
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Learning from Video Streams:
Virtual Environments and
Parallel Computation

Enrico Meloni

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Learning from Video Streams:
Virtual Environments and
Parallel Computation

Enrico Meloni

Advisor:

Prof. Marco Gori

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Prof. Roberto Giorgi, University of Siena
Prof. Oswald Lanz, Free University of Bozen-Bolzano
Prof. Marco La Cascia, University of Palermo

XXXV ciclo — April 2023

ii

Acknowledgments

At the end of this three-year-long journey, I would like to say thanks to Marco Gori
for accepting to be my supervisor, welcoming me in SAILab and for guiding me
all this time and for providing the many ideas that helped shaping my research
during the PhD. I would also like to thank the professors that have been a part of
my Supervisory Committee: Prof. Carlo Sansone, Prof. Vincent Lepetit, and Stefano
Merler. I would also like to thank Prof. Battista Biggio and Prof. Bing Liu for taking
the time to review my thesis and for the useful suggestions. I would also like to
thank StefanoMelacci for the dedication in following the projects onwhich Iworked,
giving me valuable insights.

I extend my thanks to the administrative staff of both Siena and Florence uni-
versities, who greatly helped me through the bureaucracy needed for my activi-
ties, with a particular mention to Simona Altamura and her quick and punctual re-
sponses. I thank the BrainControl branch of LiquidWeb S.r.l. for hosting me during
my internship. I also thank the Regione Toscana for the Pegaso grant that funded
my PhD.

My sincere thanks go to themembers of SAILab, with whom I shared these three
years. Even if during half of this period we have been apart due to COVID, I think
we managed to form a close bond that I hope will remain even after the end of my
PhD. Thanks to Matteo, for appreciating the fine art of memes, for the interesting
discussions during coding sessions, and for reassuring me when I felt anxious for
the many difficulties. Thanks to Andrea, for his many suggestions from even before
starting the PhD, for the stimulating talks while having lunch at Gino Cacino, but
mainly for passing me the honor of administrating the SAILab Website. Thanks to
Francesco, for being so welcoming from day one, for the many nerdy nights with
Magic and Heroquest, and for all your significant help in these years. Thanks to
Lapo for the fun conversations, for sharing the same difficulties and taking them
on together, and for teaching me how to snowboard. Thanks to Niccolò, for hav-
ing welcomed me in Siena, for the coffee breaks, and for all the fun times together.
Thanks to Alessandro, for his help when I could not understand what was break-
ing my LATEX codes, and for the engaging conversations on Discord about cooking,
chocolate, and Jurassic Park. Thanks to Stefano F., for making me laugh about my
moments of stress and for invitingme at soccer games. Thanks to the othermembers
of Lab 201, Simone M., Michele, Gabriele, Lisa, Dario, Luca, and Giuseppe for shar-
ing this experience with me and for the nice dinners and activities together. Thanks
also to the members of Lab 202, Simone B., Paolo, Pietro, Alberto, Giorgia, Giorgio,
Anna, Alessio, Caterina, Veronica, Filippo, Elia, Barbara, Giovanna, and Federica for
letting me randomly barge into the lab to have a chat with all of you, and to some
of you for the fun games of tennis. I also want to thank all professors involved in

iii

SAILab, Monica Bianchini, Franco Scarselli and Marco Maggini, for welcoming me
and helping me in various occasions.

I want to thank my friends outside of the PhD for many things: for being sup-
portive, for giving me the occasions of relaxing and chilling, for sharing many expe-
riences in our life, for the fun times, activities and chats. Thanks to Tiziana, Paola,
and Daniele for having been in my life for all these years, we have a special bond
that I really treasure and wish to mantain for even longer. Thanks to Raffaele for
having accompanied me during the University years, in our projects, our coding
challenges with Marco, and with our talks about our professional future. Thanks to
the friends I met in Pisa: Mirko, Maurizio, Dario, Eugenia, I miss the times we spent
together. Thanks to all my friends from Sardegna, withwhom I am so happy to have
kept in contact during all these years I have been away: Eli, Gigi, Gianluca, Ilaria,
Andrea, Gaia, Silvia, Oliver, Laura, Silvio. Thanks to Sofia, Michele, Andrea, Maria,
Martina, and Gioele for the fun nights at the pub. Thanks to the friends that kept
me company and helped me get through the lockdown by playing online together:
Marta, Tina, Mas, Elena, and Chiara. Thanks to Assunta and Martina for creating a
wonderful space thanks to which I met many beautiful people during the last year:
Bb, Tommaso, Fausto, and many others. I want to thank Bb for the wonderful time
together, for the trust they have for me, for the mutual support and help, and for the
unvaluable reassurance they gave me during these difficult times.

Of course, none of this would have been possible without the unreplaceable help
and support of my family, always present and attentive to my needs and supportive
for my future. In particular, thanks mom, dad and Luca.

iv

Abstract

Researchers have always been fascinated by the idea of developing computer
programs that could replicate innate human abilities such as language or vision.
Recently, the Machine Learning community has increased its efforts towards
Continual and Lifelong Learning, pursuing the ambitious objective of develop-
ing autonomous learning agents that learn similarly to humans. Research in this
direction highlights the strikingly artificial approach that has been followed un-
til now in Machine Learning, where the learning procedures dictates the use of
huge datasets and that the learner is shown shuffled samples with no particular
correlation among them and sampled from a static dataset. Clearly, this is sig-
nificantly different fromwhat humans and animals experience in the real world,
that is a continuous multi-sensory stream extracted from a dynamical environ-
ment, with correlations among each modality of the stream, but also between
consecutive samples in each stream, where the flow of time has a central impor-
tance in the way the environment is experienced by the learning agents. The
need of suitable environments in which an artificial learning agent can live and
learn has driven the Artificial Intelligence community to design and implement
3D physical simulations, called Virtual Environments, that straightforwardly
offer a dynamical environment with the capability of creating agents that in-
terface with learning algorithms and can experience their surroundings and in-
teract with it. However, currently available solutions are not mature enough to
fully implement Lifelong Learning agents, with environments that remain fun-
damentally static with the exception of interactions by the learning agent. Fur-
thermore, up until now there has been little research on the safety and security
of such Virtual Environments with respect to malicious users that wish to poi-
son or undermine the integrity of Virtual Environments to damage the learning
of agents living inside them. Finally, while there has been abundant research on
accelerating traditional batch-mode offline learning, little research has been pro-
duced on the matter of accelerating real-time online learning, which is needed
by a learning agent perceiving a real-time online sensory stream. In this thesis,
we address these open problems on three fronts, i. e. real-time stream gener-
ation, safety and security to Adversarial Attacks, acceleration of real-time on-
line learning. We introduce SAILenv, a platform specifically designed to allow
real-time generation and perception of visual streams, with powerful features of
parametrical generation of scenarios aimed at creating incrementally complex
streams of data, specifically considering Continual Learning tasks; we study the
safety and security of the graphical generation engines of the available Virtual
Environments, showing that it is possible to implant Adversarial 3D Objects
able to poison all scenarios in which such objects are integrated; finally, we in-
troduce PARTIME, a library specifically designed for online real-time learners,
thatmust complete processing of a sample from a stream before the next sample
is made available, to mantain real-time performances.

Contents

Contents 1

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 8
1.3 Structure of the Thesis . 11

2 Background 13
2.1 Virtual Environments . 13
2.2 Continual and Lifelong Learning . 20
2.3 Renderers . 23
2.4 Adversarial Attacks . 26
2.5 Parallelism . 30

3 Making Virtual Environments Simple: SAILenv 35
3.1 Related Platforms . 38
3.2 Architecture . 40
3.3 Details on the generated views . 42
3.4 Photo-realistic Objects and Scenes . 45
3.5 Dynamical Objects and Moving Agent 47
3.6 Using SAILenv . 48
3.7 Experimental Evaluation . 50
3.8 Discussion . 53

4 Dynamic Virtual Environments for Continual Machine Learning 57
4.1 Parametric Generation of Environments 60
4.2 Continual Learning 3D Virtual Benchmark 62
4.3 Examples . 66
4.4 Discussion . 69

5 Adversarial Attacks in Virtual Environments 71
5.1 Renderers: Differentiable and Non-Differentiable 73

1

2 CONTENTS

5.2 Adversarial Attacks and Adversarial 3D Objects 74
5.3 Experimental study . 79
5.4 Discussion . 86

6 Parallel Computations in Learning from a Video Stream 89
6.1 Related Work . 91
6.2 Scalable and Parallel Local Computations Over Time 95
6.3 PARTIME . 100
6.4 Experiments . 103
6.5 Discussion . 110

7 Conclusions 115
7.1 Summary of Contributions . 115
7.2 Future work . 117

A Publications 119

Bibliography 123

Chapter 1

Introduction

1.1 Motivation
Researchers have always been fascinated by the idea of developing computer pro-
grams that could replicate innate human abilities such as language or vision (Thrun
and Mitchell, 1995; Hassabis et al., 2017). This aim has been the driving force for
many research works since the late 1950, when the computational capabilities of
hardware started to increase and allow researchers to develop and test new Ma-
chine Learning algorithms. A good tractation of the early years of machine learning
can be found in (Fradkov, 2020). Here we summarize some of the most interesting
points in the history for the scope of the thesis. It was in (Rosenblatt, 1958) that the
Perceptron was first formalized, introducing the Neural Network architectures. Un-
fortunately, after a little more than a decade, it became clear that the computational
power available was still not enough to tackle real-world problemswith these newly
found algorithms, and thus in the early 1970s a period of reduced interest started,
and it was called the first AI Winter.

Later, in the early 1980s, the pursuit for better Artificial Intelligencewas resumed
with newdevelopments in algorithms and toolkits, such as the introduction of Back-
propagation in (Rumelhart et al., 1985, 1986). Together with computational ad-
vances, the successes of Backpropagation brought forth many new research work
on the topic of Machine Learning. Unfortunately, successes on real-world problems
were less than what was hoped; furthermore, some drawbacks were found in the
use of Backpropagation, see (Brady et al., 1989; Gori and Tesi, 1992). This led to the
second AI Winter in the early 1990s.

After a decade of apparent silence and low interest, the first decade of the 21st
century, laid the stepping stones which would enable the current AI Spring and the
successes on real-world problem that we can see all around us. In fact, we can iden-
tify three parallel trends that helped build the foundations of current AI research:
Data Availability, Deep Neural Models, and Parallel Computing.

3

4 Introduction

Figure 1.1: Growth of neural models computational complexity, expressed in
petaflop/s-day, through the last 60 years. Petaflop/s-day amounts to the number
of operations accumulated by performing a petaflop per second for one day, equiv-
alent to 1020 flops. Here we define flop as FLoat OPeration. Float operations per
seconds are instead expressed as flop/s instead of FLOPS as it is expressed in other
texts. Image courtesy of OpenAI (https://openai.com/blog/ai-and-compute/).

Data Availability. With the advent of the internet, social networks, web archives,
and others, the research community had access to huge quantities of data, that
would prove useful in the training and testing of new algorithms, allowing the
creation of standardized benchmarks on which to demonstrate new advances and
contributions. An exemplary case of such trend is ImageNet (Deng et al., 2009), a
large scale image dataset, annotated with crowd-sourcing to tackle the great cost of
manual annotations of such a huge number of images. Every year since 2010, the
ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015) has
gathered new contributions and encouraged new breaktrough research. Consider-
ing even other fields of Machine Learning, data in this era is more accessible and
abundant as ever. The Web is also a great source of textual data (Liu and Curran,
2006), and indeed it was used in many works in the field of Natural Language Pro-

https://openai.com/blog/ai-and-compute/

1.1 Motivation 5

cessing. Recent works in the field (Radford et al., 2019; Brown et al., 2020) leverage
the availability of enormous textual datasets to perform unsupervised pre-training
to reduce labeling costs and therefore allow the training of huge models.

Deep Neural Models. The basic idea of the Perceptron was brought back and de-
veloped, introducing the concept of Deep Machine Learning. Out of the many ap-
plications of Deep Learning, we mention Convolutional Neural Networks or CNN,
introduced in (LeCun et al., 1989a,b), since aCNNcalledAlexNet (Krizhevsky et al.,
2017) won the ImageNet challenge in 2012 with a huge margin to its next competi-
tor, demonstrating the learning capabilities expressed by these new algorithms and
bringing further research interest in the field of Deep Learning and Convolutional
Neural Networks. Since then, researchers have incresed the complexity of their neu-
ral models at an even faster pace, as summarized in Figure 1.1. In (Simonyan and
Zisserman, 2014), VGG networks were presented, deep networks with 16-19 weight
layers, and again winning the ImageNet competition. In (He et al., 2016), Resid-
ual Networks were introduced, increasing the depth of the network by 8 times with
respect to VGG, showing how deep networks can increase the benefits and better
optimize learning by winning the 2015 ImageNet competition. Recently, a class of
neural models known as Transformers, introduced in (Vaswani et al., 2017), has been
a driving force in increasing model complexity to unprecedented scales. This is the
example of GPT-2 (Radford et al., 2019), with around 1.5 billion parameters and
GPT-3 (Brown et al., 2020), with around 175 billion parameters. In general, the trend
of recent research has been that of increasing model complexity to better take ad-
vantage of the huge set of data available on the internet.

Parallel computing andmemory. During the first decade of the 21st century, many
breakthroughs were unveiled in the field of parallel computing, for example Google
MapReduce in 2004 and Hadoop in 2006, enabling new software that distributed
processing among multiple processors while efficiently exchanging huge amounts
of data between processors. At the same time, the GPUs market, which was origi-
nally intended for 3Dgraphics andvideogames, had a newbreakthroughbyNVIDIA,
which developed general purpose GPUs and the CUDA language that allowed to
write software in a C-like language. This of course allowed researchers to imple-
ment learning algorithms in a parallel fashion through the use of GPUs innate par-
allel capabilities (Steinkraus et al., 2005; Chellapilla et al., 2006; Cireşan et al., 2010).
The conjunction of GPUs and Machine Learning allowed both fields to develop at
a quick pace, bringing forth novel tools that enabled further research on the top-
ics, such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019). The
availability of tools that accelerate the computation for neural networks allowed the
research community to increase the complexity of models. Unfortunately, the limit

6 Introduction

of single devices in terms of achievable computational speed and available memory
was quickly reached, forcing researchers to intersect with the field of Distributed
Computing, designing networks and algorithms that can operate on networks of
devices, taking advantage of concurrently executing parallelizable operations (e. g.
most of the training loop is parallelizable over independent data), more available
memory and fast data exchange protocols (Shoeybi et al., 2019).

The current landscape of Machine Learning research has deeply evolved dur-
ing the recent decades, leveraging the availability of huge datasets, the increasing
complexity of neural models alongside the hardware and technical advances for en-
abling such huge models. However, many evaluation protocols, such as ImageNet
(Russakovsky et al., 2015), were designed as a static evaluation: there is a fixed train-
ing dataset and a fixed testing dataset, the two are accurately separated as the sec-
ond is only used for the final evaluation. The training dataset is often composed of
independent samples of the considered categories, and they are almost always pre-
sented to the network in shuffled batches (Lomonaco andMaltoni, 2017). In general,
the main focus of past research was towards batch-mode offline learning on huge
datasets. Recently, however, the Machine Learning community has increased the
efforts towards researching Continual and Lifelong Learning, due to the interest to-
wards autonomous learning agents. These recentworks highlight the strikingly arti-
ficial approach that is currently being used for the development of learning models.
In fact, the shuffled independent samples in datasets present significantly different
learning conditions with respect to those to which humans and other animals are
exposed during their lifetime (Krueger andDayan, 2009; Cangelosi and Schlesinger,
2018). What humans experience is a continuous multimodal stream of data, expe-
rienced and processed in real-time, online, without storing huge collections of data
and re-experiencing them in random order. In this thesis, by real-time stream we
intend a stream of data S where the interarrival times between a sample and the
next one are always under a certain threshold ∆S. Often, when considering online
learning from a real-time stream, it is considered of most importance to keep the
output stream O framerate at least equal to the input stream I framerate. This can
be framed as fpsO ≥ fpsI , where fpsO and fpsI are the output and the input stream
framerates respectively. This is equivalent to 1

∆O
≥ 1

∆I
which finally sets the thresh-

old ∆O ≤ ∆I . When considering sequential processing, ∆O is almost always equal
to the response time of a network. However, taking into account parallel process-
ing, ∆O can be actually lower than the response time of the network, which can help
speeding up computations in settings where the processing delay can be considered
unimportant. This will be considered in more depth in chapter 6.

Recent works, such as (Lomonaco and Maltoni, 2017) made step forwards into
the definition of datasets and benchmarks which accept “episodes”, that is short
videos where temporal coherence is mantained and the agent is supposed to learn

1.1 Motivation 7

from a continuous source of data, slowly integrating new information from new
episodes. While this is certainly an improvementwith respect to the common offline
batch-mode approach, we argue that this is still not close enough to what humans
perceive and elaborate. To fully achieve the idea of an embodied agent that learns as
long as it lives, we need a suitable environment in which to let it discover and extract
new information fromwhat it can sense. Unfortunately, for many applications, such
as robotics, using the real-world as the chosen environment is unfeasible for several
reasons, for instance the cost and the dangers to which humans or things could be
exposed. To solve some of these issues, 3D Physical simulations, also called Virtual
Environments, were introduced by the Machine Learning community, to allow the
generation of experimental settings, often with full automated labeling, at low cost
and with negligible risk. In (Shu et al., 2021) an episodic benchmark called AGENT
is presented, leveraging the physical simulation of ThreeDWorld (Gan et al., 2020) to
automatically generate a great amount of visual data, and in (Shridhar et al., 2020),
the authors introduce a benchmark for visual navigation and instructions interpre-
tation, calledALFRED, generated through the AI2-THOR environment (Kolve et al.,
2017). We argue that Virtual Environments are actually a fundamental tool to fulfill
the ambition of Lifelong Learning agents that can live inside these physical simula-
tions, experiencing multimodal sensory information, under the physical constraints
of the environment, in a virtually endless timeline with the potential of slowly in-
troducing new difficulties and concepts to the agent. Some work in this direction
has been started in RoboTHOR (Deitke et al., 2020), which use the AI2THOR Vir-
tual Environment (Kolve et al., 2017) to generate a real-time visual stream from an
indoor environment with interactable entities. However, the environment itself is
still fundamentally static in nature, as the number of potential interactions is still
limited by the learning agent capabilities, most of the objects are not in movement
and nothing will change without the intervention of the learning agent.

While Virtual Environments are indeed a powerful tool that is most likely suit-
able to enable further research in the field of Continual and Lifelong Learning, there
is currently little research on their reliability and robustness to attacks that aim at
invalidating the results of benchmarks through them. It is known that Adversarial
Attacks are also performable on 3D objects (Athalye et al., 2018), but not enough
studies have focused on the transferability of such attacks to Virtual Environments.
This is an important issue that cannot be overlooked, especially when considering
the case of public Virtual Environments that accept contributions from a wide com-
munity of people. In fact, once an Adversarial 3D Object is integrated into the en-
vironment, it can potentially poison many scenarios and each of the frames in the
generated visual streams, exponentially spreading its malicious effect. Such adver-
sarial objects could be used to lower the performances of a given model by crafting
3D objects aimed specifically at that model. They could also be used to inject back-

8 Introduction

doors that can help a properly tuned model, similarly to what is already done for
2D images (Chen et al., 2018).

Regarding the computational side, Continual andLifelong Learning in the online
real-time processing paradigm, are limited by the achievable computational speed
of current hardware. As a matter of fact, current neural models are so deep that
real-time processing, intended as processing each sample of a stream before the ar-
rival of the next one, is not feasible. In fact, most of the current implementation
leverage the parallel architecture of GPUs to concurrently process multiple inde-
pendent samples and reduce the training times. This is, of course, not feasible for
the case of real-time online learning, since each data sample must be processed be-
fore the next one arrives. Collecting samples into a batch and processing them all
together is not a suitable solution, as it dramatically increases the response time for
earlier samples. Current research often focuses on Data Parallelism, which is an
extension of the above mentioned paradigm, in which independent data is concur-
rently executed by different GPUs, and Model Parallelism, where a neural model
is split into sub-models which operate concurrently on independent parts of the
computation graph and eventually reconstruct a single output. A particular Model
Parallel technique which is gaining traction for its general purpose practicality is
Pipeline Parallelism, which is actually an Asynchronous Model Parallel paradigm
that straightforwardly applies to feed-forward neural networks (Huang et al., 2018).
Nevertheless, these approaches are still focused at batch-mode learning, applying
the Pipeline Parallelism over mini-batches with independent data traveling through
the pipeline. There is currently little research on how to apply these types of paral-
lelism on streams of individually available samples.

To summarize, we see some open problems in the task of learning from Video
Streams in a Continual and Lifelong Learning setting. a) current approaches are
still far from the idea of learning agents that live in a dynamic environment, relying
on static environments and episodic benchmarks, b) there is the need of suitable
environments in which to let learning agents freely live; c) there is little research on
how reliable and robust are virtual environments tomalicious individuals that want
to corrupt benchmarks and training; d) there are no parallel computing paradigm
explicitly designed for online real-time learning. In the next section, we introduce
the contributions in this directions that will be presented in the rest of the thesis.

1.2 Contributions
This thesis aims at answering part of the open problems discussed in the previous
section, designing and developing engineering solutions while evaluating their po-
tential impact on enabling new research that would be otherwise considered too
hard or costly, allowing researchers to break free from the common assumption of

1.2 Contributions 9

having huge datasets on which to perform offline batch-mode training, allowing
instead the real-time online generation and processing of new data, ultimately en-
abling research on Continual and Lifelong Learning in a real-time online setting.

The first contribution of the thesis is SAILenv, a 3D Virtual Environment de-
veloped in the Siena Artificial Intelligence Laboratory, explicitly designed for the
generation of visual streams for enabling task relative to visual recognition, with
support for easy extension of the available scenarios even by users with low exper-
tise on Computer Graphics, since this lack of expertise is the most common reason
for renouncing to use powerful tools such as 3D physical simulators. The contribu-
tion is exposed with more details in chapter 3, focusing on the design and ease of
interfacing with Machine Learning frameworks. SAILenv is able to generate multi-
modal visual streams, producing in particular photo-realistic visual streamswith as-
sociated metadata (i. e. dense pixel-wise segmentation, motion information, depth,
etc.), with particular attention to efficiency and performance to achieve real-time
generation and communication capabilities and ease of interfacing to users’ code.
SAILenv is carefully designed to allow the creation of agents that may freely live,
move and experience the available scenarios. The design of SAILenv pushes to-
wards the direction of enabling Continual and Lifelong learning tasks in real-time
online settings, with real-time generation of data and low-latency communication
to commonMachine Learning frameworks, with extensible scenarios that are easily
crafted to the needs of Continual Learning tasks. Based on (Meloni et al., 2021a).

In chapter 4, the thesis focuses on the second contribution, that is a parametric
framework that allows to dynamically generate replicable scenarios in which to let
the agent live, with moving objects and the possibility of slowly introducing new
objects and information to enable tasks that are usually framed as class-incremental
settings. We describe the theoretical groundings of the parametric framework, pro-
ceeding to describe the implementation and integration into SAILenv and the use of
these tools to generate growingly complex scenarios through some examples, and
how such scenarios can be used to enable new research. The parametric generation
framework pushes in the direction of Continual Learning, allowing the researcher to
generate scenarios that gradually increase in complexity, allowing themeasurement
of stability-plasticity capabilities of the learning agent without having to resort to
episodic benchmarks that might make the experimental setting too artificial. Based
on (Meloni et al., 2022a).

The third contribution, presented in chapter 5, focuses on the study of the relia-
bility of Virtual Environments to Adversarial Attacks performed on 3D objects. In
the chapter, we describe a possible scenario in which an attacker has access to easily
available differentiable renderers with which to perform adversarial attacks on pub-
licly available objects from the Virtual Environment library. To do so, we design a
variation of the Projected Gradient Descent attack that takes into consideration the

10 Introduction

fact that we are attacking a 3D object that could be seen from various viewpoints
and the fact that the Virtual Environment does not produce the same outputs as
the differentiable renderers, to devise a saliency-based attack that focuses on salient
pixels of the object inside the Virtual Environment. We evaluate how easy it is to
transfer these attacks even with limited resources, demonstrating the importance of
discussing how to process contributions for Virtual Environments to keep them reli-
able and trustworthy tools, suitable to be used as the environment onwhich learning
Agents can live and learn useful information that might be harmlessly used in the
real-world. Based on (Meloni et al., 2021b).

The fourth contribution, deals with the open problem of not having proper tools
for accelerating the processing of real-time online visual streams. In chapter 6, we in-
troduce PARTIME, a multi-GPU parallelization library to wrap around neural mod-
els to accelerate them in the context of real-time online learning. The contributions
takes inspiration from the recent works in Pipeline Parallelism paradigm for batch-
mode processing, designing and implementing a variation that focuses instead on
accelerating training from samples received one at a time froma temporally coherent
visual stream, as it would be the case in online real-time Lifelong Learning, achiev-
ing considerable speed-ups that scale almost linearlywith the number of usedGPUs,
at the cost of an approximated gradient computation that is shown to be acceptable
in the context of smoothly evolving visual streams, which would be the primary
case of application for learning and living agents that might be used in real-world
scenarios. Based on (Meloni et al., 2022b).

To summarize, the contributions of the thesis are the following,

• Design and implementation of SAILenv, a 3DVirtual Environment specifically
designed for real-time generation of fully annotated visual streams and en-
abling living learning agents;

• Description of a theoretical parametric framework for generation of dynamical
visual scenes suitable for Continual Learning, among other tasks, as well as
the design and implementation with SAILenv alongside examples and case
studies, such as class-incremental tasks in which objects are slowly introduced
increasing the scene complexity;

• Study on the feasibility of transferable Adversarial Attacks on Virtual Environ-
ments, evaluating howeasy it is to transfer such attacks toVirtual Environment
and show the need of careful administration of public contributions;

• Design and implementation of PARTIME, a multi-GPU parallelization library
to wrap around neural models to accelerate them, applying the Pipeline Par-
allelism paradigm shifting it from the context of batch-mode offline learning
to that of real-time online learning.

1.3 Structure of the Thesis 11

1.3 Structure of the Thesis
This thesis is structured as follows.

• In chapter 2, we briefly summarize the current state-of-the-art in the fields
of Virtual Environments, Continual Learning, Adversarial Attacks, and Paral-
lelism.

• In chapter 3, we describe in great detail the design and the implementation of
SAILenv, describing its structure, the design choices, how to easily interface
it with Machine Learning frameworks for carrying experiments in the field
of visual recognition and learning agents freely living and experiencing the
Virtual Environment. We also present experimental results to prove its photo-
realism and its usefulness as a benchmark tool for visual recognition tasks.

• In chapter 4, we describe a theoretical parametrical framework for generation
of dynamical visual scenes that canmore appropriately resemble the approach
of Continual and Lifelong learning, with new information and objects that are
gradually and incrementally added to the simulation, increasing the complex-
ity of the scenario and allowing the measure of the capability of the agent to
learn without forgetting previously acquired knowledge.

• In chapter 5, we study the feasibility of transferable Adversarial Attacks from
novel tools that enable 3D adversarial attacks to Virtual Environments, we ar-
gue the potential of malicious users to poison benchmarks created through the
use of Virtual Environments, proving the possible implications of data poison-
ing with a set of experiments designed with this particular question in mind,
introducing a PGD saliency based attack that takes into consideration the par-
ticularities of the Virtual Environment graphical renderer.

• In chapter 6, we describe PARTIME, a Python library specifically designed for
easily wrapping neural models and enabling multi-GPU acceleration for the
task of real-time online Continual Learning, often times not tractable with
modern neural architectures due to their computation-intensive nature that
prevent them from having short enough response times to process a visual
stream sample-by-sample, that is finishing the processing of a sample before
the arrival of a new one.

• Finally, in chapter 7 we draw conclusions on the presented work, expressing
further open questions and presenting some hypothesis on possibly interest-
ing future work.

Chapter 2

Background

In this chapter we define the technical terms, the state of the art, and the main con-
cepts involved in the description of the engineering solutions used across the thesis.
In section 2.1 we briefly describe the technical details of Virtual Environments, in-
troducing the terms that will be used in chapter 3 and in chapter 4. In section 2.2 we
introduce the concepts of Continual and Lifelong Learning, briefly describing some
of the solutions for Continual Learning tasks at the current state-of-the-art and in-
troducing the open problems that will be addressed in the thesis. In section 2.3 we
introduce the terms related to rendering, useful for understanding chapter 3 and
chapter 5. In section 2.4 we introduce Adversarial Attacks, a taxonomy to categorize
them and a formalization of the type of attacks that will be described in chapter 5.
Finally, in section 2.5 we introduce parallelism techniques for Machine Learning,
with a brief description of Pipeline Parallelism, concepts that will be used again in
chapter 6.

2.1 Virtual Environments
In the recent decades, the Machine Learning research community started to show
an increasing interest in 3D physical simulators as a mean to artificially recreate ex-
perimental settings close to real world settings but at a fraction of the cost. These
kind of physical simulators are generally known as Virtual Environments, or 3D
Synthetic Environments, 3D Simulation Platforms, but for the rest of the thesis we
use the term Virtual Environment to indicate them. During the recent years, Virtual
Environments have been improved and evolved, steadily increasing the capabilities
of physical and rendering engines, leveraging the industrial standards commonly
used for game development and re-purposing them as scientific tools for Machine
Learning. Virtual Environments have been used in recent years to enable an array
of experiments that would have been to costly to set-up in a real-world setting. For-
mally, we can define a Virtual Environment as a software that allows the user to:

13

14 Background

choose a Scenario (or even build a custom one) populated with photo-realistic ob-
jects meant to recreate a real-world setting; place an entity inside the scenario, called
Agent, that can experience the world in an egocentric manner through the simula-
tion of different type of sensors (i. e. RGB camera, depth sensors, audio sensors) and
augmented with metadata useful for training (i. e. semantic segmentation, optical
flow, instance segmentation); define dynamics and behaviors for the objects in the
scene, allowing interactions and moving objects; communicate the experiences of
the Agents to other software libraries to generate datasets or to provide a real-time
stream of the environment through the eye of the Agent. This capability is crucial
when considering the huge costs incurred by researchers when trying to collect and
annotate datasets that are big enough to properly train recent neural models with
their ever growing complexity. Virtual Environments prove their importance even
more so when considering learning agents that continuously live, learn and interact
with the environment.

Virtual Environments rely on 3 main components:

• A physical engine, which should replicate with high fidelity the physics of the
real world, while allowing the customization of physical behaviors to intro-
duce object dynamics for the purposes of experiments. Some Virtual Environ-
ments employ custommade engines, but currently themost advanced ones, in
terms of degree of realism, use industrial standard engines such as Unity3D.

• A rendering engine, that is a piece of software that takes as input the descrip-
tion of the scenario and the 3D objects inside of it and produces a 2D image
with the attached metadata and sensor data. The rendering engine is cus-
tomizable up to a certain extent, allowing the definition of Agents with dif-
ferent kind of real-world setups in terms of cameras, field of view, noise levels,
etc. In section 2.3 renderers are described in more detail.

• A communication protocol, which interfaces the Virtual Environment to aMa-
chine Learning framework through the proxy of the Agent. Communication
protocols are designed to have low overheads in order to maximize the band-
width and minimize the response times of the data incoming to the learning
algorithm, and concurrently guarantee the fidelity of the data.

Synthetic data can in general be a powerful aid in this matter. In particular, with
Virtual Environments, researchers can easily and procedurally generate potentially
unlimited amounts of annotated data, with costs in both time and money that are
incomparably smaller with regards to those incurred with collecting and annotat-
ing the same amount of real data. Furthermore, for many tasks such as automated
driving or automatic control of a robotic arm, reinforcement learning is a commonly
used solution (Rao, 2000): to enable reinforcement learning in these situations, re-

2.1 Virtual Environments 15

alistic and controllable simulations are essential for the training of the model.

Dataset Generation One of the issues that the research community had to tackle
once the complexity of architectures rose to unprecedented levels was how to train
such a huge number of parameters. In some cases, Big Data allowed the creation
of equally huge datasets that made possible to train the networks with outstanding
results. This was the case of ImageNet (Deng et al., 2009; Russakovsky et al., 2015),
Microsoft COCO (Lin et al., 2014), and others. Unfortunately, this is not the case
in many real-world applications, where data collection is hard, or costly, or simply
unfeasible. In such cases, the most common go-to solution was Transfer Learning
and Domain Adaptation, using state-of-the-art models that performed well in simi-
lar context and adapting themwith low amounts of data on the desired task. While
this could in principle provide an acceptable performance, it is still sub-optimal. The
research community then started to consider 3D computer graphics to create syn-
thetic data that could act as surrogate for big data, while using expensive real data
in small amounts for ensuring that the network would be able to pick up details
missing in the 3D renderings but useful in real-world applications.

During the last decade, many synthetic dataset were genereated andmade avail-
able to the research community. The encompassed tasks are varied, including but
not limited to Object Detection (Meloni, 2019; Di Benedetto et al., 2019, 2021), Au-
tomated Driving (Johnson-Roberson et al., 2016; Quiter and Ernst, 2018), Pose Es-
timation (Fabbri et al., 2018). We summarize some of these works to highlight the
successes of synthetic data in being a surrogate to real-data and still achieving high
performances in many tasks from Object Detection to Automated Driving.

