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IRREGULARITY OF THE BERGMAN PROJECTION ON SMOOTH UNBOUNDED

WORM DOMAINS

STEVEN G. KRANTZ, ALESSANDRO MONGUZZI, MARCO M. PELOSO, CATERINA STOPPATO

Abstract. In this work we consider smooth unbounded worm domains Zλ in C2 and show that the
Bergman projection, densely defined on the Sobolev spaces Hs,ppZλq, p P p1,8q, s ě 0, does not
extend to a bounded operator Pλ : Hs,ppZλq Ñ Hs,ppZλq when s ą 0 or p ‰ 2. The same irregularity
was known in the case of the non-smooth unbounded worm. This improved result shows that the
irregularity of the projection is not a consequence of the irregularity of the boundary but instead of the
infinite windings of the worm domain.

1. Introduction

Let φ be a non-negative smooth function on R such that

‚ φ is convex
‚ φ´1p0q “ p´8, 0s.

Notice that φ1ptq ą 0 for t ą 0 and that there exists a ą 0 such that φpaq “ 1. For λ ą 0 we set

Zλ “
!

pz1, z2q :
ˇ̌
z1 ´ ei log |z2|2

ˇ̌2
ă 1 ´ φplogpλ|z2|q´2q

)
. (1)

Then, Zλ is smooth, unbounded and pseudoconvex (see Theorem 1.1 below). Moreover, tZλuλą0 is a
nested family of domains whose union is the unbounded non-smooth worm

W “
!

pz1, z2q :
ˇ̌
z1 ´ ei log |z2|2

ˇ̌2
ă 1, z2 ‰ 0

)
. (2)

The domain W was studied in [KPS16], where three main facts were proved (see the enumerated list
below). For p P r1,8s and s ě 0, given any domain Ω, denote by Hs,p “ Hs,ppΩq the standard Sobolev
space on Ω. When s “ k is an integer, Hs,p consists of functions with k-derivatives in LppΩq, and for non-
integer s, Hs,p can be defined by interpolation, see Section 2. For p P r1,8s, let AppΩq :“ LppΩqXHolpΩq
denote the Bergman space. In [KPS16] it was proved that:

(i) the space A2pWq ‰ t0u, so that the Bergman projection P : L2pWq Ñ A2pWq is a non-trivial
orthogonal projector;

(ii) the operator P , initially defined on a dense subspace of LppWq, extends to a bounded operator
P : LppWq Ñ LppWq (if and) only if p “ 2;

(iii) the operator P , initially defined on a dense subspace of Hs,2pWq, extends to a bounded operator
P : Hs,2pWq Ñ Hs,2pWq (if and) only if s “ 0.
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The goal of this paper is to show that also in the case of the unbounded smooth worms Zλ, λ ą 0, the
Bergman projection Pλ on Zλ cannot be extended to a bounded operator Pλ : Hs,ppZλq Ñ Hs,ppZλq
when s ą 0 or p ‰ 2. Observe that, since Zλ Ď W for all λ ą 0, (i) above implies that A2pZλq and hence
Pλ are non-trivial. We now state our main results.

Theorem 1.1. Let λ ą 0 and Zλ be defined as in (1). Then Zλ is smooth, unbounded, and pseudoconvex
and its boundary is strongly pseudoconvex except at the points A :“ tpz1, z2q : z1 “ 0, |z2| ě 1{λqu.
Moreover, the Bergman space AppZλq is infinite dimensional for all p P p0,8q.

Theorem 1.2. Let λ ą 0, Zλ be defined as above, and let Pλ denote the Bergman projection on Zλ. If
Pλ, initially defined on the dense subspace pL2 X Hs,pqpZλq, p P p1,8q and s ě 0, extends to a bounded
operator

Pλ : Hs,ppZλq Ñ Hs,ppZλq

then necessarily s “ 0 and p “ 2.

The problem of the regularity of the Bergman projection on worm domains has been an object of
active and intense research. In the seminal paper [Bar92] D. Barrett considered the smoothly bounded
worm domain

Wµ “
!

pz1, z2q P C
2 : |z1 ´ ei log |z2|2 |2 ă 1 ´ ηplog |z2|2q

)
, (3)

where η is smooth, non-negative, convex, η´1p0q “ r´µ, µs, and such that Wµ is smooth, bounded and
pseudoconvex, see e.g. [Kis91, Proposition 2.1]. Barrett showed that the Bergman projection on Wµ

does not preserve the Sobolev space Hs,2pWµq if s ě π{µ, whereas in [KP08b] it was then shown that
the Bergman projection on Wµ does not preserve Lp if

ˇ̌
1
2

´ 1
p

ˇ̌
ě π

µ
. We further mention in particular

[KP08b, BŞ12, BEP15, ČŞ18, KPS16, BDP17]. We also refer the reader to [KP08a] for an expository
account of the subject, and to [KPS19, PS16, PS17] for some interesting connections between Bergman
spaces on worm domains and the Müntz-Szász problem for the Bergman space in one complex dimension.

In the next section we prove Theorem 1.1, whereas in Section 3 we introduce the tools that we need
to deal with Sobolev spaces on smoothly bounded domains. In Section 4 we prove Theorem 1.2 and in
the final Section 5 we discuss some open problems and future work.

2. The unbounded smooth worm

Consider the domains Zλ. It is clear that they are unbounded, that Zλ Ď Zλ1 if 0 ă λ ă λ1 and thatŤ
λą0 Zλ “ W . It is also immediate to see that

Zλ Ď tz1 : 0 ă |z1| ă 2u ˆ tz2 : |z2| ą 1{pea{2λqu.

