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Abstract
The increasing availability of 3D anatomical models obtained from diagnostic images exploiting Reverse Engineering tech-
niques allows the application of statistical analysis in the quantitative investigation of anatomical shapes variability. Statistical
ShapeModels are awell-establishedmethod for representing such variability, especially for complex forms like the anatomical
ones. Not by chance, these models are widely used for medical applications, such as guiding segmentation of the diagnostic
image and virtual reconstruction of incomplete anatomic region. The application of a statistical analysis on a set of shapes
representing the same anatomical region essentially requires that shapes must be in correspondence, i.e. constituted by the
same number of points in corresponding position. This work aims to compare two established algorithms, namely a modified
version of the Iterative Closest Point and the non-rigid version of the Coherent Point Drift, to solve the correspondences’
problem in the construction of a Statistical Shape Model of the human cranium. The comparison is carried out on the models
using the standard evaluation criteria: Generalization, Specificity and Compactness. The modified version of the Iterative
Closest Point delivers a better Statistical Shape Model in terms of Generalization and Specificity, but not for Compactness,
than the Coherent Point Drift-based model.

Keywords Reverse Engineering · Computer-Aided Technologies · Statistical Shape Analysis · Statistical Shape Model ·
Correspondences’ problem

1 Introduction

Reverse Engineering (RE) techniques are typically related
to manufacturing industry applications, but, in the last few
years, they are proving their effectiveness also in non-
traditional fields, as biology and anatomy. The increasing
ability to interpret and process the information acquired with
diagnostic imaging techniques, such as Computed Tomog-
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raphy (CT) and Magnetic Resonance Imaging (MRI), is
transforming the surgical approach: they deliver compre-
hensive in vivo information about the anatomical Region
of Interest (ROI), consisting of multiple two-dimensional
images stacked along the third dimension. This information
allows a three-dimensional representation of the acquired
anatomies, enabling complex and even more refined anal-
ysis and processing for purposes beyond the diagnosis. By
exploiting RE techniques, it is possible to digitalize and pro-
cess the 3D anatomical ROI from the patient’s diagnostic
images obtained by CT or MRI. The typical approach relies
on the data extrapolation from the acquired image, involv-
ing the segmentation of the ROI. Starting from the binary
image provided by the segmentation process (using commer-
cial software such as Mimics, 3D Slicer etc.), a quantitative
and interactivemodel can be obtained by exporting themodel
in a STL format. This is a widespread and powerful mean to
describe complex shapes (such as the anatomical structures),
representing the model as a set of points and their related
connectivity list. The STL format is supported by many soft-
ware packages and is widely used in RE applications and
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in Additive Manufacturing. Computer-Aided Technologies
(CAx) software packages provide advanced tools to properly
handle the so obtained 3Dmodel allowingmore effective pre-
operative simulation, complex-surgery planning, quantitative
evaluation of asymmetry or dysmorphism and the design of
the patient-specific devices. To this aim, the increased avail-
ability of real and interactive 3D anatomical models, allows
the application of statistical analysis in the quantitative inves-
tigation and modelling of anatomical shapes variability. A
statistical analysis (SA) is the most suitable approach deal-
ing with the anatomical structures, because of the difficulty
tied to their geometrical complexity along with a very wide
interpersonal variability.

2 Statistical Shape Analysis

In the plethora of SAmethods, the Statistical Shape Analysis
(SSA) [1] is the most established methodology able to gather
and interpret information of the same anatomical structure
from an adequate number of individuals (hereafter referred
to the term “samples”). This approach provides a parametric
model able to generate new valid shapes (i.e. still belonging
to the same family of shape described by each sample), usu-
ally referred to as Statistical Shape Models (SSMs) [2]. The
SSM, introduced in the ‘90 s by Cootes et al. [3], accounts for
the shape variations learned from the collection of ns sam-
ples organized in a proper designed dataset called Training
Set (TS). These variations are represented by the principal
components φi (main modes of variation) and their respec-
tive variance values λi , defined by applying the Principal
Component Analysis (PCA) on the TS.

