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ABSTRACT The use of Kalman filtering techniques for landslide monitoring has proved effective as a tool 

for estimating and predicting land displacements. Ground-Based Synthetic Aperture Radars (GBSAR) are 

popular remote sensing instruments able to provide displacement maps of the investigated area, with 

submillimeter precision. These instruments outperform other sensors in several respects, such as all-weather 

and all-day monitoring. However, in some cases, for instance in vegetated scenarios, the displacement is 

affected by a significant uncertainty due to the decorrelation of the radar signal. In such a case, to retrieve 

any reliable information, noise must be filtered out using appropriate methods. Given the success of kinematic 

modeling of landslide movements through Kalman filtering, this technique seems to be the optimal candidate 

for processing the displacement measured by interferometric GBSAR data. This paper investigates this idea, 

by applying Kalman Filter to GBSAR measurements acquired in two different campaigns: a landslide 

monitoring in north Spain, and a sliding glacier monitoring in the Alpes, Italy. A proper initialization of the 

algorithm parameters is fundamental for a correct application of the Kalman filter. In this work, we present a 

strategy that exploits information from coherent pixels for tuning the filtering parameters and optimizing the 

filter performance on areas with low coherence. 

INDEX TERMS Ground-Based Synthetic Aperture Radar, Interferometry, Landslide Monitoring, Kalman 

Filter

I. INTRODUCTION 

Slope landslide monitoring is a research field of paramount 

importance for hazard assessment, risk mitigation, and the 

prevention of natural disasters. Numerous sensors and 

techniques have been developed for this purpose in recent 

decades [1]. Field observations of changing topology features, 

along with in situ ground-based observations, and remote 

sensing techniques are the three main category of monitoring 

methods [2].  

Among the latter, Ground-Based Synthetic Aperture Radars 

(GBSAR) achieved success as remote sensing tools for 

environmental monitoring. GBSAR sensors allow to scan the 

desired scenario and detect possible displacements of targets 

in the radar line of sight [3], [4]. The use of interferometric 

techniques permits to measure targets displacement with an 

accuracy of a fraction of the signal wavelength. The 

achievable high resolution coupled with the return time of few 

minutes, make them optimal candidates for real time 

monitoring, which is of great importance on active landslides. 

These sensors are now widely used for environmental 

monitoring, especially in areas not directly accessible with 

other instruments [5], [6].  

The quality of the interferometric radar data strongly 

depends on the characteristics of the investigated scenario. For 

instance, vegetated areas are typically characterized by low 

coherence [7], [8], i.e., the signal is subject to decorrelation 

effects, which results in noisier interferometric data. In these 

cases, standard data interpolation or filtering techniques could 

lead to an underestimation of the actual result, thus, to a 

misinterpretation of the data. Therefore, it is of paramount 

importance to find a way to correctly weight the obtained 

measurements. To this end, the authors of this article identified 

the Kalman Filter as a tool to perform dynamic filtering that 

adequately weights the information coming from consecutive 

acquisitions. having a method that adequately filters the 

measured displacements of low coherence pixels would be a 

valuable resource, as it would improve the deformation 

detection capability of GBSAR sensors.  

The Kalman Filter (KF) [9] is a powerful technique that 

enables to estimate and predict unknown variables starting 
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from noisy measurements of a given quantity. It is currently 

used in several fields, and in a wide range of applications [10], 

[11], such as orbit calculation, target tracking and navigation. 

In landslide monitoring the application of KF techniques has 

recently gained attention, as it proved to be effective in 

estimating and forecasting ground displacements [12]–[14]. 

This technique has been applied to displacement 

measurements acquired with different sensors, and 

successfully managed to filter out noise and properly predict 

ground displacement. 

Since the last century, KF has been used for Synthetic 

Aperture Radar (SAR) applications, for addressing the phase 

unwrapping problem. For instance, authors of [15] proposed 

the use of KF as a tool to simultaneously unwrap and filter the 

interferometric phase of the two dimensional SAR image. This 

approach was based on data fusion of interferometric phase 

and phase slope information, extracted from the power 

spectral density of the interferogram. However, this approach 

did not provide satisfying results in areas of low coherence 

[16] where, in order to obtain reliable results, an a priori 

information is needed. This field of application proved 

successful and efforts are currently been made to optimize this 

technique, for instance by using an Unscented KF [17], [18]. 

