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Abstract

Researchers have always been fascinated by the idea of developing computer
programs that could replicate innate human abilities such as language or vision.
Recently, the Machine Learning community has increased its efforts towards
Continual and Lifelong Learning, pursuing the ambitious objective of develop-
ing autonomous learning agents that learn similarly to humans. Research in this
direction highlights the strikingly artificial approach that has been followed un-
til now in Machine Learning, where the learning procedures dictates the use of
huge datasets and that the learner is shown shuffled samples with no particular
correlation among them and sampled from a static dataset. Clearly, this is sig-
nificantly different from what humans and animals experience in the real world,
that is a continuous multi-sensory stream extracted from a dynamical environ-
ment, with correlations among each modality of the stream, but also between
consecutive samples in each stream, where the flow of time has a central impor-
tance in the way the environment is experienced by the learning agents. The
need of suitable environments in which an artificial learning agent can live and
learn has driven the Artificial Intelligence community to design and implement
3D physical simulations, called Virtual Environments, that straightforwardly
offer a dynamical environment with the capability of creating agents that in-
terface with learning algorithms and can experience their surroundings and in-
teract with it. However, currently available solutions are not mature enough to
fully implement Lifelong Learning agents, with environments that remain fun-
damentally static with the exception of interactions by the learning agent. Fur-
thermore, up until now there has been little research on the safety and security
of such Virtual Environments with respect to malicious users that wish to poi-
son or undermine the integrity of Virtual Environments to damage the learning
of agents living inside them. Finally, while there has been abundant research on
accelerating traditional batch-mode offline learning, little research has been pro-
duced on the matter of accelerating real-time online learning, which is needed
by a learning agent perceiving a real-time online sensory stream. In this thesis,
we address these open problems on three fronts, i. e. real-time stream gener-
ation, safety and security to Adversarial Attacks, acceleration of real-time on-
line learning. We introduce SAILenv, a platform specifically designed to allow
real-time generation and perception of visual streams, with powerful features of
parametrical generation of scenarios aimed at creating incrementally complex
streams of data, specifically considering Continual Learning tasks; we study the
safety and security of the graphical generation engines of the available Virtual
Environments, showing that it is possible to implant Adversarial 3D Objects
able to poison all scenarios in which such objects are integrated; finally, we in-
troduce PARTIME, a library specifically designed for online real-time learners,
that must complete processing of a sample from a stream before the next sample
is made available, to mantain real-time performances.
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Chapter 1

Introduction

1.1 Motivation

Researchers have always been fascinated by the idea of developing computer pro-
grams that could replicate innate human abilities such as language or vision (Thrun
and Mitchell, 1995; Hassabis et al., 2017). This aim has been the driving force for
many research works since the late 1950, when the computational capabilities of
hardware started to increase and allow researchers to develop and test new Ma-
chine Learning algorithms. A good tractation of the early years of machine learning
can be found in (Fradkov, 2020). Here we summarize some of the most interesting
points in the history for the scope of the thesis. It was in (Rosenblatt, 1958) that the
Perceptron was first formalized, introducing the Neural Network architectures. Un-
fortunately, after a little more than a decade, it became clear that the computational
power available was still not enough to tackle real-world problems with these newly
found algorithms, and thus in the early 1970s a period of reduced interest started,
and it was called the first Al Winter.

Later, in the early 1980s, the pursuit for better Artificial Intelligence was resumed
with new developments in algorithms and toolkits, such as the introduction of Back-
propagation in (Rumelhart et al., 1985, 1986). Together with computational ad-
vances, the successes of Backpropagation brought forth many new research work
on the topic of Machine Learning. Unfortunately, successes on real-world problems
were less than what was hoped; furthermore, some drawbacks were found in the
use of Backpropagation, see (Brady et al., 1989; Gori and Tesi, 1992). This led to the
second Al Winter in the early 1990s.

After a decade of apparent silence and low interest, the first decade of the 215
century, laid the stepping stones which would enable the current Al Spring and the
successes on real-world problem that we can see all around us. In fact, we can iden-
tify three parallel trends that helped build the foundations of current Al research:
Data Availability, Deep Neural Models, and Parallel Computing.

3
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Figure 1.1: Growth of neural models computational complexity, expressed in
petaflop/s-day, through the last 60 years. Petaflop/s-day amounts to the number
of operations accumulated by performing a petaflop per second for one day, equiv-
alent to 10%° flops. Here we define flop as FLoat OPeration. Float operations per
seconds are instead expressed as flop/s instead of FLOPS as it is expressed in other
texts. Image courtesy of OpenAl (https://openai.com/blog/ai-and-compute/).