Since Zλ Ď W , where W is as in (2), [KPS16, Proposition 2.3] gives that A2pZλq is infinite dimensional.
Similar calculations also show that also the spaces AppZλq are infinite dimensional, p P p0,8s. Explicitly,
for α P C, for z “ pzz , z2q P W , let

Lpzq “ log
`
z1e

´i log |z2|2
˘

` i log |z2|2, Eαpz1, z2q :“ eαLpzq,

where logpzq denotes the principal branch of the logarithm on Czp´8, 0s. Then L,Eα P HolpWq by

[KPS16, Lemma 2.2]. Moreover, for j P Z, m P N, c P R, c ą log 2, α “ Reα ` ip j
2

` 1
p

q, setting

Fα,c,j,mpzq :“
Eαpzqzj2

pLpzq ´ cqm

and arguing as in [KPS16, Proposition 2.3], it is simple to see that Fα,c,j,m P AppWq if Reα ą ´2{p and
m ą 1{p, where p P p0,8s. Hence, AppWq is infinite dimensional.
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The argument to show that Zλ is smooth and pseudoconvex is standard, but we repeat it for the sake
of completeness. Letting ρ denote the defining function of Zλ we observe that

ρpz1, z2q “
ˇ̌
z1 ´ ei log |z2|2

ˇ̌2
´ 1 ` φplogpλ|z2|q´2q

“ |z1|2 ´ 2Re
`
z1e

´i log |z2|2
˘

` φplogpλ|z2|q´2q,

so that

Bρpz1, z2q “
´
z1 ´ e´i log |z2|2 ,´

2

z2
Im

`
z1e

´i log |z2|2
˘

´
1

z2
φ1plogpλ|z2|q´2q

¯
.

Let pz1, z2q P bZλ be such that Bz1ρpz1, z2q “ 0. Then z1 “ ei log |z2|2 so that φplogpλ|z2|q´2q “ 1. The
assumptions on φ imply that Bz2ρ ‰ 0 at such points. Thus Zλ is smooth, and it is clearly unbounded
since it contains points pz1, z2q with |z2| arbitrarily large.

In order to show that Zλ is pseudoconvex, arguing as in [Kis91], we observe that locally a branch of

arg z2 is defined and that the local defining function earg z2

2ρ equals

|z1|2earg z2

2 ´ 2Re
`
z1e

´i log z2

2

˘
` φplogpλ|z2|q´2qearg z2

2 .

The first two terms are plurisubharmonic, while the third one satisfies the differential inequality

∆
`
φplogpλ|z2|q´2qearg z2

2

˘
“ ∆

`
φplogpλ|z2|q´2q

˘
earg z2

2 ` φplogpλ|z2|q´2q∆
`
earg z2

2

˘
ě 0,

since φ is smooth and convex. Hence, Zλ is pseudoconvex. Moreover, the defining function is strictly
plurisubharmonic at every boundary point where z1 ‰ 0.

Next, at pz1, z2q P bZλ, the complex tangent space is spanned by the vector

v “

ˆ
v1
v2

˙
:“

˜
2 Im

`
z1e

´i log |z2|2
˘

` φ1plogpλ|z2|q´2q

z2pz1 ´ e´i log |z2|2q

¸
.

Since

B2
z1,z1

ρ “ 1, B2
z1,z2

ρ “
i

z2
e´i log |z2|2 , B2

z2,z2
ρ “

1

|z2|2

´
2Re

`
z1e

´i log |z2|2
˘

` φ2plogpλ|z2|q´2q
¯
,

and 2Repz1e
´i log |z2|2q “ |z1|2 ` φplogpλ|z2|q´2q on the boundary, the Levi form is given by

Lρpz; vq

“ pv1, v2q

˜
1 i

z2
e´i log |z2|2

´ i
z2
ei log |z2|2 1

|z2|2

`
|z1|2 ` φplogpλ|z2|q´2q ` φ2plogpλ|z2|q´2q

˘
¸ˆ

v1
v2

˙

“ v21 ` 2v1 Re
´
i
e´i log |z2|2

z2
v2

¯
` |v2|2

1

|z2|2

´
|z1|2 ` φplogpλ|z2|q´2q ` φ2plogpλ|z2|q´2q

¯

“ v21 ´ 2v1 Im
`
z1e

´i log |z2|2
˘

`
`
1 ´ φplogpλ|z2|q´2q

˘´
|z1|2 ` φplogpλ|z2|q´2q ` φ2plogpλ|z2|q´2q

¯

“ 2 Im
`
z1e

´i log |z2|2
˘
φ1plogpλ|z2|q´2q ` pφ1q2plogpλ|z2|q´2q

`
`
1 ´ φplogpλ|z2|q´2q

˘´
|z1|2 ` φplogpλ|z2|q´2q ` φ2plogpλ|z2|q´2q

¯
.

It follows that the boundary points tp0, z2q : |z2| ě 1{λu are of weak pseudoconvexity. This proves
Theorem 1.1. �
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3. Sobolev spaces on smoothly bounded domains and on Zλ

In this section we collect the results on Sobolev spaces on smoothly bounded domains and prove a few
properties that we shall need later. We begin by recalling the definition and a few standard results from
the theory of function spaces on smoothly bounded domains, see e.g. [Tri83, Chapter 3] and [LM61]. In
what follows the space Hs,ppRdq is defined by means of the Fourier transform F on Rd and D1pΩq is the
dual of the space C8

c pΩq of smooth functions with compact support in Ω. Namely,

Hs,ppRdq “
!
f P D1pRdq : F´1

´
p1 ` |ξ|2q

s
2Ff

¯
P LppRdq

)
.

Definition 3.1. Let Ω be a smoothly bounded domain in Rd, s ě 0 and p P p1,8q. We define

Hs,ppΩq “
!
f P D1pΩq : DF P Hs,ppRdq

ˇ̌
F|Ω “ f, }f}Hs,ppΩq :“ inft}F }Hs,ppRdq : F|Ω “ fu

)
.

We also denote by Hs,p
0 pΩq the closure of C8

c pΩq in the Hs,ppΩq-norm. Then, for s ă 0 and p P p1,8q,

we define Hs,ppΩq as the dual of H´s,p1

0 pΩq, where p1 “ p{pp´ 1q is the exponent conjugate to p.1

When s “ k is a non-negative integer the space Hk,ppΩq has a natural characterization. On the space
C8pΩq consider the norm

}ψ}Wk,ppΩq :“
ÿ

|α|ďk

}Bαψ}LppΩq ă 8

and define W k,ppΩq as the closure of C8pΩq with respect to this norm. Then W k,ppΩq is isomorphic to
Hk,ppΩq, with equivalence of norms, see e.g. [Tri83].