The KF has been used also for other SAR purposes; for 

instance authors of [19] proposed a Kalman-filter-based 

approach to determine 3-D surface deformations by using 

multisensory, multitrack, and multitemporal SAR 

interferograms. 

Recently, KF was used also in the processing of GBSAR 

interferometric data [20], [21]. Specifically, in [21] the KF is 

used to implement a near real-time interferometric analysis 

with low computational effort. Furthermore, authors of [20] 

used the KF technique to filter out noise from the timeseries 

of cumulative displacements obtained with interferometric 

analysis.  

In this paper, we further analyze the application of Kalman 

filtering techniques to the processing of GBSAR 

interferometric data. Our intent is to optimize KF to treat 

noisy, low coherence, pixels in the radar image, which would 

be discarded for interferometric analysis, so as to retrieve 

reliable information from them. 

One of the main challenges in the application of the KF 

algorithm, is the parameter initialization. To deal with this 

task, in this work we propose a procedure based on the so-

called Permanent Scatterers [22]. The algorithm parameters 

are first optimized for these pixels, and then used to treat 

noisier ones, with appropriate modifications based on the pixel 

signal noise. This way, it is possible to filter the displacement 

measured on low coherence pixels in the radar image, and 

extract information from them. 

Compared to the study illustrated in [20], we apply Kalman 

algorithms to GBSAR measurements acquired in different 

scenarios, thus, characterized by a great variety of 

backscattered signals. The case studies reported in this paper 

are those of a sliding Glacier in the Alpes, Monte Rosa, Italy, 

and a slow active landslide near Formigal, Spain. These two 

case studies provide useful insights into the application of 

Kalman filter on interferometric GBSAR data. 

The paper is organized as follows: section II reviews the 

basic concepts of GBSAR interferometry, while in section III 

the mathematical formulation of the Kalman filter is 

presented. Finally, in section IV, the experimental results are 

presented and discussed. 

II. GBSAR INTERFEROMETRY 

Interferometry techniques allow to determine the 

displacement of a target between two radar acquisitions. The 

displacement is obtained by manipulating the phase of the 

complex valued GBSAR images. The phase 𝜑 of a complex 

valued image 𝐼, relative to a pixel, is the sum of three terms 

𝜑 = 𝜑𝑑𝑖𝑠𝑡 + 𝜑𝑎𝑡𝑚 + 𝜑𝑛𝑜𝑖𝑠𝑒  , (1) 

where 𝜑𝑑𝑖𝑠𝑡 is a phase contribution which depends on the 

relative distance between radar and the imaged target, 𝜑𝑎𝑡𝑚 is 

the phase contribution due to the atmospheric conditions, and 

𝜑𝑛𝑜𝑖𝑠𝑒  is the noise term. By subtracting the phases of images 

acquired at different times, we get 

𝛥𝜑 = 𝛥𝜑𝑑𝑖𝑠𝑡 + 𝛥𝜑𝑎𝑡𝑚 + 𝛥𝜑𝑛𝑜𝑖𝑠𝑒  . (2) 

After estimation and removal of the atmospheric 

contribution, the phase difference is directly related to the 

target displacement in the radar line of sight, through the 

equation 

𝛥𝑑 =
𝜆

4𝜋
(𝛥𝜑𝑑𝑖𝑠𝑡 + 𝛥𝜑𝑛𝑜𝑖𝑠𝑒), (3) 

where 𝜆 is the wavelength associated to the central frequency 

of the radar signal. Whether the noise term is present or not 

determine the possibility of correctly measuring the 

displacement of a target. In fact, interferometric analysis is 

usually performed on pixels characterized by high signal 

quality, for which the noise phase term 𝜑𝑛𝑜𝑖𝑠𝑒  in (1) can be 

considered negligible. For these pixels, by cumulating the 

displacements retrieved using consecutive GBSAR 

acquisitions, it is possible to obtain the target movement over 

time. However, if the noise term greatly affects the 

interferometric phase, it is difficult to retrieve the correct 

displacement information. The presence of noise can be due 

for instance because of residuals of the atmospheric phase 

screen correction or to non-compensated phase wrapping. The 

latter effect is common in vegetated scenarios, where 

decorrelation can cause a loss of phase information, which 

makes measurement data difficult to interpret. 