Data Availability. With the advent of the internet, social networks, web archives,
and others, the research community had access to huge quantities of data, that
would prove useful in the training and testing of new algorithms, allowing the
creation of standardized benchmarks on which to demonstrate new advances and
contributions. An exemplary case of such trend is ImageNet (Deng et al., 2009), a
large scale image dataset, annotated with crowd-sourcing to tackle the great cost of
manual annotations of such a huge number of images. Every year since 2010, the
ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015) has
gathered new contributions and encouraged new breaktrough research. Consider-
ing even other fields of Machine Learning, data in this era is more accessible and
abundant as ever. The Web is also a great source of textual data (Liu and Curran,
2006), and indeed it was used in many works in the field of Natural Language Pro-
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cessing. Recent works in the field (Radford et al., 2019; Brown et al., 2020) leverage
the availability of enormous textual datasets to perform unsupervised pre-training
to reduce labeling costs and therefore allow the training of huge models.

Deep Neural Models. The basic idea of the Perceptron was brought back and de-
veloped, introducing the concept of Deep Machine Learning. Out of the many ap-
plications of Deep Learning, we mention Convolutional Neural Networks or CNN,
introduced in (LeCunetal., 1989a,b), since a CNN called AlexNet (Krizhevsky etal.,
2017) won the ImageNet challenge in 2012 with a huge margin to its next competi-
tor, demonstrating the learning capabilities expressed by these new algorithms and
bringing further research interest in the field of Deep Learning and Convolutional
Neural Networks. Since then, researchers have incresed the complexity of their neu-
ral models at an even faster pace, as summarized in Figure 1.1. In (Simonyan and
Zisserman, 2014), VGG networks were presented, deep networks with 16-19 weight
layers, and again winning the ImageNet competition. In (He et al., 2016), Resid-
ual Networks were introduced, increasing the depth of the network by 8 times with
respect to VGG, showing how deep networks can increase the benefits and better
optimize learning by winning the 2015 ImageNet competition. Recently, a class of
neural models known as Transformers, introduced in (Vaswani et al., 2017), has been
a driving force in increasing model complexity to unprecedented scales. This is the
example of GPT-2 (Radford et al., 2019), with around 1.5 billion parameters and
GPT-3 (Brownetal., 2020), with around 175 billion parameters. In general, the trend
of recent research has been that of increasing model complexity to better take ad-
vantage of the huge set of data available on the internet.

Parallel computing and memory. During the first decade of the 21% century, many
breakthroughs were unveiled in the field of parallel computing, for example Google
MapReduce in 2004 and Hadoop in 2006, enabling new software that distributed
processing among multiple processors while efficiently exchanging huge amounts
of data between processors. At the same time, the GPUs market, which was origi-
nally intended for 3D graphics and videogames, had a new breakthrough by NVIDIA,
which developed general purpose GPUs and the CUDA language that allowed to
write software in a C-like language. This of course allowed researchers to imple-
ment learning algorithms in a parallel fashion through the use of GPUs innate par-
allel capabilities (Steinkraus et al., 2005; Chellapilla et al., 2006; Ciresan et al., 2010).
The conjunction of GPUs and Machine Learning allowed both fields to develop at
a quick pace, bringing forth novel tools that enabled further research on the top-
ics, such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019). The
availability of tools that accelerate the computation for neural networks allowed the
research community to increase the complexity of models. Unfortunately, the limit
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of single devices in terms of achievable computational speed and available memory
was quickly reached, forcing researchers to intersect with the field of Distributed
Computing, designing networks and algorithms that can operate on networks of
devices, taking advantage of concurrently executing parallelizable operations (e. g.
most of the training loop is parallelizable over independent data), more available
memory and fast data exchange protocols (Shoeybi et al., 2019).

The current landscape of Machine Learning research has deeply evolved dur-
ing the recent decades, leveraging the availability of huge datasets, the increasing
complexity of neural models alongside the hardware and technical advances for en-
abling such huge models. However, many evaluation protocols, such as ImageNet
(Russakovsky et al., 2015), were designed as a static evaluation: there is a fixed train-
ing dataset and a fixed testing dataset, the two are accurately separated as the sec-
ond is only used for the final evaluation. The training dataset is often composed of
independent samples of the considered categories, and they are almost always pre-
sented to the network in shuffled batches (Lomonaco and Maltoni, 2017). In general,
the main focus of past research was towards batch-mode offline learning on huge
datasets. Recently, however, the Machine Learning community has increased the
efforts towards researching Continual and Lifelong Learning, due to the interest to-
wards autonomous learning agents. These recent works highlight the strikingly arti-
ficial approach that is currently being used for the development of learning models.
In fact, the shuffled independent samples in datasets present significantly different
learning conditions with respect to those to which humans and other animals are
exposed during their lifetime (Krueger and Dayan, 2009; Cangelosi and Schlesinger,
2018). What humans experience is a continuous multimodal stream of data, expe-
rienced and processed in real-time, online, without storing huge collections of data
and re-experiencing them in random order. In this thesis, by real-time stream we
intend a stream of data S where the interarrival times between a sample and the
next one are always under a certain threshold Ag. Often, when considering online
learning from a real-time stream, it is considered of most importance to keep the
output stream O framerate at least equal to the input stream I framerate. This can
be framed as fpsy > fps;, where fps and fps; are the output and the input stream
framerates respectively. This is equivalent to Al—o > ALI which finally sets the thresh-
old Ap < A;. When considering sequential processing, Ao is almost always equal
to the response time of a network. However, taking into account parallel process-
ing, Ap can be actually lower than the response time of the network, which can help
speeding up computations in settings where the processing delay can be considered
unimportant. This will be considered in more depth in chapter 6.

