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A B S T R A C T

Gels are polymers that can imbibe large amounts of solvent and generate large volumetric deformations in a
process commonly termed swelling. The swelling-induced deformations can be harnessed to produce pressure
against surrounding elastic elements, and therefore lead to spatial shape changes without the need for an
external energy source. In the present paper, we consider a thin cylindrical elastic tube that encapsulates
a gel and deforms in response to the swelling-induced forces. It is expected that by controlling the spatial
stiffness distribution of the tube, the deformed swelling-induced shape can be programmed. We exploit this
simple idea to obtain controlled shape change driven by the large volumetric expansion of gels. To this end,
we train a machine learning algorithm through many FE simulations that enable solving the inverse problem:
for any prescribed swelling-induced target shape, the algorithm provides the spatial stiffness distribution of
the thin tube. The results confirm that precise controlled shape change is achievable by exploiting the large
swelling-induced volumetric deformations in an autonomous manner (i.e. without the need for any external
energy source). This work paves the way for new perspectives in the design of shape-change systems based
on the simple yet proper elastic distribution of confining structures.
1. Introduction

Gels comprise a polymer network that imbibes a large amount of
solvent and experiences large volumetric deformations. A particular
class of gels is represented by hydrogels, polymers with a high affinity
for water. Thanks to their ease of synthesis, low cost, biocompatibility,
and ability to experience large deformations, hydrogels are employed in
many advanced applications such as drug delivery, agriculture, tissue
engineering, and biosensors [1–4].

In recent applications, gels swelling under mechanical [5,6], chemo-
mechanical [7,8], or bio-mechanical constraints [9] have been con-
sidered; moreover, temperature-sensitive gels enable controlling their
swelling degree through suitable external stimuli [10]. As a result,
gels interact with other components in the system and exert forces on
them [11–16]; this mechanism can be harnessed to produce energy
by coupling gels with dielectric elastomers [17] or with piezoelectric
polymers, or to induce deformation in multilayer structures [18]. These
interactions can lead to complex deformations [19–21] and can be ad-
vantageous. For example, swelling-induced shape changes in hydrogels
are exploited in drug delivery to release active substances in response to
stimuli such as pH at target sites. This enables precise spatio-temporal
control over drug delivery [22]. Biosensors are another example of a
device that responds to swelling-induced forces to detect changes in the
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surrounding environment (such as the presence of specific biomolecules
or variations in pH) by providing a measurable physical signal [16,23].

The research on swelling-induced shape changes in gels is rapidly
evolving, with new materials and synthesis techniques improving con-
stantly. Current efforts focus on the activation of shape changes in
stimuli-responsive materials [24] that can potentially achieve other
functionalities such as self-healing or biodegradation through swelling
mechanisms [25,26]. Overall, the ability to induce and harness changes
in shape due to swelling-induced mechanisms shows promise with
the potential to revolutionize various technological and biomedical
fields [27].

In this work, we propose to induce changes in shape through
swelling-induced forces and the mechanical interactions of gels with
passive (non-swelling) components. As an example, consider a cylin-
drical gel that is placed in a soft elastic ring, as shown in Fig. 1a.
The system is placed in an appropriate solvent and the gel begins to
swell. Once the gel comes into contact with the elastic layer, it exerts
forces that lead to deformations and shape changes in the ring. In the
case of a homogeneous confining elastic ring, the tube increases and
dilates while maintaining a circular shape (see Fig. 1b). However, if
the ring is heterogeneous, i.e. its stiffness distribution varies spatially,
the swelling-induced forces lead to a deviation from the circular shape
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Fig. 1. The swelling of a cylindrical gel in a confining elastic ring: (a) dry gel (reference configuration), (b) deformation due to swelling in a homogeneous elastic ring, (c)
deformation due to swelling in a heterogeneous ring with spatially varying stiffness distribution.
(see Fig. 1c). An example in a biological context was recently illus-
trated in Ref. [28]. By tuning the stiffness distribution of the ring, the
deformations of the ring itself can be programmed into a target shape.

The coupling and interactions between the gel and the elastic layer
pose numerical difficulties. With the aim of deriving a design guide that
enables us to prescribe a target shape and obtain the spatial stiffness
distribution of the elastic ring, we employ machine learning (ML)
methods. The ML algorithm is trained with finite-element simulations
on a variety of stiffness distributions. We follow by exploiting the
ML algorithm to determine the stiffness distribution along the elastic
ring required to achieve a variety of complex planar configurations in
response to swelling-induced forces.