We can consider the work in (Meloni, 2019; Di Benedetto et al., 2019, 2021) to an-
alyze a case where real data collection is often hard and why Virtual Environments
can solve many of the issues involved in annotation and collection. In these works
we study the case of protective personal equipment detection in construction sites,
a task with significant practical applications but with critical issues in the data col-
lection phase. In facts, to the best of our knowledge, public datasets for that task
did not exist previous to the referenced works. The reasons of such difficulty, be-
side the need of manually annotating camera feeds, are all straightforward: data
collection activities require an agreement between the researchers and the construc-
tion company; workers too must agree to privacy policies so that their pictures can
be used, alternatively images must be properly anonymized; it is likely that work-
ers from the same construction company all use similar equipment, reducing the
generalization capability of models trained on such dataset; collecting data in such
a way limits the number of negative examples (i. e. images where workers do not
use equipment) since it is not legal to operate in dangerous conditions; finally, cam-
era feeds collected in such a way are sparse, in the sense that only a few frames

16 Background

will actually contain worker activity, and they will have to be manually inspected
to remove useless frames. All of these problems are solved in the referenced works
with the use of Virtual Environments, in particular the graphics engine of the GTA
V videogame. It is used to generate a suitable synthetic dataset, on different con-
struction sites, with variable equipment, with no need for privacy policies, plenty
of examples with workers in dangerous conditions, and dense videos without idle
times.

Given these compelling reasons, an interesting problem left is whether a model
trained on synthetic data is able to generalize well enough to be used on real appli-
cations, or if it will learn particular patterns that belong exclusively to the Virtual
Environments. In (Johnson-Roberson et al., 2016), authors trained an automated
driving model on 50K and 200K synthetic images, and the resulting network out-
performed a network trained on around 3K real images when tested on a validation
set made of real images. Their work proved a positive result of synthetic data, that
can in specific settings completely replace real data.

Similarly, in (Meloni, 2019; Di Benedetto et al., 2019, 2021) the main positive re-
sult is that synthetic data can be used in conjunction to a smaller real dataset to
significantly improve the generalization capability of the network. However, the
accuracy on the real test set is around 76%. One of the factors is that the Virtual En-
vironment did not allow to closely replicate the domain distribution of the real test
set, since most of the images not in the test set are not taken from security cameras.
This highlights an interesting requirement for the Virtual Environments: while in
some cases it is not necessary for the synthetic data to be perfectly photo-realistic
(Mayer et al., 2018), the environment must be carefully handcrafted to match the
test domain distribution. While this may seem a time-consuming task, it is impor-
tant to remind that it is a one-time only job that will later allow to create virtually
infinite data.

Regarding the photo-realism quality of the synthetic data, (Mayer et al., 2018)
proposes interesting guidelines: for low-level computer vision, such as optical flow,
realism is often not necessary, as shownwith the Flying Chairs dataset (Mayer et al.,
2016); it is instead useful (but not necessary) simulating flaws of real cameras, such
as distortion and blur; finally, it helps taking advantage of the generative capability
of Virtual Environments to create different virtual datasets with varying domains,
such as lighting and weather conditions. Conversely, high-level computer vision
tasks benefit of high photo-realism data, reducing the gap that have to be bridged
when performing domain adaptation before the deployment and use on real data.

Summarizing, Virtual Environments are powerful yet flexible tools that allow the
research community to reduce costs in the generation of the huge amounts of data
necessary for training current large models, and have proven themselves in many
occasions to yield accurate and precise models even when photo-realism is not as

2.1 Virtual Environments 17

strong as most recent 3D computer graphics toolkits allow. Of course, Dataset Gen-
eration was clearly the most obvious and immediate use of Virtual Environments,
given that it reflects a common assumption in Deep Learning, that is training with
batch-mode offline procedures. While this is of course an important aspect of Ma-
chine Learning that drove the evolution of the Artificial Intelligence field until now,
we argue that this is not the most natural paradigm of learning, and it is certainly
different from the way humans learn. We will argue in more detail about this state-
ment in the next section.

In the recent years there has been interesting work in this direction. We can take
as an example ALFRED (Shridhar et al., 2020), a benchmark for navigation and
instructions interpretation generated through the AI2-THOR environment (Kolve
et al., 2017), which contains a great amount of episodes and high-level instructions
that can be used to train an agent to interpret language directives and an egocentric
vision to perform a sequence of tasks in an indoor environment. Another example
is AGENT (Shu et al., 2021), a benchmark for core psychological reasoning pro-
cedurally generated with ThreeDWorld (Gan et al., 2020), containing a significant
amount of episodes that can be used to test four types of reasoning (goal preferences,
action efficiency, unobserved constraints, and cost-reward trade-offs) and probe key
concepts of core psychological reasoning.

Real-time streams Humans, and more in general animals, live inside a dynamical
environment, where visual stimuli change in a continuousway and follow strict con-
straints given by the laws of physics. This paradigm is significantly different from
the idea of huge datasets that collect big amounts of loosely correlated data. In fact,
one could easily notice that a child does not need annotations for every pixel in their
retina, but it only needs few supervisions on objects onwhich they are focusing their
attention (Betti et al., 2022). There is certainly value in studying learning agents that
live and learn in an open environment, making them experience the world in which
they operate similarly to how humans do. In fact, this goes in the direction of Life-
long Learning. Lifelong Learning is an advanced paradigm that involves an agent
that learns continuously, accumulating knowledge from the past, adapting it to new
stimuli and putting it to use to effectively learn new knowledge and solve future
problems (Chen and Liu, 2018). It differentiates itself from the paradigm of learn-
ing from huge datasets as it involves open environments, as opposed to closed envi-
ronments. It necessarily needs to be semi-supervised, relying on few supervisions
from other agents (initially humans, but potentially even othermore knowledgeable
agents), while acting on self-supervisions when faced with information that can be
interpreted through the lens of past knowledge.

Once again, Virtual Environments are clearly a good fit for tackling the problem
of letting a learning agent live in an open environment. They eliminate the risks

18 Background

of letting an embodied agent learn in the real world, potentially posing dangers to
humans and things around themwhile they first learn how to navigate and interact
with the world; they reduce the costs of prototyping, since with Virtual Environ-
ments the cost of repeating an experiment is merely launching the software again,
while in a real environment it would involve rebuilding or at least reprogramming
an embodied agent; supervisions can be provided by humans, but also by theVirtual
Environment itself: in fact, by definition, the Virtual Environment software knows
what is showing to the agent, and can therefore automatically respond to queries by
the agent on the nature of objects.

In summary, Virtual Environments can easily enable this paradigm with few
tweaks and adaptations to the task. In fact, the current technology in 3D physical
simulation already allows real-time performances in the simulation of open worlds
with thousands of simultaneous interactions between entities and users. They also
fancy highly photo-realistic qualities: it is the case of state-of-the-art engine such
as Unity3D, which powers many of the videogames that are played all around the
world on consumer-grade hardware. The future of this field is paved by the recent
release of Unreal Engine 5, which employs ray-tracing technologies (see section 2.3)
to allow the creation of visual streams so realistic that an untrained eye cannot distin-
guish it from a real video taken by a real camera. For example, see Figure 2.1. The
same technological solutions used for generating video datasets such as AGENT
(Shu et al., 2021) and ALFRED (Shridhar et al., 2020) can be readily extended to en-
able the paradigm shift and go through Lifelong Learning. This direction was taken
for example in (Marullo et al., 2022), where a Virtual Environment was used to cre-
ate a visual stream on which an agent is trained to perform Optical Flow estimation
in a Continual Learning fashion.

In this direction, this thesis covers the design and implementation of SAILenv
(Meloni et al., 2021a), which was intended to enable the generation of fully an-
notated real-time photo-realistic streams through the use of Unity3D engine. The
platform was in fact used to enable Continual Learning research in (Tiezzi et al.,
2022b), where visual streams generated in real-time by SAILenv where used as vi-
sual stimuli for the unsupervised learning of visual features, and the annotations
in the stream were used for a few-shot open-class and class-incremental learning
of Object Segmentation task. SAILenv is covered in more details in chapter 3 and
chapter 4.

Safety concerns It is clear that Virtual Environments can be a powerful tool for
many tasks and research work. Another important quality of Virtual Environments
is that they can allow contributions and collaboration between research groups from
different backgrounds. An interesting example is the possibility of contributing to
the Environment by sharing objects and scenes produced for personal experimen-

2.1 Virtual Environments 19

Figure 2.1: Rendering demo with Unreal Engine 5, showcasing the photo-realistic
qualities of the engine with a video so realistic that an untrained eye cannot distin-
guish from a real video. Image from https://www.unrealengine.com/en-US/tech

-blog/environment-artist-explains-how-he-created-near-photo-realistic

-train-station-using-ue5.

tation, enlarging the library of readily available object and making it easier for re-
searchers with less experience in Computer Graphics to work on algorithm research
without being hindered by the data generation task. Researchers more versed in
physical simulations and programming can help by extending behaviors and dy-
namics available in the simulator, helping other researchers with less experience
in physics. Therefore, we argue that an open-source approach to the distribution
of these tools would certainly help the tool to prosper in the research community.
Such is the approach taken by SAILenv and AI2-THOR, for example.

There is unfortunately another side to the coin, that is the fact that if we consider
the possibility of letting a loosely regulated community to contribute to the projects,
we also must consider that there may be malicious individuals that intend to poi-
son benchmarks generated through Virtual Environments. A malicious individual
could pose as a regular contributor to the object library, proposing objects that ap-
pear as regular objects to moderators of the community when inspected by human
eyes, but instead act as adversarial examples to someMachine Learningmodels (see
section 2.4 for more details on Adversarial Attacks). Adversarial Attacks on 3D ob-
jects have been proven possible in many different works (Yao et al., 2020; Toheed
et al., 2022), but in chapter 5 we show that Adversarial Attacks from easily avail-
able differentiable renderers can be effectively transferred to Virtual Environments.

https://www.unrealengine.com/en-US/tech-blog/environment-artist-explains-how-he-created-near-photo-realistic-train-station-using-ue5
https://www.unrealengine.com/en-US/tech-blog/environment-artist-explains-how-he-created-near-photo-realistic-train-station-using-ue5
https://www.unrealengine.com/en-US/tech-blog/environment-artist-explains-how-he-created-near-photo-realistic-train-station-using-ue5

20 Background

Therefore, research communities that intend to collaborate to maintain a crowd-
sourced Virtual Environment must carefully take into consideration the possibility
of Adversarial Attacks towards the Virtual Environment and study proper policies
to prevent attacks. On a more positive note, the use of Adversarial 3D Objects could
be intentionally exploited to study the robustness of neural models to Adversarial
Attacks or even use them as training data to increase such robustness (Athalye et al.,
2018).

2.2 Continual and Lifelong Learning
The idea of computational systems that can operate in real-world settings comes
with the assumption that theywill be exposed to streams of potentiallymulti-modal
sensory information from a dynamical environment, therefore they must be able to
learn multiple tasks from a data distribution which is, by its very definition, not
static. A learning agent living in an environment needs to have a learning pro-
cess comprising the capability of gradually and progressively increasing and fine-
tuning its knowledge, use it for bootstrapping the learning of new tasks (i. e. trans-
fer learning)while avoiding catastrophic forgetting of previously learnt information
(McCloskey and Cohen, 1989; McClelland et al., 1995; French, 1999). The ability of
learning over time in a continous settings by adding new tasks to the capabilities of
the agent all the while keeping skills learnt from previous experiences is commonly
called Continual Learning, or even Lifelong Learning in the case of agents that never
stop learning and thus do not have a clear separation between training and testing
phases. During the past decades, this task has been considered a demanding chal-
lenge for neural networks in particular, since they are particularly susceptible to the
catastrophic forgetting phenomenon, and for the progress of artificial intelligence in
general (Thrun and Mitchell, 1995; Hassabis et al., 2017).

Nonetheless, there has been a recent increase in attention directed to Lifelong
Learning, mostly for the implications in the development of autonomous robots that
show similar capabilities to humans in learning and fine-tuning their skills dur-
ing their whole lives, extracting information from multi-modal streams acquired
through different sensory systems (Calvert et al., 2004; Bremner et al., 2012; Tani,
2016). One of the most distinguishing aspect of lifelong learning in humans and
animals is, indeed, the fact that they are born and immediately placed in a dynam-
ical environment, with important interactions and dependencies between the vari-
ous senses with which they experience the world, which inherently offers a rich set
of patterns and regularities that can shape their learning mind (Lewkowicz, 2014;
Murray et al., 2016). This complex interactions between the environment and the in-
herent drive of the living organism to survive and prosper gives the infant organism
the ability of self-imposing goals and objectives, further driving the interaction with

2.2 Continual and Lifelong Learning 21

Figure 2.2: Continual Learning schema, where the agent is exposed to a continuous
input stream S(t) with various tasks (Task A and Task B in the example) and is sup-
posed to produce a continuous output stream O(t), autonomously adapting to the
changes in the task and in the distribution of data in the input stream.

the surrounding entities and therefore its learning (Gopnik et al., 1999; Cangelosi
and Schlesinger, 2018).

However, the approach followed bymost research onContinual Learning re-uses
concepts from the traditionalMachine Learning approaches, devising solutions that
incrementally adapt to new tasks but still learn with shuffled and isolated samples.
This is significantly different fromwhat humans and animals experience in the real-
world environment in which we all live (Cangelosi and Schlesinger, 2018; Krueger
andDayan, 2009). In general, it seems that the approach taken for visual recognition
tasks has removed the thread of time from the visual stream that is commonly expe-
rienced by humans, shuffling the data in order to simplify the problem, thus losing
the patterns and regularities that can be found on temporal sequences of data, focus-
ing only on those related to spatial information. Thus, the immediate consequence
was focusing on collection of images instead of video streams, which is actually a
problem with many unnecessary degrees of complexity with respect to what bio-
logical learners experience (Betti et al., 2022).

As mentioned, one of the most prominent issues with neural networks is the
phenomenon of catastrophic forgetting, which happenswhen training amodel with
new data brings a sharp decrease in performance or even complete overwriting of
past information. An insight into catastrophic forgetting can be given by the consid-
eration that common learning procedures dictate that the entire dataset is available
at training phase. Whenever the data distribution changes, the network should be
retrained on a new dataset sampled from the new distribution. While this paradigm
has been shown to be extremely useful for solving awide array of tasks (LeCun et al.,
2015; Guo et al., 2016), it is not suitable for sequentially learning new tasks through
data samples that are progressively made available. In fact, the performance of con-
ventional neural networkmodel is not mantained on previous tasks while progress-
ing in the learning procedure (Kemker et al., 2018; Maltoni and Lomonaco, 2019).

22 Background

A naive solution like retraining from scratch with all available data could help in
mantaining high performances even in previous tasks, but it would clearly not be a
feasible solution when considering settings with agents that have reduced memory
and cannot store all previous data or agents that must be continuosly operating and
cannot allow a re-training phase during which they do not work. Another setting
in which retraining is not feasible is the setting where the agent needs to operate
in real-time, responding to environmental changes with low response times while
concurrently adapting to new data distributions without stuttering or blocking for
re-training (Cangelosi and Schlesinger, 2018). We expect that a Continual Learning
agent is instead able to acquire new information through incoming input streams,
use it as a basis and transfer it to newer data, all the while keeping a stable perfor-
mance on older tasks. This is commonly known as stability-plasticity dilemma and
has been the topic of many studies (Grossberg, 1982, 2013; Mermillod et al., 2013;
Ditzler et al., 2015).

The research community tackled the problem with various solutions, trying to
avoid catastrophic forgetting while avoiding re-training from scratch on incremen-
tal datasets. Continual Learning approaches can be separated into three big cat-
egories (De Lange et al., 2021): Replay Methods, Regularization-based Methods, and
Parameter Isolation Methods. Replay Methods approximates the idea of re-training
the model on the whole datasets, loosening the requirement by storing only a sub-
set of the past training samples, which are then injected into the training inputs for
a new task to refresh the performances of the model on previously seen tasks (Re-
buffi et al., 2017; Rolnick et al., 2019; Isele and Cosgun, 2018; Chaudhry et al., 2019).
This category of approaches comes with significant limitations: first of all, there is
an important memory overhead due to the storage of previously seen samples; fur-
thermore, storing data can be seen as a privacy issue in some tasks, for instance in
medical applications, where retaining raw input data is not allowed for legal rea-
sons. There has been research exploring the idea of leveraging generative models to
learn the data distribution of inputs from previous tasks and automatically gener-
ate suitable inputs tomantain the performances on past tasks, reducing thememory
overhead involved in storing used samples and avoiding privacy issues (Shin et al.,
2017). Regularization-based Methods act on the stability-plasticity trade-off, avoid-
ing to store information about previous tasks, by adding a regularization term to
the loss function that drives the learning of the model. For instance, some methods
estimate the importance of individual weights, penalizing changes on weights that
are considered important for previous tasks (Kirkpatrick et al., 2017; Nguyen et al.,
2017; Zenke et al., 2017; Aljundi et al., 2019). Finally, Parameter Isolation Methods
also act on the stability-plasticity trade-off by isolating the parameters used for each
task. Usually, they divide a model into sub-parts, each dedicated to a single task.
Usually, these kinds of methods need to be told what task are they currently exe-

2.3 Renderers 23

cuting, activating the correct branch of the model and limiting the versatility of the
solution (Fernando et al., 2017; Mallya and Lazebnik, 2018; Serra et al., 2018; Rusu
et al., 2016; Xu and Zhu, 2018).

All the above solutions have been an important step in the direction of incremen-
tal learning tasks, but they are still often based on the assumption of randomly shuf-
fled annotated data samples, which is different from the idea of Continual and Life-
long Learning that sees an agent not only incrementing its knowledge on particular
domain-specific skills, but actually learning general knowledge and how to apply
it to previously unseen situations and tasks. Learning agents that live and operate
in the real world are supposed to experience a continuous real-time stream, with
multi-sensory information that must be processed efficiently while learning differ-
ent task concurrently and without interference between tasks (Parisi et al., 2019).
Some ideas have been presented in this direction (Betti et al., 2022)which rely on the
availability of continuous streams of information. This kind of stream is currently
not easily available to researchers, but Virtual Environments are promising candi-
dates for yielding the type of information needed to validate these ideas (Meloni
et al., 2021a, 2022a). Similarly, there is currently little research on the parallelization
of Machine Learning models to achieve real-time performances on online streams
while keeping high accuracies, instead focusing on smaller models that reduce the
computational cost to achieve lower latencies, but sacrificing learning capabilities.
In this case, further expanding the idea of Pipeline Parallelism for the context of
online real-time learning is a promising candidate to solve the issue of deep neural
models high response times and low frame-rates (Meloni et al., 2022b).

2.3 Renderers
Since the 1970s, the field of Computer Graphics became increasingly sophisticated,
leading to advanced works on rendering techniques and making it a more distinct
subject of study. We define rendering as the process that outputs a 2D image of a
3D scene by taking as input the definition of the scene made of 3D objects and their
physical properties, the lights that hit the objects, and the properties of the virtual
camera onwhich to project the scene. Formally, we can define the rendering process
as a function r that takes a 3D scene s and a camera c to produce a 2D image Is,c.

Is,c = r(s, c), (2.1)

The definition of s is not straightforward andheavily depends on how r is defined. In
fact, rendering is a complex process, it is not uniquely defined and the final results
heavily depend on the assumptions and physical approximations of the behavior
of light that are used in the algorithms. In general, an object is defined by its ge-
ometric properties and its surface properties, usually called surface material. Thus,

24 Background

there are different variants of rendering, which are differentiated by the way they
represents the geometric properties of objects, namely mesh-based, voxel-based, point
cloud-based, and neural implicit representation-based rendering, on which recent works
are focusing. Similarly, there are variants differentiated by the approximations on
the behavior of light, namely non-PBR, PBR, and Raytracing. Commonly, virtual en-
vironments and videogames rely on mesh-based rendering alongside PBR and thus
wewill describe it with more detail. Wewill instead give a brief account of the other
types to allow comparison.

First, let us focus on the differences between the representation of 3D objects.
There are three main categories of object model representation for renderers: Voxel-
based, Point cloud-based, Neural implicit representation-based, andMesh-based rendering.

Voxel-based rendering. It assumes that the 3D space is discretized into unit cubes,
and each of the cubes is assigned a N-dimensional vector that encodes various in-
formation about the occupancy of that voxel. Basically, a voxel is the 3D extension
of a pixel in a 2D image. Voxel-based rendering is often used in medical imaging,
for example in Computed Tomography scans, in which case the tensor is actually a
scalar value that contains the opacity to x-rays of the substance in that voxel; in the
case of image rendering, the vector contains the description of the surface material
of the object in that voxel.

Point cloud-based rendering. It represents object as a list of points defined by their
position in cartesian coordinates, attached to the vector describing the surface ma-
terial. Point clouds can be used in many cases where voxel-based rendering can
be used, such as medical imaging, and in other industrial cases such as industrial
Computed Tomography to check for differences between a manufactured part and
the corresponding project.

Neural implicit representation-based rendering. It assumes that theN-dimensional
vector representing the physical properties of a point (x, y, z) is described by the
output of a Neural Network F(x, y, z). This method of rendering works similarly
to point cloud and voxel-based rendering, but an important difference is that its
memory footprint is not coupled to spatial resolution. Since the object properties
are encoded by the continuous function F, the object can be rendered at any spatial
resolution without needing huge amounts of memory.

Mesh-based rendering. It assumes that the objects are represented by a set of ver-
tices in 3D cartesian coordinates and a set of faces (usually triangles) connecting the
vertices. It is widely used in videogames and simulations due to the fact that can
represents complex 3D structures in a compact andmemory efficient way. Such rep-

2.3 Renderers 25

resentation is calledmesh. The surfacematerial is usually represented by 2D images,
called textures, and each vertex in mesh is mapped to a coordinate on the texture
(commonly called UV coordinates). Each visible triangle, i. e. the triangle closest to
the camera viewpoint and not occluded by any other triangle, is projected on the
camera view plane. Then, the algorithm determines what pixels are encompassed by
the triangle. The properties of inner pixels are computed as a weighted sum of the
properties of the three vertices based on the distance from them.

Then, let us focus on the differences between the approximations of light behavior.
There are three main categories of light models for renderers: Non-PBR, PBR, and
Raytracing.

Non-PBR. It assumes a very simple physical model where the texture represents
the color that is refracted by a given point of themesh. The light information is com-
bined with this information to compute simple shadows and to properly modulate
the refracted color based on the color and intensity of the incident light. Often, the
quality of the appearance of the object is handcrafted by artists to give a satisfying
result from a given set of viewpoints.

PBR. It assumes amore complex physical model which simulatesmany properties
of the interaction between the surface and the incident light. Usually, more than one
texture is associated to a PBR material. The main textures are albedo, which repre-
sents the refraction color of the surface, normal mapwhich represents the direction of
the surface normal and is useful to represents bumps or imperfections in the surface,
smoothness/metallic which represents how smooth or rough the object is, or alterna-
tively howmetallic-looking it is, and emissionwhich represents light emitted directly
from the surface. These textures are combined with the properties of the incident
light, such as angle of incidence, color and intensity, to produce a convincing and
realistic appearance from virtually any viewpoint.

Raytracing. It is very similar to PBR, with the main difference that in this case, ray
of lights are individually simulated and the textures and other information about
the surface are used to change the trajectory of the ray alongside its color and in-
tensity. This allows Raytracing to give an even more convincing and photo-realistic
appearance to the rendering, evenmore sowhen considering reflections in bodies of
water or metallic objects (these kind of reflections are harder in PBR) and shadows.

As we can see, rendering is a complex process that has no straightforward dif-
ferentiation, therefore the integration into Machine Learning algorithm is not easily
achieved. Therefore, the research community took an interest in developing dif-

26 Background

ferentiable alternatives for rendering. The first straightforward method was to ap-
proximate the gradients, while keeping the rendering process the same (Loper and
Black, 2014; Kato et al., 2018; Kato and Harada, 2019; Genova et al., 2018). Other
research work focused on making the rendering process differentiable by loosen-
ing some parts of the algorithm introducing differentiable approximations (Rhodin
et al., 2015; Liu et al., 2019; Chen et al., 2019). A few Differentiable Rendering li-
braries stemmed from these research works, namely Kaolin (Jatavallabhula et al.,
2019), PyTorch3D (Ravi et al., 2020) andMitsuba 2 (Nimier-David et al., 2019). Dif-
ferentiable Rendering enabled many interesting research works, such as 3D object
reconstruction (Kato et al., 2018; Yan et al., 2016), material estimation (Azinovic
et al., 2019), and adversarial attacks (Zeng et al., 2019; Xiao et al., 2019; Liu et al.,
2018; Alcorn et al., 2019; Meloni et al., 2021b).

2.4 Adversarial Attacks
During the years, Neural Networks, and in particolar Deep Neural Networks have
demonstrated a remarkable capacity of learning various tasks with outstanding per-
formances, ranging from image classification to object detection, from pose estima-
tion to autonomous driving. Given their successes, Deep Learning solutions have
been chosen to power many services that are used each day by millions of users,
such as Cloud AI Computing from Google 1 and NVIDIA 2, and tools such as au-
tunomous cars, malware detection, drones, robotics, face recognition, voice assis-
tants, and uncountably more. The widespread use of these tools have brought forth
many advantages to the people, but when this kind of tools are moved from con-
trolled laboratory environments, in which they are studied and designed, to real-
world settings, their integrity, safety, and security mustd be guaranteed, since the
lack of any of those poses serious concerns to the public interest.

In fact, it is now well known that malicious attackers can easily craft adversar-
ial examples that induces serious mistakes in an otherwise well-behaving Neural
Model. It was first shown in the field of computer vision, by applying human-
imperceptible perturbations to well-recognized images which would then be classi-
fiedwith an unrelated label (Szegedy et al., 2013; Biggio et al., 2013; Biggio and Roli,
2018) (see Figure 2.3 for an example). Some tentative explanation was given to this
phenomenon, suggesting that it was at least partly caused by the significant linear-
ity of neural models, given that many of their components (ReLUs, LSTMs, etc.) are
designed to behave in a linear way, and non-linear components such as sigmoids are
optimized to operate in their mostly linear region (Goodfellow et al., 2014). Also the
insufficient regularization of the pure supervised learning approach could be par-

1https://cloud.google.com/products/machine-learning
2https://www.nvidia.com/object/gpu-cloud-computing.html

2.4 Adversarial Attacks 27

(a) Cat (b) Adversarial Perturbation (c) Weasel

Figure 2.3: Traditional Neural Networks are particularly susceptible to simple Ad-
versarial Examples, where anAttacker can easily craft an imperceptible perturbation
(2.3b) to a previously recognized image (2.3a) to obtain a completely wrong classi-
fication (2.3c).

tially responsible for the vulnerability to simple perturbations. The susceptibility of
neural networks to this kind of attacks was demonstrated even on speech recogni-
tion (Carlini et al., 2016; Zhang et al., 2017), and on autnomous vehicles (Kurakin
et al., 2016).

Adversarial Attacks can be categorized along various axes through a taxonomy
that was first introduced for general Machine Learning (Barreno et al., 2010) and
extended later due to newdevelopments in the field of security inMachine Learning
(Kumar andMehta, 2017; Chakraborty et al., 2018), with particular consideration for
Computer Vision (Akhtar and Mian, 2018).

In the following, we define terms that will be used in the rest of the thesis to
describe entities and concepts in Adversarial Attacks. We define an Attacker as an
entity that has interest in disrupting the correct functionalities of a system. Usually,
attacks to any computational systems are defined by a Threat Model, which describes
what are the Attacker’s Goals and Capabilities. It is common for the Attacker’s Goal
to either attack Integrity, where the intent is evading detection causing False Nega-
tives (e. g. preventing the recognition of a cat inside a picture), or AttackAvailability,
where the intent ismaking the systemnot available to users by saturating the normal
operations through many False Positives (e. g. causing recognition of a cat in many
pictures to reduce the trust of the user in the system).

The scope of the Attack can be distinguished between Targeted Attacks, where the
Attacker intends to disrupt the functioning of themodel only for a particular class of
inputs, while leaving intact the rest of the operations for the rest of the classes, and
Indiscriminate Attacks, where the Attacker intends to completely deny the function-
ing of the system for any class. Usually, Evasion Attacks are Targeted Attacks, since
the intent of evading detection for an input can be framed as disrupting the func-

28 Background

tionality for a class of inputs it (it can be even composed of a single example), while
Denial Attacks are Indiscriminate Attacks, since they generally cause malfunction-
ing to the system without focusing on any particular class.

Similarly, we can distinguish the Attacker’s Capabilities based on what part of
the model it has access to. We callWhite-Box Attacks those in which the Attacker has
complete information on the architecture of the model, and optionally the training
procedure or the training set. We call Black-Box Attacks those in which the Attacker
has limited information on the model and can only query the system by providing
inputs and inspecting corresponding outputs. Usually, White-Box Attacks are eas-
ier as they can exploit much more information and a wider Attack Surface, that is the
portion of a model that can be used to freely interact with and to attack the system.
An interesting property of Adversarial Attacks is Transferability, that is the capability
of an attack crafted using a surrogate White-Box model to be effective when attack-
ing a target Black-Box model on which the Attacker has limited knowledge.

For the scope of the thesis, we formalize an Evansion Attack to a Neural Clas-
sifier. Let us consider, for instance, a classification task and a generic annotated
pair (x, y), where x ∈ Rd denotes an input pattern and y is the associated su-
pervision. We also consider a neural network classifier C(·|⊆) with parameters
θ ∈ Rp. Let us indicate with ȳ the output yielded by the classifier when processing
x, that is ȳ = C(x|θ), and the loss function L(ȳ, y, x) that measures the mismatch
between the prediction and the ground truth. A common learning procedure aims
at identifying the model parameters θ which minimize the empirical risk function
E(xk,yk)∼X [L(ŷk, yk|xk)]. It has been shown that neural classifiers are vulnerable to
the injection of a perturbation in the input, which results in the misclassification of
the provided input. In particular, we define a perturbation δ that when added to
the input x causes the classifier C(·|θ) to misclassify the input, i. e. ŷ = C(x + δ|θ)
with ŷ ̸= y. Of course, stealthy attacks are those that limit the perturbation δ to
a set of admissible perturbations P that prevents human observers from detecting
the perturbation while causing the intended damage to the classification. A com-
mon choice for this set, in particular for Computer Vision tasks, is restricting the
perturbation to fall upon a ℓ2-ball or a ℓ∞-ball. In the example in Figure 2.3, we can
identify x in Figure 2.3a, δ in Figure 2.3b, and x + δ in Figure 2.3c. In the simplest
case, the attackers aims to increase the prediction loss value by chosing a suitable δ,
practically finding a solution to the following optimization problem,

max
δ∈P

L(ȳ, y, x + δ). (2.2)

There are many variations of attack procedures for solving Equation 2.2 to es-
timate the best δ for a given task, which usually differ by the properties described
in the previous paragraphs, based on the Attacker’s capabilities and knowledge of
the model. In the case of CComputer Vision and in particular for the task of Im-

2.4 Adversarial Attacks 29

age Classification, for the scope of the thesis, we consider two attack procedures:
Fast Gradient Sign Method, or FGSM (Goodfellow et al., 2014) and Projected Gradient
Descent, or PGD (Madry et al., 2017).

FGSM. This attack was motivated by the idea that the linear behavior of many
components in neural networks would make them susceptible to linear adversarial
perturbations (Goodfellow et al., 2014). The Fast Gradient Sign Method is based on
a linearization of the loss function around the current values of θ, which is then used
to compute a perturbation in a ℓ∞-ball with radius ε through the following equation,

x̂ = x + ε · sign
(
(∇xL)(ȳ, y, x

))
. (2.3)

The attack is very simple, it works with Black-Box Attacks (excluding the loss func-
tion, which in the case of classification can often times be safely guessed to be the
cross-entropy) and with only one query to the model for each input that the At-
tacker wants to perturbate. Even in its simplicity, it is extremely effective for many
neuralmodels. GoogLeNet, for example, can drop to an accuracy of 0.1% by crafting
Adversarial Examples through FGSM (Goodfellow et al., 2014).

PGD. This method can be seen as an iterative version of the FGSM attack. In fact,
we see that the perturbation is gradually improved by computing a new lineariza-
tion of the loss function around the current values of θ and xt (which implicitly
contains the perturbation δt), similarly to how gradient descent is performed for
training. The Adversarial Example is obtained through the following iterative com-
putation, repeated a given number of times.

xk+1 = ΠP
(
xk + α · sign

(
(∇xL)(ȳ, y, xk)) (2.4)

Where P is the ℓ∞-ball with radius ε and x0 = 0 or randomly initialized within the
ℓ∞-ball. There are strong empirical reasons to consider PGDa “universal” first-order
attack, meaning that, while it is not guaranteed that PGDwill find the absolutemax-
imum of the optimized function, it will often reach local maxima that have similarly
suitable loss values, thus attacks performed through PGD are quite likely to succeed
(Madry et al., 2017).

The attacks defined thus far are very effective at altering an input so that itmakes a
neural model misbehave. However, the perturbation is effective exclusively for that
particular input. Further altering the example by some legal transformation, such
as rotation or translation, will make the perturbation ineffective most of the times.
This is clearly an important factor when considering Attacks towards systems that
operate in real-world settings, such as Continual Learning models. A slight change
in viewpoint, or a rotation of an object, can easily make a perturbation computed

30 Background

through the above methods ineffective. While this could seem a good property for
systems that operate on real-time visual streams, it is actually possible to craft Ad-
versarial Examples that are effective over a range of transformations, using the Ex-
pectation Over Transformation algorithm, or EOT (Athalye et al., 2018). Instead of
computing the gradient of the loss on a single input, EOT leverages a distribution of
legal transformations T fromwhich transformations t are sampled and then applied
over the input x. Instead of constraining the distance between x̂ and x, with EOT
we constrain the distance between t(x̂) and t(x). This is especially important when
the output of the transformation and the original input exist in different domains,
as is the case for rendering functions (see section 2.3). In that case, x would be a tex-
ture, while t(x) would be the actual rendering of the object under some viewpoint,
lighting conditions, and other properties of the scene. Thus, wewant the renderings
to be similar to each other, not only the textures. In practice, for this example, the
optimized problem seen in Equation 2.2 is transformed in the following form,

max
δ∈PE′

Et∼T [L(ȳ, y, t(x + δ))], (2.5)

with PE ′ defined as the set of perturbations that satisfies the following constraint,

Et∼T [d
(
t(x + δ), t(x)

)
] < ε′, (2.6)

where d(·, ·) is a suitable distance function and ε′ > 0. This attack has been success-
ful in crafting real-world 3D objects that could realiably induce error over a broad
range of viewpoints in otherwise well-performing classifiers (Athalye et al., 2018),
and aswill be shown in chapter 5, the algorithm is effective also for objects in Virtual
Environments even when using different engines for rendering the Adversarial 3D
Object.