In order to apply the PCA the shapes in the TS are required
to be properly represented and aligned in a global reference
system. The simplest, but also the most generic, method to
represent complex 3D shapes is to use a set of points spread
across its surface. A 3D shape, consisting of n p points, can
be therefore represented by a vector x of spatial coordinates
(see Eq. 1):

x � (
x1, y1, z1, . . . , xnp , ynp , zn p

)T (1)

Using the SSMs, a new shape x∗ can be obtained as a
deformed version of the mean shape x̄ through a linear com-
bination of deformations along the first c main directions of
variation

√
λiφi (see Eq. 2):

x∗(c) � x̄ +
c∑

i�1

αi

√
λiφi (2)

where c represents the number of significant φi and it is
defined in order to obtain a cumulative variance between

90% and 98% of the total variability described by the TS
(see Eq. 3):

r �
∑c

m�1 λm
∑ns−1

m�1 λm
(3)

Thanks to its ability to encode the information of an ade-
quate number of ROI and to summarize the information of
the physiological and pathological shapes, the SSMs have
already been widely used, for example, to guide the segmen-
tation process and the reconstruction of deficient anatomical
regions [2, 4].

For the construction of the SSM itmust be strictly assumed
that the points of all the involved shapes (provided by a STL
file) are in correspondence. This means that the correspon-
dent points of all training samplesmust be located at the same
positions. In the past, for simple 2D shapes with prominent
features, the user manually defined these correspondences.
However, dealing with a TS defined by complex 3D shapes
with awide variability among individuals (i.e. the anatomical
ones), the manual definition of the correspondences is time
consuming and prone to error. Therefore, several methods
have been developed to automatically establish such cor-
respondences. Among them, the most promising approach
involves pairwise registration algorithms [2]. In particular,
a modified non-rigid version of the Iterative Closest Point
(ICP) [5] and the non-rigid version of the Coherent Point
Drift (CPD) [6] represents, to date, themost established alter-
natives. In order to detect the correspondences within a given
TS, the pairwise registration algorithms perform a non-rigid
registration between a previously defined template and each
sample of such a TS. Usually, this registration is carried out
using a first rigid alignment followed by an elastic registra-
tion. In this way, each shape of the TS is represented as a
deformed version of the template, therefore constituted by
the same number of points in corresponding positions. In [5]
an ICP based non-rigid registration algorithm is presented,
where the elastic registration is achieved bymeans of a global
deformation, modelled as a sum of Gaussian Radial Basis
Function, and refined by a weighted locally rigid transfor-
mation. The CPD algorithm, introduced by Myronenko and
Song [6], it is a probabilistic method for rigid and non-rigid
registration. In such a method, the template is represented as
the centroid of a Gaussian Mixture Model (GMM) which is
fitted, rigidly or not, on a certain sample by maximizing the
likelihood. In the rigid case theGMMcentroids is constrained
to move coherently, in the non-rigid one the displacement
field is forced to be regular.

The aim of this work is to compare the performances of
the two algorithms presented above used for solving the cor-
respondences’ problem in the case of human cranium, by
applying the evaluation criteria proposed by Davies in [7].
This comparison is necessary because the correspondences’
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detection is often the most challenging part in the SSM con-
struction and the algorithm used has a great impact on the
final model’s quality.

3 Evaluation criteria

The evaluation criteria proposed by Davies [7] are consid-
ered as a gold standard for the comparison of different SSMs
obtainedby the sameTS.Over the years, themethods adopted
for evaluating these criteria have been frequently criticized;
however, the concepts underlying them have proven to be
very robust. The evaluation is based on three parameters that
identify the ideal properties of a deformable model: Gen-
eralization (G), Specificity (S) and Compactness (C). The
three parameters are defined as a function of the number of
main modes c employed for the representation of the shape.
In detail, the Generalization is defined as the ability of the
model to reproduce shapes not included in the TS; it is esti-
mated performing a series of ns leave-one-out tests on the TS,
in order to obtain a reduced model, and measuring the mean
similarity between the excluded shape xi and the reconstruc-
tion with the reduced model x∗(c) (see Eq. 4):

G(c) � 1

ns

ns∑

i�1

D
(
x∗(c), xi

)
(4)

D represents the metric used to compute the similarity
between two shapes and it will be discussed below. G can
also be interpreted as the mean of the average reconstruction
error between the model and an unseen shape.