2. Swelling of gels under constraints

Consider a polymer network occupying a volume 𝐵0 with a bound-
ary 𝜕𝐵0. The material points in the dry polymer are denoted by 𝐗.
The network is placed in a cylindrical ring, which is filled with an
appropriate solvent. Due to the diffusion of solvent molecules into the
network, the gel swells. In the deformed swollen configuration, the
gel occupies a volume 𝐵 with a boundary 𝜕𝐵. The material points
are denoted by 𝐱. The deformation gradient from the reference to
the deformed swollen configuration is 𝐅 = 𝜕𝐱∕𝜕𝐗 and the volumetric
deformations are 𝐽 = det𝐅 = 1 + 𝐶𝑠𝑣𝑠, where 𝐶𝑠 is the uptake
concentration and 𝑣𝑠 is the molar volume of the solvent.

To determine the equilibrium response, we follow common prac-
tice [29–32], which couples the elasticity of the tube to the swelling of
the filling gel, and assume that the elastic response of the gel can be
determined from an energy-density function written as follows:

𝛹 = (𝛹𝑛𝑒𝑡 + 𝛹𝑚𝑖𝑥) + 𝜋(1 + 𝑣𝑠𝐶𝑠 − 𝐽 ) (1)

where 𝛹𝑛𝑒𝑡 is the energy density due to the deformation of the network,
𝛹𝑚𝑖𝑥 is the mixing energy density, and 𝜋 is a workless pressure-like
term that enforces the volumetric constraints and is determined from
the boundary conditions.

In this work, we consider Neo-Hookean materials characterized by
a deformation energy-density function

𝛹𝑛𝑒𝑡 =
𝜇
2

(

𝐼1 − 3
)

, (2)

where 𝐼1 = tr
(

𝐅𝐅𝑇 ) is the first invariant and 𝜇 is the shear modulus.
The mixing term derived in the works of Huggins [33] and Flory [34]
reads

𝛹𝑚𝑖𝑥 =
𝑘𝐵𝑇
𝑣𝑠

[

(𝐽 − 1) ln
𝑣𝑠𝐶𝑠
𝐽

+ 𝑣𝑠𝐶𝑠
𝜒
𝐽

]

, (3)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, and 𝜒 is a
dimensionless interaction parameter governing the gel-solvent affinity.
2

2.1. Numerical simulation of swelling

The swelling problem is highly non-linear and only a few specific
cases can be solved analytically [11]. In other cases, numerical and
computational approaches are required, typically implemented within a
finite element-based framework. To this end, we employ the variational
formulation and phrase it in a discretized form.

The stationarity of the energy of the system, evaluated over the
reference domain 𝐵0 with boundary 𝜕𝐵0 = 𝜕𝐵𝑢 ∪ 𝜕𝐵𝑡 (where 𝜕𝐵𝑢
and 𝜕𝐵𝑡 the portions of the boundary where the displacements 𝒖 and
the tractions 𝑻 are prescribed, respectively), requires the following
variation to be zero

𝛿𝛱 = ∫𝐵0

𝛿𝛹𝑑𝑣 − ∫𝐵0

𝑩 ⋅ 𝛿𝒖𝑑𝑉 − ∫𝜕𝐵𝑡

𝑻 ⋅ 𝛿𝒖𝑑𝑆 = 0, (4)

where 𝑩 denotes body forces, and 𝛿∙ indicates a generic variation of
the quantity ∙.

In the case of isothermal conditions, the above variation has to
be assessed with respect to the displacement gradient and the solvent
concentration, i.e. ∇𝐮 and 𝐶𝑠. Specifically,