2.5 Parallelism
Deep Learning research has seen an ongoing increase in model complexity. It has
been shown that scaling up network capacity is often an effective approach to en-
hance the performances of neural models. On the other hand, hardware capabilities
are unable to scale as fast as required by such highly complex architectures, raising
the need for the development of alternative parallel computations to take advantage
of multiple GPUs.

Parallel computations are usually tailored to the task at hand, by keeping into
consideration the characteristics of the algorithm and the available hardware and
its topology. This handcrafting process is mostly characterized by a difficult trade-
off among flexibility, scaling capacity and achievable performances. We can split
parallel computations into twomain categories: data parallelism andmodel parallelism.

2.5 Parallelism 31

Layer 1

Layer 2

Layer 3

Layer 4

Layer 1

Layer 2

Layer 3

Layer 4

Layer 1

Layer 2

Layer 3

Layer 4

Layer 1

Layer 2

Layer 3

Layer 4

GPU 1 GPU 2

GPU 3 GPU 4

(a) Data Parallelism

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 13

Layer 14

Layer 15

Layer 16

Layer 9

Layer 10

Layer 11

Layer 12

GPU 1 GPU 2

GPU 3 GPU 4

(b) Model Parallelism

Figure 2.4: Schemes of Data Parallelism and Model Parallelism. With Data Paral-
lelism (Figure 2.4a), a small model with 4 layers is replicated on each GPU, and each
replica takes a different input in parallel. With Model Parallelism (Figure 2.4b), a
bigger model with 16 layers is split across all GPUs, and each sub-model takes as
input the output of the previous sub-model.

Data Parallelism. The dataset is split into N parts, and each of the parts is dis-
tributed to a different GPU. The model is instead replicated into each GPU, which
will independently process its own assigned portion of data, aggregating the output
with all of the other outputs at the end. Gradients are similarly computed by split-
ting the correspondent outputs and performing back-propagation on each replica of
the model. The benefits of this parallelism paradigm are clear: almost linear speed-
up in training and little to no need of adapting the model, which is just replicated
and not changed in any way. The weakness is that we can use this paradigm only
with models that are small enough to fit in each GPU and it is really useful only
when considering batch-mode offline processing. See Figure 2.4a and Figure 2.5a.

Model Parallelism. The model is split into N parts, one for each available GPU,
and each of the portions runs on that GPU, the dataset instead is not divided. The
main benefits are that portions of the model that work on independent data can
run concurrently, obtaining modest speed-ups in some cases, but more importantly
it allows to run models that cannot fit into a single GPU. On the contrary, how to
split models is not always straightforward and the paradigm often incurs in under-
utilization of computational resources. See Figure 2.4b and Figure 2.5b.

It is clear that these two types of parallelism have different cases of applications
and they solve two very different problems. In the case of Data Parallelism, we take
advantage of multiple accelerators and split the data among themwhile keeping the

32 Background

(a) Data Parallelism

(b) Model Parallelism

Figure 2.5: Timelines of execution for Data Parallelism and Model Parallelism. In
Figure 2.5b we can see how most of the times each GPU is idle, wasting precious
computational resources.

2.5 Parallelism 33

same model, replicated across the GPUs, to significantly reduce the training times,
reaching almost linear speed-up with the overhead of synchronizing the replicas
after having computed the gradients to keep consistent parameters. In the case of
Model Parallelism, we use the memory available to multiple accelerators to split a
model that would not otherwise fit into a single GPU, thus enabling it for training
without taking into consideration the possible speed-ups of parallel computations.
Of course, this is sub-optimal since most GPUs remain idle while waiting for one
to complete its computation, therefore another type of Model Parallelism was intro-
duced, that is Asynchronous Model Parallelism.

Asynchronous Model Parallelism. The issue of under-utilization can be tackled
with the introduction of asynchronous computations, that is starting processing new
data as soon as a part of the model becomes idle. While this clearly reduces idle
times, preventing under-utilization and thus significantly speeding-up computa-
tions, it also introduces new problems that must be taken into consideration, such as
weight staleness, i. e. when different data samples use different versions of theweights
to derive gradients leading to inconsistent updates and weight version mismatch, i. e.
when different GPUs have different version of weights at a given istant.

AsynchronousModel Parallelism can include any formofmodel parallelismwhich
does not synchronize every GPU to a single computational graph, but a straightfor-
ward yet effective example of this paradigm is Pipeline Parallelism, which separates
a feed-forward computational graph into several non overlapping stages, each one
being fed the output of the previous stage, and operating independently as soon as
a new input is ready.

Pipeline Parallelism. This paradigm allows to run huge models that would not
fit into a single GPU, while at the same time allowing significant speed-ups in the
computation. The speed-up is usually heavily limited by the need of synchronizing
weights updates and communication overheads between different GPUs. In Fig-
ure 2.6 we see the simplest implementation of Pipeline Parallelism as seen in GPipe
(Huang et al., 2018), which separately parallelizes the forward and the backward
pass, effectively leaving a bubble of idle time which reduces the achievable speed-
up, and introducing a flush phasewhich takes care of issues such asweight staleness
and weight version mismatch, but further limiting the possible speed-up. Other
types of Pipeline Parallelism have been studied in the recent years, trading off low
memory footprint for increased speed-up Narayanan et al. (2019) or gradient accu-
racy for increased speed-up (Narayanan et al., 2021). In chapter 6 we introduce a
Pipeline Parallelism variant, called PARTIME, that keeps limited memory footprint
and almost linear speed-up leveraging a gradient approximation, specifically focus-

34 Background

Figure 2.6: Simple Pipeline Parallelism timeline as implemented in GPipe (Huang
et al., 2018)

ing on the online real-time processing case.

Chapter 3

Making Virtual Environments Simple:
SAILenv

Developing Machine Learning algorithms to solve a target task usually follows a
well-established offline process in which data are collected from the real-world op-
erational environment and then used to learn themodels parameters and to evaluate
the quality of the trained model. In the recent years, researchers in Machine Learn-
ing algorithms, particularly Computer Vision scientists, have shown an increasing
interest towards 3D computer simulations of real environments as a mean to artifi-
cially recreate experimental settings similar to real world environments (Kolve et al.,
2017; Savva et al., 2019; Gan et al., 2020). As mentioned in section 2.1, in the last
decade, many different Virtual Environments were released focusing on a diverse
array of tasks and situations, such as Automated Driving (Johnson-Roberson et al.,
2016), Robotic Arm Control (Rao, 2000), Indoor Navigation (Shridhar et al., 2020;
Zhu et al., 2017; Gupta et al., 2017), visual QA (Gordon et al., 2018), and other vari-
ous tasks (Chaplot et al., 2018; Beattie et al., 2016). These tools allow the researchers
to perform controlled tests that would incur in high costs if performed in the real
world, both in terms of time and resources, and in some cases dangerous to people
and things (Savva et al., 2019).

Most popular benchmarks generated through Virtual Environments and shared
by the scientific community have their own characteristic features, with specifically
designed 3D environments that accurately resemble the target working conditions.

If we depart from the case of the most popular benchmarks shared by the sci-
entific community, such as the ones aimed at showing the quality of Visual Naviga-
tionAlgorithms (Shridhar et al., 2020), Visual Recognition (Lomonaco andMaltoni,
2017), and others, each research project has its own characteristic features, and it
actually requires to design the 3D environment that correctly resembles the target
working conditions. Moreover, the way a virtual agent will exploit the informa-
tion coming from the virtual world, and how it will react to it, need to be designed

35

36 Making Virtual Environments Simple: SAILenv

coherently with the target setting. This clearly suggests that there is the need of pro-
viding flexible and easy-to-use tools to encourage the use of virtual environments
and to favour the development of those research activities that exploit them. An-
other important consideration to remark is that not all researchers have robust skills
in creating 3D scenes, and this aspect might discourage the use of virtual environ-
ments.

In this chapter, we present SAILenv, the Siena Artificial Intelligence Laboratory1,
a freely available and open platform2 that is specifically designed to cover the needs
of a platform to easily design and customize visual environments to experiment
with visual recognition and computer vision algorithms in general. The platform
comes with an integrated library of photo-realistic 3D objects and scenes, acces-
sible through a light-weight Python library that allows the researchers to quickly
prototype experiments interfacing Machine Learning algorithms to the Virtual En-
vironment with few lines of code. SAILenv is based on Unity, a popular game en-
gine developed by Unity Technologies3, that supports many operating systems and
includes advanced 3D modeling and state-of-the-art quality real-time rendering.
When released, SAILenv was the only platform (to the best of our knowledge) that
yielded optical flow data alongside the RGB stream, providing real-time motion-
related information inherited from the 3D engine (thus being extremely accurate),
and not computed afterwards from multiple 2D observations, as commonly done
in optical flow algorithms (Hui et al., 2018; Farnebäck, 2003), providing important
data that can be used in benchmarks and training Computer Vision algorithms that
benefit from the motion field. Furthermore, differently from other platforms (Kolve
et al., 2017; Gan et al., 2020), SAILenv transfers data without relying on higher-level
communications protocols (such as HTTP), reducing the communication overhead
and allowing higher framerates and lower response times by the Python API.

SAILenv is powered by the Unity 3D engine, which includes a powerful editor
to create and customize 3D scenes, that, however, is not always intuitive and might
discourage researchers that are starting from scratch on the field of Virtual Environ-
ments. To overcome this issue, we designed SAILenv following the approach used
bymost game development team, that is separating the scene designer by the engine
programmer. In facts, Unity allows augmenting the editorwith ad-hoc tools that can
be programmed and integrated into the existing editor, abstracting many details of
the programming interface and allowing unspecialized users to create rich scenes
without the need of ever touching the inner code. Thus, SAILenv includes a ready-
to-use Unity project, initially derived from AI2-THOR 2.1.0 (Kolve et al., 2017) and
later augmented by adding realistic textures and lighting effects by means of state-

1SAILab, https://sailab.diism.unisi.it.
2See https://sailab.diism.unisi.it/sailenv
3See https://unity.com for further details.

https://sailab.diism.unisi.it
https://sailab.diism.unisi.it/sailenv
https://unity.com

37

of-the art texturing software, making them strongly photorealistic. Thus, SAILenv
comes with ready-made scenes that can be customized with simple operations of
drag-and-drop. Similarly, dynamics can be applied to any object with intuitive tools
integrated into the editor, using the included templates or programming new be-
haviors for expert users. More details are included in section 3.4.

We also provide experimental evidence on the quality of the scenes generated
by SAILenv, showing that a state-of-the-art neural model (He et al., 2017) trained
on Object Detection with real-world data, can actually easily recognize most of the
objects in the SAILenv library, proving its photo-realism, thus suggesting that mod-
els trained on SAILenv need reduced adaptation when adapting to real-world do-
mains. Furthermore, we also measure and compare the speed at which SAILenv is
able to generatemotion features, showing that the platform leads to smaller running
times when compared to popular optical flow estimators (Farnebäck, 2003), includ-
ing neural models (Hui et al., 2018), apart from intrinsically being more accurate in
most cases.

The features provided by SAILenv, ranging from a diverse library of ready-to-use
objects and scenes, to a efficient and real-time response oriented data generation and
communication protocol, are particularly designed to enable the task of Continual
and Lifelong learning from visual streams in a real-time online setting. In fact, the
diverse library of objects allows researchers to quickly design scenarioswith increas-
ing levels of complexity, gradually incrementing the number of objects in the visual
stream and enabling, for instance, tasks as object detection in class-incremental set-
tings, where the agent needs to learn to recognize previously unseen objects without
forgetting what they had already learnt. The Python interface through which the
environment is accessible by the user code allows the researcher to design experi-
mental protocols without having to manually code complex code for the 3D engine
(this will be further explored in chapter 4). Finally, the data generation executes in
real-time even on low-end user-grade hardware, while the data communication pro-
tocol is handcrafted without high-level dependencies to focus on lowering response
times to its minimum, so that the communication does not become a bottleneck that
slow down the real-time processing of the visual stream.

The rest of the chapter is organized as follows. In section 3.1 we describe sim-
ilar platforms and highlight the differences with SAILenv. In section 3.2 we detail
the architecture of SAILenv and its design choices. In section 3.3 we describe what
kind of data is generated by SAILenv and the structure of such data and associated
metadata. In section 3.4 we describe the library of available ready-to-use objects and
scenes integrated into SAILenv. In section 3.5 we describe how SAILenv handles dy-
namical objects and how the movement of the agent is supported. In section 3.6 we
describe the Python interface which enables researchers to integrate their Machine
Learning code to the Virtual Environment, presenting a few examples that highlight

38 Making Virtual Environments Simple: SAILenv

Table 3.1: Comparison of the main features of SAILenv with other popular plat-
forms. LightNet refers to lightweight communication over the network (n.a. means
network communication is not directly provided).

Platform Photoreal Depth OptFlow LightNet OS

DeepMind Lab (Beattie et al., 2016) ✓ n.a. Unix
Habitat (Savva et al., 2019) ✓ ✓ n.a. Unix
AI2-THOR (Kolve et al., 2017) ✓ ✓ ✓ Unix
ThreeDWorld (Gan et al., 2020) ✓ ✓ ✓ Win+Unix
SAILenv (Meloni et al., 2021a) ✓ ✓ ✓ ✓ Win+Unix

the ease of use of the API. In section 3.7 we describe the experimental evaluation
of the photorealism and generation-communication speeds of SAILenv, implicitly
showing how the platform can be integrated into Machine Learning code. Finally,
in section 3.8 we summarize the chapter and introduce some works which leverage
SAILenv as the platform for generating visual streams.

3.1 Related Platforms
Several environments and simulators have been developed by the scientific com-
munity in the last few years. Some simulators are not photorealistic, or they are
specifically designed to handle specific tasks. Some examples are DeepMind Lab
(Beattie et al., 2016), UETorch (Lerer et al., 2016), Scene (Handa et al., 2016). The
main issue with these platforms is that they are not photo-realistic. Moreover, some
of them expose the full environment to the agent, while an agent operating in real
world does not see the entire environment. For example, a robot that operates in
an apartment does not see the entire apartment. Amongst the virtual environments
with visual-realistic appearance we mostly focus on the recent AI2-THOR (Kolve
et al., 2017) and Habitat (Savva et al., 2019). Other existing frameworks are Home
(Brodeur et al., 2017), Chalet (Yan et al., 2018), Gibson (Xia et al., 2018), SceneNet
RGBD (McCormac et al., 2017). These environments are used to study embodied
agents (Xia et al., 2018), to instantiate tasks that are about visual navigation with re-
inforcement learning (Zhu et al., 2017; Gupta et al., 2017), interactive VQA (Gordon
et al., 2018), task-oriented language grounding (Chaplot et al., 2018) or vision-and-
language navigation (Wang et al., 2018).

SAILenv, coherently with what is commonly done in related platforms, captures
RGB representations with or without depth information, acquired from the agent
camera position and orientation. Similarly to what we propose, also AI2-THOR
(Kolve et al., 2017) is based on theUnity engine, but it focuses on the interactionwith
the environment, so that actions can be attached to objects. Differently, SAILenv fo-

3.1 Related Platforms 39

cuses on visual recognition, and it simplifies the assignment of new semantic cate-
gories to objects, an operation that does not require knowledge of the code structure,
and that can be done through the Unity GUI. Moreover, the client-server architec-
ture of AI2-THOR is based on HTTP communication between Unity and the Python
API, where the 3D engine acts as a client while the server is implemented on the
Python side of the architecture. SAILenv, as we will describe in section 3.2, imple-
ments a more natural organization in which the virtual world is a server to which a
Python client connects to retrieve data thatwill be processed by the target algorithm.
Habitat (Savva et al., 2019) is mostly focused in allowing the access to different 3D
datasets (Song et al., 2017; Chang et al., 2017) by a uniform interface, and it includes
its own fast simulation engine. In principle, the direct customization or creation of
3D environments is possible, but it is not straightforward. For this reason, SAILenv
is built around the Unity engine, that is a very popular andmulti-platform software
solution easily accessible and customizable, widely used for videogames and phys-
ical simulations. In Table 3.1 we summarize a comparison of the main features of
SAILenv with some of the aforementioned frameworks. The features considered in
the table are Photorealism, Depth Rendering, Optical Flow, Lightweight Network Com-
munications, andOperating System. Each of these features is of particular importance
in the context of the generation of Virtual Visual Streams. Photorealism, as shown
in (Johnson-Roberson et al., 2016; Meloni, 2019; Di Benedetto et al., 2019) and ex-
plained in theDataset Generation paragraph of section 2.1, is extremely important
to reduce the efforts needed to transfer models between the real and the virtual
world. In practice, when deploying a model that was trained on virtual data in the
real world, the model needs to be finetuned on real data to account for the differ-
ences between virtual and real. The more the virtual data is similar to real world
footage, the less effort is needed to achieve higher performances. Depth Rendering
is useful when generating virtual data to make up for the lack of binocular vision
when understanding the depth and relative position of objects in the scene. Optical
Flow is a fundamental piece of metadata of dynamical scenes, as it encodes how the
pixels of each static frame are evolving over time from the agent point of view. Ligh-
weight Communication is an important feature of a Virtual Environment that focuses
on real-time interactions with a ML agent. Well-known network protocols such as
HTTP, which is used in AI2-Thor and ThreeDWorld, are easy to integrate to the Vir-
tual Environment, but introduce overheadswhich are suitable for dataset generation
but not for real-time stream generation, since strict timing are required. Finally, a
wide Operating System Support is relevant as it allows the researcher to deploy the
Virtual Environments on a wider set of systems.

Notice that only SAILenv includes lightweight communication over the network,
and that, differently from AI2-THOR (Kolve et al., 2017) and Habitat (Savva et al.,
2019), but similarly to ThreeDWorld (Gan et al., 2020) it can also run on a Win-

40 Making Virtual Environments Simple: SAILenv

Figure 3.1: Organization of the SAILenv architecture.

dows machine. When SAILenv was released, it was the first to introduce motion
information metadata attached to the visual stream, but the feature has been since
integrated in AI2-THOR and ThreeDWorld. Currently, ThreeDWorld has the ad-
vantage of a wider library of objects, some of them even being fully physically sim-
ulated (e.g. foldable cloths, liquids), but the code is not open source and cannot be
easily extended. AI2Thor has a procedural scenario generation for indoor explo-
ration which is used for training and testing robotic agents through Reinforcement
Learning. Similarly, ThreeDWorld introduced a procedural indoor scene generation,
which uses heuristics to automatically create scenes with suitable object density.

3.2 Architecture
SAILenv is organized in a client-server architecture, that in a natural way imple-
ments the idea of having a virtual scene (simulated in the server) and an agent that
experiences and explores the environment (controlled by the client). The overall
SAILenv architecture is exemplified in Figure 3.1. The agent, which lives inside the
Virtual Environment instance, is controlled through the Agent API, which consists
in a set of high-level commands implemented through a lightweight Python API.
The API allows the client to move the agent in the environment, create and delete
objects, set their trajectories, and most importantly query the environment for the
informatione experienced by the Agent. When queried, the server replies with a
number of views that capture different properties of what the agent is experienc-
ing, that is RGB views with associated metadata, such as pixel-wise labeling, which
can be used by Computer vision algorithms, fed to Machine Learning frameworks,

3.2 Architecture 41

recorded and generally used for any needed purpose.

Webuilt the serverwithin theUnity framework, providing an ad-hocUnity server
that responds to client requests. The Unity server is more than simply a network in-
terface layer; it is a computing module that is in charge of constructing the virtual
environment, handling the physics simulation, and real-time rendering while fully
utilizing the Unity infrastructure. It generates the data in the views requested by the
client, and thanks to the powerful engine embedded inUnity, the physics simulation
runs at real-time speed onmost laptops and servers, allowing the generation of real-
time streams with no hiccups or long wait times between one view and the other.
For debug reasons, that will be clearer in the rest of the chapter, the Unity instance
running on the server allows to show what the agent camera is currently capturing
in the screen attached to the server, allowing some special server-side interactions.

Server and client are connected through a lightweight communication protocol,
which ensuresminimal overhead for the transmission of data fromand to theVirtual
Environment. The Unity server awaits for incoming connections on a target port.
The client can contact the server through that socket, calling the provided Python
API and triggering the generation of the agent inside the 3D environment. The so
created agent is associated to a worker thread which runs in background, listening
and replying to further requests, but operating in a asynchronous fashion with re-
spect to the physics engine. To an expert Unity user, this choice could seem counter
intuitive. Commonly, simulations in Unity follow a simple pattern, in which there is
a single thread that runs in a loop (the so called game loop), which is the only thread
allowed to apply changes and interactions to the simulation. The loop is composed
of several phases, which we omit for brevity since it is not fundamental for the un-
derstanding of what follows. Each entity in the simulation can register a behavior,
in the form of a piece of code or a script, to any phase or evenmore than one. During
each phase, the main thread running the game loop will call every behavior regis-
tered to that phase, in no particular order, but synchronously. This means that until
a behavior does not return, the main loop will wait indefinitely. If a behavior slows
down, all the simulation is slowed. Of course, during network operations, issues
such as network slowdowns or communication errors are common, causing the as-
sociated agent to slow down. Keeping the network code on a separated background
thread allows the simulation to proceed without hiccups due to the network. Since
secondary threads cannot directly interact with the simulation, they collect com-
mands from the client APIs and enqueue them on the main thread as soon as they
are ready to be executed without further delays. When the command completes
execution, the reply is sent back to the secondary thread which sends it back on
the network. Finally, the network protocol also offers the possibility of sending raw
data or by GZipping them beforehand, reducing the overhead on low-bandwidth
networks.

42 Making Virtual Environments Simple: SAILenv

(a) Category View (b) Instance View (c) Depth View

Figure 3.2: Pixel-wise annotations yielded by SAILenv. In Figure 3.2a it is shown the
pixel-wise semantic segmentation at category level, that is pixels belonging to the
same class of objects (e. g. couch or pillow) have the same label. In Figure 3.2b it
is shown the pixel-wise semantic segmentation at instance level, meaning that each
pixel has a label that uniquely identifies the particular instance of that object. In
Figure 3.2c it is shown the depth view of the scene, where each pixel has a gray-
scale value which is whiter for objects close to the camera and darker for objects far
from the viewpoint.

3.3 Details on the generated views
As we briefly mentioned before, the client is implemented as a lightweight cross-
platformPythonAPI,with a small dependency tree. It is, in fact, a very tiny interface
that exposes high-level commands which allow control on the virtual environment,
such as creating a new agent, moving it or obtaining views of the current state of the
environment from the point of view of the agent. The views and metadata available
through the API are the following: a) RGB view; b) Category Level Semantic Seg-
mentation; c) Instance Level Semantic Segmentation; d) Pixel-wise Depth Labeling;
e) Optical Flow. See Figure 3.2 and Figure 3.3 for an example of such views.

Going into more details, the RGB view is a straightforward representation of
what the agent views inside of the environment, representing each pixel with the
classic 24-bit encoding; each pixel is annotated with a category identifier (seman-
tic labeling) and an instance identifier, encoded in the category (Figure 3.2a) and
instance (Figure 3.2b) views. The instance identifier is automatically and uniquely
assigned by Unity when the object is created. The category identifier is instead cre-
ated and assigned through the Unity Editor, without any code-level operation. In
particular, categories are represented as Unity objects (called Scriptable Objects),
and they can be attached to every 3D object by a simple drag-and-drop operation.
Every scene also includes a category holder, which allows the researcher to easily or-
ganize set of categories and allow the user to quickly add them to custom scenes.
Depth information is taken directly from the rendering engine, represented as gray-
scale texture representing the distance of the pixel from the position of the agent

3.3 Details on the generated views 43

(a) Camera Motion Optical Flow (b) Rotating Object Optical Flow

(c) LiteFlowNet Optical Flow (d) OpenCV Optical Flow

Figure 3.3: Optical flow yielded by SAILenv. In Figure 3.3a we see the optical flow
given by the agent motion. In Figure 3.3bwe see the optical flow given by the objects
motion, while the agent stands still. In Figure 3.3c we show how LiteFlowNet (Hui
et al., 2018) estimates the optical flow in the same conditions, while in Figure 3.3d
we show the estimation of the OpenCV implementation of the Farneback Optical
Flow.

(see Figure 3.2c as an example, lighter pixels indicate elements closer to the agent).
SAILenv also yields highly precise and dense motion information about the ob-

jects in the environment. Differently from what is commonly done by most optical
flow algorithms, SAILenv does not estimate optical flow by observing consecutive
views, but is instead fully computed by the physics engine of Unity. Since the engine
already holds information about the motion of the objects in the scene in relation to
the agent viewpoint (after all, it already uses it to drive the simulation and to ren-
der it). This is normally used in games to create visual effects such as motion blur
for fast moving objects, but we can easily use the same information to generate a
view that includes motion vectors for all pixels of the frame. In detail, such view
is a H × W × 2 tensor of single-precision floating point numbers, being H and W
respectively the height and the width of the view. To each of the pixels corresponds
a pair of floats which describes the velocity of each pixel in pixels per second. This
numerical representation is not easy to interpret and visualize on a screen, there-
fore SAILenv includes an utility to convert it to the HSV color space, as shown in
Figure 3.3. In practice, we consider the pair as cartesian coordinates (x, y)which are

44 Making Virtual Environments Simple: SAILenv

Figure 3.4: HSV color wheel

first converted into polar coordinates (α, Θ), where α is the magnitude and Θ is the
phase. Then, we set H = Θ, S = 1 and V = α. The resulting HSV image is con-
verted into RGB and shown on the screen. The resulting representation is easier to
interpret with the help of the HSV color wheel (Figure 3.4): the value of H indicates
the angle in the color wheel (starting from the top), i. e. it associates each color to
its respective direction. The intensity of the pixel is instead directly associated to
the value V and thus the magnitude of the motion vector: a slow moving pixel will
appear darker, a fast moving pixel will appear brighter.

In Figure 3.3b-d, we report three examples of the optical flow computed in a
scene that contains exclusively a rotating cube, that has no special textures and a
uniform color. Of course thismakes it harder to correctly estimate the pixel-levelmo-
tion using classic algorithms. Nonetheless, SAILenv can correctly represents the ro-
tation of the cube (Figure 3.3b). Instead, widely used solutions such as the OpenCV
implementation of Farneback algorithm, or even modern approaches based on con-
volutional neural networks (Hui et al., 2018), fail to correctly capture the motion, as
it is evident in Figure 3.3c and Figure 3.3d. Interestingly, despite its very high preci-
sion, SAILenv incurs in an almost null computational burden to compute the optical
flow. While some overhead due to data normalization operations and transmission
is to be expected, it is still negligible with respect to what is needed to estimate mo-
tion from pairs of static frames with other solutions. This will become clearer in
section 3.7.

3.4 Photo-realistic Objects and Scenes 45

3.4 Photo-realistic Objects and Scenes
We take advantage of the Unity physics engine to handle the virtual environment,
allowing SAILenv to rely on all the facilities of the powerful 3D editor integrated in
Unity. However, as mentioned before, creating new scenes and objects from scratch
is a time-consuming procedure that requires advanced skills in 3D graphics. This is
even more clear when working on photo-realistic objects, activity that requires the
designer to carefully pay attention to many details and aspects to obtain the target
appearance for an object. To help new researchers get into the field and mitigate
some of these issues, SAILenv is integrated with a library containing more than 65
objects that can be readily placed in any scene, plus other 3D objects that will help
create the structure of new scenes, such as walls, windows, etc. In Figure 3.6 are
shown examples of objects in the library. The library is integrated in a ready-to-go
Unity project that contains all the photo-realistic elements and four sample scenes,
meant to showcase the capabilities of the framework and to run simple prototype
experiments in simple context, similar to those described in section 3.7. The user
can edit these scenes, adding, moving or removing objects inside it, or create a com-
pletely new one from scratch, using the SAILenv library or even adding custom 3D
objects.

Sample scenes depict different rooms, with varying contexts, sizes and number
of objects. Some of them even include moving objects to evaluate motion-based
algorithm. The scenes available are:

• Room 01: Bedroom. Main objects: laptop, bed, desk, chairs and writing mate-
rials. See Figure 3.5a.

• Room 02: Sitting and dining areas. Main objects: chairs, couches, dining table,
paintings. Object movement: a toy rusty plane flies around the room. See
Figure 3.5b.

• Room 03: Bathroom. Main object: toilet, bathtub, cleaning supplies and hands
towels. Object movement: many of the objects inside the scene will occasion-
ally be pushed in a random direction, moving from their original position. See
Figure 3.5c.

• Optical: It includes rotating cubes and a cylinder. This scene is not realis-
tic and is meant to be used for debugging purposes (for example, to test the
optical flow feature). See Figure 3.5d.

Most of the 3Dmeshes are originally from the library of AI2-THOR project, then
significantly re-worked, improving their appearance so to reach a more advanced
photo-realistic level. To achieve this objective, we employed several state-of-the-art

46 Making Virtual Environments Simple: SAILenv

(a) Room 01 (b) Room 02

(c) Room 03 (d) Optical

Figure 3.5: Sample scenes in SAILenv

techniques that are commonly used in game design to improve the rendering qual-
ity. In particular, we started from Phisically Based Rendering (PBR), which is a state-
of-the-art rendering techniquewhich harnesses advanced physical models that sim-
ulates the behavior of light as it comes in contact with the surface of the object4. We
manually tuned the Albedo,Metallic, Specular, Emission, and Normal textures to care-
fully handcraft a believable and realistic effect on rendering. The Albedo texture
represents the plain color of the texture, regardless of anything else, while its alpha
channel represents the opacity; the Metallic texture represents how a certain part
of a material will act as a metallic surface, from 0 (not metallic) to 1 (fully metal-
lic), while its alpha channel represents the smoothness of the material from 0 (fully
rough) to 1 (fully smooth); the Specular texture represent how reflective a certain
part of a material is, and it is very similar to the metallic one, while its alpha channel
works the same as the metallic one (in fact, Metallic and Specular are exclusive al-
ternatives); the Emission texture defines where the material emits light, which can
actually illuminate other materials; finally, the Normal texture changes the orien-

4At the time of writing, a new rendering technique is commonly used on high-end, high-quality
projects: Ray-tracing Based Rendering. In Ray-tracing Based Rendering, rays from light sources are
individually modeled, allowing seamless rendering of reflections and refractions in a highly realis-
tic manner. During the development of SAILenv, this technology was not available on Unity. Fur-
thermore, the hardware requirements are much stronger, reducing the number of target machines
on which SAILenv could be released.

3.5 Dynamical Objects and Moving Agent 47

(a) Bed (b) Cabinet (c) Couch (d) Laptop (e) Table

Figure 3.6: Samples of objects available in SAILenv.

tation of the surface normal and is often used to simulate small heights variation
without adding polygons to the model mesh.

The basic conditions for global illumination of the environment were built us-
ing different HDRI (High Dynamic Range Imaging) skyboxes, which are a set of
textures wrapped in cube-maps and applied to the surrounding horizon of a 3D
scene. HDRI skyboxes allow realistic environmental global illumination, and static
reflections on all objects materials. Each of these skyboxes are based on real-world
pictures. Then, static reflection probes and lights were added, generating additional
object reflections5 and to provide further illumination. SAILenv default set of scenes
can be extended by opening and modifying the SAILenv Unity project with the use
of the Unity editor. The sample scenes are ready to be edited, otherwise the user
can easily create new scenes from scratch. Objects presented in this section can be
placed in a scene by a simple drag-and-drop operation from the resources window.

3.5 Dynamical Objects and Moving Agent
Object movement is completely handled by the Unity physics engine, which model
objects as a rigid body through the RigidBody component. In particulary, only ob-
jects that have a RigidBody component attached to them can move, while objects
marked as full static are not considered moveable in the simulation. To fully define a
rigid body as such, the usermust define amass value that is not supposed to be com-
pletely realistic, but appropriate enough to generate a seemingly realistic behavior
when applying forces to it. The actual movement behavior can be scripted within
the Unity engine, hooking to the physics update phase in the game loop, through
code written in the C# language. SAILenv includes three sample movement scripts
that can be attached to any object: they were briefly mentioned in the description of
the available scenes in section 3.4. The first movement behavior is implemented in
the SAILenv script called poltergeist, that randomly moves an object by applying

5Unfortunately, dynamic objects present a hard limitation as they are not compatible with static
reflection probes, meaning that they do not appear in reflections. We are working on improving this
aspect, without sacrificing too much performances.

48 Making Virtual Environments Simple: SAILenv

both a force and a torque in a random direction, at random time instants. The sec-
ond movement behavior is formalized in the wander plane script, that is defined by
a configurable set of waypoints; the object will randomly select a waypoint at ran-
dom time intervals, and the trajectory will result similar to that of a flying airplane
wandering around the room. Finally, the last pre-coded included movement behav-
ior is rotate rigidbody, which simply rotates elements with a configurable angular
speed and around a configurable center; it is used in theOptical scene and it ismeant
as a very simple and useful reference for beginners that want to customize a move-
ment behavior. Integrated tools to enable experiments where dynamical objects and
movement are needed are described in chapter 4.