Using the complex interpolation method we have that, when s ą 0,

Hs,ppΩq “ rHk,ppΩq, Hk`1,ppΩqsθ (4)

where θ P p0, 1q and s “ k ` θ, cf. [Tri83] or [LM61], so that rW k,ppΩq,W k`1,ppΩqsθ is isomorphic as
Banach space to Hs,ppΩq, s “ k ` θ. For the complex interpolation method we refer to [BL76].

Since Ω is a bounded, smooth domain, the multiplier operator f ÞÑ χΩf is bounded on Hs,ppRdq when
0 ď s ă 1

p
, p P p1,8q. This fact in turn implies the key property that C8

c pΩq is dense in Hs,ppΩq when

0 ď s ă 1
p
– see [Tri83, Theorem 3.4.3].

We now prove a result that is probably well known, but for which we do not know a precise reference.

Lemma 3.2. For ´1{p1 ă s ă 1{p, the spaces Hs,ppΩq and H´s,p1

pΩq are mutually dual with respect to
the L2pΩq pairing of duality.

Proof. Observe that, by duality, we may assume that 0 ď s ă 1{p. Since Hs,ppΩq “ H
s,p
0 pΩq in the given

range, H´s,p1

pΩq “
`
Hs,ppΩqq˚ with the L2-pairing of duality.

Conversely, let ℓ P
`
H´s,p1

pΩq
˘˚
. Since the multiplication f ÞÑ χΩf is bounded on Hs,ppRdq, Hs,ppΩq

can be identified with the subspace of Hs,ppRdq of functions vanishing on Ωc. Therefore also H´s,p1

pΩq

can be identified with the elements of
`
Hs,ppRdq

˘˚
“ H´s,p1

pRdq that annihilate functions of Hs,ppRdq

vanishing on Ωc. Therefore, by the Hahn–Banach theorem, there exists L P
`
H´s,p1

pRdq
˘˚

“ Hs,ppRdq

with the same norm, that agrees with ℓ on H´s,p1

pΩq. Hence there exists F P Hs,ppRdq such that

ℓpuq “
ş
Ω
Fu “

ş
Ω

pχΩF qu, where χΩF P Hs,ppΩq; that is,
`
H´s,p1

pΩq
˘˚

“ Hs,ppΩq. l

Next we need an extension of a result by E. Ligocka, namely [Lig87, Theorem 2]. We denote by
H

s,p
harpΩq the subspace of Hs,ppΩq consisting of harmonic functions. Let ̺ : Rd Ñ R be a smooth defining

function (see [Kra01]) for Ω and let Lp
harpΩ, |̺|qq be the subspace of LppΩ, |̺|q dmq consisting of harmonic

functions on Ω, p P p1,8q. In [Lig87, Theorem 2], Ligocka proved that, for s ě 0, p P p1,8q,

(i) Hs,p
harpΩq and H´s,p1

har pΩq are mutually dual with respect to the L2pΩq-inner product;

1We remark that the definition of Hs,ppΩq with s ă 0 is the same as in [LM61] but different from the one in [Tri83].
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(ii) H´s,p1

har pΩq is isomorphically equivalent (as a Banach space) to Lp1

harpΩ, |̺|sp
1

q.

We shall need the following extension of (ii).

Lemma 3.3. Let s P R, s ă 1{p, p P p1,8q. Then, Hs,p
harpΩq is isomorphically equivalent (as a Banach

space) to Lp
harpΩ, |̺|´spq.

Proof. As mentioned, the case s ď 0 is proved in [Lig87, Theorem 2]. Next, let 0 ă s ă 1{p. If

f P Lp
harpΩ, |̺|´spq and g P Lp1

harpΩ, |̺|sp
1

q we have that

ˇ̌
ˇ̌
ż

Ω

fg dV

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż

Ω

p|̺|´sfqp|̺|sgq dV

ˇ̌
ˇ̌ ď }f}Lp

har
pΩ,|̺|´spq}g}

L
p1

har
pΩ,|̺|sp1 q

ď C}f}Lp

har
pΩ,|̺|´spq}g}

H
´s,p1

har
pΩq
,

so that, by (i) above,

}f}Hs,p

har
pΩq ď C}f}

pH´s,p1

har
pΩqq˚ “ sup

"ˇ̌
ˇ̌
ż

Ω

fg dV

ˇ̌
ˇ̌ : }g}

H
´s,p1

har
pΩq

ď 1

*

ď C}f}Lp

har
pΩ,|̺|´spq.

Conversely, let f P Hs,p
harpΩq. It is well known that the mapping Hs,ppΩq Q f ÞÑ |̺|´sf P LppΩq is bounded

when 0 ď s ă 1{p, see e.g. [Maz11, Theorem 2, 1.3.1] or [Lig87, p. 256]. Then we have,

}f}Lp

har
pΩ,|̺|´spq “ }|̺|´sf}LppΩq

ď }f}Hs,p

har
pΩq.

This proves the lemma. �

We now define Sobolev spaces on the smooth unbounded domains Zλ.

Definition 3.4. For k a non-negative integer and p P p1,8q, define the space (of test functions)

T pZλq :“
!
ψ P C8pZλq : }ψ}Hk,ppZλq :“

ÿ

|α|ďk

}Dα
z ψ}LppZλq ă 8

)
,

where Dz :“ pBz1 , Bz1 ; Bz2 , Bz2q. We define Hk,ppZλq as the closure of T pZλq with respect to the norm
} ¨ }Hk,ppZλq. For s “ k ` θ with 0 ă θ ă 1, we define Hs,ppZλq, p P p1,8q, by complex interpolation, as

Hs,ppZλq :“ rHk,ppZλq, Hk`1,ppZλqsθ.