𝛿𝒖,𝐶𝑠
𝛱 = ∫𝐵0

𝜕(𝛹𝑛𝑒𝑡(𝑭 ) + 𝛹𝑚𝑖𝑥(𝐶𝑠) + 𝜋(1 + 𝑣𝑠𝐶𝑠 − 𝐽 ))
𝜕∇𝒖

𝛿∇𝒖𝑑𝑉

+ ∫𝐵0

𝜕(𝛹𝑛𝑒𝑡(𝑭 ) + 𝛹𝑚𝑖𝑥(𝐶𝑠) + 𝜋(1 + 𝑣𝑠𝐶𝑠 − 𝐽 ))
𝜕𝐶𝑠

𝛿𝐶𝑠𝑑𝑉

− ∫𝐵0

𝑩 ⋅ 𝛿𝒖𝑑𝑉 − ∫𝜕𝐵𝑡

𝑻 ⋅ 𝛿𝒖𝑑𝑉 =

∫𝐵0

(𝑷 + 𝜋𝐽𝑭 −𝑇 )𝛿𝒖𝑑𝑉 + ∫𝐵0

(𝜇𝑐 + 𝜋𝑣𝑠)𝛿𝐶𝑠𝑑𝑉 − ∫𝐵0

𝑩 ⋅ 𝛿𝒖𝑑𝑉

− ∫𝜕𝐵𝑡

𝑻 ⋅ 𝛿𝒖𝑑𝑆 = 0.

(5)

Here, 𝑷 = 𝜕𝛹𝑛𝑒𝑡∕𝜕𝑭 denotes the first Piola–Kirchhoff stress tensor and
𝜇𝑐 = 𝜕𝛹𝑚𝑖𝑥∕𝜕𝐶𝑠 indicates the so-called chemical potential.

In general, the problem has to be solved by considering the fol-
lowing mechanical and chemical boundary conditions: 𝒖 = 𝒖̄ on 𝜕𝐵𝑢,
(𝑷 + 𝜋𝐽𝑭 −𝑇 )𝒏 = 𝑻̄ on 𝜕𝛺𝑡, and 𝜇𝑐 = 𝜇̄𝑐 on 𝜕𝛺𝑐 , where ∙̄ indicates a
prescribed value of a variable of the problem on the domain boundary
and 𝜕𝛺𝑐 is the portion of the boundary where the chemical potential is
assigned, corresponding to the portion of the gel domain in contact with
the solvent. In the present study, we impose displacement boundary
conditions to some FE nodes of the discretized domain to prevent any
possible rigid body motion of the system, and the chemical potential
to boundary regions in direct contact with the fluid; no traction forces
are assumed to be applied.

To solve numerically the problem of swelling under mechanical
constraints, the above-illustrated variational (weak form) of the prob-
lem can be straightforwardly implemented within a finite element
framework. This requires that the involved variables (namely the dis-
placement field 𝒖, the chemical potential 𝜇 , and the osmotic pressure
𝑐
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𝜋), are expressed throughout the domain by using the FE nodal values
counterparts indicated with ∙̂ in the following,

𝒖̃ =
𝑛𝑛
∑

𝑖=1
[𝑁]𝑖𝒖̂𝒊,

𝜇̃𝑐 =
𝑛𝑛
∑

𝑖=1
[𝑁]𝑖𝜇̂𝑐𝑖,

𝜋̃ =
𝑛𝑛
∑

𝑖=1
[𝑁]𝑖𝜋̂𝑖,

∇ ⋅ 𝝃̃ = ∇ ⋅
𝑛𝑛
∑

𝑖=1
[𝑁]𝑖𝝃̂𝑖 =

𝑛𝑛
∑

𝑖=1
[𝐵]𝑖𝝃̂𝑖

(6)

where [𝑁]𝑖 and [𝐵]𝑖 are the standard finite element shape function and
compatibility matrix, respectively, associated with the 𝑖th node of the
FE discretization, respectively, 𝑛𝑛 is the number of nodes of one FE,
while ∇ ⋅ 𝝃 indicates the divergence operator applied to the generic
quantity 𝝃. In Eq. (6), the generic quantity interpolated by using the
nodal values has been indicated with ∙̃.

Discretizing the variational form (5) by using the involved quan-
tities expressed through the corresponding nodal values expressed by
Eq. (6), leads to the following force and flux balance conditions [35]

𝑹𝑒
𝑢 = ∫𝐵0𝑒

[𝐵]𝑇 (𝑷 + 𝜋𝐽𝑭 −𝑇 )𝑑𝑉 − ∫𝐵0𝑒

[𝑁]𝑇𝑩𝑑𝑉 − ∫𝜕𝐵𝑡𝑒

[𝑁]𝑇 𝑻 𝑑𝑆 = 𝟎

𝑹𝑒
𝜇𝑐

= ∫𝐵0𝑒

𝐽−1 𝐶𝑠𝐷
𝑘′𝐵𝑇

[𝐵]𝑇 [𝐵]𝑑𝑉 {𝜇𝑐} + ∫𝐵0𝑒

𝐽−1 𝜕𝐶𝑠
𝜕𝜇𝑐

[𝑁]𝑇 [𝑁]𝑑𝑉 { ̇̂𝜇𝑐}+

+∫𝐵0𝑒

𝐽−1 𝜕𝐶𝑠
𝜕𝜋

[𝐵]𝑇 [𝐵]𝑑𝑉 { ̇̂𝜋} + ∫𝜕𝐵𝜇𝑐

[𝑁]𝑇 𝒋𝑛 𝑑𝑆 = 𝟎

(7)