As mentioned above, the Agent too is allowed to move around the scene. When
first created, the Python API allows the user to define its starting position and ori-
entation. Since the Python API includes commands to manually set position and
orientation, the user could of course develop his trajectory as a Python routine that
move the agent accordingly to some custom criteria. To ease the experience of the
user, SAILenv scenes also include some immaterial objects that act as a track for the
agents to follow andmove. An active Agent can be attached to the track, and subject
it to the Unity physics engine, acting as a RigidBody for any purpose such as the
computation of motion vectors. The consequence is that the movement of an Agent
produces motion vectors compatible with the movement of the camera field.

The Agent can also be attached to another RigidBody, making every movement
of this other object reflect on the position and orientation of theAgent. This ismostly
useful when debugging: in fact, a Debug Agent is created inside the environment at
startup, and it is used to show the environment on the screen of the server on which
SAILenv is hosted. Enabling the tracking of the Debug Agent by an Agent handled
by the Python API, allows the user to manually command the Debug Agent as a
proxy of the Agent (and vice-versa). For this purpose, SAILenv includes a Rigid-
Body Controller, that allows the Debug Agent to be guided by means of keyboard
and mouse attached to the machine running SAILenv, in a 3D-shooter-game-like
fashion: WASD keys are used like directional arrows, while the mouse is used to
change orientation. This is particularly useful for debug purposes, as it allows the
user to freely explore and see how the algorithmprocessing the client datawill react.
Alternatively, the Agents as well as the Debug Agent can be attached to the tracks,
mirroring on the screen what the stream received by the client will look like.

3.6 Using SAILenv
The main objective of SAILenv is to offer a simple platform that allows quick proto-
typing of experiments for visual recognition models with online, real-time streams.
In this section, we show examples of how to use SAILenv, both client and server

3.6 Using SAILenv 49

from sailenv.agent import Agent
agent = Agent(width=256, height=192,

host="192.168.1.3", port=8085)
agent.register()
agent.change_scene(agent.scenes[2])

while True:
frame = agent.get_frame()

run your algorithm using frame data
...

agent.delete()

Figure 3.7: Code that starts the Python client and get data from the environment
that can be processed by Machine Learning Frameworks.

operations.
The users that want to interface an algorithm with SAILenv, will have to startup

theUnity server first, then their Python codewill have to import the SAILenv Python
library in order to generate a valid client to control an Agent inside the simulation.
The Unity server can be started either by using the Unity Editor, that allows to di-
rectly run a scene with the embedded Unity server, or by building the project into
valid executables for a target operating system. The second option allows for a trivial
startup of a Unity server instance and does not depend on the Unity editor, which
is available on fewer platforms. After running the executable, the user can select
the scene manually from the server screen or remotely from the client API. Once
the Unity server is running a scene, the Unity server starts listening for connections
on port 8085 (default, but configurable). The Python code needed to instantiate a
valid agent and fetch data from its viewpoint is minimal as shown in the snippet of
Figure 3.7.

In the code, we assume that the Unity server is running on a server that is reach-
able by the IP address 192.168.1.3 and is using the default port. Notice that the reso-
lution of the visual stream generated by the Agent viewpoint is configurable during
the creation of the Agent. The Agent construction also allows to specify what partic-
ular views are required, reducing the computational burden by not rendering and
fetching those which are not needed. After having specified the configuration of
the Agent, it can be registered to the simulation, triggering the actual creation of the
Agent inside the environment. Afterwards, the identifiers of the scenes available
to the build are inspectable in the list agent.scenes, and can be used to remotely
set the running scene by calling the method agent.change_scene(scene_id). The
method agent.get_frame() fetches the current views of the environment from the
viewpoint of the Agent and are returned in a dictionary frame. The dictionary is

50 Making Virtual Environments Simple: SAILenv

structured with the following key-value pairs:

• main: H × W × 3 – RGB view.

• category: H × W – semantic labeling, in which each element at coordinates
(x, y) of the tensor is an integer containing the category ID associated to the
object to which the pixel (x, y) belongs.

• object: H × W × 3 – instance labeling, that is a BGR image in which each pixel
color is the unique identifier of the scene object to which the pixel belongs.

• flow: H × W × 2 – optical flow, composed of vx, vy velocities of the flow.

• depth: H × W × 1 – the depth of each of the pixels of the agent camera, in
[0, 255].

The final call to agent.delete() removes the agent from the server, releasing re-
sources. Another important property available to the Agent is agent.categories,
which is a list populated when the agent registers or when the scene is changed,
which contains a dictionary that maps category numeric IDs to their respective
names (e. g. pixel with category 24 => table). Finally, the position and orientation of
the agent can be set respectively by agent.set_position((x,y,z)) and agent.set_ ⌋
rotation((rx,ry,rz)), and the track following behavior is toggledwith agent.toggle_ ⌋
follow().

3.7 Experimental Evaluation
We evaluated the concrete quality of SAILenv photo-realism exploiting state-of-the-
art object detection neuralmodels, and by comparing the generation speed of optical
flow data to other commonly used algorithms.

Regarding photo-realism, we setup an experimental setting in which a powerful
object detector, trained on real-world data, returns both bounding boxes and pixel-
wise objectmasks on a stream generated by SAILenv. Focusing on the sample scenes
of SAILenv, we measured the capability of such model to correctly recognize object
categories on which it was trained, thus measuring how strongly the appearance
of SAILenv objects resembles the appearance of equivalent real-world objects. In
particular, the model chosen for this measurement was Mask R-CNN based on the
popular ResNet-50 backbone (He et al., 2017), pre-trained on COCO-train2017 data
(Lin et al., 2014). We focused on a subset of the categories available on the COCO
dataset, in particular we chose 14 classes that are shared with the available SAILenv
categories. For each object we chose 5 frames generated by SAILenv, in different
viewing conditions. The chosen categories are shown in the first column of Table 3.2.

3.7 Experimental Evaluation 51

For each class, wemeasured the average Intersection overUnion (IoU) between the
pixel-wise predictions provided by the Mask R-CNN mask branch and the ground
truth category segmentation returned by SAILenv. The resulting accuracies are re-
ported in the second column of Table 3.2, and they show that Mask R-CNN is able
to robustly identify a large portion of the objects, despite the different viewing con-
ditions and the virtual settings. In facts, the produced masks are mostly overlapped
with the ground truths generated by SAILenv, with some mild exceptions that are
mostly due to the difference in the labeling protocol that is followed byCOCO trainin
dataset and by SAILenv. As an example of the different labeling protocols, see Fig-
ure 3.8. The masks predicted by Mask R-CNN tend to occupy all the area of the
object, differently from the highly detailed pixel-wise labels produced by SAILenv,
in which the spaces among the structure of objects (e. g. between leaves on a plant
or within the net of a racket) are not marked with the object label. In general, we
observe a similar behavior in the presence of occlusions or non-dense structures.
We explain the reduced performances on book, spoon and fork by noticing that
COCO training set presents these objects from very specific viewpoints, while the
SAILenv stream shows themwith more variety. This observation will be once again
important in chapter 5 (see Figure 5.5). To further investigate this intuitions, we
also computed a measure that takes account of how strongly the bounding box of
the predictions matched the ones of the ground truth, leading to a third column in
Table 3.2 (Bounding Box IoU). In this case, we observe an average increase in predic-
tion quality, overcoming some of the aforementioned issues (see, e. g. potted plant
and tennis racket). We can also clearly see large standard deviations around some
other critical categories (spoon, fork, dining table, chair). This indicates that the
recognition quality was high for some viewpoints, while significantly lower from
other viewpoints.

Regarding optical flow computations, we remind that SAILenv generates a dense
optical flow that is not estimated through the observation of pairs of frames, but is
instead inferred by the real motion information coming from the 3D physics engine.
Clearly, this leads to the most accurate motion estimation one could have. However,
it is not yet clear what is the computational burden of this solution with respect
to other competing algorithms, such as the popular OpenCV implementation of the
Farneback algorithm (Farnebäck, 2003), and onemodel based on convolutional neu-
ral network, LiteFlowNet (Hui et al., 2018), one of the fastest solutions available.

The OpenCV implementations takes advantage of other OpenCV tools to speed
up the computation, which, in the default Python distribution, is performed us-
ing the CPU. Differently, in the case of a PyTorch implementation of LiteFlowNet,
GPU-based computations (with the CUDA toolkit) are exploited. For each com-
pared method, we measure the time needed to produce the flow at six increasing
target resolutions, reported in the x-axis of Figure 3.9. On the y-axis we report the

52 Making Virtual Environments Simple: SAILenv

SAILenv Mask R-CNN

Ra
ck
et

C
ha

ir

Figure 3.8: Comparison of labeling protocols between SAILenv and Mask R-CNN.
As expected, Mask R-CNN learns from the COCO training dataset to densely label
even empty spaces in the structure of the objects. SAILenv instead precisely labels
pixels belonging to the object, leaving out pixels of the background.

average time over 100 sampled frames, with 95% confidence intervals. In our ex-
perimental setting, when measuring the computational speed of the OpenCV im-
plementation and LiteFlowNet, we setup the SAILenv client to only fetch the RGB
frame from the virtual environment, turning off all internal optical flow computa-
tions and generation of other views. Then, the optical flow is computed using one
of the competitors, using the current frame and the one returned at the previous
time step. To increase the fairness in the measurement, we take account of the time
needed to transfer data to/from the GPU and subtract it from the measurements.
For the results shown in Figure 3.9 we used a Windows desktop machine equipped
with an Intel Core i9 9900K, 3.60 GHz, 64GB of RAM and an NVIDIA GTX 1080
GPU with 8GB of VRAM. We also perfromed experiments on two other machines,
obtaining results with analogous trend. Clearly, SAILenv takes full advantage of
the information from the physical engine, computing precise optical flow and out-
performing the competitors in response time. Furthermore, for lower resolutions, it
reaches real-time performances even with consumer-grade hardware, thanks to its
direct access to the physics engine that takes advantage of heavily optimized GPU-
based computations. The gap with other competitors is evenmore evident at higher
resolutions.

3.8 Discussion 53

Table 3.2: Mean and standard deviation of the predictions of the Mask R-CNN
model (pretrained on COCO2017 dataset) on a dataset obtained from the SAILenv
sample scenes. Two measures are considered: Pixel-wise IoU and Bounding Box
IoU (see the paper text for details).

Category Pixel-wise IoU Bounding Box IoU
bed 0.7830 ± 0.0879 0.8201 ± 0.0894
book 0.3347 ± 0.2749 0.3506 ± 0.2870
chair 0.6235 ± 0.0566 0.5557 ± 0.4162
couch 0.8742 ± 0.0533 0.9121 ± 0.0561

dining table 0.6891 ± 0.0398 0.4553 ± 0.4096
fork 0.4599 ± 0.1274 0.4800 ± 0.4294

laptop 0.9551 ± 0.0098 0.9476 ± 0.0207
airplane 0.7193 ± 0.0314 0.7865 ± 0.1005

potted plant 0.6106 ± 0.0499 0.8894 ± 0.0656
remote 0.8980 ± 0.0400 0.9534 ± 0.0127
spoon 0.4036 ± 0.1984 0.3787 ± 0.3611

tennis racket 0.5120 ± 0.0475 0.9548 ± 0.0127
toilet 0.9274 ± 0.0178 0.9623 ± 0.0201
tv 0.9641 ± 0.0171 0.9673 ± 0.0135

3.8 Discussion
SAILenv is a software platform thatmakes it easy to create, run and get data from re-
alistic 3D virtual environments, onwhich a researcher can efficiently evaluate visual
recognition or other vision-related algorithms, especially in the setting of Continual
Learning from visual streams. In fact, with regard to continual learning, a set of ex-
tensions were developed and integrated to enable parametric generation of visual
scenes, work described in chapter 4, which was then used to generate visual streams
that enabled a Continual Learning task (Tiezzi et al., 2022b). The platformwas then
also used to study the potential impact of malicious actions against the Virtual Envi-
ronment through adversarial contributions that aim at poisoning benchmarks and
scenarios created through SAILenv, study described in chapter 5.

In (Tiezzi et al., 2022b), three visual streamswere generated with SAILenv, craft-
ing three virtual scenes where different objects move around the scene in a closed
loop, changing orientation, relative size with respect to the observer, and in general
showing different viewpoints of the object. The three scenarios portrait contexts of
different complexities: the first, EmptySpace shows a gray background with a chair,
a laptop, a pillow, and a teapot; the second, Solid shows a gray background with
three textureless solid shapes, i. e. a sphere, a cylinder, and a cube; finally, Livin-
gRoom shows a more complete indoor context, with various objects filling the view
and possibly creating distractions for the neural model. In this research work, we

54 Making Virtual Environments Simple: SAILenv

(240x180) (320x240) (640x480) (800x600) (1024x768) 1280x960
Resolution

5

10

15

20

25
FP

S

LiteFlowNet
OpenCV
SAILenv
24 FPS Threshold

Figure 3.9: Average Frame Per Seconds (FPS) achieved when computing the opti-
cal flow associated to a frame sampled from the SAILenv scenes. We compare the
SAILenv performances with an OpenCV-based implementation of the Farneback al-
gorithm and the neural model LiteFlowNet (Hui et al., 2018).

proposed a novel neural-network-based approach for developing pixel-wise repre-
sentations in a video stream, progressively and autonomously. The proposed solu-
tion is built on a human-like attention mechanism that enables the agent to learn
by seeing what object is moving in the attended pixels. Spatial-temporal stochastic
coherence along the attention trajectory is then combined with a contrastive term,
providing an unsupervised learning criterion that is inherently fit for the considered
settings. Unlike other previous research, the learnt representations are used for an
open-set class-incremental classification of pixel in the frame, trained with only a
few supervisions. The 3D streams aforementioned are used to demonstrate that the
proposed solution can learn to differentiate objects simply by watching the video
streams, and then recognize them with those few supervisions.

In chapter 4, we describe a theoretical framework for the parametric description
of scenes to allow easy generation of novel visual streams with variable levels of
complexity, number of objects and objectmovement dynamics, enabling various and
different contexts on which to train and benchmark visual recognition models. To
do so, we extended SAILenv, proving the easily extensible design, with a new set
of commands and API that implemented the theoretical framework proposed, and
showed some examples and possible cases of use of the available tools to create
interesting streams for different tasks. Based on (Meloni et al., 2022a).

3.8 Discussion 55

In chapter 5, we study how to craft adversarial 3D objects by slightly altering their
textures with the use of a software tool chain appositely designed and implemented
with conveniently accessible components. We demonstrate that it is possible, and
indeed rather simple, to generate adversarial object using off-the-shelf limited 3D
renderers that can compute gradients with respect to the parameters of the render-
ing process. Furthermore, we show that assaults may be transferred to more com-
plex 3D engines, up to some extent. To achieve this, we propose a saliency-based
attack that intersects the two classes of renderers in order to focus the perturbation
on texture elements that are anticipated to be most effective on the target 3D engine.
Finally, we also analyzed the impact of these attacks on popular neural classifiers.
Based on (Meloni et al., 2021b).

Chapter 4

Dynamic Virtual Environments for
Continual Machine Learning

Traditional machine learning techniques usually assume static input data and the
existence of a neat distinction between a training and a test phase. Input data, en-
tirely available at the beginning of the learning procedure, are processed as a whole,
iterating over the training dataset multiple times, many epochs, in a batch mode
fashion, optimizing the performance with respect to a given learning task. The
trainedmodels are then frozen and exploited for inference only, hence computation-
ally expensive re-training procedures are needed to possibly incorporate any new
available information. This learning paradigm is clearly incompatible with what
humans (and, more in general, animals) do in their everyday life, continuously ac-
quiring and adapting their knowledge to the dynamic environment in which they
live. The field of Machine Learning that aims at simulating this learning process
by an artificial agent is known as Continual or Lifelong learning (Parisi et al., 2019;
Van de Ven and Tolias, 2019). The agent should be malleable enough to integrate
new knowledge and, at the same time, stable enough to retain old information. This
is known as the stability-plasticity dilemma (Abraham and Robins, 2005). Vanilla neu-
ral networks have been shown to struggle in this aspect, since training a network
to solve a new task will likely override the information stored in its weights, phe-
nomenon known as catastrophic forgetting (McCloskey and Cohen, 1989; McClel-
land et al., 1995; French, 1999). In the context of Computer Vision, Continual Learn-
ing algorithms are trained and their performance assessed on datasets containing
static images, such as MNIST (Lecun et al., 1998) or Caltech-UCSD Birds-200 (Wah
et al., 2011), or short sequences of temporally coherent frames, such as iCubWorld
(Fanello et al., 2013; Pasquale et al., 2015, 2016), and CORe50 (Lomonaco and Mal-
toni, 2017), usually considering a sequence of distinct learning tasks. However, in
our opinion, the resulting learning scenarios are still far away from the original idea
of an agent learning from a continuous stream of data in a real-world environment.

57

58 Dynamic Virtual Environments for Continual Machine Learning

See for instance the task-free continual learning approach of (Aljundi et al., 2019).
Furthermore, having the possibility to fully control the visual scene that the agent
perceives (number and types of objects that are present, their pose and theirmotion,
background, possible occlusions, lighting, etc.) is essential to devise a suitable and
feasible continual learning protocol and, from this point of view, real-world footages
are not a viable alternative.

Taking another significant example, consider a task in which a learning agent
has no access to a fully-annotated dataset of sequences of tasks such as the above,
but is instead learning from a continuous stream of data where the interactions with
the supervisory signals are loosely distributed over space and time. An example of
such scenario would be an agent freely living in an interactable environment, with
an occasional supervision from another party (a human supervisor, or possibly a
second artificial agent with communication skills). In this scenario, the agent would
have to independently form its own understanding of the environment around it,
and then integrate the external supervisions to give an identity to the learnt features.
To do so, the role of time is fundamental to keep a coherence between objects and
entities thatmove around in space, in some sense knitting together otherwise statical
images, that is the individual frames of the visual stream. This would be harder
considering the kind of datasets and continual learning settings discusses above,
since sequences of static datasets miss the time coherence between individual data
samples and episodic visual data do not have time coherence between themselves.

This idea is explored in the study conducted in (Tiezzi et al., 2022b), were con-
tinous visual streams respecting such definition of time coherence were used, de-
picting a virtual scene with various objects moving around the scene, altering their
orientation, relative size, and viewpoints. The three scenarios portrayed contexts of
differing complexities, ranging from a minimal scene showing a gray background
with three textureless solid shapes including a sphere, cylinder, and cube, a more
complex scene with the same gray background but with more interesting objects
such as a chair, laptop, pillow, and teapot, up to a more realistic third scenario, de-
picting a complete indoor context with numerous objects filling the view, thereby
potentially causing distractions for the neural model. The researchers proposed
a novel neural-network-based approach to develop pixel-wise representations in a
video streamprogressively and autonomously. They utilized a human-like attention
mechanism that enabled the agent to learn by identifying which object was moving
in the attended pixels. Spatial-temporal stochastic coherence along the attention tra-
jectory was combined with a contrastive term, providing an unsupervised learning
criterion suitable for the considered settings. Unlike previous research, the learned
representations were utilized for an open-set class-incremental classification of pix-
els in the frame, trained with only a few supervisions. The results show that by
taking advantage of the continuous structure of the stream and by being able of

59

extracting information from how objects evolve through space over time, few super-
visions limited to single pixels in the visual stream are more than enough to train
an adequate pixel-wise object detector. Such results highlight the need of scenes
that follow the principles of continuous evolution over time, and therefore imply
the need of easily creating and customizing such streams to include more scenarios
of different complexity to learning agents1.

We thus propose to exploit the recent technological advancements in 3D virtual
environments to create a parametric generator of photo-realistic scenes in a fully con-
trolled setting, easily creating customizable conditions for developing and studying
continuous learning agents. As mentioned in the previous chapters, in the last few
years, due to the improved quality of the rendered scenes, 3D virtual environments
have been increasingly exploited by the machine learning community for different
research tasks (Beattie et al., 2016; Gan et al., 2020; Kolve et al., 2017; Savva et al.,
2019; Weihs et al., 2020; Xia et al., 2020) and different environments, based on differ-
ent game engines, have been proposed so far, such as DeepMind Lab (Beattie et al.,
2016) (Quake III Arena engine), VRKitchen (Gao et al., 2019), CARLA(Dosovitskiy
et al., 2017) (Unreal Engine 4), AI2Thor (Kolve et al., 2017), CHALET (Yan et al.,
2018), VirtualHome (Puig et al., 2018), ThreeDWorld (Gan et al., 2020), SAILenv
(Meloni et al., 2021a) (Unity3D game engine), HabitatSim (Savva et al., 2019), iGib-
son (Xia et al., 2020), SAPIEN (Xiang et al., 2020) (other engines). Moreover, a re-
cent work (Lomonaco et al., 2020) proposed a novel non-stationary 3D benchmark
based on the VIZDoom environment to tackle model-free continual reinforcement
learning.

Motivated by this significant amount of research activities, we propose to exploit
such technologies to implement amethod for the generation of synthetic sceneswith
different levels of complexity, and that depends on well-defined customizable pa-
rameters. Each scene includes dynamical elements that can be subject to random
changes, making the environment a continuous source of potentially new informa-
tion for continual learning algorithms. Another key aspect in the context of contin-
ual learning is related to the source of supervisions. 3D environments can naturally
provide full-frame labeling for the whole stream, since the identity of the involved
3D objects is known in advance. This paves the way to the implementation of active
learning procedures, in which the agent asks for supervision at a certain time and
coordinates, that the 3D environment can easily provide. Moreover, in the context of
semi-supervised learning, it is of course straightforward to instantiate experimental
conditions in which, for example, supervisions are only available during the early
stages of life of the agent, while the agent is asked to adapt itself in an unsupervised
manner when moving towards a new scene. On the other hand, one could also de-

1Wedisclose in advance that, indeed, the visual scenes used in (Tiezzi et al., 2022b) were actually
created with the methodology described in the rest of the chapter

60 Dynamic Virtual Environments for Continual Machine Learning

vise methods where the learningmodel evolves in an unsupervisedmanner and the
interactions with the supervisor only happen at later stages of development (i.e., for
evaluating the developed features). Finally, we introduce the perspective in which
scenes could be just part of the same “big” 3Dworld, and the agent couldmove from
one to another without abrupt interruptions of the input signal.

The rest of the chapter is organized as follows. In section 4.1, the proposed gen-
erative framework is described, where visual scenes will be described on a general
level and possible factors of variations will be encoded parametrically, allowing the
user to fully control the input stream perceived by the continual learning agent.
section 4.2 will present a practical implementation of these ideas extending the 3D
virtual environment described in chapter 3. Some illustrative exampleswill be given
in section 4.3. Finally, section 4.4 will draw some conclusions.

4.1 Parametric Generation of Environments
This work focusses on the problem of generating customized 3D visual environ-
ments to create experimental conditions well suited for learning machines in a con-
tinual learning scenario. In this section we describe the conceptual framework that
allows us to formally introduce the automatic generation of a family of dynamic
visual scenes. We would like to underline that one of the main strengths of the au-
tomatic generation of 3D environments is the possibility to easily change and adapt
them to facilitate the creation of benchmarks with different degrees of difficulty with
respect to a given model and task, allowing researchers to craft ad-hoc experiments
to evaluate specific skills of the continual learning model under study or to design
a range of gradually harder learning problems.

The three key factors that we consider in order to devise an automatic generator
of dynamic 3D scenes are visual quality, reproducibility and user-control in the gen-
eration procedure. When designing the generation of such an environment we have
to take into account at least three distinct aspects. First of all, it is important that
the visual quality of the rendered scene is good enough to simulate photo-realistic
conditions. On the other hand, a flexible generator should not be constrained to
such high-level quality and should be able to handle also more elementary scenes
in which, for instance, objects are geometric primitives or they have no or poor tex-
tures. At the same time, the generating procedure should be easy to reproduce. The
dynamics of the scene should be controllable at the point in which it is possible to
go back to the very beginning of the agent life to reproduce the exact same visual
stream; of course, this does not exclude pseudo-randomic behaviour of the environ-
ment as, in that case, the reproducibility can be guaranteed by explicitly fixing the
initial condition of the driving pseudo-random process (seed). Scenes with high
visual quality and reproducible conditions can readily be obtained as soon as one

4.1 Parametric Generation of Environments 61

relies, for the visual definition and management of the scenes, on a modern graph-
ical engine which is capable of physics simulations, as we will show in our actual
implementation in Section 4.2.

Concerning the capability of customizing the generated scenes, the quality of the
generator depends on the flexibility it offers in terms of compositional properties
and user accessibility to such properties so to effectively describe the generating
process of the scenes.

To this aim, we parametrically describe the visual world assuming that we have
at our disposal a collection of pre-designed visual scenes S = {s1, . . . , sn}. For each
scene sj, a definite collection of object templates Ωj = {ω1,j, . . . ωnj,j} is available,
where nj is the number of object templates in the j-th scene. Each sj is initially
populated by some static instances of the object templates. The parametric genera-
tion procedure instantiates new objects from the template list, eventually including
multiple instances of the same template (e.g., positioning them in different loca-
tions of the 3D space–for example, a table with four chairs). Formally, fixing a scene
σ ≡ sj ∈ S with templates Ω ≡ Ωj, we can define the collection of N objects that will
be added to σ by the parametric generation procedure as Φ := (φ1, . . . , φN) ∈ ΩN.

Practically, this means that given a scene, there will be a set of object templates,
and the scene can be populated with any number N of objects, allowing the same
template to be picked several times. For example, given a scene with templates Ω =

{chair, pillow, laptop}, we could have Φ = (chair1, chair2, pillow1, laptop1),
where N = 4 and we used numerical suffixes to differentiate repeated instances of
the same object template.

In this work, we assume that the lighting conditions of the rendering engine are
fixed and so the position and the orientation of the agent point of view2. We are also
assuming that the scene σ is populated with an additional set of objects apart from
those in Φ, with the latter being the only ones allowed to move in the environment.
We denote with (vk)k∈N the sequence of frames captured by the agent point of view.
Hence, σ can be generated onceΦ is chosen and the following attributes are specified
for each φi:

• the indices (ki, k̂i) ∈ N2 of the frames where φi makes respectively its first and
last appearance;

• the position and the orientation of the object in the frame ki, collectively rep-
resented as a vector3 πi ∈ R6;

2Here we are making this assumption in order to simplify the management of the generation
procedure, however these settings can be regarded as additional parameters that can be chosen to
define the environment.

3Again, for the sake of simplicity, we are assuming to work with objects which are rigid bodies
(hence the R6) but indeed this is by no means a crucial assumption.

62 Dynamic Virtual Environments for Continual Machine Learning

• its trajectory (i.e., its position and orientation) for each k such that ki < k ≤ k̂i,
modeled by a set of parameters indicated with τi and defined in what follows.

Notice that, in order to grant additional flexibility to the scenario definition, it is use-
ful to allow the possibility of dynamically spawning new objects on the fly, when the
agent is already living in the generated environment. This property enables the cre-
ation of scenes that might also significantly change over time, being expanded or
connected to other scenes, capabilities that might be very appropriate in the con-
text of continual learning. The values of (ki, k̂i), πi, and τi, for i = 1, . . . , N are
regarded as parameters that characterize the customizable objects visible in a frame
k. In particular, parameters τi, i = 1, . . . , N unambiguously define the object tra-
jectories, such as the trajectory’s global shape, the speed and whether or not the
trajectory completely lies in the agent’s field of view. Formally, considering the i-
th object, we have that τi = (κi, ϑ1

i , . . . , ϑm
i), where κi specifies the chosen kind of

trajectory while ϑ1
i , . . . , ϑm

i stand for all the additional parameters required to fully
determine it. Overall, the visual environment is specified by the collection of pa-
rameters Θ := (k1, . . . , kN, k̂1, . . . , k̂N, π1, . . . , πN, τ1, . . . , τN).

Hence it is clear that through the choice of Θ we can control the number of ob-
jects present at any given frame k, the position and orientations of the objects, the
way inwhich objectsmoves and their velocity, i.e., the nature of their trajectories and
whether or not objects escape the field of view. A fine control over this set of param-
eters provide us with a general tool to create highly customizable datasets suitable
for continual learning scenarios, possibly of increasing difficulty with respect to a
given learning task. For example, in an object recognition problem, the number of
angles fromwhich an object is seen, which is closely related to the chosen trajectory,
could clearly affect the visual complexity of the task. A fine control over this set of
parameters provide us with a general tool to create datasets of increasing difficulty
with respect to a given learning task. For example, in an object recognition problem,
the number of angles from which an instance of an object is seen, which is closely
related to the chosen trajectory, could clearly affect the complexity of the task.

4.2 Continual Learning 3D Virtual Benchmark
SAILenvMeloni et al. (2021a) is a platform specifically designed to ease the creation
of customizable 3D environments and their interface with user-defined procedures.
With a few lines of code, any learning algorithm can get several data from the virtual
world, such as pixel-level annotations. SAILenv includes a Unity librarywith ready-
to-go 3D objects and it provides basic tools to allow the customization of a virtual
world within the Unity 3D editor, without the need of writing 3D graphics specific
code. Differently from the other existing solutions, it also offers motion informa-

4.2 Continual Learning 3D Virtual Benchmark 63

(a) room01 (b) room02 (c) room03

Figure 4.1: The three default scenes of SAILenv, room01, room02, room03 (besides the
empty scene object_view).

tion for each pixel of the rendered view. SAILenv is based on the Unity Engine4, a
state-of-the-art graphics and physics engine that is commonly used for videogames
and physical simulations. It therefore presents realistic objects and scenes, with fine
details and realistic illumination, while allowing the creation of credible motion dy-
namics of objects in the scene. The SAILenv platform, when executed, creates the
virtual world, managing the physical simulation in all its aspects. It also opens up a
network connection listener, which waits for incoming connections to interact with
the environment. The communication is implemented with low-level socket opera-
tions and a custom protocol which focuses on achieving high performance, avoiding
bottlenecks in data exchange that would excessively slow down every simulation,
for reasons not-related to machine learning.

The platform is released with a Python API, which offers a high-level interface,
called Agent, that acts as the main player in the communication between the 3D
world and custom Python code. The API allows the creation of multiple agents that
“live” in the virtual world, each of themwith its own view of the environment. Each
agent is defined by several parameters, such as the resolution of the rendered image
that is acquired from the 3D scene, its position and orientation. By means of a few
lines of code, an agent can return fully-annotated views of the environment:

from sailenv.agent import Agent

agent = Agent(width=256, height=192,

host="192.168.1.3", port=8085)

agent.register()

agent.change_scene(agent.scenes[2])

while True:

frame_views = agent.get_frame()

...

agent.delete()

4See https://unity.com

https://unity.com

64 Dynamic Virtual Environments for Continual Machine Learning

The data (frame_views) provided by the agent include: the RGB View (pixel col-
ors of the rendered scene),Optical Flow (motion)5, Semantic Segmentation (category-
level labels), Instance Segmentation (instance-level labels), and Depth View (depth).
Each of these elements contains pixel-wise dense annotations. They are all gener-
ated in real-time, and they are then transmitted to the Python client with a fast low-
level communication mechanism. This facilitates the use of the SAILenv platform
in real-time online learning scenarios.

For the purpose of this work, we extended the SAILenv platform to support dy-
namic scene generation following the guidelines of Section 4.1. The newPythonAPI
we developed also allows the customization of the scenewithout having to dealwith
3D-graphics editing tools or the Unity Editor, creating new objects on-demand.

Scenes and objects. We extended the SAILenv Python API to allow an easy and
quick definition of the parameters in Θ, through few lines of code. After having reg-
istered theAgent in the environment (as shown in the previous code snippet), a pre-
designed scene σ can be chosen using the method agent.change_scene(scene_ ⌋
name). In particular, SAILenv comes with the following scenes, S = {object_ ⌋
view (empty space), room01 (bedroom), room02 (living room), room03 (bathroom)}
(see Figure 4.1). Selecting a scene automatically determines the set Ω of available
templates. Given a certain template, a new object φi can be generated through the
method agent.spawn_object(template_name, position, rotation[, dynamic, ⌋
limited_to_view]), specifying its position, rotation and, in the case of amoving ob-
ject, the properties of the associated trajectory (last two arguments). This method
will return an object_id. Invoking the creation at frame k will spawn the selected
object at the next frame (ki = k + 1) and it will set πi to the concatenation of the
given position and rotation. We postpone the description of the trajectory dynamics
(dynamic argument) to the next paragraph, while when the Boolean flag limited_ ⌋
to_view is set to true, the object will be always kept withing the the field of view
of the agent. The condition for making this choice effective is to create invisible
barriers where the object will bounce, located at the borders of the agent camera
frustum (that is the region of 3Dworld seen by the agent), by calling agent.spawn_ ⌋
collidable_view_frustum(). The object can then be deleted through the method
agent.despawn_object(object_id)which is equivalent to setting k̂i to the identifier
of the next frame.

Trajectories. The object dynamics can be defined through simple Python classes.
In this work, we propose three different types of trajectories, associated to classes
that can be instantiated by calling: LinearWaypoints(waypoints_list, total_ ⌋

5A pixel of the Optical Flow View is a vector (vx, vy) ∈ R2 representing the velocity in px/frame.
For visualization purposes (e.g. see the Optical Flow rows of Figures 4.5, 4.6, 4.7), each vector could

4.2 Continual Learning 3D Virtual Benchmark 65

time), CatmullWaypoints(waypoints_list, total_time) and UniformMovement_ ⌋
RandomBounce(speed, angular_speed, start_direction[, seed]). Within the no-
tation of Section 2, the chosen class trajectory for the i-th object is what we formal-
ized with κi (for example, consider κi set to UniformMovementRandomBounce), while
the associated arguments (speed, angular_speed, start_direction[, seed], in
the case of the previous example) stand for ϑ1

i , . . . , ϑ4
i . Both CatmullWaypoints and

LinearWaypoints require a list of L waypoints (w1, . . . , wL) ∈ (R6)L and the time (in
seconds) that the object takes to loop around all of them, see Figure 4.2 for an exam-
ple of code (described in the next section). The difference between the twodynamics
is that the former does a linear interpolation between two consecutive waypoints,
while the latter computes a Catmull-Rom Spline interpolation Maggini et al. (2007)
along the whole set of waypoints. Collisions with other scene elements are handled
by the Unity physics engine, that takes care of rejoining the trajectory whenever it
becomes possible. UniformMovementRandomBounce makes an object move inertially
until it hits another one or the edges of the agent view. After the collision, the ob-
ject bounces back in a random direction and also acquires an additional random
torque. The speed and the angular_speed parameters limit the velocity of the ob-
ject in the scene, the start_direction bootstraps its movement and the seed may
be fixed to replicate the same dynamics (i.e., for reproducibility purposes). Further-
more, the API allows to change the object position and orientation at any given time
through the method agent.move_object(object_id, position, rotation). The
above presented dynamics are available from the Python API, but with little effort
the dynamics can be extended within the SAILenv source code.

