(Q) consisting of harmonic functions. Let ¢ : RY — R be a smooth defining

function (see | ]) for @ and let L7, (€2, ]0|?) be the subspace of LP(,|o|? dm) consisting of harmonic
functions on 2, p € (1,0). In | , Theorem 2], Ligocka proved that, for s > 0, p € (1, 0),
(i) HyP() and H}?ai’p/ () are mutually dual with respect to the L?(Q)-inner product;

IWe remark that the definition of H*P(2) with s < 0 is the same as in [ ] but different from the one in | ]
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(i) H,. p/(Q) is isomorphically equivalent (as a Banach space) to Lﬁ;r(Q, lo]*?").

)
ar

We shall need the following extension of (ii).

Lemma 3.3. Let se R, s < 1/p, pe (1,00). Then, H;:2(Q) is isomorphically equivalent (as a Banach

har
space) to L}, (9, |o]~°F).
Proof. As mentioned, the case s < 0 is proved in [ , Theorem 2]. Next, let 0 < s < 1/p. If
fell, (Q o) and g € L¥_ (2, ]0]*”) we have that

[, #aav] = [ Qe 920014V | < 1115 o0l o

har
< CHfHLﬁar(Q,\ngT’) HgHH;;r’P/(Q)u

so that, by (i) above,

gz < OVl ape =50 | [ F907] < ol < 1}
<Clfly

bar (:l0]757)
Conversely, let f € HP(Q). It is well known that the mapping H5P(Q) 5 f +— |o| ™% f € LP(Q) is bounded
when 0 < s < 1/p, see e.g. | , Theorem 2, 1.3.1] or | , D- 256]. Then we have,

£z o=y = llol™* fllLr(a)

< [fllagr @)
This proves the lemma. ([
We now define Sobolev spaces on the smooth unbounded domains Z).

Definition 3.4. For k a non-negative integer and p € (1, ), define the space (of test functions)

T(Z) = {0 e C*(@) : [Wlurozy = 3 IDWlozy < o},

|a|<k

where D, := (0,,0z,;0s,,02,). We define H*P(Z)) as the closure of 7(Z,) with respect to the norm
|- [ w0 (z,)- For s = k46 with 0 < 6 < 1, we define H*?(Z)), p € (1,2), by complex interpolation, as

H>P(Zy) := [H"P(2y), H* 1P (23)]o.
See e.g. | ].
Finally, we point out the following fact that we will need later.
Remark 3.5. Let u(\) = log A?, and consider the domain W,y as defined in (3), where 7 is given by
n(t) = ¢(t —log \?) + ¢(—t —log A?),

so that W, () € Zx. Observe then that the restriction operator H*?(Zy) 3 f — f},, o € H>P(W,n))
"

is well defined and norm decreasing when s = k is a non-negative integer and p € (1,00), and then, by
interpolation, also when s = 0 and p € (1, 00). Analogously, for all A’ > A,

1 flzso o, ) < IfllE9 (240
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4. TRREGULARITY OF THE BERGMAN PROJECTION

The proof of Theorem 1.2 will combine some new ideas with Barrett’s arguments | ] and results
from | ]. We first extend [ , Corollary 5.5] to the case of the Sobolev spaces H*?(W,,).

Proposition 4.1. Let W be the unbounded non-smooth worm, K, its Bergman kernel at w € W, and
W,, be the smoothly bounded worm as in (3). Suppose p € (1,00). Then the following properties hold:
(i) if se (% —1,) (the region R U Ty U Ty union the open segments of end points (0,0) and (1,1)
and (0,0) and (3,0), resp., in Figure 1), then K, ¢ H*P(W,,);
(ii) if s = % — 1 and p € (1,2) (the open segment of end points (%,0), (1,1) in Figure 1), then
1Kl mrsw o,y — 0 as p— 0.

Proof. We first observe that the cases p = 2, s > 0, and p > 2, s = 0, that appear in (i), are proved in
[ , Corollary 5.5].