See e.g. [BL76].

Finally, we point out the following fact that we will need later.

Remark 3.5. Let µpλq “ logλ2, and consider the domain Wµpλq as defined in (3), where η is given by

ηptq “ φpt ´ logλ2q ` φp´t´ logλ2q,

so that Wµpλq Ď Zλ. Observe then that the restriction operator Hs,ppZλq Q f ÞÑ f|Wµpλq
P Hs,ppWµpλqq

is well defined and norm decreasing when s “ k is a non-negative integer and p P p1,8q, and then, by
interpolation, also when s ě 0 and p P p1,8q. Analogously, for all λ1 ą λ,

}f}Hs,ppWµpλqq ď }f}Hs,ppZλ1 q.
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4. Irregularity of the Bergman projection

The proof of Theorem 1.2 will combine some new ideas with Barrett’s arguments [Bar92] and results
from [KPS16]. We first extend [KPS16, Corollary 5.5] to the case of the Sobolev spaces Hs,ppWµq.

Proposition 4.1. Let W be the unbounded non-smooth worm, Kw its Bergman kernel at w P W, and
Wµ be the smoothly bounded worm as in (3). Suppose p P p1,8q. Then the following properties hold:

(i) if s P
`
2
p

´ 1,8
˘
(the region R Y T1 Y T2 union the open segments of end points p0, 0q and p1, 1q

and p0, 0q and p1
2
, 0q, resp., in Figure 1), then Kw R Hs,ppWµq;

(ii) if s “ 2
p

´ 1 and p P p1, 2q (the open segment of end points p1
2
, 0q, p1, 1q in Figure 1), then

}Kw}Hs,ppWµq Ñ 8 as µ Ñ 8.

Proof. We first observe that the cases p “ 2, s ą 0, and p ą 2, s “ 0, that appear in (i), are proved in
[KPS16, Corollary 5.5].

We now recall some notation from [KPS16, Corollary 5.5]. We let Spei log |z2|2 , εq denote the angular
sector in the z1-plane

Spei log |z2|2 , εq “
 
z1 “ reipt`log |z2|2q : |t| ă δ, 0 ă r ă ε

(
,

with 0 ă δ ă π{2. For ε ą 0 sufficiently small, the set

Gµ “
 
z “ pz1, z2q P C

2 : | log |z2|2| ă µ, z1 P Spei log |z2|2 , εq
(

(5)

is contained in Wµ. Then, from [KPS16, (5.8) and p. 1180], for w P W and z P Gµ we have the estimate

|Kwpzq| ě
C

|z1||z2|

1
`
logp|z1|{2q ` logp|w1|{2q

˘2
` pπ ` 2µq2

ě Cw

1

|z1||z2|plog2 |z1| ` µ2q
, (6)

where Cw does not depend on µ. Therefore, arguing as in [KPS16, Corollary 5.5], for s ă 1{p we have

}Kw}p
LppWµ,|ρ|´spq ě Cw

ż

| log |z2|2|ďµ

1

|z2|p

ż

Sp1,εq

1ˇ̌
|ζ|2 ´ 2Re ζ

ˇ̌sp“
|ζ|plog2 |ζ| ` µ2q

‰p dV pζq dV pz2q

“ Cw2π
sinh

`
|1 ´ p{2|µ

˘

|1 ´ p{2|

ż

|t|ďδ

ż ε

0

1

|r ´ 2 cos t|sprpps`1q´1plog2 r ` µ2qp
drdt

ě C 1
w2π

sinh
`
|1 ´ p{2|µ

˘

|1 ´ p{2|

ż ε

0

1

rpps`1q´1plog2 r ` µ2qp
dr. (7)

(i) Suppose then that s P
`
2
p

´ 1, 1
p

˘
. From Lemma 3.3 Kw P Hs,ppWµq if and only if Kw P Lpp|̺|´spq.

From (7) it then follows that Kw R Hs,ppWµq when s P p 2
p

´ 1, 1
p

q. We now use the natural embedding

Hs,ppWµq Ď Hs1,ppWµq when 0 ď s1 ď s (see [Tri83, Theorem 3.3.1]). It follows that Kw R Hs,ppWµq for
all p, s such that p P p1,8q and s ą 2

p
´ 1. This proves (i).

(ii) We look at the estimate in (7) when s “ 2
p

´ 1 (notice that s ă 1{p in this case) and observe that

}Kw}p
LppWµ,|ρ|´spq ě C 1

w2π
sinh

`
|1 ´ p{2|µ

˘

|1 ´ p{2|

ż ε

0

1

rplog2 r ` µ2qp
dr

“ C 1
w2π

sinh
`
|1 ´ p{2|µ

˘

|1 ´ p{2|

1

µ2p´1

ż 8

1

µ
log 1

ε

1

p1 ` t2qp
dt . (8)

Clearly, if p ‰ 2, the right hand side above tends to 8 if µ Ñ 8. The rest of the proof will show that
the same is true for }Kw}Hs,ppWµq. We observe in passing that, on the other hand, if p “ 2, the right
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hand side above remains bounded (actually, it tends to 0) when µ Ñ 8, in accordance to the fact that
}Kw}L2pWµq ď }Kw}L2pWq ă 8.

In order to conclude the proof of (ii), we will bound }Kw}Hs,ppWµq from below. This will require several
steps. We begin by setting, for j “ 1, 2 and µ ą 2,

Gj
µ “

 
z “ pz1, z2q P C

2 : j ă |z2| ă eµ{2{j, z1 P Spei log |z2|2 , ε{jq
(
.

Keeping in mind (5), we see that G2
µ Ď G1

µ Ď Gµ. We define a cut-off function ψ : C2 Ñ r0,`8q by
setting ψpz1, z2q “ ψ1pz1qψ2pz2q, where:

‚ ψ1 P C8
c pCq, ψ1pz1q “ 1 for |z1| ă ε{2 and ψ1pz1q “ 0 for |z1| ě ε;

‚ ψ2 P C8
c pCq is identically equal to 1 on the annulus tz2 : 2 ă |z2| ă eµ{2{2u, is supported in a

compact subset of tz2 : 1 ă |z2| ă eµ{2u and has uniformly bounded derivatives.