Utilities. What we described so far fully defines the scene and the parameters in
Θ. In order to simplify the management of the Python code, we added a higher
abstraction level based on the Python class Scenario and some additional utility
classes, such as Waypoint and Object, that allow to describe the structure of the
scene in a compact manner, as we will show in the examples of Section 4.3 (Figure
4.2, 4.3 and 4.4). When using class Scenario, the object trajectories can be orches-
trated through the Timings classes. There are three different available timings. The
first one, AllTogether(wait_time), makes every object move at the same time af-
ter wait_time seconds. The second, WaitUntilComplete, supports only waypoint-
based dynamics (more, generally, dynamics that are based on loops), and activates
them one at a time waiting until each one is complete before starting the next one.
Finally, the DictTimings(_map) timing takes as input a map that defines for each
trajectory how long it should be active before stopping and starting the next one.

be converted in polar coordinates (ρ, ϕ) and the pixel could be assigned theHSV color (ϕ, 1, ρ). There-
fore, ρ would determine the intensity of the color (the faster, the brighter), while ϕ would determine
the color (red: left, green: down, cyan: right, violet: up).

66 Dynamic Virtual Environments for Continual Machine Learning

scene = "object_view/scene"
waypoints = [

Waypoint(Vector3(0., 0., 4.), Vector3(0., 0., 0.)),
...
Waypoint(Vector3(-5., 1., 7.), Vector3(90., 90., 180.))

]
dynamic = CatmullWaypoints(waypoints=waypoints, total_time=10.0)
objects = [

Object("c1", "Cylinder",
Vector3(0, 0, 2), Vector3(0, 0, 0), dynamic)

]
scenario = Scenario(scene, objects)
agent.load_scenario(scenario)

Figure 4.2: A Cylinder moves through the defined waypoints, with a trajectory ob-
tained by Catmull interpolation.

scene = "room_02/scene"
dynamic1 = UniformMovementRandomBounce(seed=32,

speed=0.8, start_direction=Vector3(0, 5, 2))
dynamic2 = UniformMovementRandomBounce(...)
dynamic3 = UniformMovementRandomBounce(...)
agent_pos = agent.get_position()
objects = [

Object("c1", "Chair 01", agent_pos + Vector3(2, 0, 0),
Vector3(0, 0, 0), dynamic1, frustum_limited=True),

Object("p1", "Pillow 01", ...),
Object("d1", "Dish 01", ...)

]
timings = AllTogetherTimings(0.75)
view_limits = Frustum(True, 10.)
scenario = Scenario(scene, objects, timings, view_limits)
agent.load_scenario(scenario)

Figure 4.3: Definition of a simple scenario where a Chair, a Pillow and a Dish move
pseudo-randomly around a pre-built living room.

Finally, we mention the Frustum class to simplify the creation of the previously de-
scribed invisible boundaries, if needed.

4.3 Examples

The proposed SAILenv-based generator can be downloaded at SAILenv official web-
site https://sailab.diism.unisi.it/sailenv/. In the following we show three
examples of generations.

https://sailab.diism.unisi.it/sailenv/

4.3 Examples 67

scene = "room_01/scene"
waypoints = [

Waypoint(Vector3(0.5, 1.4, 0.5), Vector3(0., 0., 0.)),
Waypoint(Vector3(0.3, 1., -1.), Vector3(90., 0., 0.)),
...

]
agent_pos = Vector3(-1.3, 2., 1.5)
agent.set_position(agent_pos)
agent.set_rotation(Vector3(22., 144., 0))
dynamic = CatmullWaypoints(waypoints=waypoints)
objects = [

Object("racket", "Tennis Racket 01",
Vector3(0.5, 1.4, 0.5), Vector3(0., 0., 0.), dynamic)

]
scenario = Scenario(scene, objects)
agent.load_scenario(scenario)

Figure 4.4: A Tennis Racket moves along a set of waypoints (Catmull interpolation)
inside a pre-built bedroom.

Example 1. In Figure 4.2 the SAILenv basic scene named object_view is chosen,
that is an empty space with monochrome background. Then, a set of waypoints
is defined and the dynamic CatmullWaypoints is created using them. A single ob-
ject is specified, named c1, based on template Cylinder, at position Vector3(0,0, ⌋
2) and with an initial orientation specified by Vector3(0,0,0) (Euler angles); here
Vector3(_,_,_) is the description of a three dimensional vector. The CatmullWaypoints
dynamics will move the Cylinder through each waypoint, interpolating the trajec-
tory with a Catmull-Rom spline. Using the notation presented in Section 4.1, we
have: σ = object_view, Ω = {. . . , Cylinder, . . . }, Φ = (c1), (k1, k̂1) = (0, ∞) and
the associated trajectory is specified by κ1 = CatmullWaypoints, ϑ1

1 = waypoints

and ϑ2
1 = total_time = 10. The generated RGB view and the corresponding opti-

cal flow are shown in Figure 4.5 considering four different time instants.

RG
B
vi
ew

O
pt
ic
al

flo
w

Figure 4.5: Scene described by the script in Figure 4.2. Four frames are shown (from
left to right)—RGB view and optical flow.

68 Dynamic Virtual Environments for Continual Machine Learning

RG
B
vi
ew

Se
m
an

tic
se
gm

en
ta
tio

n
O
pt
ic
al

flo
w

Figure 4.6: Scene described by the script in Figure 4.3 (room02—livingroom scene)
considering four different frames (from left to right). For each object, the chosen dy-
namic is UniformMovementRandomBounce. For each frame we display the RGB view,
the semantic segmentation and the optical flow. Additionally, we depict in the RGB
and semantic segmentation views the local trajectories followed by the moving ob-
jects (attached to the moving objects).

Example 2. In Figure 4.3 the selected pre-designed scene is room_02, a realistic liv-
ing room with common furniture. The novel SAILenv API allows us to add new
objects that, in this case, are a chair, a pillow and a dish, from the templates Chair
01, Pillow 01 and Dish 01. They are initially located in specific points relative to the
agent’s position (agent_pos + Vector3(_,_,_)) with a certain orientation (the sec-
ond Vector3(_,_,_)). For all the objects, the dynamic UniformMovementRandomBounce
is chosen, also specifying their speed, their initial direction and the seed to ensure
the reproducibility of the pseudo-randombounces. Finally, the AllTogetherTimings
configuration is selected, making every object move at the same time within the
view frustum of the agent and also never going beyond 10 meters of distance from
the agent itself (view_limits=Frustum(True,10.)). Using the notation of Section
4.1, we have σ = room_02, Ω = {. . . ,Chair 01, . . . ,Pillow 01, . . . , Dish 01, . . . }, Φ =

(c1, p1, d1) and (ki, k̂i) = (0,+∞) ∀ i. Moreover, κi =UniformMovementRandomBounce

with possible different ϑm
i (seed, speed, start_direction) ∀ i.

For an illustration of the final result, see Figure 4.6 (RGB view, semantic segmen-
tation and optical flow).

4.4 Discussion 69

RG
B
vi
ew

Se
m
an

tic
se
gm

en
ta
tio

n
O
pt
ic
al

flo
w

Figure 4.7: Scene described by the script in Figure 4.4 (room01—bedroom scene)
considering four different frames (from left to right). The chosen dynamic is
CatmullWaypoints. For each frame we display the RGB view, the semantic seg-
mentation and the optical flow. Additionally, we depict in the RGB and semantic
segmentation views the full trajectory followed by the moving object (attached to
the racket).

Example 3. Finally, the code in Figure 4.4 illustrates another realistic scene (bed-
room) in which a tennis racket moves according to the CatmullWaypoints dynamic.
The selectedwaypoints are defined at the beginning of the script, toghether with the
initial position and orientation of the racket. According to the notation of Section
4.1, we have σ = room_01, Φ = (racket) from the template Tennis Racket 01 and
(ki, k̂i) = (0,+∞) ∀i. In this last case, κi =CatmullWaypoints and ϑ1

1 = waypoints.
The final result is shown in Figure 4.7. Notice that we also used SAILenv facilities
to change the position and orientation of the agent.

4.4 Discussion
In this chapter we have proposed the idea of generating fully customizable datasets
to train and test continual learning agents through the use of 3D-virtual environ-
ments. The need of such parametrical framework was motivated through an ex-
ample scenario where the learning agent takes advantage of the time coherence in
a visual stream to learn high-level feature extraction, which is then used to build

70 Dynamic Virtual Environments for Continual Machine Learning

a pixel-wise object detector with few supervisions limited to single pixels (Tiezzi
et al., 2022b). Describing the generating process of the scenes parametrically allows
the user to have full control on the final visual stream the agent perceives and, given
a certain learning task, to create scenarios of increasing difficulty. We have reported
a concrete realization of these ideas in the SAILenv virtual environment, showing
the potential effectiveness of this approach.

The proposed framework has, at this time, some limitations. In particular, it is
quite profuse in terms of number of parameters. To create a scene both highly realis-
tic and rich of information, many parameters need to be fixed and tweaked to obtain
the required scenario. Future works should focus on simplifying the work needed
by the researcher to automatize the definition of the generation parameters. An ex-
ample in this direction, partially implemented in the source code of SAILenv, is gen-
erating the code through graphical manipulation of scenes inside the Unity Editor,
which is then translated in code similar to Figure 4.6, Figure 4.5, Figure 4.7. Another
possible direction is automatic generation of the scene through some heuristics that
take into account both density and diversity of objects in the scene and how they
move through the available space. Note that (Gan et al., 2020) already implements
the heuristics regarding density and diversity of objects to automatically generate
some scenes. Finally, a possible example, which we regard to be possible in the near
future, is exploiting a language model to translate natural language requirements
of a scene to the code that will generate the scene through the parametrical frame-
work described in the chapter, similar to models such as GitHub Copilot6, based on
GPT-3 (Brown et al., 2020), can translate software requirements expressed in natural
language to functioning code.

6Available at https://github.com/features/copilot

https://github.com/features/copilot

Chapter 5

Adversarial Attacks in Virtual
Environments

As previously stated, in the recent years, the scientific community showed a remark-
able and increasing interest towards 3D Virtual Environments, to train and test Ma-
chine Learning-based models in realistic virtual worlds. Other than that, these en-
vironments could prove very useful as a mean to study the weaknesses of Machine
Learning algorithms, or to simulate training settings that allow neural models to
achieve greater robustness to adversarial attacks. In particular, for the case of Con-
tinual and Lifelong Learning, we see the usefulness of Virtual Environments as habi-
tats of agents that live and learn while interacting with their surroundings. On the
other hand, the growing popularity of such tools might also attract those that aim
to create adversarial conditions that invalidate benchmarking processes developed
through Virtual Environments, or even inject backdoors in Machine Learning sys-
tems trained on virtual data. This problem cannot absolutely be overlooked, espe-
ciallywhen considering the case of public environments that integrate contributions
from a large community of people. As amatter of fact, once an adversarial 3D object
has been crafted, it can be plugged into different scenes, spreading out it malicious
effect in an exponential manner, affecting every generated data about that same sub-
ject, while remaining significantly hard to recognize for a human observer. This is
clearly more insidious than when dealing with datasets of static images or videos,
where altering some data in an adversarial manner (Biggio and Roli, 2018) will only
affect the attacked data, not other samples about the same subject. It is even more
subtle in the case of Lifelong Learning agents, which live their life into environments
with maliciously crafted 3D objects that can act as backdoors, or more generally as
points of weakness, when the agent is finally let into the real world, potentially pos-
ing risks to humans and its activities. Of course, the matter can be seen in a more
constructive perspective, and it is important to consider that researchers can pur-
posely and explicitly augment 3D Virtual Environments using objects generated in

71

72 Adversarial Attacks in Virtual Environments

adversarial contexts, with the aim of training more robust Machine Learning-based
models or evaluate their robustness to adversarial conditions.

Most work on Adversarial Machine Learning focus on approaches based on al-
tering static images, and to the best of our knowledge little research has been done in
studying how to deal with 3D environments and how a 3D object living in a Virtual
Environment should be altered to fool a classifier operating inside the simulation. In
(Athalye et al., 2018), rendered views of a 3D object were used for crafting a real 3D
object that could consistently make a classifier predict wildly incorrect classes even
if a human observers could barely see something wrong on the attacked object.

In this chapter, we study how to craft adversarial 3D objects by altering their
textures (i. e. surface colors) using a software tool chain specifically designed to in-
clude easily accessible elements. We show that it is possible, and indeed simple, to
create adversarial objects with off-the-shelf limited renderers, called surrogate ren-
derers in the rest of the document, with the only requirement that they must be able
to compute gradients with respect to the parameters of the rendering process. We
also show that it is possible, up to a certain extent, to transfer the attacks on much
more complex and advanced 3D engines, such as those used in popular Virtual En-
vironments, whose renderers are referred to as target renderers, which are considered
to not let any kind of gradient flow through the rendering process. Considering the
taxonomy presented in section 2.4, this attack can be framed as a White-Box At-
tack when considering only the surrogate renderer, since the Attacker has complete
access and control to the surrogate renderer. When considering transferring the
attack to the target renderer, it is instead framed as a Black-Box Attack, since the At-
tacker does not know anything about the rendering function used. With respect to
the neural model, we assume that the Attacker is using a pre-deployed model with
no capability of altering its weights, but only to query it and compute the gradient
through it. In any case, the attack is framed as a Targeted, Integrity attack, since
the aim of the Attacker is to evade correct classification of a given 3D object. We
note that, while the term Transferability in many surveys only refer to the property
of an Adversarial Example to be effective on a neural model different to that used
to craft the example, in this chapter we extend the term to include the capability of
an Adversarial 3D Object to be effective even when rendered on a different graph-
ical engine (target renderer) to that used to craft the object (surrogate renderer).
To achieve this objective, we propose a saliency-based attack that intersects the two
classes of renderers in order to focus the perturbation on those texture elements
that we estimate to be most important to the classification when rendered through
the target renderer. The saliency is used in conjunction with a maximum pertur-
bation radius to limit the magnitude of the perturbation, to create Adversarial 3D
Objects that are as non-suspicious as possible. The need for non-suspicious objects
is not strictly fundamental for successful attacks on an object classifier, more so in

5.1 Renderers: Differentiable and Non-Differentiable 73

a setting where we assume that the Virtual Environment can run without human
supervisions, therefore without any human observer that may spot the malicious
object, as noted in (Gilmer et al., 2018). If the object is present in a scene during
deployment of the Virtual Environment, it may be impractical to spot the object in
a scene dense of other entities. However, in our model study, stream generation is
not the only scenario in which the Adversarial 3D Objects must avoid detection. In-
deed, we assume that the Attacker has not unrestricted access to the development
of the Virtual Environment, thus it cannot simply add objects to the Objects Library.
Instead, we assume that all contributions, more so for external users contributions,
must pass the scrutiny of other mantainers, therefore needing the objects to arouse
as less suspicion as possible. Finally, we evaluate the impact of such transferred
attacks on popular neural classifiers.

The rest of the chapter is organized as follows. In section 5.1 we briefly introduce
the concepts of renderers, both differentiable and non-differentiable, concepts that
will be useful in the following sections. In section 5.2 we introduce the theoretical
framework on which the proposed Adversarial Attack is founded and finally we de-
scribe our proposed saliency-based 3DAdversarial Attack. In section 5.3 we analyze
the experimental results yielded by the implementation of the proposed attack. Fi-
nally, in section 5.4 we summarize the chapter and discuss possible improvements
to the work.

5.1 Renderers: Differentiable and Non-Differentiable
We define rendering as the process that takes some formalization of a 3D scene (con-
sidering objects, their appearance, the lights, etc) and the parameters of a camera,
and generates a 2D image which will be the projection of the scene on the visual
field of the camera. The rendering is processed by a computer program known as
rendering software, or renderer for short. We can think of rendering as a function r
from a 3D scene s and a camera c to a 2D Image Is,c.

Is,c = r(s, c), (5.1)

where any s is composed of 3D objects (meshes), lights, and other elements that
are part of the simulation. During rendering, each element in the scene is projected
on the camera view plane, whilst taking into account the effects of lights onto the
surface of objects relative the to relevant properties of the objects. The nature of the
properties available to formalize the scene and the objects are heavily depending on
the type of renderer r that we are using. Modern 3D engines support high-end ren-
dering facilities, among which we mentioned Physically Based Rendering (PBR),
which indicates a broad range of technologies that simulate the behavior of light
impacting and bouncing on the so-called materials, that is the set of properties that

74 Adversarial Attacks in Virtual Environments

describe the surface of a 3D object, mainly its interactions with light, allowing the
object to react to light sources in a realistic manner. Each material has specific prop-
erties and texture maps that define its roughness, reflectivity, occlusions, and so
forth, depending on the engine specifications. For example, the satandard shader
in Unity3D (Haas, 2014) supports the definition of color and opacity (Albedo Tex-
ture Map) and howmetallic and smooth the surface of the object should be (Metal-
lic Smoothness Texture Map), together with several other properties (Albedo Map
Color, Ambient Occlusion Texture Map, Smoothness Multiplier, Normal Map, etc.).
Differently, non-PBR renderers most of the information that is usually contained
in a PBR material is held by a single texture called Diffuse Map. A Diffuse Map is
usually very similar to how the rendered object’s PBR material would look if laid
on a texture, using the same UV map. The main difference is that the diffuse map
cannot react to light, nor can it display any kind of reflection. Diffuse maps are usu-
ally hand-made by artists or “baked” within external software. As a matter of fact,
generic renderers compute function r of Equation 5.1 bymeans of non-differentiable
operations.

In the last years, the scientific community focused on alternative tools to imple-
ment a rendering function. In particular, researchers studied neural models to learn
Equation 5.1 from data (Kato et al., 2018; Mildenhall et al., 2020; Rematas and Fer-
rari, 2020), or, more specifically, they promoted new rendering software that allows
the user to compute gradientswith respect to several parameters involved in the ren-
dering process (Liu et al., 2019; Nimier-David et al., 2019; Ravi et al., 2020). Among
the latter category, we mention PyTorch3D (Ravi et al., 2020), that implement a dif-
ferentiable rendering API based on the widely diffused machine learning frame-
work PyTorch.1 Despite being extremely versatile, several differentiable renderers
do not support PBR (Liu et al., 2019; Ravi et al., 2020) or other advanced render-
ing facilities, thus not reaching the level of photorealism that is typical of high-end
non-differentiable renderers.

5.2 Adversarial Attacks and Adversarial 3D Objects
The growing diffusion of deep learning methods and applications in real-life sce-
narios (Grigorescu et al., 2020) poses serious concerns on their robustness. In par-
ticular, the vulnerability of their prediction performances to intentionally designed
alterations of input data, i.e., adversarial examples (Biggio et al., 2013; Biggio and
Roli, 2018; Szegedy et al., 2013), has been proven using several methods, such as
Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014), Projected Gradient
Descent (PGD) (Madry et al., 2017) and many others (Akhtar and Mian, 2018).

Let us consider a classification task and a generic annotated pair (x, y), where
1See https://pytorch.org/ and https://pytorch3d.org/

https://pytorch.org/
https://pytorch3d.org/

5.2 Adversarial Attacks and Adversarial 3D Objects 75

x ∈ Rd denotes an input pattern and y is the associated supervision. We also con-
sider a neural network classifier C(·|⊆) with parameters θ ∈ Rp. Let us indicate
with ȳ the output yielded by the classifier when processing x, ȳ = C(x|θ), and the
loss function L(ȳ, y, x) that measures the mismatch between the prediction and the
ground truth. A common learning procedure aims at identifying the model param-
eters θ which minimize the empirical risk function E(xk,yk)∼X [L(ŷk, yk|xk)]. Neural
classifiers have been proved to be vulnerable to the injection of adversarial pertur-
bations in the input space, resulting in the misclassification of the pattern at-hand.
In particular, an adversarial input x + δ causes C(·|θ) to make wrong predictions,
i.e., ŷ = C(x + δ|θ)with ŷ ̸= y. In order to inject a perturbation δ that can be consid-
ered imperceptible to humans, a set of admissible perturbations P is defined, which
in the context of image classification is guided by visual perceptibility. A common
choice limits the perturbation to fall upon a ℓ2-ball or in a ℓ∞-ball, and henceforth
we will consider the latter. In the most simple case, the goal of the attacker is to find
δ as solution of the following optimization problem,

max
δ∈P

L(ȳ, y, x + δ). (5.2)

In the specific case of FGSM, adversarial examples are computed as

x̂k = xk + ε · sgn
(
∇δk (5.3)

In the specific case of PGD, the problem in Equation 5.2 is solved by an iterative
scheme, eventually including random restarts,

xk+1 = ΠP
(
xtk + α · sign

(
(∇xL)(ȳ, y, xk)) (5.4)

being x0 = x,2 t the iteration index, α > 0 the step length and ΠP projects its argu-
ment onto an ℓ∞-ball with radius ε centered on the original example.

In the case of 3D data, prior work (Lu et al., 2017; Luo et al., 2015) has shown that
carefully-designed 2D adversarial examples fail to fool classifiers in the physical 3D
world under several image transformations, such as changes in viewpoint, angle or
other conditions (camera noise or light variation). In order to generalize attacks to
such contexts, Athalye et al. (Athalye et al., 2018) proposed adversarial examples
that are robust over a certain distribution of transformations. The aforementioned
insensitivity of the attack to changes of viewing conditions is attained optimizing
the problem in Equation 5.2 with respect to the expectation over a distribution T
of transformation functions t, denoted as Expectation over Transformation (EOT), ap-
plied on the adversarial pattern, t(x̂k). The transformed adversarial pattern is the
one which is actually perceived by the classifier. The optimization problem is trans-
formed into:

max
δ∈PE′

Et∼T [L(ȳ, y, t(x + δ))] (5.5)

2Or x0 = x + δ0, with δ0 that is randomly generated.

76 Adversarial Attacks in Virtual Environments

being T a distribution of transformations and t(·) is a transformation sampled from
T , while t(x + δ) is the input of the classifier. Moreover, PE ′ is the set of perturba-
tions, where we define EP , given a distance function d(·, ·), as

Et∼T [d
(
t(x + δ), t(x)

)
] < ε′ (5.6)

where d(·, ·) is a distance function and ε′ > 0. This approach basically introduces ex-
pectations both in the objective function and in the perturbation-related constraint.
Equation 5.6 assures that the optimization process minimizes the expected distance
which is perceived by the classifier. What is important to consider is that T is about
a wide variety of transformations, including special operations that consist in us-
ing x + δ as a texture of a 3D object and rendering it to a 2D image. The authors
of (Athalye et al., 2018) use this intuition to physically create real-world 3D objects
that are adversarial over different visual poses. Of course, this requires a renderer
(section 5.1) that is differentiable, and (Athalye et al., 2018) is based on specific ad-
hoc operations that cannot be easily implemented in a general setting.

Note that the considered family of transformation T could express heteroge-
neous distortions such as random affine transformations as long as noise addition
or operations such as rendering t(x) of a texture x. In particular this last consider-
ation is exploited in (Athalye et al., 2018) to craft textures that are adversarial over
distributions of visual poses of the corresponding 3D real-world object. In order to
do so, EOT requires a the differentiability of the renderer, which is obtained by some
shortcuts such as studying an approximation of the derivatives for a particular ren-
derer or using neural renderers. Leveraging this method, the authors are capable to
craft a texture the rendering of which is adversarial from any viewpoint.

Other recent works prove that the texture space is not the unique element which
can be attacked in the 3D setting. In (Zeng et al., 2019), authors create adversarial at-
tacks using both differentiable and non-differentiable renderers. In the former case,
they perturb multiple physical parameters such as the material, the illumination or
the normal map, in Visual Question Answering (VQA) and 3D shape classification.
Notice that the camera parameters are assumed to be fixed, hence producing a single
projection on the 2D-perceptual space which becomes adversarial. This could result
in implausible shapes. Liu et al. (Liu et al., 2018) proposed perturbations that are fo-
cused on lighting. Their work, rather than being based on the concept of norm-balls
around pixels, leverages a parametric norm-ball based on the parameters that guide
the image rendering. This is possible thanks to the introduction of a physically-
based differentiable renderer capable to backpropagate gradients to the parametric
space, focused on the light aspect. MeshAdv (Xiao et al., 2019) alters the object
meshes, using a neural renderer applied on models with constant reflectance, lead-
ing to very simple textures. The authors investigate the robustness under various
viewpoints and the transferability to black-box renderers under controlled render-
ing parameters. A recent work by Yao et al. (Yao et al., 2020) leverages multi-view

5.2 Adversarial Attacks and Adversarial 3D Objects 77

attacks inspired by EOT, in order to devise 3D adversarial objects, perturbing the
texture space and investigating the attack quality using multiple classifiers. Finally,
Liu et al. (Liu et al., 2020) considers the case of embodied agents performing navi-
gation and question answering. To better attack the task at hand, the perturbations
are focused on the salient stimuli characterizing the temporal trajectory followed by
the embodied agent to complete its task.

We want to focus on the problem of generating adversarial 3D objects in the con-
text of the 3D Virtual Environments. The existing experiences in crafting 3D ad-
versarial objects have shown that it is indeed possible to create attacks that fool the
classifier of a rendered scene. However, existing works are strongly based on ad-
hoc solutions, sometimes using specifically created renderers, limiting the attacks
to a single view or considering very simple textures. They usually assume that the
attacker has access to low-level properties of the renderer, such as the mapping of
the view-space coordinates to the texture-space coordinates, or that renderers can
be modified to expose additional information (Athalye et al., 2018). Unfortunately,
all these assumptions does not make their findings easily adaptable to more gen-
eral cases. Another remarkable limit is that rendering engines (see section 5.1) are
pieces of software that requires advanced skills not only in programming, but also
in computer graphics, in order to be modified to accommodate attack procedures,
or they might not be open source.

We focus on a more generic perspective, that is based on a realistic setting in
which the attacker has the goal of creating adversarial objects for a certain target ren-
derer on which he has limited control. We assume attacker to have some skills in
Adversarial Machine Learning but not necessarily an advanced knowledge of com-
puter graphics. We explore the idea of synthesizing 3D adversarial objects using
off-the-shelf popular software packages, well assembled into a specifically designed
tool chain, with the goal of being able to craft malicious examples that can then be
transferred to the target renderer of the considered 3D Virtual Environment. We
report the structure of the proposed tool chain in Figure 5.1.

Our computational pipeline takes into account twodifferent renderers (Figure 5.1,
white boxes). One of them is the already introduced target renderer, while the other
one is what we refer to as surrogate renderer. The latter is a differentiable renderer
on which the attacker has complete control, a reasonable assumption considering
that many open-source differentiable renderers have been recently made available
to the research community. As discussed in section 5.1, it is likely that differentiable
renderers will not perfectly match the quality of the target renderer, so that we fo-
cus on the specific case in which there is an evident difference between the outcome
of the two renderers. Of course, we assume that the 3D Virtual Environment al-
lows users to introduce and render custom objects. However, care must be taken in
adapting the object data format between the two renderers, since there might be a

78 Adversarial Attacks in Virtual Environments

Source Adaptation Adversarial Object Generation Deployment

Source Object Model

Surrogate Renderer Adapter

Converted Object Model Surrogate
Renderer

Classifier
Attack Loss

Adversarial Object
Generator

Adversarial Object
Model

Final Adversarial Object
Model

Target Renderer Adapter

Converted Adversarial
Object Model

Target
Renderer

Saliency

Figure 5.1: Structure of the proposed adversarial object generation procedure.
Saliency is computed exploiting the target renderer, as highlighted by the dotted
line.

misalignment between the type of models expected by the 3D Virtual Environment
and by the surrogate engine, requiring specific adaptations (Figure 5.1, leftmost and
rightmost blocks).

Let us consider a certain object o of class y, a scene s and a camera c. The notation
o indicates the object and all its properties (mesh, textures, etc.), and, for the sake of
simplicity, we indicate with o + δ an alteration of the object obtained by perturbing
its properties by an offset δ. We consider the image (view) Is,c,o that we get when
plugging o into scene s, and rendering the whole 3D data when observed from cam-
era c. We overload the notation of r in Equation 5.1 to introduce the dependence on
o,

Is,c,o = r(s, c, o). (5.7)

A neural network classifier C (Figure 5.1, top green box) processes Is,c,o. The classi-
fier prediction y = C(Is,c,o|θ) is evaluated into a loss function (Figure 5.1, mid green
box) that drives the generation of the adversarial object, inspired by the EOT of
Equation 5.5, even if fully focused on transformations in the 3Dworld. In particular,

max
δ∈P

E(s,c)∼S [L(ȳ, y, Is,c,o+δ)] (5.8)

where S includes different camera positions and orientations, different lighting con-
ditions and, in the most generic cases, different backgrounds. Equation 5.8 is paired
with a norm-based constraint that ensures ∥Is,c,o − Is,c,o+δ∥∞ < ε, for all s, c. This
view-based constraint acts as an indirect measure to ensure that o is not changing
in a too evident way. Whenever we will need to distinguish between views gen-
erated by the surrogate and target renderers, we will use the notation IS

s,c and IT
s,c,

respectively. The loss L is defined as a cross entropy loss which ignores incorrect
classifications, therefore only attacking views where the classifier correctly classi-

5.3 Experimental study 79

(a) PyTorch3D (b) SAILenv (Unity3D)

Figure 5.2: Rendering capabilities of the surrogate (a) and target (b) renderers.

fies the object. The loss is then averaged over all views of the object, obtaining an
estimation of the EOT in Equation 5.5.

5.3 Experimental study
We instantiated the strategy of Figure 5.1 into a specific case study, that will also
drive our experiments. Our choices are completely driven by simplicity, selecting
tools that are recent, freely available, and that do not require advanced skills in
computer graphics. In particular, we considered SAILenv as the Virtual Environ-
ment of choice for the case study. As mentioned in chapter 3, SAILenv exploits
Unity3D, which will be our target renderer and satisfies the assumption of allow-
ing the attacker to render custom objects while having limited low-level control to
the renderer, since it is based on proprietary code and cannot be “easily” modified.
As surrogate renderer we focused on the recent PyTorch3D (Ravi et al., 2020) (sec-
tion 5.1), that is completely based on Autograd and thus trivial to integrate with a
PyTorch-based classifier for gradient computation. The two renderers, beside hav-
ing different possibility of access to their inner working, have some remarkable dif-
ferences. SAILenv uses PBR while PyTorch3D is based on diffuse-based rendering,
which takes into account only the surface color and a much simplified light model.
Both are discussed in section 5.1. We approximate the diffuse maps rendered by
Pytorch3D with the Albedo Texture Maps used within Unity3D. This approxima-
tion holds the best for neutral illumination settings and for low reflective materials.
See Figure 5.2 for a comparison of the rendering capabilities of the two renderers.
PyTorch3D allows gradients estimation of several parameters of the object and of
the scene (surface color, object geometry, lighting, etc.). For the scope of this paper,
we will focus only on the surface color texture. This is a very challenging setting
due to the aforementioned limited rendering facilities of PyTorch3D, making this
case study a very good representative of the previously described attack scenario.
In facts, we expect this to lower the transferability of the attack by a certain degree,

80 Adversarial Attacks in Virtual Environments

Figure 5.3: Multi-view saliencymaps (target renderer), projected into the surface of
the object (projection computed by the surrogate engine) – red=high; blue=low.

but that even using a much simpler Surrogate Renderer with respect to the Target
Renderer, we can still obtain effective attacks thatwill work inmore realistic settings.

We qualitatively show in Figure 5.3 how the saliency maps, computed using
Unity3D over multiple views, are projected back onto the texture space, accumu-
lating their contributes on the texels, then rendering the 3D objects. While comput-
ing this projection in the target renderer is not straightforward, this can be easily
done following the texturing routine of PyTorch3D, and that is how we created the
figure. We can appreciate how the larger saliency areas only cover a subportion
of the texels. Notice that the data adapters or Figure 5.1 (i.e. Surrogate Renderer
Adapter and Target Renderer Adapter) play a crucial role in our case study, since
Unity3D stores objects in a different format (FBX) than the one used by PyTorch3D
(OBJ). Therefore, the tool-chain we developed takes account of performing the cor-
rect conversions when transferring the attacks from one renderer to the other. We
implemented a source object converter by means of a Blender-based3 script, created
from scratch. The final adversarial object is then converted back to the Unity3D for-
mat through a plugin that is internal to Unity3D, and finally rendered in SAILenv.

In order to evaluate the impact of our strategies in different networks, we selected
two popular and powerful deep neural image classifiers trained on ImageNet, that
are InceptionV3and MobileNetV2.4 The former is a state-of-the art image classi-
fier and was chosen because it has the best accuracy on ImageNet, the latter is a
smaller model, still very accurate but with faster classification and sensible to use
on real-time processing of a video stream from a Virtual Environment. We con-
sidered 10 different objects from the SAILenv library, associated to classes that are
supported by the classifiers. The objects are: Candle, Teapot, Floor Lamp, Paper

3https://www.blender.org/
4https://pytorch.org/hub/pytorch_vision_mobilenet_v2/

https://pytorch.org/hub/pytorch_vision_inception_v3/

https://www.blender.org/
https://pytorch.org/hub/pytorch_vision_mobilenet_v2/
https://pytorch.org/hub/pytorch_vision_inception_v3/

5.3 Experimental study 81

Py
To

rc
h3

D
SA

IL
en

v

Figure 5.4: Objects considered in our case study, rendered using PyTorch3D (top)
and in SAILenv/Unity3D (bottom). In order: candle, ewer, lamp, plunger, potted plant,
remote control, table, racket, toilet, toilet tissue

Tissue, Plunger, Pot, Remote Controller, Living Room Table, Tennis Racket, Toilet.
The objects are shown in Figure 5.4, comparing their appearance in the surrogate
and target renderers.