In order to single out high quality pixels in a GBSAR image, 

the amplitude dispersion index parameter (𝐷𝐴) is often used 

[22], [23]. It can be defined for each pixel of a GBSAR image 

as  

𝐷𝐴 =
𝜎𝐴

𝜇𝐴
,                                             (4) 
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where 𝜎𝐴 and 𝜇𝐴 are respectively the standard deviation and 

mean value of the pixel signal amplitude time series. It 

quantifies the pixel signal quality and is used in radar 

interferometry to preliminary select candidate areas to carry 

out the analysis. Indeed, this parameter is related to the 

corresponding coherence value [24], but is easier to calculate. 

The 𝐷𝐴 provides us also with an estimation of the 

displacement measurement error. Indeed, for pixels with 

sufficiently high signal to noise ratio, the interferometric phase 

standard deviation can be approximated to the corresponding 

𝐷𝐴 value [22], [25], 

𝜎𝜑 ∝ 𝐷𝐴 .                                             (5) 

Since 𝜎𝜑 can be regarded as an estimate of the interferometric 

phase error, by combining (3) and (5), one can conclude that 

also the displacement error scales according to the 

corresponding 𝐷𝐴. This expression has been taken into 

account for initializing the measurement error parameter of the 

KF. 

III. KALMAN FILTER 

In this section the mathematical formulation of the KF 

algorithm, relative to our case studies, is reviewed. 

The FK algorithm allows to estimate/predict an unknown 

variable 𝒙𝑘, possibly multidimensional, at the discrete time 𝑘, 

from a collection {𝑧𝑘} of noisy measurements of a certain 

quantity. Specifically, the KF consists of two iterative steps: 

the prediction process and the estimation process.  

A. THE PREDICTION PROCESS 

The variable 𝒙𝑘 to be estimated is called the state variable. In 

the first phase, the state variable prediction 𝒙𝑘, at time 𝑘, is 

determined using the estimate obtained at the previous time 

step, 𝒙𝑘−1. To compute this process, a priori information on 

the evolution of the state variable is required. This information 

is encapsulated in the state transition equation, which 

describes the state variable evolution, 

𝒙𝑘 = 𝑓( 𝒙𝑘−1) + 𝒘𝑘 . (6) 

Here, 𝑓 is a linear function that recursively relates the state 

variable 𝒙𝑘 to the state variable at time 𝑘 − 1, 𝒙𝑘−1; 𝒘𝑘 is a 

vector of zero-mean gaussian errors. The variable 𝒘𝑘 is called 

the model error. 

In our case the measurements {𝑧𝑘} are the cumulative 

displacements of a selected target in the scene, obtained using 

interferometric techniques. The multidimensional variable to 

be estimated is composed by the position and velocity 

components of the displacement in the radar line of sight, 

relative to the selected pixel, at time 𝑘. That is, 𝒙𝑘 =
(𝑝𝑘 , 𝑣𝑘)𝑇.  

The linear function 𝑓 represents the kinematic model 

describing the target movement. In the case studies analyzed 

in this paper, we are interested in the ground displacement due 

to the sliding of a glacier or a landslide.  

In both cases, the ground motion results from the sum of 

gravitational and frictional forces acting on the selected target 

of the slope/glacier. Furthermore, in interferometric analysis a 

single pixel is monitored during a certain period. Therefore, 

the retrieved displacement is relative to a point of the scenario 

with fixed coordinates. The point is characterized by a 

constant inclination. Thus, in most cases, the dynamics will 

evolve towards a stationary situation, where the ground is 

subject to constant motion. In this case, the function 𝑓 can be 

written in matrix form as, 

𝐴 = (
1 𝛥𝑡
0 1

), (7) 

where 𝛥𝑡 is the value of the time interval between successive 

acquisitions. 

From a practical viewpoint, the prediction process of the KF 

algorithm consists of two steps; the computation of the state 

variable prediction 𝒙𝑘, and the computation of the covariance 

state variable prediction 𝑃̃𝑘. The state variable prediction for 

the k-th time step, is given by the transition equation 

𝒙𝑘 = 𝐴𝒙𝑘−1 , (8) 

with matrix 𝐴 defined in (7), and 𝐱𝑘−1 the final estimate from 

the previous iterative step. The prediction of the state variable 

covariance matrix is given by 

𝑃̃𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄, (9) 

where the matrix 𝑄 is the covariance of the model error 𝒘𝑘. If 

a white noise acceleration model is assumed [14], [25], [26], 

the 𝑄 matrix is equal to 

𝑄 = 𝜎𝑤
2 (

𝛥𝑡4/4 𝛥𝑡3/2

𝛥𝑡3/2 𝛥𝑡
),              (10) 

Where 𝛥𝑡 is the time interval between consecutive 

acquisitions, and 𝜎𝑤
2  is the covariance of the white noise 

acceleration process. One of the main challenges to properly 

apply KF, is the choice of  𝜎𝑤
2 . 