Following the lines of the computations in (7) and (8), we can find for each p P p1, 2q and each

s “ 2
p

´ 1 ą 0 a constant C 1 ą 0, independent of µ, such that }Kw}LppG2
µ,|ρ|´psq ě C 1eµ{p, whence

}ψKw}LppG2
µ,|ρ|´psq ě C 1eµ{p (9)

for µ ą 2. Now, let us consider the map pz1, z2q ÞÑ pz1e
´i log |z2|2 , z2q. It is a C8-diffeomorphism from (a

neighborhood of) G1
µ onto (a neighborhood of) its image

rG1
µ :“

 
ζ “ pζ1, ζ2q P C

2 : ζ1 P Sp1, εq, 1 ă |ζ2| ă eµ{2
(
,

included in the (Lipschitz) domain

Λ “
 
w “ pt ` iu, w2q P C

2 : t ą ptan δq´1|u|, 1 ă |w2| ă eµ{2
(
.

We denote by Ψ : Λ Ñ C2 the inverse mapping pw1, w2q ÞÑ pw1e
i log |w2|2 , w2q. We will later precompose

Ψ with the map pw1
1, w2q ÞÑ pτpw1

1q, w2q with τpt1 ` iuq “ t1 ` ptan δq´1|u| ` iu. The preimage of Λ
through this map (as well as Λ itself) is contained in the half-space

H :“ tpζ, w2q P C
2 : Re ζ ą 0u .

We compute:

}ψKw}p
LppG2

µ,|ρ|´psq ď }ψKw}p
LppG1

µ,|ρ|´psq

“

ż

rG1
µ

|pψKwq ˝ Ψpwq|p|ρ ˝ Ψpwq|´ps| detpJΨqpwq| dV pwq

“

ż

rG1
µ

|pψKwq ˝ Ψpwq|pp1 ´ |w1 ´ 1|2q´ps| detpJΨqpwq| dV pwq

ď

ż

rG1
µ

|pψKwq ˝ Ψpwq|pp1 ´ |w1 ´ 1|2q´ps dV pwq

“

ż

Λ

|pψKwq ˝ Ψpt` iu, w2q|pp2t´ t2 ´ u2q´ps dtdu dV pw2q ,

where we took into account the fact that w P rG1
µ implies |w2| ą 1, whence | detpJΨqpwq| ă 1. On the

support of ψ ˝ Ψ, we have t2 ` u2 “ |w1|2 ă ε2. Up to shrinking ε to have ε ă
`
1 ` ptan δq´2

˘´1
, we get
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that 2t´ t2 ´ u2 ě t in the support of ψ ˝ Ψ. We obtain

}ψKw}p
LppG2

µ,|ρ|´psq
ď

ż

Λ

|pψKwq ˝ Ψpt` iu, w2q|pt´ps dtdu dV pw2q

“

ż

H

|pψKwq ˝ Ψpτpt1 ` iuq, w2q|ppt1 ` ptan δq´1|u|q´ps dt1du dV pw2q

ď

ż

H

|pψKwq ˝ Ψpτpt1 ` iuq, w2q|ppt1q´ps dt1du dV pw2q

“ }f}p
LppH,pRe ζq´psq ,

where fpt1 ` iu, w2q “ pψKwq ˝Ψpτpt1 ` iuq, w2q. For the half-space H, when p P p1,8q, and 0 ă s ă 1{p,
we have the well-known estimate

}h}LppH,pRe ζq´psq ď C2}h}Hs,ppHq

for all h P Hs,ppHq, see e.g. [Tri83, Proposition 1 2.8.6, Proposition 3.3.2]. We conclude that

}ψKw}LppG2
µ,|ρ|´psq ď C2}f}Hs,ppHq . (10)

Our next aim is going back from fpt1 ` iu, w2q “ pψKwq ˝ Ψpτpt1 ` iuq, w2q to pψKwq ˝ Ψ. Taking into
account that τpt1 ` iuq “ t1 ` ptan δq´1|u| ` iu, we compute

Bufpt1 ` iu, w2q “ Bu

´
pψKwq ˝ Ψpτpt1 ` iuq, w2q

¯

“ ptan δq´1 sgnpuq
´

B1ppψKwq ˝ Ψq
¯

pτpt1 ` iuq, w2q `
´

B2ppψKwq ˝ Ψq
¯

pτpt1 ` iuq, w2q ,

where we identified H with R4
` “ tpx1, x2, x3, x4q : x1 ą 0u and we let B1 and B2 denote the partial

derivatives w.r.t. x1 and x2, resp. Hence,››Bufpt1 ` iu, w2q
››
LppHq

ď Cδ

´›››
´

B1ppψKwq ˝ Ψq
¯

pτpt1 ` iuq, w2q
›››
LppHq

`
›››
´

B2ppψKwq ˝ Ψq
¯

pτpt1 ` iuq, w2q
›››
LppHq

¯
.

Thus, there exists C 1
δ ą 0 such that, for all g P H1,ppHq and for rgpt1 ` iu, w2q “ gpτpt1 ` iuq, w2q, the

inequality

}rg}Hr,ppHq ď C 1
δ}g}Hr,ppHq .

holds for r “ 0, 1. By interpolation, the same inequality holds for all r P r0, 1s. Using this bound in the
estimate (10) and (later) the fact that all the derivates of the components of Ψ are uniformly bounded
on the support of ψ, we obtain

}ψKw}LppG2
µ,|ρ|´psq ď C}pψKwq ˝ Ψ}Hs,ppHq ď C 1}ψKw}Hs,ppWµq ,

where all constants are independent of µ. Now, the assumptions on ψ2 guarantee that the function ψ

has |Dα
z ψpzq| ď 1 for all multiindices α. Hence, multiplication by ψ is a bounded operator, whose norm

is independent of µ, on Hk,ppWµq for all k P N0 (whence on Hs,ppWµq for all s ě 0). Thus, there exists
a constant C2, independent of µ, such that

}ψKw}LppG2
µ,|ρ|´psq ď C2}Kw}Hs,ppWµq .