that for simplicity have been written by referring to the single finite
element 𝑒 in the undeformed configuration whose domain is 𝐵0𝑒; the
last integral of Eq. ((7)2) accounts for the fluid flux occurring on the
portion 𝜕𝐵𝜇𝑐 of the boundary where the chemical potential is known,
with 𝒋𝑛 = − 𝐶𝑠𝐷

𝑘′𝐵𝑇
∇𝜇𝑐 [36], 𝑘′𝐵 = 𝑘𝐵𝐴𝑛, 𝐴𝑛 the Avogadro’s number, 𝐷

the diffusion coefficient of the gel, while the superscript ∙𝑇 indicates
the transpose operator, and ∙̇ the time derivative. The solution of the
non-linear multi-physics above-stated problem requires the two vectors
in (7) to vanish for the involved balance equations to be fulfilled. The
two above residuals are made to converge to zero with a given small
tolerance value, through a standard iterative process leading to the
displacements and chemical potential fields in the domain of interest.

Problems involving coupling of various physics, such as the fluid
diffusion and the network mechanics, can be solved numerically in a
staggered or monolithic way; the first approach is simpler and, if the
time step adopted is sufficiently small, the solution is relatively accu-
rate. It is based on the concept of freezing the fluid diffusion problem
during a small time step while the mechanical problem is solved, and
by assuming the previously converged mechanical configuration of the
system to be fixed, while the diffusion problem is advanced further
in the time domain. The staggered approach is adopted in the present
computational framework.

3. Machine learning-based control of shape change

Programming the swelling-induced shape changes of an elastic tubu-
lar structure in response to the swelling of a gel requires the tuning
of the spatial shear modulus distribution within the elastic layer. This
is typically termed the inverse problem. Once such solutions are ob-
tained, an elastic tube with the appropriate properties can be fabricated
(typically via additive manufacturing technologies).

The computation of the deformed swelling-induced shape of a tube
involves a highly non-linear and complex set of equations. Fig. 2 high-
lights this through the illustration of three spatial stiffness distributions
3

in an elastic ring and the corresponding swelling-induced deformations.
As shown, stiffer regions experience smaller deformations than softer
ones along the elastic ring, and the variations in the stiffness along the
contour lead to a deviation from the circular cross-section.

In the following, we solve the inverse problem using an Artificial
Neural Network (ANN) model [13,37,38]. An ANN is a specific type
of Machine Learning (ML) algorithm, inspired by the structure and
functionality of the human brain. ANNs have been applied to a variety
of problems thanks to their ability to learn complex patterns and rela-
tionships [39]. Methods based on Physics-Informed NN (PINNs) have
been developed for tackling engineering problems – whose governing
differential equations are solved by minimizing the residual of some
energy functional – by employing the universal approximation property
of ANN to represent the solution field [40,41]. An ANN consists of in-
terconnected nodes (artificial neurons) arranged in layers. Information
flows through the network from the input layer to the final output one,
undergoing various transformations. In this work, the ANN is trained
with several finite element simulations of a gel that swells inside a
tubular ring with different stiffness distributions.

The architecture of an ANN, i.e. the number and types of lay-
ers it is made of, impacts the learning capacity and performance.
In other words, an ANN dynamically adjusts the weights and biases
based on data provided to the system through an iterative calculation
encompassing: (1) a forward process (input data propagates through
the layers, undergoing transformations at each layer based on the
activation functions and weights); (2) an error calculation performed
by comparing the network output to the desired one; (3) a back-
propagation process aimed at adjusting the weights and biases in order
to reduce as much as possible the contribution of each weight to the
overall error.