B. THE ESTIMATION PROCESS 

In the estimation process the measurement 𝑧𝑘 is used to correct 

the prediction 𝒙𝑘, and to obtain the final estimate 𝒙𝑘. In fact, 

each element 𝑧𝑘 of the measurement collection, is related to 

the variable 𝒙𝑘, through the so-called measurement equation 

𝑧𝑘 = ℎ(𝒙𝑘) + 𝑒𝑘,                             (11) 

where 𝑒𝑘 is a zero-mean gaussian error, called the 

measurement error, whose variance is 𝑅 = 𝜎𝑒
2.  

The estimation process involves three steps: the 

computation of the so-called Kalman gain 𝐾𝑘, the correction 

of the prediction estimate 𝒙𝑘 to get the final estimate 𝒙𝑘, and 

the correction of the covariance prediction. The Kalman Gain 

is given by the following expression 

𝐾𝑘 = 𝑃̃𝑘𝐻𝑇(𝐻𝑃̃𝑘𝐻𝑇 + 𝑅)
−1

.          (12) 
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Here, 𝐻 is the state-to-measurement vector, which in our case 

is equal to  

𝐻 = (1   0),                                        (13) 

𝑅 is the covariance of the measurement error 𝑒𝑘, and 𝑃̃𝑘 is the 

prediction of the state variable covariance matrix, calculated 

in (9).  

The correction of the predicted value 𝒙𝑘 is realized by 

properly weighting the deviation of the measurement 𝑧𝑘 from 

the predicted value, with the Kalman gain. Specifically, the 

final estimate of the state variable is given by 

𝒙𝑘 = 𝒙𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝒙𝑘).              (14) 

Finally, the correction of the covariance prediction is 

calculated with the following expression 

𝑃𝑘 = 𝑃̃𝑘 − 𝐾𝑘𝐻𝑃̃𝑘.                         (15) 

C. PARAMETERS INITIALIZATION 

The performance of the KF mainly depends on the choice 

of the state transition kinematic model (the matrix 𝐴), and on 

the model and measurement error covariance 𝑄 and 𝑅, whose 

values must be initialized a priori. Therefore, once the 

kinematic model is selected, the performance of the algorithm 

strongly depends on the choices made for the error covariances 

𝑄 and 𝑅. Changing one of this two quantities, dramatically 

modifies the filter result. Specifically, once the value of 𝑅 is 

fixed, increasing 𝑄 means that the kinematic model is more 

influenced by the error. Thus, in calculating the final estimate, 

the filter gives more relevance to the measurement outcomes. 

On the other hand, by decreasing 𝑄 values, the filter relies 

more on the dynamic model entering the state transition 

equation. As a result, the measurement outcomes have less 

weight in the final estimate. The initialization of the error 

covariance parameters determines the success or failure of the 

filtering procedure. Unfortunately, there is not a universal 

standard for initializing 𝑄 and 𝑅 values, but they must be tuned 

case by case, depending on the signal and scenario 

characteristics. Care must be taken in this choice, since in 

some cases, place too little or too much weight to the 

experimental measurements, can lead to a loss of information. 

In fact, like many other filtering algorithms, KF can lead to 

excessive filtering of the variable of interest. To solve this 

issue, the first setting of the parameters must be performed by 

an operator who, on the basis of a priori knowledge of the 

physical scenario under investigation, can determine whether 

the result is reliable or not.   