We now recall some notation from [ , Corollary 5.5]. We let S(e 1°g|z2‘2,5) denote the angular
sector in the zi-plane

S(e“og‘”lz,s) = {zl = peiltHloglzl) [t] <6,0<r< 5},

with 0 < 0 < 7/2. For € > 0 sufficiently small, the set

Gu={z=(21,22) € C*: |log|za|*| < p, 21 € S’(e“og‘zzl2,a)} (5)
is contained in W,,. Then, from [ , (5.8) and p. 1180], for w € W and z € G, we have the estimate
c 1
el e 2 z
t172] (log(|211/2) + log(w1/2))” + (7 + 2p)
1
> (6)

2122l (log? |21 | + 42)
where Cy, does not depend on u. Therefore, arguing as in | , Corollary 5.5], for s < 1/p we have
Lf 1
log =2 21<pe 12217 Js(e) |ICI2 = 2Re ¢ [I¢|(log® [¢] + p2)]"
_c, 7Tsinh (|1fp/2|u) J J‘E 1 drdt
11— p/2| it<s Jo |1 — 2cost|spre(stD=1(log® 1 4 p2)p

S o 27Tsinh (11 = p/2|p) JE 1
o [1=p/2]  Jo P01 (log? r + )P

dv(¢) dV (z2)

1K wlLoom, tof=es) > Co

dr. (7)

(1) Suppose then that s € (% -1, %) From Lemma 3.3 K,, € H¥?(W,) if and only if K,, € LP(|g|~*?).
From (7) it then follows that K, ¢ H®?(W,) when s € (% -1, %) We now use the natural embedding
H*P(W,,) € H¥?(W,) when 0 < s’ < 5 (see | , Theorem 3.3.1]). It follows that K, ¢ H*?(W,,) for
all p, s such that p € (1,0) and s > % — 1. This proves (i).

(ii) We look at the estimate in (7) when s = % — 1 (notice that s < 1/p in this case) and observe that
sinh (|1 —p/2 € 1
Waslol o) = Cw2T (2~ e/ f ;
i |1 —p/2| o r(log”r + p2)p
sinh (|1 —p/2|p) 1 Jw 1
———dt.
L—p/2[  p2mt Jigpr (L4 82)P

Clearly, if p # 2, the right hand side above tends to oo if 4 — o0. The rest of the proof will show that
the same is true for ||Ky|gs»,). We observe in passing that, on the other hand, if p = 2, the right

‘|Kw|‘12p( dr

(8)

=C2m
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hand side above remains bounded (actually, it tends to 0) when p — oo, in accordance to the fact that
1Kwlzzom,) < [Kwlr2om) < 0.

In order to conclude the proof of (i), we will bound || Ky | gs.» (), ) from below. This will require several
steps. We begin by setting, for j = 1,2 and p > 2,

Gft = {z = (21,22) €C%: j < |z < 6”/2/3'7 21 € S(eilog‘zz‘2,5/j)}.

Keeping in mind (5), we see that Gi c G}L C G,. We define a cut-off function ¢ : C2 — [0, +) by
setting (21, z2) = ¥1(21)2(2z2), where:

o 1 € CP(C), 1(21) = 1 for |z1| < /2 and 91 (21) = 0 for |z1| = ¢;
« 1y € CP(C) is identically equal to 1 on the annulus {zp : 2 < |22 < e/2/2}, is supported in a
compact subset of {25 : 1 < |22| < e*/?} and has uniformly bounded derivatives.

Following the lines of the computations in (7) and (8), we can find for each p € (1,2) and each
s = % — 1> 0 a constant C’ > 0, independent of y, such that [Ku| (g2, p/-rs) = C'el? | whence

|0 Kwll Lo(c2 jpf-ve) = C'et? 9)

for > 2. Now, let us consider the map (21, z2) — (zle_“og|z2‘2, z9). It is a C*-diffeomorphism from (a
neighborhood of) G}, onto (a neighborhood of) its image

Gli={C=(C,0)eC?: (1eS(e), 1< |G| <e?},
included in the (Lipschitz) domain
A={w=(t+iu,w)eC?: t> (tand) 'ful, 1 < |wa| < e"?}.