3.1. ANN-based shape change inverse design

In general, an ANN operates through several layers which transform
the incoming information into the final quantity we want to predict
through the ANN itself once properly trained (see Fig. 3). In the follow-
ing, we define the input vector 𝑥ℎ = 𝑟̄ℎ, where 𝑟̄ℎ are the dimensionless
adius values with ℎ = 1,… , 𝑚 the number of points used to discretize

the external boundary of the elastic layer surrounding the gel. The
output vector 𝑦(𝑁)

𝑙 = 𝜇̄(𝑁)
𝑙 denotes the dimensionless shear modulus at

discrete position 𝑙 = 1,… , 𝑝 along the perimeter of the elastic ring. The
flow of data can be described as follows,

𝑧(1)𝑗 = 𝑤(1)
𝑗ℎ 𝑥ℎ + 𝑏(1)1 ,

𝑦(1)𝑘 = 𝜎1(𝑧
(1)
𝑘 )

𝑧(2)𝑗 = 𝑤(2)
𝑗𝑘 𝑦

(1)
𝑘 + 𝑏(2)𝑗 = 𝑤(2)

𝑗𝑘 𝜎1(𝑧
1
𝑘) + 𝑏(2)𝑗 , (𝑘 = 1,… , 𝑞)

⋯

𝑧(𝑁−1)
𝑗 = 𝑤(𝑁−1)

𝑗𝑘 𝜎𝑁−2(𝑧
(𝑁−2)
𝑘 ) + 𝑏(𝑁−1)

𝑗

𝑧(𝑁)
𝑙 = 𝑤(𝑁)

𝑙𝑘 𝜎𝑁−1(𝑧
(𝑁−1)
𝑘 ) + 𝑏(𝑁)

𝑙 = 𝑤(𝑁)
𝑙𝑘 𝑦(𝑁−1)

𝑘 + 𝑏(𝑁)
𝑙

𝑦(𝑁)
𝑙 = 𝜎𝑁𝑧(𝑁)

𝑙 ,

(8)

where 𝑤𝑗𝑘 and 𝑏𝑗 denote the weight matrix and the bias vector,
respectively, used to transform the information coming from layer 𝑗
to layer 𝑗+1, and 𝜎 is the so-called activation function whose role is to
account for the non-linearities of the problem. In Eqs (8) the summation
over the repeated indices has been adopted.

The output of the ANN is represented by the vector 𝜇̄(𝑁)
𝑙 containing

the dimensionless distribution of the shear modulus values of the sur-
rounding elastic layer. The ANN assumes hidden layers with 𝑞 neurons
each. Layers 0 and 𝑁 comprise 𝑚 and 𝑝 neurons, respectively (see
Fig. 3). For the generic hidden layer 𝑖, 1 ≤ 𝑖 ≤ 𝑁−1, the transformation

of the information flowing through the ANN can be written as
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Fig. 2. Examples of the shape change obtained by FEM simulations of the gel-elastic layer (with a randomly distributed shear modulus) system upon swelling. Dimensionless shear
modulus distribution (top) and corresponding final shape (down) for three different cases.
Fig. 3. Schematic of the neural network algorithm trained to determine the final shape of the confined gel sphere enclosed in an elastic layer with a distribution of shear modulus
𝜇𝑖.
𝒚(𝑖) = 𝒘(𝑖)𝜎𝑖−1(𝒛(𝑖−1)) + 𝒃(𝑖) = 𝒘(𝑖)𝒚(𝑖−1) + 𝒃(𝑖). (9)

The ANN procedure starts from an initial data 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑚]𝑇

and the corresponding known target outputs 𝑦 = [𝑦1, 𝑦2,… , 𝑦𝑝]𝑇 . The
aim of the algorithm is to determine the matrix of the weights 𝒘𝑖 and
the vector of the bias values 𝒃𝑖 that leads to a good approximation of
the known outputs, i.e. 𝑦(𝑁)

𝑙 ≈ 𝑦𝑙 , 𝑙 = 1,… , 𝑝. This goal can be obtained
by minimizing a cost function 𝐶 ∶ 𝑅𝑛 ←←→ 𝑅, whose role is to quantify the
performance of prediction capability of the ANN, such that

𝒘(𝑖), 𝒃(𝑖) = argmin
𝒘,𝒃

𝐶(𝑦𝑁 (𝒙,𝒘, 𝒃)). (10)