As adversarial object generation method, we implemented the PGD attack de-
scribed in section 5.2, using the cross entropy loss, parameterized by the parameters
ϵ, the maximum L∞ norm of δ and α, the learning rate of the PGD attack, and τS,
the saliency threshold. The saliency maps are computed on the images rendered by
SAILenv. After applying the threshold, they are used as a mask to stop the gradi-
ents flowing from PyTorch3D renderings. An example of the Saliency Maps before
applying the threshold can be seen in Figure 5.3. The attack follows these steps:

1. Saliency maps are optionally computed on all the views of the object rendered
by the Target Renderer

2. Accuracy pre-attack is computed, classifying the renderings of the object from
all viewpoints, both for the Surrogate Renderer and the Target Renderer.

3. A PGD Attack is performed, by rendering the object from all viewpoints on
a plain constant background and trying to increase the classification loss by
changing the texture with a perturbation δ. The gradient is allowed to flow
only from those pixel whose saliency is above a certain threshold.

4. Accuracy post-attack is calculated similarly to step 2, obtaining the accuracy
drop for both Surrogate Renderer and Target Renderer.

We performed several experiments to evaluate the proposed attack strategy in
this case study5. Each object is rendered from 60different views, keeping the camera
at a fixeddistancewhichwasmanually chosen to obtain an iconic image of the object,

5Our implementation of what we propose and study in this paper can be found at https://
github.com/sailab-code/SAIFooler. The 3D models used in the experiments can be found at
http://sailab.diism.unisi.it/sailenv/.

https://github.com/sailab-code/SAIFooler
https://github.com/sailab-code/SAIFooler
http://sailab.diism.unisi.it/sailenv/

82 Adversarial Attacks in Virtual Environments

i. e. so that the object coversmost of the picture. The camera turns around the object,
from 0◦ to 360◦ and also changes its elevation. The range on which the elevation is
changed is manually chosen for each object in order to avoid unnatural viewing
orientations that would lower the classification accuracy even without any attacks.
In facts, we notice that there are several viewpoints fromwhich even InceptionV3 is
unable to recognize some of the objects, phenomenonmostly due to the fact that the
training dataset contains some objects in a handful of common viewpoints. For an
example, see Figure 5.5. Similar results have been recognized and demonstrated in
(Alcorn et al., 2019), where they argue that neural networks are easily confused by
object rotations and translations. Therefore, we avoid views in which the classifier is
already known to have low performances, focusing exclusively on those on which it
has good prediction accuracy. We considered a directional light, similar to the way
sunlight shines on objects, coming from the front and at an elevation of 75◦. The
background scene of each object is composed of a uniform color, that was evaluated
as being white or black, selecting the one that maximized the recognition accuracy.

We explored attacks that progressively yield larger alterations in the original
textures, considering ε ∈ {0.05, 0.1, 0.5}, comparing cases in which we do not use
saliencymaps orwhen themaps are binarizedwith different thresholds of tolerance,
i.e., τS ∈ {0.05, 0.2}, and we set α to 0.01. It is important to remark that we are
considering the ℓ∞ norm to bound the perturbations, so that, given the same ε, we
can have very different number of altered texels. Altering less texels is expected to
reduce the probability of letting humans recognize the adversarial object, and that
is the goal of the proposed saliency-map-based procedure. We used two metrics to
evaluate the quality of the adversarial objects. The first one is the accuracy drop Adrop,
that is the ratio of the variation of average accuracy (before and after the attack,
referred to as Abe f ore and Aa f ter, respectively) to the initial accuracy, while the second
one is the percentage of texels N% that are altered by the attack procedure. Formally,

Adrop =
Abe f ore − Aa f ter

Abe f ore

N% =
∥texbe f ore − texa f ter∥1

|texbe f ore|
,

being tex· the texture tensor composed of |texbe f ore| elements and ∥ · ∥1 the ℓ1 norm.
We computed both the metrics within the PyTorch3D renderer and the SAILenv
(Unity3D) renderer. In the former case, we are basically exploring a white-box sce-
nario, where the system we attack is the one on which we evaluate the result. In the
latter case, we consider the impact of the adversarial object once it is transferred to
a target environment, in a very challenging black-box setting, due to the previously
described differences between the two renderers.

In Table 5.1 we report the main results of our experiments, showing Adrop for

5.3 Experimental study 83

0° 26
°

51
°

77
°

10
3°

12
9°

15
4°

18
0°

20
6°

23
1°

25
7°

28
3°

30
9°

33
4°

36
0°

Rotation

90°
77°
64°
51°
38°
25°
12°
0°

-12°
-25°
-38°
-51°
-64°
-77°
-90°

El
ev

at
io

n

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
(a) Candle

0° 26
°

51
°

77
°

10
3°

12
9°

15
4°

18
0°

20
6°

23
1°

25
7°

28
3°

30
9°

33
4°

36
0°

Rotation

90°
77°
64°
51°
38°
25°
12°
0°

-12°
-25°
-38°
-51°
-64°
-77°
-90°

El
ev

at
io

n

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

(b) Remote Controller

0° 26
°

51
°

77
°

10
3°

12
9°

15
4°

18
0°

20
6°

23
1°

25
7°

28
3°

30
9°

33
4°

36
0°

Rotation

90°
77°
64°
51°
38°
25°
12°
0°

-12°
-25°
-38°
-51°
-64°
-77°
-90°

El
ev

at
io

n

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

(c) Table

0° 26
°

51
°

77
°

10
3°

12
9°

15
4°

18
0°

20
6°

23
1°

25
7°

28
3°

30
9°

33
4°

36
0°

Rotation

90°
77°
64°
51°
38°
25°
12°
0°

-12°
-25°
-38°
-51°
-64°
-77°
-90°

El
ev

at
io

n

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce

(d) Tennis Racket

Figure 5.5: The heatmaps show the classification score given on the correct class by
InceptionV3 for different values of elevation of the camera and the rotation of the
object. As can be seen, objects with a medium degree of rotational symmetry, e. g.
Candle (Figure 5.5a) and Tennis Racket(Figure 5.5d), are recognizedwith high clas-
sification scores are high across all rotations of the object. Objects that are commonly
seen from above, such as Candle (Figure 5.5a) and Remote Controller (Figure 5.5b)
suffer from significantly low classification scores from viewpoints that stay under-
neath the objects. Finally, an object like Table (Figure 5.5c) is usually captured in the
training datasets slightly from above, making it impossible for the resulting network
to recognize the Table from higher elevations, and harder to recognize them from
unusual orientations of the table (in Figure 5.5c we see that the highest classification
scores are slightly from above and at rotations of 0°, 129°, 180°, 309°and 360°, which
loosely correspond to viewpoints that are parallel to one of the sides of the table or
with approximately 120° or 45° rotation from the camera axis.

84 Adversarial Attacks in Virtual Environments

Table 5.1: Accuracy drop in each considered object and average result.

ε Avg

Py
To

rc
h3

D MobileNetV2
0.05 1.00 n.a. 0.86 1.00 1.00 1.00 0.98 0.95 0.92 1.00 0.97
0.10 1.00 n.a. 0.86 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98
0.50 1.00 n.a. 0.86 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.98

InceptionV3
0.05 1.00 1.00 0.98 1.00 1.00 0.97 0.95 1.00 0.05 1.00 0.89
0.10 1.00 1.00 0.95 1.00 0.98 0.97 1.00 0.97 0.45 1.00 0.93
0.50 1.00 1.00 1.00 1.00 1.00 0.94 0.97 1.00 0.97 1.00 0.99

SA
IL
en

v MobileNetV2
0.05 0.76 n.a. 0.62 1.00 0.72 0.60 0.21 0.00 0.81 n.a. 0.59
0.10 0.72 n.a. 0.62 1.00 0.74 0.65 0.43 0.00 0.90 n.a. 0.63
0.50 0.76 n.a. 0.62 1.00 0.74 0.68 0.41 0.00 0.94 n.a. 0.64

InceptionV3
0.05 0.37 0.87 -0.12 0.65 0.07 0.00 0.10 0.16 0.00 1.00 0.31
0.10 0.41 0.77 -0.15 0.65 0.08 0.21 0.34 0.47 0.00 1.00 0.38
0.50 0.39 0.73 -0.08 0.65 0.12 0.09 0.41 0.42 0.07 1.00 0.38

the considered objects and the average result (last column; we indicate with n.a.
those objects that were not correctly recognized by MobileNetV2 in their original
state). In the case of the surrogate renderer, it is evident that even lower values of
ε are enough to usually achieve near 100% drop of accuracy, with the exception of
the Tennis Racket, for which a higher ϵ is needed. As we can expect, the attack on
MobileNet is generally more effective with respect to Inception, as the former is a
less robust model compared to the latter.

When the attack is transferred to SAILenv, we can observe that the classifiers are
still fooled in a non-negligible manner. Of course, the extent to which the attack has
effect is reduced, as expected, but it is surprisingly to see that even if the difference
between the two renderers in our case study is significant, the attack can impact the
outcome of the classification in the target 3D Virtual Environment. With the excep-
tion of Lamp Floor, Pot, Tennis Racket in the case of InceptionV3, and Teapot, Living
Room Table for MobileNetV2, where the attack yields no evident accuracy drops
(in one case also a negative drop, meaning that it is slightly improving the classi-
fication), the other adversarial objects reduce the accuracy of the classifiers, with a
pretty strong effect in the case of MobileNetV2. It is also interesting to note that us-
ing saliency maps usually has a less significant reduction on the Adrop if compared
to the high reduction inflicted on the Adrop on PyTorch3D. This, associated with the
showing of Figure 5.6, which will be discussed later, indeed show that saliency can
be used as a good trade off between how effective and detectable the attack is.

n Fig. 5.6, we report the 2D plot of Adrop against N% (all objects), taking into
account different values of ε and saliency thresholds τS. When using PyTorch3D,
several points are clustered on the right side of the plot, associated to a large Adrop.
In the case of SAILenv and InceptionV3 as a classifier, the majority of points are be-
tween 0.1 and 0.5, with some attacks reaching very large drops. We also note that

5.3 Experimental study 85

PyTorch3D SAILenv
M
ob

il
eN

et
V
2

0.2 0.4 0.6 0.8 1.0
Adrop

0.0

0.1

0.2

0.3

0.4
N

%
S

None
0.05
0.2

0.05
0.1
0.5

0.25 0.00 0.25 0.50 0.75 1.00
Adrop

0.0

0.1

0.2

0.3

0.4

N
%

In
ce
pt
io
nV

3

0.0 0.2 0.4 0.6 0.8 1.0
Adrop

0.0

0.1

0.2

0.3

0.4

0.5

N
%

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Adrop

0.0

0.1

0.2

0.3

0.4

0.5

N
%

Figure 5.6: Accuracy drop versus percentage of altered texels. Points are about ad-
versarial objects (colors indicate different τS; markers are about different ε).

a low number of attacks have an improvement in predictions, shown by a negative
Adrop. In the case of SAILenv andMobileNetV2, more attacks have Adrop approach-
ing 1.0. As already discussed, even small ε might end up in altering a significant
amount of texels. However, the plots show that using saliency is a good solution
to identify a trade off between Adrop and N%. In particular, the attacks in which
no saliency information is used are usually located in the upper-right quadrant of
the plot – high impact but they heavily alter the textures. Attacks with the largest
saliency threshold τS are instead usually located in the lower-left quadrant – low im-
pact but they are also more hardly noticeable by humans, altering less pixels. When
using a lower τS we get results distributed in the central part of the plot – good
impact on the classifier, altering a relatively small number of texels.

We qualitatively evaluated the renderings of the adversarial objects, reporting

86 Adversarial Attacks in Virtual Environments

(a) PyTorch3D (b) SAILenv (Unity3D)

Figure 5.7: For the surrogate (a) and target (b) renderers, we report two objects (one
per line), before (left) and after (right) the attack.

in Figure 5.7 two examples that fool the InceptionV3 classifier in both the render-
ers. The adversarial Remote was created without using any saliency and ε set to 0.1,
while the adversarial Table was the outcome of using saliency (τS equal to 0.05) and
a significantly larger ε (0.5). By visually inspecting and comparing the original and
the altered objects, it is evident that the two objects have minimal differences that
can easily pass unnoticed by a human observer and surely do not make the appear-
ance of the object unrecognizable. Nonetheless, we can still observe the huge gap
between what the surrogate and the target renderer produce, remarking that even
with these differences, the attack performed on the surrogate can effectively transfer
producing a non-negligible drop in performances. Indeed, the classifiers are heav-
ily influenced by the perturbation in the textures, as exemplified by the histograms
in Figure 5.8, where we consider all the 60 views of such objects, reporting how the
predictions of InceptionV3 are distributed. It is evident that before the attack, most
of the predictions are correctly distributed on the ground truth class, while after the
attack they are spread over multiple incorrect classes.

5.4 Discussion
We presented a novel study on the transferability of adversarial 3D objects, created
using an off-the-shelf differentiable renderer and then moved to a powerful 3D en-
gine that is at the basis of several recent 3D Virtual Environments. Our analysis
showed that it is indeed possible to setup a tool chain based on simple elements that
do not require advanced skills in computer graphics, and use it to craft malicious 3D

5.4 Discussion 87

PyTorch3D SAILenv
Re

m
ot
e
C
on

tr
ol

#
C
or

re
ct

 p
re

d
ic

ti
o
n
s

Before

After

#
C
or

re
ct

 p
re

d
ic

ti
o
n
s

Before

After

PyTorch3D SAILenv

D
in
in
g
Ta

bl
e

#
C
or

re
ct

 p
re

d
ic

ti
o
n
s

Before
After

#
C
or

re
ct

 p
re

d
ic

ti
o
n
s

Before
After

Figure 5.8: Number of correct predictions made by InceptionV3 out of 60 different
views of the objects of Fig. 5.7, before and after having attacked them.

objects. Experiments on texture-oriented manipulations showed that attacks can be
transferred to fool popular neural classifiers, also considering an estimated saliency
of the texels. This demonstrates that Virtual Environments are not exempt from the
dangers of Adversarial Attacks, and proper policies and care should be given when
accepting public contributions to the object library of a Virtual Environment. There
is certainly room for future work in improving the effectiveness of the attacks (e.g.,
considering other parameters of the renderer – mesh and others). Another possi-
bility, more focused on the target renderer, is to apply black-box optimization algo-
rithms on the Adversarial 3D Object produced by PyTorch, fine-tuning the attack
to be even more effective on the target renderer. However, our results are expected
to point the attention of the scientific community towards this double-sided aspect:
on one hand, it could be an issue for community-open 3D Virtual Environments,

88 Adversarial Attacks in Virtual Environments

and, on the other hand, it is an opportunity to create even more powerful testing
environments, purposely populated with adversarial examples.

Chapter 6

Parallel Computations in Learning
from a Video Stream

In the last few years, the Machine Learning community strongly increased its atten-
tion towards those learning problems that are framed as continual or lifelong (De-
lange et al., 2021). Even if there exists a large number of recent approaches in such
a research direction, this learning setting is still extremely challenging. Real-world
applications that are well-suited for continual learning are those that have access to
a continuous stream of data, where an artificial agent is not only expected to use the
data to make predictions, but also to improve itself and to adapt to changes in the
environment, i.e. videos, stream of texts, data from a network of sensors, etc. (Betti
et al., 2020c; Maggini et al., 2020). In the case of neural networks, the most extreme
and challenging context is one inwhich a simple online update ofmodel parameters
is applied at each time instant, given the information from the last received sample
(Betti et al., 2020b).

Despite the importance of having access to powerful computational resources
for Continual Learning-based applications, current algorithmic solutions have not
been paired with the development of software libraries designed to speed-up learn-
ing and inference. The increasing popularity of Lifelong Learning has not been
paired with the development of software libraries designed to speed-up learning
and inference, in settings in which the data is streamed over time and the model
is expected to react to each received sample. As a matter of fact, storing and pro-
cessing portions of the streamed data in a batch-like fashion is the most common
way to approach the problem, reusing classic non-continual learning tools. How-
ever, the artificial nature of this approach is striking. Indeed, humans perceive the
environment around them as a continuous multimodal stream of data, experienced
and processed in real-time, online, without storing huge collections of data and re-
experiencing them in shuffled batches, which is what non-continual learning tools
usually do. For the reader convenience, we rewrite the definition of real-time stream

89

90 Parallel Computations in Learning from a Video Stream

that is used in this thesis. y real-time stream we intend a stream of data S where the
interarrival times between a sample and the next one are always under a certain
threshold ∆S, or deadline as it is usually defined in real-time systems. Often, when
considering online learning from a real-time stream, it is considered of most im-
portance to keep the output stream O framerate at least equal to the input stream I
framerate. This can be framed as fpsO ≥ fpsI , where fpsO and fpsI are the output
and the input stream framerates respectively. This is equivalent to 1

∆O
≥ 1

∆I
which

finally sets the threshold ∆O ≤ ∆I . When considering sequential processing, ∆O
is almost always equal to the response time of a network. In the case of parallel
processing, and in particular in the case of the paradigm proposed in this chapter,
response time and ∆O can actually be very different. Motivated by the intuitions be-
hind existing libraries for batched data (Huang et al., 2018) and by approaches that
rethink the neural network computational schememaking it local in time and along
the network architecture (Marra et al., 2020; Tiezzi et al., 2022a; Betti and Gori, 2019;
Betti et al., 2020a), we propose a different approach to Pipeline Parallelism specifically
built for data sequentially streamed over time, where multiple devices work in par-
allel with the purpose of speeding-up computations. Considering D independent
devices, such as D Graphics Processing Units (GPUs), the computational time of
a feed-forward deep network empowered by the proposed approach theoretically
reduces by a factor 1/D. Noticeably, a D-layer network trained on a stream of data
using our library has a theoretical framerate (or throughput) speedup of D× with
respect to the case of a single device, thus computing D layers in the same time
that is usually needed to compute only one. It is important to notice that Pipeline
Parallelism does not decrease the response time of the network for a given input. In-
stead, it lowers the time between an output and the subsequent output, increasing
the framerate of the output stream, outputting a stream that has the same framerate
but delayed by the response time of the vanilla network. See section 6.2 for more
details on this matter.

We experimentally show that the existing overheads due to data transfer among
different devices are constant with respect to D in certain hardware configurations.
On the reverse side, the higher throughput obtained by a pipeline parallelism are
associated with a delay between the forward wave and the backward wave while
they propagate through the network that is proportional to D, a feature that is not
critical in applications in which data samples are non-i.i.d. and smoothly evolve
over time. In applications that leverage the idea of parallelism, the user can select
the optimal trade-off between speed and delays controlling D.

This chapter presents the following contributions to the use of Pipeline Paral-
lelism to enable Lifelong Learning research. (1) We describe a software library
named PARTIME (PARallel processing over TIME)1, written in Python and Py-

1https://github.com/sailab-code/partime

6.1 Related Work 91

Torch, specifically designed for efficient continual online learning in multi-GPU ar-
chitectures using pipeline parallelism. Existing feed-forward multi-layer neural ar-
chitecture can be easily embraced by our computational scheme, distributing infer-
ence and learning among multiple devices. (2) We leverage CUDA Streams2 paired
with CUDA Graphs3 to enable fast kernel scheduling, keeping a very low-level of
abstraction of the parallel routines. We also provide automatic load balancing tools,
specifically designed for the considered application context, and considering data
transfer times in the temporal domain (differently by the offline case of (Huang et al.,
2018)), as well as fast kernel scheduling by means of CUDA Graphs. (3) We exper-
imentally evaluate the wall-clock running times with different numbers of devices,
investigating the impact of the delays and of the data transfer overhead and compar-
ing several architectures. In some configurations we get empirical speedups that are
close to the theoretical ones. (4) We experimentally evaluate the quality of learning
with different pipeline configurations in continual learning-inspired settings.

The rest of the chapter is organized as follows. In section 6.1 we describe the
relationships of our work with existing literature and software. In section 6.2 we
formally describe how computations are distributed over time, while section 6.3 is
focused on their implementation and usage details. In section 6.4 we show experi-
mental results and in section 6.5 we discuss limits and future extensions.

6.1 Related Work
The intuition of exploiting data- and/or model-level parallelism to speedup and
scale training of deep networks (Yadan et al., 2013; Krizhevsky, 2014) has been
largely followed in the last decade (Li et al., 2020; Rasley et al., 2020), also focus-
ing on specific tasks or classes of neural nets (Shoeybi et al., 2019). The main mo-
tivation that inspired these approaches is the large memory requirements of recent
neural models. Naively splitting the models into several components distributed
across different devices hinders the overall resource utilization, with devices that
are left idle waiting for other devices to complete their job. Pipeline parallelism
deals with this under-utilization issue, not only splitting the network across multi-
ple devices (e. g., the first layers in GPU 1, some of the following layers in GPU 2,
etc.) but also splitting data into micro-batches and scheduling their forward propa-
gation through the various stages, such that each device is left idle the least amount
of time (Guan et al., 2019). Such computational paradigm yields an improvement
on the number of inputs processed per seconds, based on the batch size, the num-
ber of stages and the communication overheads between devices. As a matter of
fact, existing software libraries are designed for mini-batch mode processing, as

2https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html
3https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/

92 Parallel Computations in Learning from a Video Stream

they are designed to achieve parallelization over big dataset and stochastic gradi-
ent descent. Henceforth, we will assume that every implementation processes a
mini-batch is then usually split into several micro-batches, that are identified by the
order in which they enter the pipeline. In the following, we review the most popu-
lar pipeline parallelism-based libraries: GPipe (Huang et al., 2018), PipeDream and
Pipedream-2BW (Narayanan et al., 2019, 2021).

GPipe (Huang et al., 2018) parallelizes the forward and backward phases across
themicro-batches, with the latter being followed by a pipeline flush, where the accu-
mulated gradients are used to update the weights, before moving to the next mini-
batch. This induces a significant reduction of the maximum throughput, due to a
bubble of idle time for most GPUs (see Figure 6.1a for a visual representation). On
the other hand, it allows to faithfully replicate the gradients of a standard sequential
processing, without the need to store a copy of theweights. GPipe needs to stash the
activation values of each stage for all micro-batches to correctly compute gradients,
incurring in a significant memory overhead. The usage of activation recomputation
could alleviate this issue, but it further reduces the throughput by around 33%. See
Figure 6.1a.

PipeDream (Narayanan et al., 2019) avoids the need of keeping the computations
for the forward and backward stages completely separated. Forward and backward
processing are interleaved continuously, without leaving any GPU idle. Weights
are updated at each step so that, in order to compute the correct gradients for any
batch, PipeDream adopts weights stashing in addition to activation stashing. The
number of instances of the network weights that must be stored for a pipeline stage
s ∈ (1, . . . , D) is D − s + 1, being D the depth of the pipeline. Weights are updated
at each step, but every input is guaranteed to be processed with the same set that
already entered the pipelinewill use the same set of stashedweights. PipeDreamde-
sign allows for a significantly higher throughputwith respect to GPipe, but incurs in
a heavy memory overhead, which is not suitable for larger models. See Figure 6.1b.

PipeDream-2BW (Narayanan et al., 2021) improves the PipeDream design by
storing only two versions of the weights in each pipeline stage. A new weight ver-
sion is generated, by applying the optimizer update rule, every m ≥ D micro-
batches. However, the novel weight values are not used immediately to avoid in-
consistencies in processing the data that already entered the pipeline. The new
weights are therefore buffered and the oldest version is discarded. PipeDream-
2BW introduces a delay between the weights that are used to compute the gradi-
ents and the weights that are actually updated. For a network f with weights W(t)

for the t-th micro-batch, the gradient-based update rule can be expressed simply as
W(t+1) = W(t) − ν∇ f (W(t−1)) (where ν is the step-size). Thus, PipeDream-2BW
tackles the memory overhead, significantly reducing it, and keeps a high speed-up
of training times, at the cost of a small approximation of the gradients. See Fig-

6.1 Related Work 93

ure 6.1c.
In the case of the proposedPARTIME, differently fromall the existing approaches

(to our best knowledge), we adapt the pipeline parallelism paradigm to the contin-
ual online learning scenario, where the input is provided in a sequential manner
and there are no offline batches of data. PARTIME does not require mini-batches,
and in real-world applications with real-time processing requirements, PARTIME
can leverage multiple devices to achieve a processing frame rate closer or equal to
the one of the input stream, while keeping the response time similar to that of the
sequential network. The computation paradigm is related to that of PipeDream, re-
laxing the requirement of micro-batches that are now single examples from the in-
put stream. Therefore, forward and backward phases are interleaved continuously
without any pipeline flush, allowing a theoretical speed-up of the processing frame-
rate of D. Differently from PipeDream(-2BW), PARTIME does not stash any activa-
tion or weights, further reducing the memory overhead, while keeping a significant
speed-up. Differently fromGPipe and both the PipeDream approaches, weights are
updated at the end of the backward computation of each device, allowing contin-
uous learning of the agent without any hiccup in the framerate, at the cost of an
approximation of the gradients, that is not critical when the inputs slowly change
over time. We depict in Figure 6.1d the PARTIME approach, where the numbers
denote the input sample indices, while the sign - is used to indicate that the GPU is
actually not idle (due to implementation constraints with CUDAGraphs, described
in the rest of the paper), even if it using dummy data for the computations. See
Figure 6.1d.

The theoretical groundings behind the approach implemented in PARTIME can
be traced back to early studies on how to distribute the sequential computations of
the network layers in a pipeline-like scheme (Petrowski et al., 1993). More recent ac-
tivity (Betti and Gori, 2019; Marra et al., 2020) described how such a computational
pipeline could be used to train networks where layers are independent modules in-
terconnected by a special class of constraints, and that can learn in parallel. In (Betti
and Gori, 2019) it is shown how different layers can propagate gradients when oper-
ating in a parallel manner, exploiting the temporal coherence of streamed data, and
that is what we consider in this work. We remark that such a computational struc-
ture is also shared by the spatio-temporal local model of (Betti et al., 2020a), thus we
note that PARTIME could naturally implement also alternatives to Backpropagation,
even if this goes beyond the scope of this work.

In the context of continual or LifelongLearning, threemain families of approaches
have emerged in scientific literature: replay methods, regularization methods, pa-
rameter isolation methods—see (Delange et al., 2021) and references therein. In all
these cases, a significant portion of the existing research focuses on a specific setting
in the realm of computer vision, considering supervised problems (Rebuffi et al.,

94 Parallel Computations in Learning from a Video Stream

(a) GPipe (Huang et al., 2018)

(b) PipeDream (Narayanan et al., 2019)

(c) PipeDream-2BW (Narayanan et al., 2021)

(d) PARTIME (our contribution)

Figure 6.1: Processing timelines in different Pipeline implementations. Numbers
indicate the ID of an input sample (or micro-batch).

6.2 Scalable and Parallel Local Computations Over Time 95

2017; Gallardo et al., 2021) that sequentially introduce new tasks (e.g., new cate-
gories), with some recent attempts to operate in an unsupervised setting (Madaan
et al., 2022). Despite the different features of all these approaches, they all intrin-
sically require to process a new input sample and compute the gradients of a loss
function with respect to the network weights, that is what PARTIME implements.

6.2 Scalable and Parallel Local Computations Over
Time

Let us consider a feed-forward neural network composed of L layers. We indicate
with ℓi(z, wi) the function computed by the i-th layer when the input z is provided,
while wi is the set of the learnable parameters involved in the layer-internal opera-
tions. If f (x, ω) is the function computed by the network when the input x is pro-
vided, being ω = ∪L

i=1wi, we can formally describe f as

f (x, ω) = (ℓL(·, wL) ◦ ℓL−1(·, wL−1) ◦ . . . ◦ ℓ1(·, w1)) (x). (6.1)

Given a scalar loss function L that depends on the net outputs and other eventually
available information γ (e.g., supervisions), the Backpropagation algorithm pro-
vides a clever way of computing ∇wiL, the gradient of L with respect to some wi,
exploiting the composite structure of f . Formally, if we indicate with oj the output
of the j-th layer,

∇wiL(f (x, ω), γ) =
∂L(oL, γ)

∂oL · ℓL(oL−1, wL)

∂wi

=
∂L(oL, γ)

∂oL · ∂ℓL(oL−1, wL)

∂oL−1 · ∂ℓL−1(oL−2, wL−1)

∂oL−2 ·

· · · · ∂ℓi(oi−1, wi)

∂wi
,

(6.2)

where · is the operator involved in the classic chain-rule.4 Let us assume that layers
are divided into D ≤ L non-overlapping sets also referred to as stages, where the h-th
stage collects consecutive layers with indices in [ah, bh], 1 ≤ ah ≤ bh ≤ L, and ah+1 =

bh. We indicate with ph the h-th stage, involving layer functions ℓah , ℓah+1, . . . , ℓbh
.

We also assume that pah+1:bh+1
h+1 is such that ah+1 = bh + 1, thus, in what follows we

will drop the superscripts unless explicitly needed. We indicate with ωh the set
that collects all the weights belonging to the layers in the h-th stage, ωh = ∪bh

i=ah
wi.

The input/output of ph are oah and obh
, respectively. Overloading the notation ph to

4It is a productwhendealingwith scalar quantities, otherwise it is the operator that appropriately
combines Jacobian matrices or tensors.

96 Parallel Computations in Learning from a Video Stream

also refer to the function computed by the h-th stage, for simplicity, we can rewrite
Equation 6.1 as

f (x, ω) = (pD(·, ωD) ◦ pD−1(·, ωD−1) ◦ . . . ◦ p1(·, ω1)) (x). (6.3)

Let us assume wi to belong to the weights ωh of stage ph, i.e., bh ≤ i ≤ ah. Recalling
that oah = obh−1

, for all valid h, the gradient ∇wiL is then

∇wiL(f (x, ω), γ) =
∂L(obD , γ)

∂obD

· pD(oaD , ωL)

∂obh

·
ph(oah , ωh)

∂wi

=
∂L(obD , γ)

∂obD

· ∂pD(oaD , ωD)

∂oaD

·
∂pD−1(oaD−1 , ωD−1)

∂oaD−1

·

· · · ·
∂ph(oah , ωh)

∂wi
,

(6.4)

where the last term, ∂ph(oah , ωh)/∂wi, can be computed by backpropagating the sig-
nal inside the h-th stage,

∂ph(oah , ωh)

∂wi
=

∂ℓbh
(obh−1, wbh

)

∂obh−1 ·
∂ℓbh−1(obh−2, wbh−1)

∂obh−2 ·

· · · · ∂ℓi(oi−1, wi)

∂wi
.

(6.5)

Whenever data is provided by a generic source stream S , at each time instant
t a new sample x(t) is made available, and the following sample is provided after
∆(t)
S seconds. Without any loss of generality, we will consider the case in which ∆(t)

S
is constant ∀t, thus we will just use the notation ∆S . For example, in the case of a
video stream, ∆S = 1/fps, being fps the frame rate of the video (constant rate). Pro-
cessing a data sample x(t) requires computing f (x(t), ω) and, in a Lifelong Learning
horizon, also ∇wiL(f (x(t), ω), γ), for all the valid i’s (plus the weight update oper-
ations), that is not an instantaneous processing, especially in very deep networks
or when the input size is large. We indicate with ∆A such amount of processing
time. Whenever ∆A > ∆S , real-time learning is not possible anymore, requiring
to skip some frames, since buffering data would just create a constantly increasing
queue whose processing is unfeasible. Skipping frames would result in an inherent
loss of information that could limit the learning capabilities of the network. As a
simple example, consider a network that learns by enforcing motion coherence over
consecutive frames (Betti et al., 2020c). If there is too much distance (in time) be-
tween the frames of the pair, there might be poor correlation between them, thus
making learning not feasible. Of course, distributing the computations over multi-
ple devices is beneficial for networks that do not fit the memory of a single one, but

6.2 Scalable and Parallel Local Computations Over Time 97

processing time is still limited by the intrinsic sequential nature of the layer-wise or
stage-wise computations, so that a device must wait the previous one to finish its
job before starting its own activity.

In this paper we focus on an alternative way of organizing computations over
time that is meant for hardware solutions equipped with D computational devices,
in particular GPUs, each of them dedicated to the computations of a single stage
ph. Before going into further details, we remark that what we propose is generic
and essentially holds also for other types of devices that can work in parallel or in
case of devices that include multiple parallel computational units. While a single
GPU actually belongs to the latter category, its parallel computation capabilities are
aimed at speeding up lower-level operations (matrix multiplications, convolutions,
. . .) that usually exploit most of the GPU resources (e.g., CUDA blocks in NVIDIA
cards (Cheng et al., 2014)). As a result, a single GPU is not well-suited for speed-
ing up, for example, multiple stages, even if scheduled for parallel execution.5 Let
us assume that layer stages are created in a way to have very similar computational
times for each stage in the target hardware. Hence, a device that process a single
stage in ∆P seconds will require ∆A = D∆P seconds to compute f (x(t), ω), both in
the case in which all the stages are sequentially executed on a single device, or if
each stage is processed on an independent device, ignoring data transfer overheads.
Conversely, a model equipped with Pipeline Parallelism is ready to process another
sample whenever the first GPU has done processing the first stage, that only takes
∆P , while the vanilla model takes D∆P before being ready to process another sam-
ple from the stream. This implies that a pipeline scheme can real-time process the
streamed data if ∆P ≤ ∆S , instead of ∆A = D∆P ≤ ∆S , increasing the throughput
by a factor D. In other terms, the highest framerate a vanilla network can reach is

1
∆A

= 1
D∆P

, instead a pipelined network can reach 1
∆P

, which is D times the fram-
erate. This allows the pipelined network to process the online stream at real-time
framerates even if the vanilla network has a processing framerate under D times the
time between subsequent frames in the input stream. The delay introduced to the
output stream with respect to the input stream is fixed and dependent on the re-
sponse time of the vanilla network. To reduce the response time, other parallelism
techniques can be introduced in conjunction with Pipeline Parallism, which we will
show is a general purpose paradigm that can be easily applied to sequential mod-
els to increase the framerate in settings where the response time is not important,
but tracking the framerate is, as is the case for processing an online video stream
without strict response time requirements.