We denote by ¥ : A — C2 the inverse mapping (wy,ws) — (wye°81w2* 1y). We will later precompose
U with the map (w},w2) — (7(w}),w2) with 7(¢ +iu) = ¢’ + (tand)"'|u| + iu. The preimage of A
through this map (as well as A itself) is contained in the half-space

H = {(¢,w2) € C?: Re( > 0}.
We compute:

10K wlLoen pi-vey < 19K wlLoGn, jo1-ve)

= ng (K)o W(w)["|p oW (w)| " det(JP)(w)| dV (w)

= ng (K)o W (w)[P(1 — [wy — 1) 77| det(J¥)(w)] dV (w)

< [ 1K) o B@P w13 av ()
&

:f (0 Fw) 0 U(t + iu, wa)|P(2 — 12 — 1)~ dtdu dV (ws)
A

where we took into account the fact that w € C:'L implies |wz| > 1, whence |det(J¥)(w)| < 1. On the

support of ¢ o ¥, we have t? + u? = |w; |* < 2. Up to shrinking € to have ¢ < (1 + (tand)*)fl, we get



8 S. G. KRANTZ, A. MONGUZZI, M. M. PELOSO, C. STOPPATO
that 2t — t> — w2 >t in the support of ¥ o U. We obtain

[0l 1 < L (6K) 0 Ut + i, w9) PP dicu dV (ws)
_ f (WK .) 0 U(r( +iu), ws)|P(# + (tan 6)~|u)~P* dt'du dV (w)
H
< J (K)o U(T(t + du), w2)|P ()P dt’ du dV (w3)
H

= ‘|fHZ[)/P(H7(ReC)7ps) 9

where f(t' +iu, ws) = (VK)o U(7(t' + tu), we). For the half-space H, when p € (1,00), and 0 < s < 1/p,
we have the well-known estimate

Al Lo, Re ¢)-rs) < C” |l rsw (24
for all h e H*P(H), see e.g. [ , Proposition 1 2.8.6, Proposition 3.3.2]. We conclude that
|V Kwl oGz 1o1-vs) < C"| f ey - (10)

Our next aim is going back from f(t' + iu,ws) = (VK)o U(7(t' + iu),ws) to (YK,,) o U. Taking into
account that 7(¢' + iu) = ¢ + (tand) ! |u| + iu, we compute

Ouf(t' +iu,we) = 0y ((wKw) o W(T(t + iu), w2)>

— (tan o)~ ! sgn(u) (al((wm) o \p)) (r(t' + i), w2) + (02((1/;Kw) o \p)) (r(t' + i), ws),
where we identified H with Ri = {(x1,22,23,24) : 1 > 0} and we let d; and 02 denote the partial

derivatives w.r.t. 1 and xs, resp. Hence,

|ouf(t + iu, wz)HLp(H)

< Cs (H (al((wm) o \1/)) (r(t' + iu), wz)H ((32((;/}Kw) o \p)) (r(t' + iu), w2)H

Thus, there exists C > 0 such that, for all g € H"P(H) and for §(t' + iu,we) = g(r(t' + iu),ws), the
inequality

LP(H) + H LP('H)) '

1G] £rp (1) < CSHQHHT’P(H) .
holds for r = 0,1. By interpolation, the same inequality holds for all r € [0,1]. Using this bound in the
estimate (10) and (later) the fact that all the derivates of the components of ¥ are uniformly bounded
on the support of ¢, we obtain

[ Kwl oGz 1p1-v) < ClWKw) 0 ¥|gany < C' |V Kw|merw,)

where all constants are independent of u. Now, the assumptions on s guarantee that the function v
has |D%(z)| < 1 for all multiindices «. Hence, multiplication by ¢ is a bounded operator, whose norm
is independent of p1, on H®P(W,) for all k € Ny (whence on H*P(W,,) for all s > 0). Thus, there exists
a constant C”, independent of p, such that

[V Kwl Loz jp1-rs) < C" [ Euwlmsrom,) -
This bound and (9) complete the proof of (ii). O

In order to prove Theorem 1.2 we need two preliminary lemmas. We denote by || x,x) the operator
normof T: X — X.

Lemma 4.2. For \,\ > 0, the domain Z is biholomorphic to Zy. Moreover, the Bergman projection
Py induces a bounded operator on LP(Zy) for some X\ > 0 if and only if Py induces a bounded operator
on LP(Zy) for every X > 0 and in this case |Px|(Lr(z,),00(2,)) 5 independent of .
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Proof. In order to show that the domains Z, are all biholomorphic to each other, it suffices to observe
that for all r, A > 0,

Dy Z, 3 (wy,wa) — (wle_“"g)‘2,w2/)\) € Zxr (11)

is a biholomorphic map, since ®) € GL(2,C) and ®5(Z,) = Z,,. Moreover, det ®, = e~il°8 M /X and
Txpf = (det ®,)P f o &y is an isometric isomorphism T} , : LP(Zy,) — LP(Z,),