This bound and (9) complete the proof of (ii). �

In order to prove Theorem 1.2 we need two preliminary lemmas. We denote by }T }pX,Xq the operator
norm of T : X Ñ X .

Lemma 4.2. For λ, λ1 ą 0, the domain Zλ is biholomorphic to Zλ1 . Moreover, the Bergman projection
Pλ induces a bounded operator on LppZλq for some λ ą 0 if and only if Pλ induces a bounded operator
on LppZλq for every λ ą 0 and in this case }Pλ}pLppZλq,LppZλqq is independent of λ.
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Proof. In order to show that the domains Zλ are all biholomorphic to each other, it suffices to observe
that for all r, λ ą 0,

Φλ : Zr Q pw1, w2q ÞÑ pw1e
´i log λ2

, w2{λq P Zλr (11)

is a biholomorphic map, since Φλ P GLp2,Cq and ΦλpZrq “ Zλr . Moreover, detΦ1
λ “ e´i log λ2

{λ and

Tλ,pf :“ pdetΦ1
λq2{pf ˝ Φλ is an isometric isomorphism Tλ,p : LppZλrq Ñ LppZrq,

}Tλ,pf}LppZrq “ }f}LppZλrq, (12)

that also gives an isometric isomorphism Tλ,p : AppZλrq Ñ AppZrq when restricted to AppZλrq, p P r1,8s.
Recalling the transformation rule for the Bergman projections

Prpdet Φ1
λf ˝ Φλq “ detΦ1

λpPλrfq ˝ Φλ

for every f P L2pZλq, since detΦ1
λ is constant, it follows that Prpf ˝Φλq “ pPλrfq ˝Φλ, for all f P L2pZλq

and λ ą 0. This implies that (also when p ‰ 2)

PrpTλ,pfq “ Tλ,ppPλrfq

for all f P pL2 XLpqpZλrq. Since pL2 X LpqpZλrq is dense in LppZλrq and Tλ,ppL2 XLpqpZλrq is dense in
LppZrq, for f P LppZλrq we have

}Pλrf}LppZλrq “ }Tλ,pPλrf}LppZrq “ }PrpTλ,pfq}LppZrq.

Since Tλ,p : LppZλrq Ñ LppZrq is an isometric isomorphism, the equality of the operator norms of Pλ

easily follows. �

Lemma 4.3. Let s ą 0, p P p1,8q and suppose Pλ induces a bounded operator on Hs,ppZλq for some
λ ą 0. Then, Pλ1 induces a bounded operator on Hs,ppZλ1 q for all λ1 ą λ and, setting Ns,ppλq “
}Pλ}pHs,ppZλq,Hs,ppZλqq, we have

Ns,ppλ1q ď Ns,ppλq. (13)

for all λ1 ą λ.

Proof. For r ą 0, let Tr,p be as in the proof of Lemma 4.2. We argue as in [Bar92]. Recalling that
Dz “ pBz1 , Bz1

; Bz2 , Bz2
q, if α “ pa1, b1; a2, b2q is a given multi-index, we have that

Dα
z pf ˝ Φrqpzq “ eipb1´a1q log r2r´pa2`b2qpDα

z fqpΦrpzqq.

Therefore, for λ ą 0, r ą 1, and k a positive integer, using (12), we have

}Tr,pf}Hk,ppZλq “
ÿ

|α|ďk

}Dα
z Tr,pf}LppZλq ď

ÿ

|α|ďk

}Tr,pD
α
z f}LppZλq “ }f}Hk,ppZrλq. (14)

Next observe that, using the transformation rule and a change of variables, for z P Zr,

pDα
z PrλfqpΦrpzqq “ Dα

z

ż

Zrλ

KrλpΦrpzq, wqfpwq dV pwq

“ Dα
z

ż

Zrλ

| detΦ1
r|´2Kλpz,Φ´1

r pwqqfpwq dV pwq

“ Dα
z

ż

Zλ

Kλpz, w1qfpΦrpw1qq dV pw1q

“ Dα
z pPλpf ˝ Φrqqpzq,

so that Tr,ppDα
z Prλfq “ Dα

z pPλTr,pfq.
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Therefore, assuming that Pλ is bounded on Hs.ppZλq, for r ą 1, using both the fact that Tr,p :
LppZrλq Ñ LppZλq is an isometry and (14) we have

}Prλf}Hk,ppZrλq
“

ÿ

|α|ďk

}Dα
z Prλf}LppZrλq

“
ÿ

|α|ďk

}Tr,pD
α
z Prλf}LppZλq

“
ÿ

|α|ďk

}Dα
z pPλTr,pfq}LppZλq

“ }pPλTr,pfq}Hk,ppZλq

ď Nk,ppλq}Tr,pf}Hk,ppZrq

ď Nk,ppλq}f}Hk,ppZrλq. (15)

Therefore Nk,pprλq ď Nk,ppλq for all integers k and r ą 1. Thus, by interpolation, for all s ą 0 and
r ą 1, (13) follows. �

Proof of Theorem 1.2. Step 1. Suppose that Pλ0
is bounded on LppZλ0

q for some λ0 ą 0 and some
p P p1,8q. Hence Pλ is bounded on LppZλq for all λ ą λ0 by Lemma 4.2. Fix f P C8

c pWq where W is the
non-smooth unbounded worm and suppose that supp f Ď Zλ for all λ ě λ0. For all such λ’s, denoting
by χλ the characteristic function of Zλ,

}χλPλf}LppWq “ }Pλf}LppZλq ď C}f}LppZλq “ C 1

for some constant C 1 independent of λ. In the second-before-last inequality, we have used Lemma 4.2.
Then, there exist a sequence tλnu, λn Ñ 8 as n Ñ 8, and h P pL2 XLpqpWq such that χλn

Pλn
f Ñ h in

the weak-˚ topology, as n Ñ 8. It is easy to see that h P HolpWq arguing as follows. Let ψ be smooth,
and compactly supported in W . Then, denoting by dV the Lebesgue volume form, for j “ 1, 2 we have

xpBzjhq, ψy “

ż

W

pBzjhqψ dV “ ´

ż

W

hpBzjψq dV “ ´ lim
nÑ8

ż

Zλn

Pλn
fpBzjψq dV

“ lim
nÑ8

ż

Zλn

pBzjPλn
fqψ dV “ 0.