5In practice, schedulingmultiple stages in the same GPU for a potentially parallel execution boils
down to the almost serial execution of them, since the lower-level operationswithin each stage exploit
most of the GPU resources. In our experience, there is just a narrow set of cases in which this can
lead to non-negligible speed-ups.

98 Parallel Computations in Learning from a Video Stream

As in classic pipeline parallelism, the h-th stage of the pipeline performs the for-
ward and backward phases of the layers of ph, using the output that was provided
by stage h − 1 at the previous time step, and the gradients provided by stage h + 1.
In PARTIME, each stage also updates the weight values right after the backward
computation has ended (Figure 6.1d). Thus, it is necessary to include an explicit
time dependence in the set of weights characterizing each stage ω

(t)
i . Then, the out-

put of stage i at time t will be described by the temporal index on the values of the
weights (ω

(t)
·), the output of stage h at time t is described as,

o(t)bh
= ph(o

(t−∆P)
bh−1

, ω
(t)
h) (6.6)

=
(

ph(·, ω
(t)
h) ◦ · · · ◦ p1(·, ω

(t−(h−1)∆P
1)

)
(x(t−(h−1)∆P))),

According to the above equation, the network output at time t is given by o(t)bD
=

pD(o
(t−1)
bD−1

, ω
(t)
D), and it is equal to

f (x(t−(D−1)∆P), {ω
(t)
D , ω

(t−∆P)
D−1 , . . . , ω

(t−(D−1)∆P)
1 })

=
(

pD(·, ω
(t)
D) ◦ · · · ◦ p1(·, ω

(t−(D−1)∆P)
1)

)
(x(t−(D−1)∆P)) ,

(6.7)

that is essentially the analogous of (6.3) when making explicit the different time in-
dices attached to theweights involved in processing a sample from the input stream.
Of course, as in every pipeline-based model, the output associated to each sample
becomes available with a delay that is D∆P , not a crucial issue in case of smoothly
evolving streams with relatively large frame rates, as the ones we consider in this
paper.

The backward propagation in PARTIME follows a similar approach to the for-
ward case, with gradients propagating through the pipeline from the loss function
down to the first stage. Assuming wi to belong to the weights ωh of stage ph we
generalize (6.4) to

(∇wiL)
(t) =

∂L(obD , γ(t−(D−h)∆P))

∂obD

∣∣∣∣∣
o
(t−(D−h)∆P)
bD

·
∂pD(obD−1 , ω

(t−(D−h)∆P)
D)

∂obD−1

∣∣∣∣∣∣
o
(t−(D−h+1)∆P)
bD−1

· · ·
∂ph+1(obh

, ω
(t−∆P)
h+1)

∂obh

∣∣∣∣∣∣
o(t)bh

·
∂ph(o

(t−∆P)
bh−1

, ωh)

∂wi

∣∣∣∣
w(t)

i

.

(6.8)

The last term ∂ph(o
(t−∆P)
bh−1

, ωh))/∂wi|w(t)
i

is evaluated by means of a backpropaga-
tion of the signal within the given stage h according to (6.5), while the product of

6.2 Scalable and Parallel Local Computations Over Time 99

the previous terms is propagated through the stages. Notice that, focusing on a
specific stage h, the PARTIME computational structure is characterized by a delay
consisting in 2(D − h) steps in-between the corresponding forward and backward
“waves”, as can be seen in Figure 6.1d, checking each stage/GPU-line and count-
ing the steps between data with the same index—recall that each step consists of
forward, backward, update. This leads to an approximation in the evaluation of
the gradients since, during such a time interval, the input of the stages changes. Of
course, the slower the input stream is varying, the less impacting is the approxima-
tion. The delay is zero for h = D since, in this case, the last stage computes the
forward, backward (and update) operations related to a given input at the same
time. This also means that, for the last stage, the computation of the gradients are
not influenced by this delay. However, it is not only a matter of changing the stage
input, since a similar consideration holds for the values of weights, that get updated
(thus they change) at each computational step, as we already anticipated in Equa-
tion 6.7. Weights get updated at each computational step and this will play a role in
the evaluation of the gradients.

Even if this will play a role in the evaluation of the gradients, a small learning
rate can mitigate abrupt changes in the values of the weights, making the resulting
approximation more appropriate. Notice that this second source of approximation
concerns also the last layer: even if the forward and backward computation are re-
ferring to the same input of the stage, the forward propagation on the stages below
involved weights at different time instants (as was shown in Equation 6.7). In the
next section we will describe the implementation of the ideas here presented. To
this purpose, let us note that we can also write (6.8) as

(∇wiL)
(t) = g(t)h ·

∂ph(o
(t−∆P)
bh−1

, ωh)

∂wi

∣∣∣∣∣∣
w(t)

i

, (6.9)

where we have contextually defined

g(t)h =
∂L(obD , γ(t−(D−h)∆P))

∂obD

∣∣∣∣∣
o
(t−(D−h)∆P)
bD

·
∂pD(obD−1 , ω

(t−(D−h)∆P)
D)

∂obD−1

∣∣∣∣∣∣
o
(t−(D−h+1)∆P)
bD−1

· · · ·
∂ph+1(obh

, ω
(t−∆P)
h+1)

∂obh

∣∣∣∣∣∣
o(t)bh

(6.10)

100 Parallel Computations in Learning from a Video Stream

Time

Figure 6.2: Capture of a single forward/backward step of PARTIME. With the use
of CUDA Graphs, every GPU starts processing almost at the same time, reducing
communications overhead at its minimum. The result is an almost 8x speed-up.

that, starting from g(t)D = ∂L(obD , γ(t))/∂obD |o(t)bD

, can be also expressed through to

the following recursive relation

g(t)h = g(t−∆P)
h+1 ·

∂ph+1(obh
, ω

(t−∆P)
h+1)

∂obh

∣∣∣∣∣∣
o(t)bh

. (6.11)

6.3 PARTIME
The PARTIME software library is written in PyTorch6 and it expects the user to pro-
vide a classic network of type torch.nn.Sequential, that is automatically converted
into a format that will enable pipelined computations, both in the forward and back-
ward phases. Despite the general formulation of the ideas behind PARTIME, the
current version of the library leverages CUDA-based facilities, in particular CUDA
Streams and CUDA Graphs, to setup the parallel execution scheme, thus it is de-
signed for NVIDIA GPUs. In algorithm 1 we provide a high-level description of the
operations performed by each stage/device.

In order to activate the concurrent execution of independent queues of GPU
tasks, PARTIME creates multiple CUDA Streams on each device. Each stream holds
a queue of sequential tasks which are executed in-order, while the different streams
interleave their tasks in no specified order. Since CUDA Streams are handled in
an asynchronous manner (i.e., they do not wait the results of each enqueued task,
even if such results are used in the rest of the code), PARTIME relies on specifically

6We exploited PyTorch 1.11 for our implementation.

6.3 PARTIME 101

placed “events” (provided by the CUDAAPIs) to ensure proper synchronization of
the different streams. An Event can be placed on the Stream queue to synchronize
Streams on it, whichwill stop their processing until that Event has popped out of the
queue. A major drawback of a vanilla CUDA Stream-based implementation is the

1: if 1st stage then
2: Copy x(t) from host memory to the stable input memory area.
3: else
4: Copy temporary memory area to stable input memory area.
5: end if
6: Start forward step, using the stable input memory {Eq. (6.6)}.
7: if last stage then
8: When 6 completes, copy last stage output to host memory.
9: else

10: Copy gradients from the next stage {g(t−∆P)
h+1 in Eq. (6.11)}

11: When 6 completes, copy output to the next-stage temporary input memory area (to
avoid overwriting stable data–currently used by the next-stage).

12: end if
13: Compute stage-related gradients {Eq. (6.9)}
14: Update weights.

Algorithm 1: Operations performed by each device/stage. Each stage expects
input data to be stored in the so-called stable memory area, and it also has the
use of a temporary one.

communication-overhead introduced when the CPU enqueues a task to the GPU
streams. Such overhead quickly becomes negligible when dealing with tasks that
run for a long time, but not when processing streams of data with the purpose of
splitting computations into fast-processing parallel stages, where (in some configu-
rations) enqueueing could take more time than the actual execution of each stage.
The overhead is crucial to achieve maximum parallelization speed-up. PARTIME
bypasses this issue exploiting the recently introduced NVIDIA CUDA Graphs, that
are able to handle the dependencies among the various GPU tasks in a warmup
stage, generating a compact Directed Acyclic Graph (DAG) that summarizes all the
operations. This makes all the GPU-task virtually collapse into a single one, with a
scheduling overhead that is paid only once for all the wrapped tasks. Since CUDA
Graphs might not be supported by older GPUs, PARTIME can easily switch-back to
the case in which they are not used.

In Figure 6.2 we report the outcome of an operation-capture performed with the
NVIDIANSIGHT System, of a single pipeline step, confirming that all the GPUs are
able to work in parallel, distributing the computational burden in an effective man-
ner. On the flip side, CUDA Graphs only deal with statically allocated data and do
not support some PyTorch operations. A Graph operates on the same memory ar-
eas each time it is replayed, meaning that buffers for input/output must be statically

102 Parallel Computations in Learning from a Video Stream

created at the creation of the pipeline, and the Graph will change those buffers in an
inplace fashion. Of course, in order to get the most out of the pipeline scheme, the
computational time of the different stages should be comparable, to avoid the slower
stage to reduce the throughput. PARTIME provides a stage balancing procedure, in
which the network layers are automatically partitioned, that is what we used both in
Figure 6.2 and in the following experiments of this paper. First of all, the copy-times
from/to host memory to GPUs are measured, assigning the first/last pipeline stages
to the fastest GPUs (the speed depends on the hardware configuration of the GPUs
in the host machine). Then, PARTIME evaluates the processing times of all the lay-
ers in each GPU, and also the GPU-to-GPU layer-output transfer times and then it
splits layers into stages trying to make their overall computational times similar, un-
der some constraints, with the same algorithm exploited in related libraries (Kim
et al., 2020) that, differently from PARTIME, do not consider data-transfer times.

In the PARTIME library, a Pipeline object holds an ordered list of Stages. Each
of the Stages contains a non-overlapping portion of the original network and it also
manages the input and output buffers for that part of the network. This means that
processing an input through the list of Stages in order will produce the same output
as the original network with around the same processing time. The Pipeline is ini-
tialized using (i) the neural network model to be handled, (ii) the number of stages
(eventually, how layers should be distributed), (iii) the list of available GPU devices
(for maximum performance, it should be the same as the number of stages, but it
can be smaller, making multiple stages execute on the same device), (iv) the opti-
mizer settings for weight updates (eventually, a user defined loss functions), and
(v) a sample tensor whose shape is leveraged to infer the shapes of static memory
allocations, required by CUDA Graphs. The PARTIME routines splits the original
network into the required stages and transfer them to their respective GPU, eventu-
ally generating a CUDA Graph if requested by the user.

Pipeline objects provide a forwardmethod that processes inputs with the same
shape of the previously described sample tensor, triggering the computations de-
scribed in algorithm 1 over all the Stages (forward, backward, update). A forward
call computes a single step of the pipeline: each stage processes its input and copies
its output to the following stage’ input. Eventually, the user could decide to advance
the pipeline by one step without providing new inputs. In that case, the first stage
will process the same input as in the last step. Every other stage is executed even if
not holding data provided by the user. At the end of the step, the forward method
returns the content of the last stage’ output buffer.

In the following we provide a simple code snippet with an example of usage of
PARTIME, showing that a few lines of code are needed to setup a pipeline-based
execution.

6.4 Experiments 103

from partime.pipeline import Pipeline

from partime.balancing import balance_pipeline_partitions

net = YourSequentialModel()

balance = balance_pipeline_partitions(net,

devices, len(devices))

pipeline = Pipeline(

net, # Network to be wrapped

sample_input, # A tensor with the

same shape as the input stream

balance, # A list that determines how

layers are split, e.g. [8, 10, 12, 11]

devices, # List of devices to use

cuda_graph, # Flag to enable CUDA Graph

loss_fn, # A callable that returns the loss

sample_target, # A tensor with the

same shape as the targets

optim_settings # Tuple with optimizer class

and dict of hyper-parameters

)

for idx, (inp, target) in enumerate(stream):

pipeline.forward(inp, target)

if idx < len(pipeline.stages) - 1:

continue # The first input still has not reached

the end of the pipeline

else:

outputs = pipeline.outputs_buffer

loss = pipeline.loss_buffer

Print/display/log loss and output

Themethod pipeline.forward(inp, target) enqueues the input into the pipeline
and execute a forward/backward step. The output and loss buffers are filled with
the output of the last stage and the output of the provided loss function, respec-
tively. Notice that the first len(pipeline.stages)-1 steps are needed to make the
first input propagation reach the last stage (see code above), and the respective out-
puts/loss values must be neglected.

6.4 Experiments
We performed several experiments to showcase the processing speedup obtained
via the PARTIME library, starting with a stream of visual data, composed of 10000
frames. We evaluated the speed at which the network performs inference (forward
only), comparing it to the time needed for the same operations with vanilla sequen-
tial (i.e., non-pipeline-based) models. Moreover, we also considered the case in
which the PARTIME pipeline is used to wrap a neural model that performs con-
tinual online learning, thus also including the backward and update steps. Then, we
evaluated the quality of the trained model in a continual online motion estimation

104 Parallel Computations in Learning from a Video Stream

experiment and in a classification problem based on a stream of images from the
CIFAR-10 dataset, providing the network with data taken from a sliding window of
samples, to avoid abrupt changes in input at consecutive time steps. We note that
PARTIME increases the maximum framerate of the network, but the response time
(i.e. the time between an input and its respective output becoming available) is not
reduced - as typical of any pipelining scheme. A shorter response time could in
principle be achieved by integrating different parallel techniques with the pipeline
parallelism, but this is out of the scope of this work.

A. Pixel-wise Predictions. Our first experimental activity is about a neural archi-
tecture composed by 150 convolutional layers having fixed input/output resolution
(i.e. no pooling or stride > 1), thus simulating the prediction of pixel-wise fea-
tures. We assume to deal with input tensors having a squared spatial resolution of
R × R pixels, with R ∈ {256, 1024} and 3 channels. In bold measurements greater
than 50% than the theoretical speed-up. Table 6.1 (top) shows the speedup in infer-
ence, averaged over the considered forward steps, reporting in bold those speedups
that are greater than 80% of the theoretical speedup. We considered different set-
tings, consisting in various combinations of input resolutions (R × R) and number
of output features (F ∈ {1, 10, 100}) to better evaluate the impact of the communi-
cation overheads with different data sizes. We denoted each setting with the com-
pact notation R/F. We also considered varying numbers of pipeline stages (#Stages
∈ {2, 4, 8}). The obtained results confirm the huge contribution of CUDA Graph in
the low-resolution settings, where communications overheads are more impactful
than computational times, while advantages of CUDA Graph are less evident with
bigger input resolutions. In all the cases PARTIME provides significant improve-
ments over the vanilla sequential network, reaching results closer to the theoretical
case. Noticeably, with R = 1024 the exploitation of PARTIME yields a speedup
≈ ×7, close to the maximum theoretical speed-up of 8. In Table 6.1 (bottom) we
report the learning case, in which also the backward phase and optimization step
are included. Speedups are even greater than the inference case, as backward com-
putations increase the computational cost of each single pipeline stage, reducing the
relative impact of data-transfer overhead (see Figure 6.2).

B. Image Classification. The second experimental activity is about neural architec-
tures composed of 150 convolutional layers interleaved with pooling layers, with
the final output pooled to a vector with F elements, the number of output classes
(1 vector per image). The main goal of this activity is to evaluate potential pipeline
balancing issues due to the different spatial resolutions of the layers (i.e. layers pro-
cessing inputs with spatial resolution smaller than R have less impact in the over-
all computation). Table 6.2 (top, same structure of Table 6.1, reporting in bold the
cases in which the speedups are greater than half of the theoretical one) shows that
CUDA Graph yields the best results even in this experience. The aforementioned

6.4 Experiments 105

Table 6.1: Pixel-wise predictions. Speed-up achieved by PARTIME considering only
inference (top) and both forward and backward learning phases (bottom), varying
the input tensor resolution R and the number of output channels F (rows), as well
as the number of pipeline stages (columns), and investigating the advantages of
CUDA Graph. In bold measurements greater than 80% than the theoretical speed-
up.

Without CUDA Graph With CUDA Graph
#Stages 2 4 8 2 4 8
R / F

In
fe
re
nc

e
O
nl
y 256 / 1 1.12 1.17 1.15 1.89 3.74 6.41

256 / 10 1.09 1.12 1.10 1.68 3.65 6.46
256 / 100 1.08 1.11 1.08 1.72 3.13 5.05
1024 / 1 1.82 3.28 5.27 1.86 3.87 7.14
1024 / 10 1.82 3.21 5.53 1.88 3.57 6.65
1024 / 100 1.72 2.79 4.44 1.69 2.99 4.81

Le
ar
ni
ng

256 / 1 1.36 1.45 1.46 1.96 3.80 7.16
256 / 10 1.38 1.42 1.48 1.99 4.11 7.45
256 / 100 1.28 1.46 1.48 1.99 3.57 6.70
1024 / 1 1.81 3.43 5.63 1.95 3.66 6.61
1024 / 10 1.85 3.63 6.26 1.95 3.81 7.37
1024 / 100 1.88 3.39 5.57 1.89 3.57 6.35

layer/stage balancing issue causes an under-utilization of some of the GPUs, that is
more evident in the case of R = 1024, where the maximum speed-up is almost ×3
even with 8 GPUs.
C. Image Classification with Residual Connections. We performed another im-
age classification experience using a ResNet-152 architecture, customizing the final
classification head to yield F output classes/features. Skip connections from layer
i to layer j > i are propagated through all the stages in-between i and j, by means
of identity mappings. Therefore, we remark that skip connections introduce fur-
ther copy operations between GPU devices. Nonetheless, the speed-up achieved
by PARTIME are similar to the previous experience, suggesting that CUDA Graph
is still very helpful in mitigating performance losses due to communications over-
heads. Settingswith #Stages∈ {2, 4} get closer to the theoretical speed-up, since the
data that is about the skip connections need to be propagated through less stages.
D. Continual Online Image Classification. In our next experience we simulated a
continual online learning process where a neural model is trained on the CIFAR-10
dataset, with examples provided in a sequential manner. The training procedure is
inspired to Replay Methods (see section 2.2) and it collects inputs using a sliding
window to build up a “replay batch”, which is then fed to the pipeline. Each time

106 Parallel Computations in Learning from a Video Stream

Table 6.2: Image Classification without and with residual connections (top and
bottom part of the table, respectively), varying the input tensor resolution R and
the number of output channels F (rows), as well as the number of pipeline stages
(columns), and investigating the advantages of CUDA Graph.

Without CUDA Graph With CUDA Graph
#Stages 2 4 8 2 4 8
R / F

C
la
ss
ifi
er

256 / 1 1.16 1.13 1.06 0.78 2.59 4.31
256 / 10 1.11 1.04 1.00 0.99 2.55 3.48
256 / 100 1.10 1.06 1.00 1.69 2.67 4.39
1024 / 1 1.63 1.67 1.18 1.43 2.61 2.89
1024 / 10 1.66 1.64 1.38 0.80 1.64 2.52
1024 / 100 1.43 1.63 1.49 1.20 1.24 2.79

Re
sN

et

256 / 1 1.10 1.07 1.04 1.40 2.94 2.11
256 / 10 1.11 1.04 1.02 1.77 2.99 4.50
256 / 100 1.11 1.06 0.98 1.66 2.93 4.31
1024 / 1 1.24 1.23 0.99 1.42 2.34 1.50
1024 / 10 1.23 1.20 1.15 1.07 2.72 3.88
1024 / 100 1.27 1.22 1.14 1.69 3.28 2.94

a new sample is provided, the oldest input in the replay batch is replaced by the
new one, while the rest is kept as is. This ensures that the PARTIME assumption
of processing slowly-varying inputs is approximately met. The learning rate is also
chosen accordingly to avoid changing the weights too much between each step. We
considered a ResNet-50 with 10-classes classification head, trained using the Adam
optimizer with learning rate µ = 0.001, streaming the whole dataset 5 times, test-
ing different sliding-window/batch sizes in {64, 256, 1024}. Figure 6.3 compares the
accuracy on the test data for the different batch sizes. As expected from the theo-
retical analysis, there is a trade-off between performances on the task and increased
training speed. With respect to training the sequential network, training a 2-stage
pipelined network takes around half of the time of the sequential model. The re-
sults show that when increasing the batch size, the pipeline is able to learn better
predictors, as we better implement the slowly-changing input condition.

We can look more closely at the behavior of the learning trajectory when using
pipeline parallelism by observing Figure 6.4 and Figure 6.5, where it is respectively
plotted the evolution in time of accuracy and loss, respectively. In Figure 6.4a and
Figure 6.4b we see, the evolution of accuracy for batch size set to, respectively, 64
and 1024. The evolution of loss for batch sizes of 64 and 1024 is similarly reported
respectively in Figure 6.5a and Figure 6.5b Interestingly, for batch size equal to 64,
the accuracy for the pipelined network evolves similarly to the case without any

6.4 Experiments 107

0.0 0.1 0.2 0.3 0.4 0.5
Accuracy

2

4

St
ag

es
Batch Size

64
256
1024

Figure 6.3: Test accuracy in the continual online image classification described in the
main text. For reference, the baseline accuracies for a sequential network trained
without pipelining are 0.489, 0.553, and 0.639 for batch sizes of 64, 256 and 1024,
respectively.

pipeline. Conversely, in the case of 1024, the trajectories are cleanly separated. In
the case of the loss we see a similar trend for both batch sizes, but it is interesting
to note that while having a higher final loss, the trajectory of the metric over time is
far more stable and with less high fluctuations, when compared to the trajectory of
the non-pipelined network, even without any big fluctuations in the case of batch
size equal to 1024. The rise of the loss metric associated with a plateau in the accu-
racy could indicate a case of overfitting on the data, where the delay in the gradients
impede the network from extracting anymore useful data. While it is clear in Fig-
ure 6.3 that increasing the batch size better approximates the assumption of slowly
changing inputs, it also advantages the non-pipelined network that was designed to
better work with great batches of data. This is also evident seeing that batch sizes
of 64 are less of an advantage for common batch-training networks in terms of ac-
curacy and loss, while still keeping a significant disadvantage in terms of training
time. Nonetheless, it is important to keep in mind that the training of the pipelined
networks are, respectively, almost a half and a fourth, bringing forth a great advan-
tage in terms of time that allows the researcher to tweak the model and find more
suitable architectures (see Betti et al. (2020a)).
E. Continual Online Optical Flow Estimation. Our last experimental activity fits
more closely into the idea of learning agents that perceive a visual stream and con-
tinuosly learn sample by sample, in this case considering the optical flow learning
problem (Brox et al., 2004), which consists of estimating the displacement field for
all the pixels in a given frame pair. Such problem has been extensively investigated
with the aid of deep neural networks, and we replicated the experience of (Marullo

108 Parallel Computations in Learning from a Video Stream

0K 50K 100K 150K 200K 250K
Step

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

#GPUs
1
2
4

(a) Batch Size = 64

0K 50K 100K 150K 200K 250K
Step

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

#GPUs
1
2
4

(b) Batch Size = 1024

Figure 6.4: Accuracy over time.

6.4 Experiments 109

0K 50K 100K 150K 200K 250K
Step

0

100

200

300

400

500

600

Lo
ss

#GPUs
1
2
4

(a) Batch Size = 64

0K 50K 100K 150K 200K 250K
Step

0

100

200

300

400

500

600

Lo
ss

#GPUs
1
2
4

(b) Batch Size = 1024

Figure 6.5: Loss over time.

110 Parallel Computations in Learning from a Video Stream

et al., 2022). A convolutional neural network takes as input a frame pair (frames are
concatenated along the channel dimension) and it outputs the displacement com-
ponents for all the pixels. We investigate online unsupervised learning, i.e. training
is performed using a single frame pair at every step, and the pairs are sequentially
extracted from a video source without shuffling. Unsupervised learning is driven
by the brightness constancy assumption coupled with spatial regularization (see
(Marullo et al., 2022) for details). As video source, we choose “1917”, a 2019 British
war film directed and produced by Sam Mendes. The film lasts approximately 103
minutes (without credits) and appears as a single long continuous take, without
artificial cuts. We report in Figure 6.6 the optical flow estimated by the sequential
and pipelined network. We selected a learning rate µ = 10−5 for both the sequential
and the 2-stage pipeline, while it is set to µ = 10−6 for the 4-stage pipeline to ac-
count for the assumption of slowly changing gradients (see section 6.2). Noticeably,
the estimated flow from the pipelined network is qualitatively similar to that of the
sequential network, with little degradation in the 4-stages case. Figure 6.9 shows
how the training loss changes every 1-minute window in the movie. Whilst the gra-
dients computed by the pipelined model are more subject to approximation errors
with an increased number of stages, we remark that the learning curve follows the
same patterns of the vanilla sequential model, yielding a valid learning process.

As expected by the theoretical analysis in Section 6.2 the pipeline gradients de-
grade and make learning more difficult due to parts of the movie where there are
intense and rapid movements that interests many part of the images, weakening the
assumption of similar inputs. Even so, the learning trend appears very similar and
it is very close to sequential learning in the rest of the movie.

6.5 Discussion
In this chapter we discussed PARTIME, a Python software library designed for con-
tinual learning problems in which the data is streamed over time. PARTIME is built
on a pipeline parallelism that speedups the computations of a neural network by a
theoretical×D, being D the number of devices. We focused on the case of Graphics
Processing Units (GPUs), showing that our implementation scales coherently with
the expectations, as experimented in an environment with up to 8 GPUs. PARTIME
is easily inserted in a context where a researcher wants to process and learn from
real-time online streams, but needs to use a feed forward network that is unable to
run at real-time framerate on a single accelerator. As mentioned, a clear example of
this is the streams generated by Virtual Environments, that can offer a great quan-
tity of data at real-time speeds, but are often not closely followed by inference and
learning speeds of neural networks. Future work will consider and improve the im-
plementation for specific classes of neural models, such as those that are recurrent

6.5 Discussion 111

(a) Frame (b) Sequential

(c) 2 Stages (d) 4 Stages

Figure 6.6: Captures ofOptical Flow estimation on a given frame (Figure 6.6a) by the
vanilla sequential network (Figure 6.6b), comparedwith theOptical Flow computed
by the network handled by PARTIME (Figure 6.6c, Figure 6.6d).

(a) Frame (b) Sequential

(c) 2 Stages (d) 4 Stages

Figure 6.7: Captures ofOptical Flow estimation on a given frame (Figure 6.7a) by the
vanilla sequential network (Figure 6.7b), comparedwith theOptical Flow computed
by the network handled by PARTIME (Figure 6.7c, Figure 6.7d).

112 Parallel Computations in Learning from a Video Stream

(a) Frame (b) Sequential

(c) 2 Stages (d) 4 Stages

Figure 6.8: Captures ofOptical Flow estimation on a given frame (Figure 6.8a) by the
vanilla sequential network (Figure 6.8b), comparedwith theOptical Flow computed
by the network handled by PARTIME (Figure 6.8c, Figure 6.8d).

0 20 40 60 80 100
Time

0.00

0.01

0.02

0.03

0.04

Lo
ss

Stages
1
2
4

Figure 6.9: Continual online Optical Flow training loss over time (y-axes) over 1-
minute windows on which the average loss is plotted (x-axis).

6.5 Discussion 113

and neural networks for graphs, as well to local optimization approaches (Marra
et al., 2020), as well as further experiments directly involving Virtual Environments
and real-time Lifelong Learning.

Chapter 7

Conclusions

In this chapter we summarize the work presented throughout this thesis in the di-
rection of novel engineering solutions for opening new possibilities and scenarios in
research work, for general Computer Vision and in particular for Continual Learn-
ing, Adversarial Learning, Optical Flow Estimation and Real-Time Online Learning.

These contributions revolve around the idea of a Virtual Environment that is
able to generate an annotated real-time photo-realistic stream that suits the needs
of researchers that wish to relinquish the assumption of having a huge dataset on
which to perform offline batch-mode learning and instead focuses on a paradigm of
Learningwith living agents that learn fromonline real-timemulti-sensory stimuli as
long as they live in an environment and without a neat distinction between training
and testing phases, similarly to how humans learn in the real world.

Finally, we present some possible developments for the researchworks described
in the thesis, providing some hopefully interesting insight through follow-up ques-
tions that might spark interest in new research.

7.1 Summary of Contributions
• In chapter 3 we introduced SAILenv, a 3D Virtual Environment, specifically

designed for visual recognition tasks and implemented to be easy to use and
extend by researchers interested in the field but without advanced expertise
in the field of Computer Graphics. The framework comes with a library pop-
ulated with 3D photo-realistic objects that can be readily plugged in new sce-
narios to produce scenes of interest for various Computer Vision related ex-
periments. With a few lines of code the platform can be integrated with the
most common Machine Learning frameworks and used to quickly prototype
experiments or scenarios. Furthermore, the environment takes advantage of a
low-level communication protocol that reduces at its minimum the synchro-
nization overheads. At the time of development, SAILenv was the first 3D

115

116 Conclusions

Virtual Environment to provide real-time motion information of the objects in
the scene. Finally, we proved the photo-realistic quality of the environment
through evaluation with a state-of-the-art pixel-wise object detector, and the
efficiency in terms of framerates and response times of the generated stream.
In conclusion, we listed a few articles that used the platform to enable experi-
ments that would have been harder without it.

• In chapter 4 we described a theoretical parametric framework for the descrip-
tion and generation of visual scenes, thought with the intent of allowing re-
searchers to create reproducible benchmarks for experiments in the field of
Continual Learning. We define a formalization of the description of the scene,
considering parameters that describe the trajectory of objects, their moment
of appearance and disappearance and various other properties. We also im-
plement it into SAILenv, proving its ease of extension and its flexibility as a
tool for enabling different fields of research. After exemplifying the use of the
implemented framework with few lines of code, we show graphical examples
of scenes generated with such tools.

• in chapter 5 we studied the idea of transferring 3D Adversarial Objects from a
simpler differentiable renderer (Surrogate Renderer) to amuchmore complex
and photo-realistic, but not differentiable, renderer (Target Renderer). We ar-
gue the possibilities opened by Adversarial Attacks on Virtual Environment,
both as amaliciousway of poisoning benchmarks, and as away to evaluate and
improve the robustness of neural models to Adversarial Attacks. We propose
a saliency-based variation of Projected Gradient Descent that aims at carefully
attacking pixels of the object that are known to be important in the classifica-
tion of the image produced by the Target Renderer. Then, we implement the
proposed attackmethod in PyTorch, transferring attacks from apopular differ-
entiable render, PyTorch3D, to SAILenv, which takes advantage of the widely
used industrial level renderer of the Unity Engine. We design a set of exper-
iments to evaluate the effectiveness of the attack and of the transferral to the
Target Renderer, measuring the drop in classification accuracy, considering the
percentage of altered pixels as a measure of how “noticeable” the attack is by
a human observer. The result are then discussed, showing how the attacks are
generally effective even though the differences between Surrogate and Target
renderer are clearly evident and impactful.

• In chapter 6 we introduce PARTIME, a Python library meant for wrapping
neural feed-forward models to transparently enable multi-GPU pipeline par-
allelism, with the aim of significantly increase output framerates in wrapped
networks to allow for Real-time Online Learning. We discuss the differences
with state-of-the-art methods of Pipeline Parallelism, mostly designed to ac-

7.2 Future work 117

celerate batch-mode offline processing. We introduce an approximation of the
Backpropagation algorithm that allows the library to work at real-time speeds
even without batch-mode processing and study its implications in the qual-
ity of the learning, providing reasonable assumptions on the nature of the in-
put data. We design a set of experiments meant to evaluate both the learning
quality of the wrapped network, comparing it to the vanilla case, and similarly
compare the relative speed-ups achieved by the multi-GPU parallelism. The
results are compatible with the theoretical analysis and corroborate it, show-
ing almost linear speed-ups in many tasks and a quality of learned parameters
that is acceptable with respect to the significant improvement in training time,
and also considering the use of networks specifically designed for batch-mode
offline training.

7.2 Future work
The research work described in the thesis open up new questions and leave some
open problems up to future research. We propose a few directions, giving some
insights to the possible questions that could be answered.

Interactions and Reinforcement Learning support in SAILenv. While SAILenv
is a powerful platform for visual recognition tasks, as of now it does not support
interactions between agents and the environment or even other agents. This is a
possibility that was already studied by AI2-THOR, but given its nature, it works as a
discretemachinewhere the agent actions dictate the flowof time in the environment.
Differently, the flow of time in SAILenv is detached by the actions of the agents,
introducing further difficulties and important problems to be solved while enabling
important questions. For example, when times are synchronized, multiple agents
can act at the same time, which is an important yet unrealistic assumption in the
world model. Allowing interactions in an asynchronous environment allows the
researchers to study the effects on interactions between agents that experience the
flow of time in an independent way.