1T pf vz = [ flr iz, (12)

that also gives an isometric isomorphism T ,, : AP(Z),) — AP(Z,) when restricted to AP(Z),), p € [1, ©].
Recalling the transformation rule for the Bergman projections

P.(det @) f o ®y) = det ®) (P f) o

for every f € L?(Z)), since det ®) is constant, it follows that P.(fo®,) = (Py.f)o®y, for all f € L?(Z))
and A > 0. This implies that (also when p # 2)

PT(TA,pf) = TA,p(PMf)

for all f € (L? n LP)(Z,,). Since (L? n LP)(Z,,) is dense in LP(Z),) and T ,(L? N LP)(Zy,) is dense in
L?(Z,), for f € LP(Z),) we have

|Pxrflle(zany = ITxpPrrflliecz) = [P/ (TapH)lLe(z,)-

Since Ty, : LP(Z),) — LP(Z,) is an isometric isomorphism, the equality of the operator norms of Py
easily follows. O

Lemma 4.3. Let s > 0, p € (1,0) and suppose Py induces a bounded operator on H*P(Z)) for some
A > 0. Then, Py induces a bounded operator on H®P(Zy) for all X' > X and, setting Ns,(A\) =

1P (50 (2,), 150 (2,))» we have
Nip(XN) < Nop(N). (13)

for all N > \.

Proof. For r > 0, let T;., be as in the proof of Lemma 4.2. We argue as in [ ]. Recalling that
D, = (0,,,0%,; 02, 0z,), if @ = (a1,b1;a2,b2) is a given multi-index, we have that

D2 (f o @,)(z) = etimen) s =(2 502 (D2 £) (@, (2)).
Therefore, for A > 0,7 > 1, and k a positive integer, using (12), we have

ITrpflivnczay = D) IDSTrpflirizy < X 1TrpDE flirgzyy = If luko(z,)- (14)

|| <k lee| <k

Next observe that, using the transformation rule and a change of variables, for z € Z,.,
(DPAR)(@:(2)) = D [ Koa(@1(), w)fw) dV (w)
Zrx
=02 [ [det @] e 8 (w)f (w) dV (w)
Zrx

=D B K (z,w) f(@r(w')) dV (w')

= DZ(PA(f o ©1))(2),
so that Ty, (D Puyf) = DX(P\Typf).
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Therefore, assuming that Py is bounded on H®*P(Z,), for r > 1, using both the fact that T, :
LP(Z,5) — LP(Z)) is an isometry and (14) we have

| Poxfllzew (2, = Z IDS PrxflLe(z,y

|a|<k

= 2 I TwDEPosflinczn

|al<k
= 2 IDSPAT )l Loz,
la|<k

= [(PATrp ) v (25

< NN Trp fll ew (2,0

< Ny vz, (15)
Therefore Nj,(r\) < Ni (M) for all integers k and r > 1. Thus, by interpolation, for all s > 0 and
r > 1, (13) follows. -

Proof of Theorem 1.2. Step 1. Suppose that Py, is bounded on LP(Z),) for some Ag > 0 and some
p € (1,00). Hence Pj is bounded on LP(Z)) for all A > A¢ by Lemma 4.2. Fix f € C* (W) where W is the
non-smooth unbounded worm and suppose that supp f € Z, for all A = A\g. For all such \’s, denoting
by xx the characteristic function of Zj,

IXAPAfllLoow) = [PafllLoczy) < Clf ez, =€
for some constant C’ independent of A. In the second-before-last inequality, we have used Lemma 4.2.
Then, there exist a sequence {\,}, A, — 00 as n — 00, and h € (L? n LP)(W) such that x», Py, f — h in
the weak-* topology, as n — c0. It is easy to see that h € Hol(W) arguing as follows. Let ¢ be smooth,
and compactly supported in W. Then, denoting by dV the Lebesgue volume form, for j = 1,2 we have
{(0z,h), %)

J (@, k)P dV = —J (0., %) dV = — lim Py, f(0-,0) dV
w

w n— oo Zy,

lim (@2, P, f)ddV = 0.

n—o0 Z>\n

Hence, @jh =0, 7 = 1,2 and therefore h is holomorphic. We claim that h = Pf, where P denotes the
Bergman projection on W. It suffices to show that f —h L A%2(W). To this end, let g € A%2(W). Then