The above-stated minimization problem can be solved by using
optimization methods, typically based on the evaluation of the cost
function’s gradient. The minimization procedure can be done by adopt-
ing the so-called back-propagation algorithm, which evaluates the gra-
dient of the cost function 𝐶 with respect to the weights and the biases
4

through the use of the chain rule,

𝑑𝐶
𝑑𝑤(𝑖)

𝑗𝑘

= 𝑑𝐶
𝑑𝑦(𝑖)𝑗

𝑑𝑦(𝑖)𝑗
𝑑𝑧(𝑖)𝑗

𝑑𝑧(𝑖)𝑗
𝑑𝑤(𝑖)

𝑗𝑘

= 𝑑𝐶
𝑑𝑦(𝑖)𝑗

𝜎′𝑖 (𝑧
(𝑖)
𝑗 )𝑦(𝑖−1)𝑘

𝑑𝐶
𝑑𝑏(𝑖)𝑗

= 𝛿(𝑖)𝑗

𝛿(𝑖)𝑗 = 𝑤(𝑖+1)
𝑘𝑗 𝛿(𝑖+1)𝑘 𝜎′𝑖 (𝑧

(𝑖)
𝑗 )

𝛿(𝑁)
𝑗 = 𝑑𝐶

𝑑𝑦𝑗
𝜎′𝑖 (𝑧

(𝑁)
𝑗 )

(11)

It is worth mentioning that by adopting the logistic activation
function, its derivative can be simply expressed as 𝑑𝜎∕𝑑𝑥 = 𝜎(1 − 𝜎).
Finally, the weights and the biases are updated by using the standard
gradient descent algorithm,

𝛥𝑤(𝑖)
𝑘𝑗 = −𝜂 𝑑𝐶

(𝑖)
= −𝜂𝛿(𝑖)𝑗 𝑦(𝑖−1)𝑘 , 𝛥𝑏(𝑖)𝑗 = −𝜂 𝑑𝐶

(𝑖)
= −𝜂𝛿𝑖𝑗 (12)
𝑑𝑤𝑗𝑘 𝑑𝑏𝑗
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where 𝜂 > 0 is the learning rate. The above expressions provide the
updated weights and biases (𝑤(𝑖+1)

𝑘𝑗 ← 𝑤(𝑖)
𝑘𝑗 + 𝛥𝑤(𝑖)

𝑘𝑗 , 𝑏
(𝑖+1)
𝑗 ← 𝑏(𝑖)𝑗 + 𝛥𝑏(𝑖)𝑗 )

leading to a reduction of the cost function 𝐶.

3.2. Adopted ANNs

In order to solve the above-stated inverse design problem, two
ANNs with different complexities, whose architecture is depicted in
Fig. 3, have been adopted. For both the two ANNs, the activation
function 𝜎 is assumed to be the well-known 𝑅𝑒𝐿𝑈 (rectified linear,
𝑅𝑒𝐿𝑈 (𝑧𝑖) = max(0, 𝑧𝑖), [37,42]) for the layers 1, 2,… , 𝑁 − 1, and the
sigmoid activation function (𝜎(𝑧𝑖) = (1 − 𝑒𝑧𝑖 )−1) has been adopted only
for the last (𝑁th) layer of the ANN [42]. In particular, the following
ANNs have been developed by assuming 𝑚 = 𝑞 = 𝑝 = 72:

• ANN (1) is characterized by 𝑁 = 2 layers with 𝑞 = 72 neurons
each;

• ANN (2) is characterized by 𝑁 = 6 layers with 𝑞 = 72 neurons
each.

The loss function quantifying the error of the ANN prediction (Fig. 4)
is defined as
𝓁 = mean(𝑳) , with 𝑳 = (𝓁1,𝓁2,…𝓁𝑗 ,… ,𝓁𝑁𝑇

)

and 𝓁𝑗 =
𝑝
∑

𝑖=1
(𝜇̄𝐴𝑁𝑁(𝑖) − 𝜇̄𝐹𝐸𝑀(𝑖))2

(13)

where 𝑁𝑇 is the number of cases used for training the ANN, while
𝑝 represents the number of angular positions at which the difference
̄𝐴𝑁𝑁 − 𝜇̄𝐹𝐸𝑀 is evaluated in the elastic layer.

4. Design of swelling-induced shape change

In the present section, we illustrate the use of the ANN-based
approach for the inverse design of a system that is capable of achieving
a target shape in response to swelling-induced forces through two ANNs
with different architectures.