To address the challenging choice of model and error 

covariances and avoid over-filtering, in this work the KF is 

first applied to a coherent group of pixels for optimizing the 

filtering parameters. Indeed, these high quality pixels can be 

considered as benchmarks, for which the corresponding 

measured displacement is reliable. When KF is applied to 

coherent pixels, we keep fixed the 𝑅 value, determined by the 

sensor uncertainty, and optimize the Q parameter according to 

the scenario characteristics. For GBSAR sensors the 

theoretical measurement uncertainty on high quality pixels, in 

an optimal scenario, is of the order of 0.1 mm [27]. However, 

especially in natural scenarios, many factors introduce 

additional sources of uncertainty. For instance, natural 

environments are in general characterized by a lower 

reflectivity. Moreover, the large distance of targets from the 

sensor, leads to a decrease in the intensity of the backscattered 

signal, hence, to a decrease of the signal to noise ratio. For 

these reasons, we estimated the measurement uncertainty 

directly from the scenario under investigation, as the average 

of the standard deviation of the displacement of coherent 

pixels of the scenario. Doing so, we obtained a measurement 

uncertainty of the order of 1 mm. Nevertheless, we 

experienced no substantial deviation by tuning the 

measurement uncertainty 𝜎𝑒 from 0.1 mm to 1 mm, as can be 

seen in Figure 1. In this figure, we show results of KF filtering 

of a measured interferometric displacement, with fixed 𝑄, and 

𝜎𝑒 = 0.1 𝑚𝑚 and 𝜎𝑒 = 1 𝑚𝑚. This evidences that the 

algorithm is robust to a fine tuning of the 𝑅 parameter within 

this range. 

 

FIGURE 1. Example of filtered displacement trend obtained with 
different values for the measurement uncertainty. Red dots represent 
the measurement outcomes from interferometric analysis, dashed blue 
and green lines the filtered variables obtained with 𝝈𝒆 = 𝟎. 𝟏 𝒎𝒎 and 

𝝈𝒆 = 𝟏 𝒎𝒎, respectively. 

 

We then proceed as follows: by keeping fixed the 𝑅 value, 

determined by 𝜎𝑒 = 1 𝑚𝑚,  we are able to properly tune 𝜎𝑤
2 , 

and hence, 𝑄 values, considering high quality pixels. Once 

determined the proper choice for 𝑄 for the investigated 

scenario, we apply KF to noisier pixels in the image. This time, 

we keep the 𝑄 parameter constant, and tune the measurement 

error variance 𝑅, according to the noise that affects the data, 

based on (5). 

 

IV. EXPERIMENTAL RESULTS 

In order to study the applicability of KF techniques to GBSAR 

interferometric data, measurements acquired in two different 
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scenarios have been analyzed. They were obtained in 

measurement campaigns performed on Monte Rosa, near the 

village of Macugnaga, Italy, and near Formigal, Spain.  

Our purpose is to use the KF to extrapolate displacement 

information from noisy pixels with low signal quality, by 

tuning the algorithm parameters based on the information 

retrieved from high quality neighboring pixels. As already 

said, to identify high- and low-quality pixels we used the 𝐷𝐴 

parameter. Pixels whose 𝐷𝐴 is less than 0.15 are identified as 

stable targets, whose signal has a high quality. 

A. MACUGNAGA CASE STUDY 

The objective of the Macugnaga measurement campaign was 

to test the ability of a GBSAR system working in C-band, to 

monitor a sliding glacier. The sensor was able to acquire an 

image almost each 30 minutes.  

 

FIGURE 2. Map of cumulative displacements calculated using 
interferometric techniques, in the Macugnaga campaign. Black dots 
indicate the targets used for the analysis.  

 

Fig. 2 shows a map of cumulative displacements of the 

scenario, retrieved from interferometric analysis, performed 

over a time series lasting about 5 days. Before performing the 

interferometric analysis, the atmospheric phase component 

was estimated and compensated by using a linear range model. 

Fig. 2 was obtained by applying a threshold on 𝐷𝐴 values. 

Only pixels with 𝐷𝐴 < 0.4 appear in the image. The part of 

the glacier which is sliding is clearly visible. In this case the 

movement is rapid, at a speed of about 2 cm per hour. 

 

FIGURE 3. Displacement trend over time obtained for target A, of the 
glacier scenario. Red dots represent the displacement measurement 
outcomes from interferometric analysis, while the blue line is the result 

of the Kalman Filter with 𝝈𝒘 = 𝟑. 𝟔 𝐦𝐦/𝐦𝐢𝐧𝟐. 

 

FIGURE 4. Blue dots represent the residual between displacement 
measured value and the corresponding filtered quantity, obtained for 

target A and 𝝈𝒘 = 𝟑. 𝟔 𝐦𝐦/𝐦𝐢𝐧𝟐. The green line highlights the perfect 
agreement. 