[ r-wgav = i [ 7= m 5w =t [ (- P pgav -0,
w w 2,

since the restriction of g to Z) belongs to A%(Z)) for all A > 0 as well.
Seeking a contradiction, we suppose p # 2 and remark that

HPfHLp(W) = Sup{‘fw wadv : ¢ € CSO(W), Hz/]HLP/(W) < 1}

- sup{ i | [ P STV v OO, [l mom < 1}
n— Z,
< lm [Py, floecz,,)
< C|fllzeom-
This implies that P : LP(W) — LP(W) is bounded, contradicting [ , Theorem 1.1]. Therefore, Py,

cannot be bounded on L?(Z),) for p € (1,00) and p # 2. We also observe that, by interpolation with the
case p = 2, Py, cannot be bounded on L' and L*® either.
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Step 2. In order to prove the irregularity of Py in the Sobolev scale, we first show that Py is densely
defined by showing that (L? n H*P)(Z,) is dense in H5P(Z)). Let ¢ € C*(C?), ¢ = 1 on the ball B(0,1)
and set ¢°(-) = @(e:). Given f € H¥P(Z)), let f.) := f¢°. It is easy to check that f(.) € (L* nH®*?)(Z))
and that f) — f ase — 0% in H*P(Z)).

Step 3. Let us show that it suffices to consider the case s € (0,1/p) (the region T u T5 in Figure 1).
Suppose we have a bounded extension Py : H*P(Z)) — H*P(Z)) for some s > 1/p and p € (1,0) (the
region R in Figure 1) . Interpolating with L?(Z)), we obtain a bounded extension Py : H%0P¢(Z)) —
Hsopo(Zy), where 6 € (0,1), sp = 6s, pie = % + %. By taking 6 small enough we obtain that
0<sg < 1/799.

Step 4. We show that, if p € (1,00), s € (0,1/p), and Py : HSP(Z)) — H*P(Z,) is bounded, then
Ky € HS?(W,,()) and Ky, € H™5 (W,,y)).
Lemma 4.3 gives bounded extensions Py : H3P(Zy) — H*P(Zy/) for all X > X as well as

| Pxllzrem 2,0y, 550 (25)) < Nop(A)
for all X > \.
Fix w € W and let K,, = K(-,w) denote the Bergman kernel of W at w. If we choose ¢,, € CF
supported in a ball centered at w within W, with radial symmetry and with §¢,, = 1, then Py, = K.
Then, for all A’ > X large enough for supp ¢, S Zj, using Remark 3.5 we have that

| P HHS’P(WH(A)) < | Pyvow HHS’P(ZA/) < Ns,p()\)HSﬁw |‘Hs’p(3>\/) = NS,p(/\)H<Pw \|Hw(<c2)-

Therefore { Py ¢, }a is a family of functions contained in the ball of radius Ny, (A)[ 0w | s.»(c2) centered
at the origin in H*P(W,(y)). Since we are assuming 0 < s < 1/p, using Lemma 3.2 and the Hahn-
Banach theorem we have that { Py ¢, x> admits a subsequence weak-* converging to a function h in
H*P(W,n))- Recalling that H¥P(W,,(y)) is the dual of H_S’p/(W#()\)) with respect to the L*(W,))
inner product, this implies that for all g € C2°(W,()) we have

v
J (X, Px; pw)gdV = J
w

(Px, pw)g — J hgdV
Wi W

H(X)
as n — 0.
Arguing as in Step I, we have that (up to refinements) xx Py @, converges to Py, = K, in the

weak-# topology of L*(W,((x)). Thus

J Ky,gdV = J hg dV
W) Wen)

for all g € CF(W,,(x)). This implies that h = K, on W,(»), whence K,, € H¥P(W,(x))-
In order to prove that K, € H*S'fp,(WM()\)), we use Lemma 3.2. For all \' > X we have

HPXSDw HHfs,p'(WM(A)) = sup{ JW PXQOwEdV cYe CCOO(W,LL()\))u ‘WHH&P(WMM) < 1}
H(X)

sup J Pxputp dV
2,

sup J cuPVTdV
EN

H‘Pw HHfs,p’ (C2) HPA"/)HH&P(ZA,)
NS,p()‘) H@w HHfs,p’(cz)-

:weC?WWumlmeWWw><l}

:weCfW%um|¢mW0wm><l}
<
<

We now argue as before and conclude that K, € H*S’p,(W#(A)).
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S

Ty

N[=

D=

T

F1GURE 1. Diagram for the proofs of Proposition 4.1 and Theorem 1.2

We split the remaining part of the argument into three steps: one concerning the region 73, one
concerning the region 75 and one concerning the line segment separating them, see Figure 1.