4.1. ANN training

The training process is performed by assigning the vector of the
final radius 𝑟(𝜃), corresponding to the target shape, discretized through
the vector 𝑟ℎ, (ℎ = 1,… , 𝑚 = 72), i.e. by specifying the radius value at
teps of 5◦ over the 2𝜋 angle. The output vector is the shear modulus
ollected in the vector 𝜇ℎ(𝜃), (ℎ = 1,… , 𝑝 = 72).

To generate the data required for training, we define the dimen-
sionless shear distribution values 𝜇̄𝑟𝑎𝑛𝑑 (𝜃𝑗 ) = 𝜇𝑟𝑎𝑛𝑑 (𝜃𝑗 )∕𝜇𝑚𝑎𝑥 with 𝑗 =
1,… , 𝑚 = 72. In the cases we consider, 𝜇̄𝑟𝑎𝑛𝑑 (𝜃𝑗 ) ∈ [0.05, 1] and we set
𝜇𝑚𝑎𝑥 = 660 kPa, corresponding to a Young’s modulus 𝐸𝑚𝑎𝑥 = 2 MPa in
incompressible materials.

The distribution of the dimensionless shear parameter values 𝜇∗,
whose values fall within the range [−𝑀,𝑀], is randomly generated at
discrete angle intervals over the 2𝜋 angle, through a combination of 𝑀
sinusoidal functions via

𝜇∗
𝑟𝑎𝑛𝑑 (𝜃𝑗 ) =

𝑀
∑

𝑖=1
𝐴𝑖 sin(𝐵𝑖𝜃𝑗 + 𝐶𝑖). (14)

Here, 𝐴𝑖 is a randomly generated number with a uniform distribution
in the interval [0, 1], and 𝐵𝑖 and 𝐶𝑖 are randomly generated numbers
with a uniform distribution in the interval [1, 𝑛]; the random parameter
𝑛, here assumed equal to 20, is related to the number of peaks of the
function 𝜇∗

𝑟𝑎𝑛𝑑 (𝜃𝑗 ) in the angular interval [0, 2𝜋]. The number of terms
is taken equal to 𝑀 = 4.

Once a function 𝜇∗
𝑟𝑎𝑛𝑑 (𝜃𝑗 ) is defined, the dimensionless shear modu-

lus 𝜇̄ is computed by linearly mapping it in the range of interest, which
in this case is 0.05 ≤ 𝜇̄ ≤ 1.

As for the gel, the fluid-network interaction parameter has been
assumed to be equal to 𝜒 = 0.55 (see Fig. 4).
5

c

Table 1
Errors 𝑒, calculated according to Eq. (16), quantifying the difference between the target
shapes and the FEM results obtained by using the shear modulus provided by the ANNs
1, and 2 for the four considered target shapes A, B, C, and D shown in Fig. 5.
𝐴𝑁𝑁 𝐴 𝐵 𝐶 𝐷

1 9.15 × 10−4 1.05 × 10−4 6.74 × 10−4 2.75 × 10−4

2 7.63 × 10−4 1.02 × 10−4 5.11 × 10−4 3.22 × 10−4

A total of 𝑁𝑐 = 1200 cases have been prepared by randomly
generating the shear modulus distribution according to the above pro-
cedure based on Eq. (14) and subsequently used in FE simulations
(see Section 2.1) to obtain the final shape induced by swelling. Some
examples of the FEM results based on randomly generated shear mod-
ulus distribution are shown in Fig. 2. The steady-state shapes of the
considered mechanical system obtained by FEM simulations are then
used to train the ANNs characterized by the architectures illustrated in
Section 3.2. Among the FE simulated cases, 𝑁𝑇 = 1000 have been used
for training the ANNs and 𝑁𝑉 = 200 have been used for the validation.

.2. Inverse design of the stiffness distribution in the elastic layer

Next, the ANN is used to design the shear modulus distribution that
chieves the required target shapes in a gel-elastic layer system. To
his end, we employ the simple analytical expression of closed-shape
eometries,

𝑥0(𝜃)
𝑦0(𝜃)

]

= (|cos(𝑛𝑣𝜃∕4)| + |sin(𝑛𝑣𝜃∕4)|)𝑐
[

cos𝛽 −sin𝛽
sin𝛽 cos𝛽

] [

𝑆 ⋅ cos𝜃
sin𝜃

]