The Specificity S represents the ability to generate only
valid shapes; it is determined assessing the mean similarity
among a set of nr randomly generated shapes xk∗, using the
Eq. 2 with αi ≤ ±3, and the closest shapes xi in the TS (see
Eq. 5):

S(c) � 1

nr

nr∑

k�1

min{i�1,...,ns }
D

(
xk∗(c), xi

)
(5)

The last parameter is the Compactness C that shows the
cumulative variance included in the model normalized with
the total variance of the TS (see Eq. 6):

C(c) �
∑c

m�1 λm
∑ns−1

m�1 λm
(6)

A model is compact if the associated variance is minimal
and requires few main modes, thus parameters, to obtain a
correct representation of the shape.

By varying the metric D the significance of similarity
between two shapes changes. Such parameter should be cho-
sen according to the comparison to be made or the specific

application of the SSM. Since the aim of this work is to
compare two algorithms of correspondences’ detection, the
selected metricD is based on these correspondences. There-
fore, the similarity between two shapes is evaluated as the
Mean Absolute Distance (MAD) [8] among corresponding
points (see Eq. 7):

D
(
x∗, xi

)
� 1

n p

np∑

j�1

∥∥∥ρ∗
j (c) − ρi

j

∥∥∥
2

(7)

where ρ∗
j (c) and ρ i

j represent the jth corresponding point of

x∗ and xi respectively. Using theMAD, theG,S and C values
are independent of the number of points np constituting each
shape and are expressed in mm. In this way, it is also possible
to compare SSMs made up of a different number of points.

4 Results

After CT images segmentation, starting from TS containing
ns � 100 pathologically unaffected adult crania two SSMs
were built following the methodology described by Marzola
et al. in [4], based on the previous work of Di Angelo [9]. The
latter defines a reliable procedure for the alignment and the
scaling before the application of the correspondences’ detec-
tion algorithms to ensure proper results. The two obtained
SSMs differ only in the pairwise registration algorithm used,
so by comparing them, it is possible to determine which of
these two algorithms is the most suitable for the correspon-
dences’ detection in this specific application.The comparison
was carried out by using the parameters described in the pre-
vious section.

As stated by Davies [7] lower value of G, S and C for
all c generally characterize a higher quality model, there-
fore a more appropriate algorithm for the correspondence’s
detection. So, as shown in Fig. 1, the SSM obtained using the
modifiedversionof the ICP resulted better than the one result-
ing from the CPD in terms ofG andS (nr � 10000 randomly
generated shapes), but not for C. In order to obtain a repre-
sentation of 98% of the total variance the ICP-based SSM
requires 71 main modes of variation, while the CPD-based
SSM needs 77. However, since the values of Compactness
are very similar and the value of G and S are lower for the
ICP-based SSM for all c, it’s possible to conclude that, in
the case of human neurocrania, the modified ICP version
provide a better SSM if compared to CPD version. In partic-
ular, the ICP-based SSM is able to reproduce unseen shapes
with an average reconstruction error equal to 1.83 mm with
c � 71 (r � 98%). In addition, the modified version of ICP
algorithm is preferred to the CPD as it required less time to
register the template to each sample, then to detect the cor-
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Fig. 1 Generalization G,
Specificity S and Compactness
C of the ICP-based model
(square) and the CPD-based
model (circle)
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respondences among all the samples of the TS and to build
the SSM.

5 Conclusions

This work was meant to compare both a modified ver-
sion of the Iterative Closest Point and the non-rigid version
of the Coherent Point Drift to solve the correspondences’
problem in the construction of a Statistical Shape Model
of the human cranium. Starting from 100 pathologically
unaffected adult crania two SSMs, different only for the cor-
respondences’ detection algorithm employed, were built and
compared using the standard evaluation criteria of General-
ization, Specificity and Compactness. The ICP-based SSM
has proven to be preferable than the CPD-based in terms of
Generalization and Specificity for all the significant modes
of variation, but not for Compactness. In addition, the ICP-
based SSM is able to reproduce an unseen cranium with an
average reconstruction error equal to 1.83 mm using 71 main
modes of variation.

The final aimwas to understandwhich of the two literature
techniques are the best suited to be adopted for the construc-
tion of an SSM of the human cranium to use as template in
solving complex defective skulls reconstruction [10]. Future
works will be addressed to analyse in detail the meaning of
SSMquality and the factors affecting it, depending on SSM’s
application.
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