 

In this scenario, we selected pixels with different features. 

In what follows we show the results obtained for a stable pixel, 

with 𝐷𝐴 = 0.11 (target A in Fig. 2), and a pixel with 𝐷𝐴 =
0.35 (target B in Fig. 1), at about the same range value. We 

calculated the displacement of the targets over time, using the 

cumulative interferometric phase according to (3). 

Fig. 3 shows the result obtained for target A by applying the 

KF to the measured displacement over time. The blue line 

represents the filtered variable, while the red points represent 

the measured displacement before filtering. In this case, the 

variable 𝜎𝑤 which defines the 𝑄 covariance matrix was set 

equal to 3.6 mm/min2. It can be noted that, the blue line 

representing the filtered displacement over time, partially 
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deviates from the measured values. This is better evidenced by 

the results shown in Fig. 4, where the deviation of filtered 

values from the measured ones is represented. The residual 

clearly shows systematic behaviour. This suggests that this 

filter does not adequately reproduce real motion. In this case, 

the model has been assigned too much weight with respect to 

the measurements. Therefore, we repeated the filtering 

procedure by increasing the 𝑄 values, in order to give greater 

relevance to the measurements. The obtained results are 

shown in Fig. 5 and Fig. 6, for 𝜎𝑤 = 36 mm/min2. In this 

case, the measurement trend is better reproduced, despite the 

noise being filtered, and the residuals appear symmetric, 

which suggests a more reliable estimation. 

 

FIGURE 5. Displacement trend over time obtained for target A, of the 
glacier scenario. Red dots represent the displacement measurement 
outcomes from interferometric analysis, while the blue line is the result 

of the Kalman Filter with 𝝈𝒘 = 𝟑𝟔 𝐦𝐦/𝐦𝐢𝐧𝟐 . 

 

FIGURE 6. Blue dots represent the residual between displacement 
measured value and the corresponding filtered quantity, obtained for 

target A and 𝝈𝒘 = 𝟑𝟔 𝐦𝐦/𝐦𝐢𝐧𝟐 . The green line highlights the perfect 
agreement. 

 

Once optimized the KF parameters, for high quality pixels 

of the scenario, we repeated the processing for low coherence 

pixels, by scaling the measurement error variance 𝑅, based on 

the corresponding 𝐷𝐴 value, according to (5). Fig. 7 shows the 

results obtained for target B (see Fig. 2). In this case, the 

measured displacement was noisier, and the filter successfully 

reduced the noise.  

Since this scenario was subject to a rapid movement, the 

displacement trend was already evident even before the 

filtering operation. However, the filtered displacement is 

smoother, as the KF is able to filter out non-physical 

fluctuations.  

 

FIGURE 7. Displacement trend over time obtained for target B, of the 
glacier scenario. Red dots represent the displacement measurement 
outcomes from interferometric analysis, while the blue line is the result 

of the Kalman Filter with 𝝈𝒘 = 𝟑𝟔 𝐦𝐦/𝐦𝐢𝐧𝟐 . 

B. FORMIGAL CASE STUDY 

To further test the performance of the proposed method, we 

analyzed a second series of GBSAR measurements, acquired 

in Spain, near Formigal, with a C-band system. The system 

return time was of about one hour. Aim of the experimental 

campaign was to monitor a slope landslide, just above a road. 

In this case, the slope was subject to a slow movement, with a 

velocity of about 1 mm per day. Moreover, the slope was 

partially covered by grass and low vegetation. These two 

aspects make this scenario the perfect candidate for our study, 

as it comprises both high- and low-quality pixels, subject to 

slow movements, hence, more difficult to measure. 
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FIGURE 8. Map of cumulative displacements calculated using 
interferometric techniques, in the Formigal campaign. Black dots 
indicate the targets used for the analysis. 

 

Fig. 8 shows the cumulative displacement map, obtained 

using interferometric techniques, after atmospheric phase 

compensation, for a time series lasting 8 days. Only pixels 

with 𝐷𝐴 < 0.4 are shown in the image. 

As done for the Macugnaga case study, KF was applied first 

to high quality pixels, in order to optimize the algorithm 

parameters for this scenario. Here, we report the results 

obtained for target A (see Fig. 8), which has 𝐷𝐴 = 0.15. Fig. 