Outdoor scenes inSAILenv. SAILenvprincipally focuses on indoor environments,
which are by nature limited in space and presenting a limited range of possible ob-
jects, movements are almost always restricted between the walls with limited ve-
locities, distances and scales are constrained allowing reduced variability. SAILenv
would gain significant value by introducing outdoor environments, allowing new
types of experimentswith an increased library of photo-realistic objects. ManyCom-
puter Vision problems could then be reframed in the Virtual Environment, taking
advantage of the generation of real-time data on variable scenarios with extensible

118 Conclusions

and configurable behaviors.

Rendererer Imitation to improveAdversarialAttacks. One of the focal points that
limit the effectiveness of transferred objects is certainly the strong differences be-
tween Surrogate Renderers and Adversarial Renderers. Even considering the im-
plementation of a PBR differentiable renderer that easily integrates with widely
used Machine Learning frameworks, which is by itself a promising direction, an
issue would still remain: usually, Target Renderers are closed source and there is
no guarantee that the renderer will be able to properly render images close enough
to produce a 100% effective attack. Therefore, taking inspiration from Neural Ren-
derers, it is an interesting approach to create learnable PBR renderer, that taking as
input the standard textures used by PBR renderers, learn from images rendered by
a Target Renderer how to replicate the general appearance and particular details of
the Target Renderer. Such a renderer can then be readily used to generate what we
hypothesize will be easily and effectively transferrable 3D Adversarial Objects.

Extension of wrappable network architectures in PARTIME. PARTIME allows
feed-forward architectures to be wrapped and parallelized. While it is certainly true
that many problems are solved through the use of feed-forward networks, there is
a ever-growing quantity of research that takes advantage of recurrent networks or
transformers. Therefore, an important step forward for enablingmulti-GPUPipeline
Parallelism for a varied array of tasks is designing an extension of PARTIME for
models that do not conform to the simple feed-forward structure. This, of course,
implies the extension of the computational model of PARTIME, as well as the the-
oretical analysis of the gradient that needs to be redesigned to account for possible
cycles.

Better approximate gradients in PARTIME. As we have seen, while the approx-
imation of the gradients used in PARTIME allows for linear speed-up in computa-
tions, it still degrades the gradients that reach the parts of the network closer to the
input. An important step in the direction of increasing the usefulness of this tool
is to study new approximations of the gradients. An important step in this direc-
tion was made by the work on PipeDream-2BW, which enables fast computations
while limiting the gradient degradation and the memory footpring, if only for the
batch-mode offline case. We hypothesize that this idea can be extended to the real-
time online case, still maintaining high speed-ups while achieving minor gradient
degradation and significant learning quality. Furthermore, these new approxima-
tion should consider the case of different network architectures in their design.

Appendix A

Publications

Journal papers
1. Marco Di Benedetto, Fabio Carrara, Enrico Meloni, Giuseppe Amato, Fab-

rizio Falchi, Claudio Gennaro, “Learning Accurate Personal Protective Equip-
ment Detection from Virtual Worlds”, Multimedia Tools and Applications 80,
pages:23241—23253, 2021. Candidate’s contribution: Development of soft-
ware tools, review of literature, design of experiments, analysis of experimen-
tal results, generation of synthetic dataset, manual annotation of real-world
images dataset.

Peer reviewed conference papers
1. Marco Di Benedetto, Enrico Meloni, Giuseppe Amato, Fabrizio Falchi, Clau-

dio Gennaro, “Learning Safety Equipment Detection using Virtual Worlds”,
International Conference onContent-BasedMultimedia Indexing (CBMI), 2019. Can-
didate’s contributions: Development of software tools, review of literature,
design of experiments, analysis of experimental results, generation of syn-
thetic dataset, manual annotation of real-world images dataset.

2. Enrico Meloni, Luca Pasqualini, Matteo Tiezzi, Marco Gori, Stefano Melacci,
“SAILenv: Learning in Virtual Visual Environments Made Simple”, Interna-
tional Conference on Pattern Recognition (ICPR), 2020. Candidate’s contribu-
tions: Development of software tools, review of literature, design of experi-
ments, analysis of experimental results.

3. Enrico Meloni, Matteo Tiezzi, Luca Pasqualini, Marco Gori, Stefano Melacci,
“Messing Up 3D Virtual Environments: Transferable Adversarial 3D Objects”,
International Conference on Machine Learning and Applications (ICMLA), 2021.
Candidate’s contributions: Development of software tools, review of litera-
ture, design of experiments, analysis of experimental results.

119

120 Publications

4. Enrico Meloni, Lapo Faggi, Simone Marullo, Alessandro Betti, Matteo Tiezzi,
MarcoGori, StefanoMelacci, “PARTIME: Scalable andParallel ProcessingOver
Time with Deep Neural Networks”, International Conference on Machine Learn-
ing and Applications (ICMLA), 2022. Candidate’s contributions: Development
of software tools, review of literature, design of experiments, analysis of exper-
imental results.

5. Matteo Tiezzi, Simone Marullo, Lapo Faggi, Enrico Meloni, Alessandro Betti,
Stefano Melacci, “Stochastic Coherence Over Attention Trajectory For Contin-
uous Learning In Video Streams”, International Joint Conference on Artificial In-
telligence (IJCAI-ECAI), 2022. Candidate’s contributions: Generation of syn-
thetic visual streams, design of algorithms, discussions, review of paper.

6. Simone Marullo, Matteo Tiezzi, Alessandro Betti, Lapo Faggi Enrico Meloni,
Stefano Melacci, ‘Continual Unsupervised Learning for Optical Flow Estima-
tion”, Conference on Lifelong Learning Agents (CoLLAs), 2022. Candidate’s con-
tributions: Generation of synthetic visual streams, discussions, review of pa-
per.

7. Matteo Tiezzi, Simone Marullo, Alessandro Betti, Enrico Meloni, Lapo Faggi,
Marco Gori, Stefano Melacci, “Foveated Neural Computation”, European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD), 2022. Candidate’s contributions: Implementation
of algorithm, discussion, review of paper.

8. Alessandro Betti, Lapo Faggi, Marco Gori, Matteo Tiezzi, SimoneMarullo, En-
rico Meloni, Stefano Melacci, “Continual Learning through Hamilton Equa-
tions”,Conference on Lifelong Learning Agents (CoLLAs), 2022. Candidate’s con-
tributions: Discussions, review of paper.

Workshop papers
1. Enrico Meloni, Alessandro Betti, Lapo Faggi, Simone Marullo, Matteo Tiezzi,

Stefano Melacci, “Evaluating Continual Learning Algorithms by Generating
3D Virtual Environments”, International Workshop on Continual Semi-Supervised
Learning, pages:62–74, 2022. Candidate’s contributions: Design of theoretical
framework, development of software tools, review of literature.

Papers under review
None.

121

Other
1. Andrea Zugarini, Enrico Meloni, Alessandro Betti, Andrea Panizza, Marco

Corneli,MarcoGori, “AnOptimalControlApproach to Learning in SIDARTHE
Epidemic model”, arXiv pre-print, 2020. Candidate’s contributions: Design of
algorithms, design of experiments, development of software tools, review of
literature, analysis of experimental results.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Abraham, W. C. and Robins, A. (2005). Memory retention–the synaptic stability
versus plasticity dilemma. Trends in neurosciences, 28(2):73–78.

Akhtar, N. and Mian, A. S. (2018). Threat of adversarial attacks on deep learning in
computer vision: A survey. IEEE Access, 6:14410–14430.

Alcorn, M. A., Li, Q., Gong, Z., Wang, C., Mai, L., Ku, W.-S., and Nguyen, A. (2019).
Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar
objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4845–4854.

Aljundi, R., Kelchtermans, K., and Tuytelaars, T. (2019). Task-free continual learn-
ing. In Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recog-
nition, pages 11254–11263.

Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. (2018). Synthesizing robust ad-
versarial examples. In International Conference onMachine Learning, pages 284–293.
PMLR.

Azinovic, D., Li, T.-M., Kaplanyan, A., and Nießner, M. (2019). Inverse path tracing
for jointmaterial and lighting estimation. InProceedings of the IEEE/CVFConference
on Computer Vision and Pattern Recognition, pages 2447–2456.

Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. D. (2010). The security of ma-
chine learning. Machine Learning, 81(2):121–148.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., et al.
(2016). Deepmind lab. arXiv:1612.03801.

Betti, A. and Gori, M. (2019). Backprop diffusion is biologically plausible.

123

124 BIBLIOGRAPHY

Betti, A., Gori, M., Marullo, S., and Melacci, S. (2020a). Developing constrained
neural units over time. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8.

Betti, A., Gori, M., andMelacci, S. (2020b). Cognitive action laws: The case of visual
features. IEEE Transactions onNeural Networks and Learning Systems, 31(3):938–949.

Betti, A., Gori, M., and Melacci, S. (2020c). Learning visual features under motion
invariance. Neural Networks, 126:275–299.

Betti, A., Gori, M., and Melacci, S. (2022). Deep Learning to See - Towards New Foun-
dations of Computer Vision. Springer.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G.,
and Roli, F. (2013). Evasion attacks against machine learning at test time. In
Joint European Conference onMachine Learning and Knowledge Discovery in Databases,
pages 387–402. Springer.

Biggio, B. and Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 84:317–331.

Brady, M. L., Raghavan, R., and Slawny, J. (1989). Back propagation fails to separate
where perceptrons succeed. IEEE Transactions on Circuits and Systems, 36(5):665–
674.

Bremner, A. J., Lewkowicz, D. J., and Spence, C. (2012). Multisensory development.
Oxford University Press.

Brodeur, S., Perez, E., Anand, A., Golemo, F., Celotti, L., Strub, F., Rouat, J.,
Larochelle, H., and Courville, A. (2017). Home: A household multimodal en-
vironment. arXiv preprint arXiv:1711.11017.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-
shot learners. Advances in neural information processing systems, 33:1877–1901.

Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004). High accuracy optical
flow estimation based on a theory for warping. In European conference on computer
vision, pages 25–36. Springer.

Calvert, G., Spence, C., Stein, B. E., et al. (2004). The handbook of multisensory processes.
MIT press.

Cangelosi, A. and Schlesinger, M. (2018). From babies to robots: the contribution of
developmental robotics to developmental psychology. Child Development Perspec-
tives, 12(3):183–188.

BIBLIOGRAPHY 125

Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Wagner, D., and
Zhou, W. (2016). Hidden voice commands. In 25th USENIX security symposium
(USENIX security 16), pages 513–530.

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., and Mukhopadhyay,
D. (2018). Adversarial attacks and defences: A survey. arXiv preprint
arXiv:1810.00069.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song, S.,
Zeng, A., andZhang, Y. (2017). Matterport3d: Learning from rgb-d data in indoor
environments. arXiv preprint arXiv:1709.06158.

Chaplot, D. S., Sathyendra, K. M., Pasumarthi, R. K., Rajagopal, D., and Salakhutdi-
nov, R. (2018). Gated-attention architectures for task-oriented language ground-
ing. In Thirty-Second AAAI Conference on Artificial Intelligence.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H.,
and Ranzato, M. (2019). Continual learning with tiny episodic memories.

Chellapilla, K., Puri, S., and Simard, P. (2006). High performance convolutional neu-
ral networks for document processing. In Tenth international workshop on frontiers
in handwriting recognition. Suvisoft.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy, I.,
and Srivastava, B. (2018). Detecting backdoor attacks on deep neural networks
by activation clustering. arXiv preprint arXiv:1811.03728.

Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacobson, A., and Fidler, S. (2019).
Learning to predict 3d objects with an interpolation-based differentiable renderer.
Advances in Neural Information Processing Systems, 32.

Chen, Z. and Liu, B. (2018). Lifelongmachine learning. Synthesis Lectures onArtificial
Intelligence and Machine Learning, 12(3):1–207.

Cheng, J., Grossman, M., and McKercher, T. (2014). Professional CUDA c program-
ming. John Wiley & Sons.

Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep,
big, simple neural nets for handwritten digit recognition. Neural computation,
22(12):3207–3220.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G., and Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in
classification tasks. IEEE transactions on pattern analysis and machine intelligence,
44(7):3366–3385.

126 BIBLIOGRAPHY

Deitke, M., Han, W., Herrasti, A., Kembhavi, A., Kolve, E., et al. (2020). Robothor:
An open simulation-to-real embodied ai platform. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3164–3174.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G., and Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in
classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 1–1.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee.

Di Benedetto, M., Carrara, F., Meloni, E., Amato, G., Falchi, F., and Gennaro, C.
(2021). Learning accurate personal protective equipment detection from virtual
worlds. Multimedia Tools and Applications, 80(15):23241–23253.

Di Benedetto,M.,Meloni, E., Amato, G., Falchi, F., andGennaro, C. (2019). Learning
safety equipment detection using virtual worlds. In 2019 International Conference
on Content-Based Multimedia Indexing (CBMI), pages 1–6. IEEE.

Ditzler, G., Roveri, M., Alippi, C., and Polikar, R. (2015). Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4):12–25.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). CARLA: An
open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR.

Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., and Cucchiara, R. (2018).
Learning to detect and track visible and occluded body joints in a virtual world.
In European Conference on Computer Vision (ECCV).

Fanello, S., Ciliberto, C., Santoro, M., Natale, L., Metta, G., Rosasco, L., and Odone,
F. (2013). icub world: Friendly robots help building good vision data-sets. In Pro-
ceedings of the IEEEConference on Computer Vision and Pattern RecognitionWorkshops,
pages 700–705.

Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expan-
sion. In Scandinavian conference on Image analysis, pages 363–370. Springer.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A.,
and Wierstra, D. (2017). Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734.

Fradkov, A. L. (2020). Early history of machine learning. IFAC-PapersOnLine,
53(2):1385–1390.

BIBLIOGRAPHY 127

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135.

Gallardo, J., Hayes, T. L., and Kanan, C. (2021). Self-supervised training enhances
online continual learning. CoRR.

Gan, C., Schwartz, J., Alter, S., Schrimpf, M., et al. (2020). Threedworld: A platform
for interactive multi-modal physical simulation. arXiv:2007.04954.

Gao, X., Gong, R., Shu, T., Xie, X., Wang, S., and Zhu, S.-C. (2019). Vrkitchen: an
interactive 3d virtual environment for task-oriented learning. arXiv:1903.05757.

Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., and Freeman, W. T. (2018).
Unsupervised training for 3d morphable model regression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 8377–8386.

Gilmer, J., Adams, R. P., Goodfellow, I., Andersen, D., and Dahl, G. E. (2018). Mo-
tivating the rules of the game for adversarial example research. arXiv preprint
arXiv:1807.06732.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing ad-
versarial examples. arXiv:1412.6572.

Gopnik, A., Meltzoff, A. N., and Kuhl, P. K. (1999). The scientist in the crib: Minds,
brains, and how children learn. William Morrow & Co.

Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., and Farhadi, A.
(2018). Iqa: Visual question answering in interactive environments. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4089–4098.

Gori, M. and Tesi, A. (1992). On the problem of local minima in backpropagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):76–86.

Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu, G. (2020). A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics, 37(3):362–
386.

Grossberg, S. (1982). How does a brain build a cognitive code? In Studies of mind
and brain, pages 1–52. Springer.

Grossberg, S. (2013). Adaptive resonance theory: How a brain learns to consciously
attend, learn, and recognize a changing world. Neural networks, 37:1–47.

Guan, L., Yin, W., Li, D., and Lu, X. (2019). Xpipe: Efficient pipeline model paral-
lelism for multi-gpu dnn training.

128 BIBLIOGRAPHY

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. (2016). Deep learning
for visual understanding: A review. Neurocomputing, 187:27–48.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017). Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2616–2625.

Haas, J. K. (2014). A history of the unity game engine.

Handa, A., Pătrăucean, V., Stent, S., and Cipolla, R. (2016). Scenenet: An anno-
tated model generator for indoor scene understanding. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 5737–5743. IEEE.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision, pages 2961–2969.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-
nition. InProceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X., Chen, D., Lee, H., Ngiam,
J., Le, Q. V., Wu, Y., and Chen, Z. (2018). Gpipe: Efficient training of giant neural
networks using pipeline parallelism.

Hui, T.-W., Tang, X., and Loy, C. C. (2018). LiteFlowNet: A lightweight convolu-
tional neural network for optical flow estimation. In IEEE Conference on Computer
Vision and Pattern Recognition.

Isele, D. and Cosgun, A. (2018). Selective experience replay for lifelong learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.

Jatavallabhula, K. M., Smith, E., Lafleche, J.-F., Tsang, C. F., Rozantsev, A., Chen,
W., Xiang, T., Lebaredian, R., and Fidler, S. (2019). Kaolin: A pytorch library for
accelerating 3d deep learning research. arXiv preprint arXiv:1911.05063.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N., Rosaen, K., and Va-
sudevan, R. (2016). Driving in the matrix: Can virtual worlds replace human-
generated annotations for real world tasks? arXiv preprint arXiv:1610.01983.

Kato, H. and Harada, T. (2019). Learning view priors for single-view 3d recon-
struction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9778–9787.

BIBLIOGRAPHY 129

Kato, H., Ushiku, Y., andHarada, T. (2018). Neural 3dmesh renderer. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 3907–3916.

Kemker, R., McClure, M., Abitino, A., Hayes, T., and Kanan, C. (2018). Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.

Kim, C., Lee, H., Jeong, M., Baek, W., Yoon, B., Kim, I., Lim, S., and Kim, S.
(2020). torchgpipe: On-the-fly pipeline parallelism for training giant models.
arXiv preprint arXiv:2004.09910.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521–3526.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon, D.,
Zhu, Y., Gupta, A., and Farhadi, A. (2017). Ai2-thor: An interactive 3d environ-
ment for visual ai. arXiv:1712.05474.

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural net-
works.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90.

Krueger, K. A. and Dayan, P. (2009). Flexible shaping: How learning in small steps
helps. Cognition, 110(3):380–394.

Kumar, A. and Mehta, S. (2017). A survey on resilient machine learning. arXiv
preprint arXiv:1707.03184.

Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adversarial machine learning at
scale. arXiv preprint arXiv:1611.01236.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–
444.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,W., and Jackel,
L. (1989a). Handwritten digit recognition with a back-propagation network. In
Touretzky, D., editor, Advances in Neural Information Processing Systems, volume 2.
Morgan-Kaufmann.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989b). Backpropagation applied to handwritten zip code recogni-
tion. Neural Computation, 1(4):541–551.

130 BIBLIOGRAPHY

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lerer, A., Gross, S., and Fergus, R. (2016). Learning physical intuition of block tow-
ers by example. arXiv preprint arXiv:1603.01312.

Lewkowicz, D. J. (2014). Early experience and multisensory perceptual narrowing.
Developmental psychobiology, 56(2):292–315.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A., Smith, J.,
Vaughan, B., Damania, P., and Chintala, S. (2020). Pytorch distributed: Experi-
ences on accelerating data parallel training. Proceedings of the VLDB Endowment,
13(12):3005–3018.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer.

Liu, A., Huang, T., Liu, X., Xu, Y., Ma, Y., Chen, X., Maybank, S. J., and Tao, D. (2020).
Spatiotemporal attacks for embodied agents. In European Conference on Computer
Vision, pages 122–138. Springer.

Liu, H.-T. D., Tao, M., Li, C.-L., Nowrouzezahrai, D., and Jacobson, A. (2018). Be-
yond pixel norm-balls: Parametric adversaries using an analytically differentiable
renderer. In International Conference on Learning Representations.

Liu, S., Li, T., Chen, W., and Li, H. (2019). Soft rasterizer: A differentiable renderer
for image-based 3d reasoning. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 7708–7717.

Liu, V. and Curran, J. R. (2006). Web text corpus for natural language processing. In
11thConference of the EuropeanChapter of theAssociation for Computational Linguistics,
pages 233–240.

Lomonaco, V., Desai, K., Culurciello, E., and Maltoni, D. (2020). Continual re-
inforcement learning in 3d non-stationary environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages
248–249.

Lomonaco, V. and Maltoni, D. (2017). Core50: a new dataset and benchmark for
continuous object recognition. InConference onRobot Learning, pages 17–26. PMLR.

Loper, M. M. and Black, M. J. (2014). Opendr: An approximate differentiable ren-
derer. In European Conference on Computer Vision, pages 154–169. Springer.

BIBLIOGRAPHY 131

Lu, J., Sibai, H., Fabry, E., and Forsyth, D. (2017). Noneed toworry about adversarial
examples in object detection in autonomous vehicles. arXiv:1707.03501.

Luo, Y., Boix, X., Roig, G., Poggio, T., and Zhao, Q. (2015). Foveation-based mecha-
nisms alleviate adversarial examples. arXiv preprint arXiv:1511.06292.

Madaan, D., Yoon, J., Li, Y., Liu, Y., and Hwang, S. J. (2022). Representational conti-
nuity for unsupervised continual learning. In International Conference on Learning
Representations.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards
deep learning models resistant to adversarial attacks. arXiv:1706.06083.

Maggini, M., Marra, G., Melacci, S., and Zugarini, A. (2020). Learning in text
streams: Discovery and disambiguation of entity and relation instances. IEEE
Transactions on Neural Networks and Learning Systems, 31(11):4475–4486.

Maggini, M., Melacci, S., and Sarti, L. (2007). Representation of facial features by
catmull-rom splines. In International Conference on Computer Analysis of Images and
Patterns, pages 408–415. Springer.

Mallya, A. and Lazebnik, S. (2018). Packnet: Adding multiple tasks to a single
network by iterative pruning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 7765–7773.

Maltoni, D. and Lomonaco, V. (2019). Continuous learning in single-incremental-
task scenarios. Neural Networks, 116:56–73.

Marra, G., Tiezzi, M., Melacci, S., Betti, A., Maggini, M., and Gori, M. (2020). Lo-
cal propagation in constraint-based neural networks. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.

Marullo, S., Tiezzi, M., Betti, A., Faggi, L., Meloni, E., and Melacci, S. (2022). Con-
tinual unsupervised learning for optical flow estimation with deep networks. In
Proceedings of the Conference on Lifelong Learning Agents (CoLLAs) 2022. Available
at https://sailab.diism.unisi.it/continual-unsupervised-learning-for
-optical-flow-estimation/while waiting for publication.

Mayer, N., Ilg, E., Fischer, P., Hazirbas, C., Cremers, D., Dosovitskiy, A., and Brox,
T. (2018). What makes good synthetic training data for learning disparity and
optical flow estimation? International Journal of Computer Vision, 126(9):942–960.

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., and Brox, T.
(2016). A large dataset to train convolutional networks for disparity, optical flow,
and scene flow estimation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4040–4048.

https://sailab.diism.unisi.it/continual-unsupervised-learning-for-optical-flow-estimation/
https://sailab.diism.unisi.it/continual-unsupervised-learning-for-optical-flow-estimation/

132 BIBLIOGRAPHY

McClelland, J. L., McNaughton, B. L., andO’Reilly, R. C. (1995). Why there are com-
plementary learning systems in the hippocampus and neocortex: insights from
the successes and failures of connectionist models of learning and memory. Psy-
chological review, 102(3):419.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of learning and motiva-
tion, volume 24, pages 109–165. Elsevier.

McCormac, J., Handa, A., Leutenegger, S., andDavison, A. J. (2017). Scenenet rgb-d:
Can 5m synthetic images beat generic imagenet pre-training on indoor segmenta-
tion? In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Meloni, E. (2019). Using virtual worlds to train an object detector for personal pro-
tection equipment.

Meloni, E., Betti, A., Faggi, L., Marullo, S., Tiezzi, M., andMelacci, S. (2022a). Evalu-
ating continual learning algorithms by generating 3d virtual environments. In In-
ternational Workshop on Continual Semi-Supervised Learning, pages 62–74. Springer.

Meloni, E., Faggi, L., Marullo, S., Betti, A., Tiezzi, M., Gori, M., and Melacci, S.
(2022b). Partime: Scalable and parallel processing over time with deep neural
networks. Accepted at 2022 21st IEEE International Conference on Machine Learning
and Applications (ICMLA).

Meloni, E., Pasqualini, L., Tiezzi, M., Gori, M., and Melacci, S. (2021a). Sailenv:
Learning in virtual visual environments made simple. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 8906–8913. IEEE.

Meloni, E., Tiezzi, M., Pasqualini, L., Gori, M., and Melacci, S. (2021b). Messing up
3d virtual environments: Transferable adversarial 3d objects. In 2021 20th IEEE
International Conference on Machine Learning and Applications (ICMLA), pages 1–8.
IEEE.

Mermillod, M., Bugaiska, A., and Bonin, P. (2013). The stability-plasticity dilemma:
Investigating the continuum from catastrophic forgetting to age-limited learning
effects.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng,
R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis.
In European Conference on Computer Vision, pages 405–421. Springer.

Murray, M. M., Lewkowicz, D. J., Amedi, A., and Wallace, M. T. (2016). Multi-
sensory processes: a balancing act across the lifespan. Trends in Neurosciences,
39(8):567–579.

BIBLIOGRAPHY 133

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N. R., Ganger,
G. R., Gibbons, P. B., and Zaharia, M. (2019). Pipedream: generalized pipeline
parallelism for dnn training. InProceedings of the 27thACMSymposium onOperating
Systems Principles, pages 1–15.

Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and Zaharia, M. (2021). Memory-
efficient pipeline-parallel dnn training. In Proceedings of the 38th International Con-
ference onMachine Learning, volume 139 of Proceedings ofMachine Learning Research,
pages 7937–7947. PMLR.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2017). Variational continual
learning. arXiv preprint arXiv:1710.10628.

Nimier-David, M., Vicini, D., Zeltner, T., and Jakob, W. (2019). Mitsuba 2: A re-
targetable forward and inverse renderer. ACM Transactions on Graphics (TOG),
38(6):1–17.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71.

Pasquale, G., Ciliberto, C., Odone, F., Rosasco, L., and Natale, L. (2015). Teaching
icub to recognize objects using deep convolutional neural networks. In Machine
Learning for Interactive Systems, pages 21–25. PMLR.

Pasquale, G., Ciliberto, C., Rosasco, L., and Natale, L. (2016). Object identification
from few examples by improving the invariance of a deep convolutional neural
network. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4904–4911. IEEE.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc.

Petrowski, A., Dreyfus, G., and Girault, C. (1993). Performance analysis of a
pipelined backpropagation parallel algorithm. IEEE Transactions on Neural Net-
works, 4(6):970–981.

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., and Torralba, A. (2018). Vir-
tualhome: Simulating household activities via programs. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 8494–8502.

134 BIBLIOGRAPHY

Quiter, C. and Ernst, M. (2018). deepdrive/deepdrive: 2.0. URL: https://doi.
org/10.5281/zenodo, 1248998.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Rao, R. (2000). Reinforcement learning: An introduction; rs sutton, ag barto (eds.);
mit press, cambridge, ma, 1998, 380 pages, isbn 0-262-19398-1.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. (2020). Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters.
In KDD 2020, pages 3505–3506.

Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo,W.-Y., Johnson, J., andGkioxari,
G. (2020). Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., andLampert, C.H. (2017). icarl: Incremental
classifier and representation learning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5533–5542.

Rematas, K. and Ferrari, V. (2020). Neural voxel renderer: Learning an accurate
and controllable rendering tool. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5417–5427.

Rhodin, H., Robertini, N., Richardt, C., Seidel, H.-P., and Theobalt, C. (2015). A
versatile scene model with differentiable visibility applied to generative pose esti-
mation. In Proceedings of the IEEE International Conference on Computer Vision, pages
765–773.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experience
replay for continual learning. Advances in Neural Information Processing Systems,
32.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal repre-
sentations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science.

Rumelhart, D. E., Hinton, G. E., andWilliams, R. J. (1986). Learning representations
by back-propagating errors. nature, 323(6088):533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet

BIBLIOGRAPHY 135

Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive neural net-
works. arXiv preprint arXiv:1606.04671.

Savva, M., Kadian, A., Maksymets, O., et al. (2019). Habitat: A platform for embod-
ied ai research. In IEEE/CVF International Conference on Computer Vision, pages
9339–9347.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018). Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine
Learning, pages 4548–4557. PMLR.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep gener-
ative replay. Advances in neural information processing systems, 30.

Shoeybi, M., Patwary,M., Puri, R., LeGresley, P., Casper, J., andCatanzaro, B. (2019).
Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,W., Mottaghi, R., Zettlemoyer,
L., and Fox, D. (2020). Alfred: A benchmark for interpreting grounded instruc-
tions for everyday tasks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10740–10749.

Shu, T., Bhandwaldar, A., Gan, C., Smith, K., Liu, S., Gutfreund, D., Spelke, E.,
Tenenbaum, J., and Ullman, T. (2021). Agent: A benchmark for core psycholog-
ical reasoning. In International Conference on Machine Learning, pages 9614–9625.
PMLR.

Simonyan, K. andZisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funkhouser, T. (2017). Se-
mantic scene completion from a single depth image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1746–1754.

Steinkraus, D., Buck, I., and Simard, P. (2005). Using gpus for machine learning
algorithms. In Eighth International Conference on Document Analysis and Recognition
(ICDAR’05), pages 1115–1120. IEEE.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2013). Intriguing properties of neural networks. arXiv:1312.6199.

136 BIBLIOGRAPHY

Tani, J. (2016). Exploring robotic minds: actions, symbols, and consciousness as self-
organizing dynamic phenomena. Oxford University Press.

Thrun, S. andMitchell, T.M. (1995). Lifelong robot learning. Robotics and autonomous
systems, 15(1-2):25–46.

Tiezzi, M., Marra, G., Melacci, S., and Maggini, M. (2022a). Deep constraint-based
propagation in graph neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(2):727–739.

Tiezzi, M., Marullo, S., Faggi, L., Meloni, E., Betti, A., and Melacci, S. (2022b).
Stochastic coherence over attention trajectory for continuous learning in video
streams.

Toheed, A., Yousaf, M. H., Rabnawaz, and Javed, A. (2022). Physical adversarial
attack scheme on object detectors using 3d adversarial object. In 2022 2nd Interna-
tional Conference on Digital Futures and Transformative Technologies (ICoDT2), pages
1–4.

Van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning.
arXiv preprint arXiv:1904.07734.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California In-
stitute of Technology.

Wang, X., Xiong, W., Wang, H., and Yang Wang, W. (2018). Look before you leap:
Bridging model-free and model-based reinforcement learning for planned-ahead
vision-and-language navigation. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 37–53.

Weihs, L., Salvador, J., Kotar, K., Jain, U., Zeng, K.-H., Mottaghi, R., and Kembhavi,
A. (2020). Allenact: A framework for embodied ai research. arXiv:2008.12760.

Xia, F., Shen, W. B., Li, C., Kasimbeg, P., Tchapmi, M. E., Toshev, A., Martín-Martín,
R., and Savarese, S. (2020). Interactive gibson benchmark: A benchmark for inter-
active navigation in cluttered environments. IEEE Robotics and Automation Letters,
5(2):713–720.

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J., and Savarese, S. (2018). Gibson env:
Real-world perception for embodied agents. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9068–9079.

BIBLIOGRAPHY 137

Xiang, F., Qin, Y., Mo, K., et al. (2020). Sapien: A simulated part-based interactive
environment. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11097–11107.

Xiao, C., Yang, D., Li, B., Deng, J., and Liu, M. (2019). Meshadv: Adversarial meshes
for visual recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6898–6907.

Xu, J. and Zhu, Z. (2018). Reinforced continual learning. Advances in Neural Infor-
mation Processing Systems, 31.

Yadan, O., Adams, K., Taigman, Y., and Ranzato, M. (2013). Multi-gpu training of
convnets.

Yan, C., Misra, D., Bennnett, A., Walsman, A., Bisk, Y., and Artzi, Y. (2018). Chalet:
Cornell house agent learning environment. arXiv:1801.07357.

Yan, X., Yang, J., Yumer, E., Guo, Y., andLee, H. (2016). Perspective transformer nets:
Learning single-view 3d object reconstruction without 3d supervision. Advances
in neural information processing systems, 29.

Yao, P., So, A., Chen, T., and Ji, H. (2020). Onmultiview robustness of 3d adversarial
attacks. In Practice and Experience in Advanced Research Computing, pages 372–378.

Zeng, X., Liu, C.,Wang, Y.-S., Qiu,W., Xie, L., Tai, Y.-W., Tang, C.-K., and Yuille, A. L.
(2019). Adversarial attacks beyond the image space. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4302–4311.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synap-
tic intelligence. In International Conference on Machine Learning, pages 3987–3995.
PMLR.

Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., and Xu, W. (2017). Dolphinattack:
Inaudible voice commands. In Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pages 103–117.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A.
(2017). Target-driven visual navigation in indoor scenes usingdeep reinforcement
learning. In 2017 IEEE international conference on robotics and automation (ICRA),
pages 3357–3364. IEEE.

	Contents
	Introduction
	Motivation
	Contributions
	Structure of the Thesis

	Background
	Virtual Environments
	Continual and Lifelong Learning
	Renderers
	Adversarial Attacks
	Parallelism

	Making Virtual Environments Simple: SAILenv
	Related Platforms
	Architecture
	Details on the generated views
	Photo-realistic Objects and Scenes
	Dynamical Objects and Moving Agent
	Using SAILenv
	Experimental Evaluation
	Discussion

	Dynamic Virtual Environments for Continual Machine Learning
	Parametric Generation of Environments
	Continual Learning 3D Virtual Benchmark
	Examples
	Discussion

	Adversarial Attacks in Virtual Environments
	Renderers: Differentiable and Non-Differentiable
	Adversarial Attacks and Adversarial 3D Objects
	Experimental study
	Discussion

	Parallel Computations in Learning from a Video Stream
	Related Work
	Scalable and Parallel Local Computations Over Time
	PARTIME
	Experiments
	Discussion

	Conclusions
	Summary of Contributions
	Future work

	Publications
	Bibliography