, (15)

hich allows us to define a wide range of shapes characterized by a
ifferent number of vertices, size, and orientation in the 𝑥–𝑦 plane [43].
n Eq. (15), 𝑛𝑣 is the number of vertices of the closed shape, 𝑐 is related
o the convexity (𝑐 > 0) or concavity (𝑐 < 0) of the edges, 𝛽 is the
otation of the whole closed shape in the 𝑥–𝑦 plane, −𝜋 ≤ 𝜃 ≤ 𝜋, and

is a scaling factor.
Based on Eq. (15), we choose four target shapes which are illus-

rated in Fig. 5. The dimensionless shear modulus distributions in the
lastic layer provided by the two ANNs for the four target shapes
re depicted in Fig. 6 and the corresponding deformed shapes of the
xternal line of the elastic layer – obtained by FEM simulations by using
he shear modulus distributions provided by the two ANNs – are shown
n Fig. 7.

We find that the stiffness distributions provided by the two ANNs
re very similar and present peaks and valleys according to the number
f vertexes of the desired shape (Fig. 5).

The corresponding deformed shapes obtained by FEM are also al-
ost identical, irrespective of the ANN used (see Fig. 7). As expected,
e find that stiffer regions lead to smaller deformations while softer
reas in the tubular elastic layer experience larger displacements.

The undeformed and the deformed mesh of the FEM simulations
erformed by using the shear modulus provided by the ANN (2) to-
ether with the required target shapes, are shown in Fig. 8.

To quantify the difference between the ANN predictions and the FE
esults, for each case we define the error

𝑒 = mean(), with 𝑇 = (𝑒1,… , 𝑒𝑖,…)

nd 𝑒𝑖 = (𝑟̄𝑡𝑎𝑟𝑔𝑒𝑡(𝑖) − 𝑟̄𝐹𝐸𝑀(𝑖))2, 𝑖 = 1, 2,… , 𝑚
(16)

here ∙̄ = ∙∕𝑟0 indicates the dimensionless radius and 𝑟0 is the ini-
ial external radius of the elastic circular tube layer surrounding the
nswollen gel. The errors, reported in Table 1, reveal that the two ANN
etworks provide sufficient accuracy of prediction, irrespective of the

omplexity of their architecture.
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Fig. 4. Loss function for the training (done with 85% of the available data) and the validation (evaluated by using 15% of the available data) performed with the ANN (1) (a)
and the ANN (2) (b).

Fig. 5. Plot of the four target shapes (obtained by using the parametric expressions reported in Eq. (15) for some choices of the parameters 𝑛 and 𝑚) used as input to the ANNs.

Fig. 6. Dimensionless shear modulus 𝜇̄ = 𝜇∕𝜇𝑚𝑎𝑥 distribution obtained by using the two ANNs (1, 2) according to the four target shapes A, B, C, and D shown in Fig. 5.
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Fig. 7. Morphed shapes obtained by FEM simulations by using the shear modulus distributions provided by the two ANNs (1, 2, see Fig. 6) according to the four target shapes
A, B, C, and D shown in Fig. 5.

Fig. 8. Deformed FEM shapes obtained by using the shear modulus distributions provided by the ANN (2), see Fig. 6 related to the four target shapes (a, b, c, d) shown in Fig. 5.
Undeformed mesh (e).
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5. Conclusions

In this work, we have considered the problem of controlling the
shape change in gel-driven systems where an elastic layer surrounds
a gel core whose role is to produce pressure, induced by swelling,
against the layer itself. Designing a proper stiffness distribution within
the elastic layer enables obtaining different shapes that are precisely
controllable. Through the use of a machine learning-based approach
using an artificial neural network, we have shown that the gel-elastic
layer system can produce quite different shapes whose geometry can be
tuned at will. This strategy for obtaining shape change in swollen gel-
driven systems is suitable to be used in a variety of applications such
as soft grippers, small-scale hydraulic valves targeting specific channel
cross-sections, etc. In vivo applications will also benefit from the use of
hydrogels with shape change capabilities by harnessing their improved
diagnostics and therapeutic characteristics [44]. This approach enables
finding the required stiffness distribution to precisely mimic the desired
shape upon swelling of the gel core. This approach to controlling the
shape change in structures represents a new strategy for designing
active structures.

The design space of this kind of system can become even wider if the
swelling degree, i.e. the amount of fluid uptaken by the network, can
be controlled by environmental stimuli such as temperature change,
enabling a self-controllable shape change.
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