9 shows the result of the filtering operation once the parameter 

𝑄 has been optimized for this scenario. In this case, the 

covariance noise model 𝜎𝑤 has been set equal to 0.04 

mm/min2. Fig. 10 shows the residual between the measured 

and filtered displacements.  

Once optimized the algorithm parameters, the KF was 

applied to noisier targets, characterized by a higher 𝐷𝐴. As 

done for the Macugnaga case study analysis, the 𝑅 parameter 

was tuned according to the 𝐷𝐴 value of the pixels. In Fig. 11 

and Fig.12 we show the results obtained for target B (𝐷𝐴 =
0.39), and target C (𝐷𝐴 = 0.33), respectively. In both cases, it 

can be seen that the measured displacements (red dots) are 

much noisier. For these targets, without any filtering 

operation, it is not easy to identify which is the displacement 

trend over time. On the other hand, the filtered variables 

clearly outline a decreasing trend in the target position over 

time. It is worth noting that target B and C present different 

displacement velocity. These results suggest that the algorithm 

can successfully be applied to pixels subject to different 

deformation rate.  

 

FIGURE 9. Displacement trend over time obtained for target A, of the 
slope landslide scenario. Red dots represent the displacement 
measurement outcomes from interferometric analysis, while the blue 

line is the result of the Kalman Filter with 𝝈𝒘 = 𝟎. 𝟎𝟒 𝐦𝐦/𝐦𝐢𝐧𝟐. 

 

 

FIGURE 10. Blue dots represent the residual between displacement 
measured value and the corresponding filtered quantity, obtained for 

target A and 𝝈𝒘 = 𝟎. 𝟎𝟒 𝐦𝐦/𝐦𝐢𝐧𝟐. The green line highlights the perfect 
agreement. 

 

It must be noticed that for short time intervals (for instance 

time below 20 hours in Fig. 11), the filtered displacement trend 

shows a probably non-physical peak. However, for times 

beyond 20 hours, such peaks are less and less pronounced. 

This is because the KF algorithm relies on the pixel’s 

displacement history and, in case of noisier measurements, it 

takes longer to converge. Therefore, in case of low coherence 

pixels care must be taken when starting to trust the filtering 

result. For instance, in case of target B (Fig. 11), 

measurements acquired in the first 20 hours should be 

discarded for the analysis. However, this is not a problem for 

modern instrumentations, which have acquisition rates of the 
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order of minutes. Indeed, modern sensors can acquire enough 

measurements for the algorithm to gather information about 

the movement history and, thus, converge within few hours. 

These results show that by using the KF it is possible to 

extract displacement information also from noisy pixels, 

which would have been discarded for standard interferometric 

analysis. 

 

 

FIGURE 11. Displacement trend over time obtained for target B, of the 
slope landslide scenario. Red dots represent the displacement 
measurement outcomes from interferometric analysis, while the blue line 

is the result of the Kalman Filter with 𝝈𝒘 = 𝟎. 𝟎𝟒 𝐦𝐦/𝐦𝐢𝐧𝟐. 

 

 

FIGURE 12. Displacement trend over time obtained for target C, of the 
slope landslide scenario. Red dots represent the displacement 
measurement outcomes from interferometric analysis, while the blue line 

is the result of the Kalman Filter with 𝝈𝒘 = 𝟎. 𝟎𝟒 𝐦𝐦/𝐦𝐢𝐧𝟐. 

V. CONCLUSIONS 

This work explores the possibility of using the Kalman filter 

as a tool to extract displacement information from low-

coherent pixels of a GBSAR image.  

The mathematical formulation of the Kalman filter is 

examined and the application to cumulative interferometric 

radar data is discussed. Particular attention is paid to the 

correct way to initialize the algorithm parameters. 

Specifically, we implement a procedure to optimize KF 

parameters to treat low coherence areas, based on information 

from few high-quality pixels. 

The method is tested on data resulting from GBSAR 

measurement campaigns representative of two different 

scenarios: a sliding fast moving glacier, and a slow-moving 

slope covered by grass.  

The results obtained show that in both situations the KF 

successfully filters out noise and outlines a clear trend for the 

targets position over time. The algorithm proved to be robust 

for the application on noisy targets and targets subject to 

displacements of different intensity. This method can be used 

to extract useful information from areas characterized by low 

coherence, improving the performance of GBSAR 

measurements in slope monitoring. 
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