Hence, Bzjh “ 0, j “ 1, 2 and therefore h is holomorphic. We claim that h “ Pf , where P denotes the

Bergman projection on W . It suffices to show that f ´ h K A2pWq. To this end, let g P A2pWq. Then
ż

W

pf ´ hqg dV “ lim
nÑ8

ż

W

pf ´ χλn
Pλn

fqg dV “ lim
nÑ8

ż

Zλn

pf ´ Pλn
fqg dV “ 0,

since the restriction of g to Zλ belongs to A2pZλq for all λ ą 0 as well.
Seeking a contradiction, we suppose p ‰ 2 and remark that

}Pf}LppWq “ sup

"ˇ̌
ˇ̌
ż

W

Pfψ dV

ˇ̌
ˇ̌ : ψ P C8

c pWq, }ψ}Lp1 pWq ď 1

*

“ sup

#
lim
nÑ8

ˇ̌
ˇ̌
ˇ

ż

Zλn

Pλn
fψ dV

ˇ̌
ˇ̌
ˇ : ψ P C8

c pWq, }ψ}Lp1 pWq ď 1

+

ď lim
nÑ8

}Pλn
f}LppZλn q

ď C}f}LppWq.

This implies that P : LppWq Ñ LppWq is bounded, contradicting [KPS16, Theorem 1.1]. Therefore, Pλ0

cannot be bounded on LppZλ0
q for p P p1,8q and p ‰ 2. We also observe that, by interpolation with the

case p “ 2, Pλ0
cannot be bounded on L1 and L8 either.



SMOOTH UNBOUNDED WORM 11

Step 2. In order to prove the irregularity of Pλ in the Sobolev scale, we first show that Pλ is densely
defined by showing that pL2 XHs,pqpZλq is dense in Hs,ppZλq. Let ϕ P C8

c pC2q, ϕ “ 1 on the ball Bp0, 1q
and set ϕεp ¨ q “ ϕpε¨q. Given f P Hs,ppZλq, let fpεq :“ fϕε. It is easy to check that fpεq P pL2XHs,pqpZλq
and that fpεq Ñ f as ε Ñ 0` in Hs,ppZλq.

Step 3. Let us show that it suffices to consider the case s P p0, 1{pq (the region T1 Y T3 in Figure 1).
Suppose we have a bounded extension Pλ : Hs,ppZλq Ñ Hs,ppZλq for some s ě 1{p and p P p1,8q (the
region R in Figure 1) . Interpolating with L2pZλq, we obtain a bounded extension Pλ : Hsθ,pθ pZλq Ñ
Hsθ,pθ pZλq, where θ P p0, 1q, sθ “ θs, 1

pθ
“ θ

p
` 1´θ

2
. By taking θ small enough we obtain that

0 ă sθ ă 1{pθ.

Step 4. We show that, if p P p1,8q, s P p0, 1{pq, and Pλ : Hs,ppZλq Ñ Hs,ppZλq is bounded, then

Kw P Hs,ppWµpλqq and Kw P H´s,p1

pWµpλqq.
Lemma 4.3 gives bounded extensions Pλ1 : Hs,ppZλ1 q Ñ Hs,ppZλ1 q for all λ1 ą λ as well as

}Pλ1 }pHs,ppZλ1 q,Hs,ppZλ1 qq ď Ns,ppλq

for all λ1 ą λ.
Fix w P W and let Kw “ Kp¨, wq denote the Bergman kernel of W at w. If we choose ϕw P C8

c

supported in a ball centered at w within W , with radial symmetry and with
ş
ϕw “ 1, then Pϕw “ Kw.

Then, for all λ1 ą λ large enough for suppϕw Ď Zλ, using Remark 3.5 we have that

}Pλ1ϕw}Hs,ppWµpλqq ď }Pλ1ϕw}Hs,ppZλ1 q ď Ns,ppλq}ϕw}Hs,ppZλ1 q “ Ns,ppλq}ϕw}Hs,ppC2q.

Therefore tPλ1ϕwuλ1 is a family of functions contained in the ball of radius Ns,ppλq}ϕw}Hs,ppC2q centered
at the origin in Hs,ppWµpλqq. Since we are assuming 0 ă s ă 1{p, using Lemma 3.2 and the Hahn–
Banach theorem we have that tPλ1ϕwuλ1ąλ admits a subsequence weak-˚ converging to a function h in

Hs,ppWµpλqq. Recalling that Hs,ppWµpλqq is the dual of H´s,p1

pWµpλqq with respect to the L2pWµpλqq
inner product, this implies that for all g P C8

c pWµpλqq we have
ż

W

pχλ1
n
Pλ1

n
ϕwqg dV “

ż

Wµpλq

pPλ1
n
ϕwqg Ñ

ż

Wµpλq

hg dV

as n Ñ 8.
Arguing as in Step 1, we have that (up to refinements) χλ1

n
Pλ1

n
ϕw converges to Pϕw “ Kw in the

weak-˚ topology of L2pWµppλqq. Thus
ż

Wµpλq

Kwg dV “

ż

Wµpλq

hg dV

for all g P C8
c pWµpλqq. This implies that h “ Kw on Wµpλq, whence Kw P Hs,ppWµpλqq.