Step 5. We assume p € (1,00) and s > max(% —1,0) and Py : H*P(Z),) — H*P(Z)) is bounded. By
Step 4, we have that K,, € H“’(WM()\)). Then, Proposition 4.1 immediately gives a contradiction.

Step 6. We assume that p e (1,2), 0 < s < 1—2) —1and Py : H*P(Z)) — H*P(Z)) is bounded. Notice
that % —-1< 1—1), so that, by Step 4, we obtain that K, € H_S’p/(W#(A)), where —s > 1 — % = 1% — 1. But,
again, this is false by Proposition 4.1 (i) and we have reached a contradiction. Hence, the projector Py

does not extend to a bounded operator Py : H*P(Z)) — H%P(Z)).
Step 7. Finally, let p € (1,2) and s = % — 1 and suppose that Py : H*P(Z)) — H*P(Z)) is bounded.
Again, Lemma 4.3 gives that Py : H>P(Zy/) — H*P(Zy/) is bounded and

[Px e (250), 00 (25)) < Nap(A)

for all X > A. Take any p > 7 and let A\ sufficiently large so that W, € Zy. Let ¢, € CP(Zx) be
as in Step 4. We have shown that there exists a sequence {P), ¢} such that Py, ¢, — K, weak-* in
H®P(Zy) as A, — 00, so that

[ Eowllmerow,) < 1Bwlmerz,) < Im [Py, |erz,,).m0r @) [@wlrere) < ONsp()

independent of p. This contradicts Proposition 4.1 (ii) and the proof is complete. ([
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5. FINAL REMARKS AND OPEN QUESTIONS

We wish to conclude by indicating a number of open problems. First of all, we recall that the exact
range of regularity on the Lebesgue Sobolev spaces H®P of the Bergman projection on the smoothly
bounded domain W, is not known. Clearly, in order to prove a positive result, one needs to have precise
information on the Bergman kernel itself. In fact, also the precise behaviour of the kernel near the critical
annulus A = {(0, 22) : e #/2 < |z3| < #/?} on the boundary of W, remains to be understood.

The equivalence of the regularity of the Bergman projections on (0, ¢)-forms and the Neumann operator
N, proved in | ], was later exploited by M. Christ [ ] to show that P, does not preseve C*(W,,).
These results heavily relied on the boundedness of the domain W,,. We believe that the Neumann operator
N on Z, is as irregular as the Bergman projection Py, but this problem has not been addressed and (to
the best of our knowledge) is open.

Finally, we mention the boundary analogue of this problem, namely the study of the behaviour of the
Szegé projection on Zy. Given a smooth domain Q = {2 : p(z) < 0} < C", the Hardy space H?(2,do) is
defined as

H?(Q,do) = {f € Hol(Q) : supf |f|?do. < 0},
0.

e>0

where . = {z : p(z) < —¢} and do. is the induced surface measure on 0€).. Then H?({),do) can be
identified with a closed subspace of L?(0Q,do), that we denote by H?(0%2,do), where o is the induced
surface measure on 2. The Szegd projection is the orthogonal projection

Sq : L*(09, do) — H*(09),do) ;

see [ | for the case of bounded domains. The regularity of Sq when Q is a (model) worm domain
was studied in a series of papers [ , , , , , ]. In particular, in
[ ] it was announced that Sy, does not preserve LP(0W,) when |3 — % > 7, in analogy to the case
of the Bergman projection. L. Lanzani and E. Stein also studied the LP-regularity of the Szegd and other
projections on the boundary on bounded domains under minimal smoothness conditions | , 1,
whereas a definition of Hardy spaces and associated Szegd projection for singular domains was studied,
for instance, in [ , |. Tt is certaintly of interest to consider the case of the Szegd projection
also in the case of the domains 2.

Declarations. Data sharing not applicable to this article as no datasets were generated or analysed
during the current study. The authors have no relevant financial or non-financial interests to disclose.
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