In order to prove that Kw P H´s,p1

pWµpλqq, we use Lemma 3.2. For all λ1 ą λ we have

}Pλ1ϕw}H´s,p1 pWµpλqq “ sup

#ˇ̌
ˇ̌
ˇ

ż

Wµpλq

Pλ1ϕwψ dV

ˇ̌
ˇ̌
ˇ : ψ P C8

c pWµpλqq, }ψ}Hs,ppWµpλqq ď 1

+

“ sup

#ˇ̌
ˇ̌
ˇ

ż

Zλ1

Pλ1ϕwψ dV

ˇ̌
ˇ̌
ˇ : ψ P C8

c pWµpλqq, }ψ}Hs,ppWµpλqq ď 1

+

“ sup

#ˇ̌
ˇ̌
ˇ

ż

Zλ1

ϕwPλ1ψ dV

ˇ̌
ˇ̌
ˇ : ψ P C8

c pWµpλqq, }ψ}Hs,ppWµpλqq ď 1

+

ď }ϕw}H´s,p1 pC2q}Pλ1ψ}Hs,ppZλ1 q

ď Ns,ppλq}ϕw}H´s,p1 pC2q.

We now argue as before and conclude that Kw P H´s,p1

pWµpλqq.
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1
p

s

p1, 1q

1
2

p0,´1q

R

T1

T2

T3

Figure 1. Diagram for the proofs of Proposition 4.1 and Theorem 1.2

We split the remaining part of the argument into three steps: one concerning the region T1, one
concerning the region T3 and one concerning the line segment separating them, see Figure 1.

Step 5. We assume p P p1,8q and s ą maxp 2
p

´ 1, 0q and Pλ : Hs,ppZλq Ñ Hs,ppZλq is bounded. By

Step 4, we have that Kw P Hs,ppWµpλqq. Then, Proposition 4.1 immediately gives a contradiction.

Step 6. We assume that p P p1, 2q, 0 ă s ă 2
p

´ 1 and Pλ : Hs,ppZλq Ñ Hs,ppZλq is bounded. Notice

that 2
p

´ 1 ă 1
p
, so that, by Step 4, we obtain that Kw P H´s,p1

pWµpλqq, where ´s ą 1´ 2
p

“ 2
p1 ´ 1. But,

again, this is false by Proposition 4.1 (i) and we have reached a contradiction. Hence, the projector Pλ

does not extend to a bounded operator Pλ : Hs,ppZλq Ñ Hs,ppZλq.
Step 7. Finally, let p P p1, 2q and s “ 2

p
´ 1 and suppose that Pλ : Hs,ppZλq Ñ Hs,ppZλq is bounded.

Again, Lemma 4.3 gives that Pλ1 : Hs,ppZλ1 q Ñ Hs,ppZλ1 q is bounded and

}Pλ1 }pHs,ppZλ1 q,Hs,ppZλ1 qq ď Ns,ppλq

for all λ1 ą λ. Take any µ ą π and let λ1 sufficiently large so that Wµ Ď Zλ1 . Let ϕw P C8
c pZλ1 q be

as in Step 4. We have shown that there exists a sequence tPλn
ϕwu such that Pλn

ϕw Ñ Kw weak-˚ in
Hs,ppZλ1 q as λn Ñ 8, so that

}Kw}Hs,ppWµq ď }Kw}Hs,ppZλ1 q ď lim
nÑ8

}Pλn
}pHs,ppZλn q,Hs,ppZλnqq}ϕw}Hs,ppC2q ď CNs,ppλq

independent of µ. This contradicts Proposition 4.1 (ii) and the proof is complete. �
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5. Final remarks and open questions

We wish to conclude by indicating a number of open problems. First of all, we recall that the exact
range of regularity on the Lebesgue Sobolev spaces Hs,p of the Bergman projection on the smoothly
bounded domain Wµ is not known. Clearly, in order to prove a positive result, one needs to have precise
information on the Bergman kernel itself. In fact, also the precise behaviour of the kernel near the critical
annulus A “ tp0, z2q : e´µ{2 ă |z2| ă eµ{2u on the boundary of Wµ remains to be understood.

The equivalence of the regularity of the Bergman projections on p0, qq-forms and the Neumann operator
N , proved in [BS90], was later exploited by M. Christ [Chr96] to show that Pµ does not preseve C8pWµq.
These results heavily relied on the boundedness of the domainWµ. We believe that the Neumann operator
N on Zλ is as irregular as the Bergman projection Pλ, but this problem has not been addressed and (to
the best of our knowledge) is open.

Finally, we mention the boundary analogue of this problem, namely the study of the behaviour of the
Szegő projection on Zλ. Given a smooth domain Ω “ tz : ρpzq ă 0u Ď Cn, the Hardy space H2pΩ, dσq is
defined as

H2pΩ, dσq “
 
f P HolpΩq : sup

εą0

ż

BΩε

|f |2dσε ă 8
(
,

where Ωε “ tz : ρpzq ă ´εu and dσε is the induced surface measure on BΩε. Then H2pΩ, dσq can be
identified with a closed subspace of L2pBΩ, dσq, that we denote by H2pBΩ, dσq, where σ is the induced
surface measure on BΩ. The Szegő projection is the orthogonal projection

SΩ : L2pBΩ, dσq Ñ H2pBΩ, dσq ;

see [Ste70] for the case of bounded domains. The regularity of SΩ when Ω is a (model) worm domain
was studied in a series of papers [Mon16a, Mon16c, Mon16b, MP17a, MP17b, LS21]. In particular, in
[LS21] it was announced that SWµ

does not preserve LppBWµq when
ˇ̌
1
2

´ 1
p

ˇ̌
ě π

µ
, in analogy to the case

of the Bergman projection. L. Lanzani and E. Stein also studied the Lp-regularity of the Szegő and other
projections on the boundary on bounded domains under minimal smoothness conditions [LS14, LS17],
whereas a definition of Hardy spaces and associated Szegő projection for singular domains was studied,
for instance, in [Mon21, GGLV21]. It is certaintly of interest to consider the case of the Szegő projection
also in the case of the domains Zλ.
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