Recent works, such as (Lomonaco and Maltoni, 2017) made step forwards into
the definition of datasets and benchmarks which accept “episodes”, that is short
videos where temporal coherence is mantained and the agent is supposed to learn
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from a continuous source of data, slowly integrating new information from new
episodes. While this is certainly an improvement with respect to the common offline
batch-mode approach, we argue that this is still not close enough to what humans
perceive and elaborate. To fully achieve the idea of an embodied agent that learns as
long as it lives, we need a suitable environment in which to let it discover and extract
new information from what it can sense. Unfortunately, for many applications, such
as robotics, using the real-world as the chosen environment is unfeasible for several
reasons, for instance the cost and the dangers to which humans or things could be
exposed. To solve some of these issues, 3D Physical simulations, also called Virtual
Environments, were introduced by the Machine Learning community, to allow the
generation of experimental settings, often with full automated labeling, at low cost
and with negligible risk. In (Shu et al., 2021) an episodic benchmark called AGENT
is presented, leveraging the physical simulation of ThreeDWorld (Gan et al., 2020) to
automatically generate a great amount of visual data, and in (Shridhar et al., 2020),
the authors introduce a benchmark for visual navigation and instructions interpre-
tation, called ALFRED, generated through the AI2-THOR environment (Kolve et al.,
2017). We argue that Virtual Environments are actually a fundamental tool to fulfill
the ambition of Lifelong Learning agents that can live inside these physical simula-
tions, experiencing multimodal sensory information, under the physical constraints
of the environment, in a virtually endless timeline with the potential of slowly in-
troducing new difficulties and concepts to the agent. Some work in this direction
has been started in RoboTHOR (Deitke et al., 2020), which use the AI2THOR Vir-
tual Environment (Kolve et al., 2017) to generate a real-time visual stream from an
indoor environment with interactable entities. However, the environment itself is
still fundamentally static in nature, as the number of potential interactions is still
limited by the learning agent capabilities, most of the objects are not in movement
and nothing will change without the intervention of the learning agent.

While Virtual Environments are indeed a powerful tool that is most likely suit-
able to enable further research in the field of Continual and Lifelong Learning, there
is currently little research on their reliability and robustness to attacks that aim at
invalidating the results of benchmarks through them. It is known that Adversarial
Attacks are also performable on 3D objects (Athalye et al., 2018), but not enough
studies have focused on the transferability of such attacks to Virtual Environments.
This is an important issue that cannot be overlooked, especially when considering
the case of public Virtual Environments that accept contributions from a wide com-
munity of people. In fact, once an Adversarial 3D Object is integrated into the en-
vironment, it can potentially poison many scenarios and each of the frames in the
generated visual streams, exponentially spreading its malicious effect. Such adver-
sarial objects could be used to lower the performances of a given model by crafting
3D objects aimed specifically at that model. They could also be used to inject back-
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doors that can help a properly tuned model, similarly to what is already done for
2D images (Chen et al., 2018).

Regarding the computational side, Continual and Lifelong Learning in the online
real-time processing paradigm, are limited by the achievable computational speed
of current hardware. As a matter of fact, current neural models are so deep that
real-time processing, intended as processing each sample of a stream before the ar-
rival of the next one, is not feasible. In fact, most of the current implementation
leverage the parallel architecture of GPUs to concurrently process multiple inde-
pendent samples and reduce the training times. This is, of course, not feasible for
the case of real-time online learning, since each data sample must be processed be-
fore the next one arrives. Collecting samples into a batch and processing them all
together is not a suitable solution, as it dramatically increases the response time for
earlier samples. Current research often focuses on Data Parallelism, which is an
extension of the above mentioned paradigm, in which independent data is concur-
rently executed by different GPUs, and Model Parallelism, where a neural model
is split into sub-models which operate concurrently on independent parts of the
computation graph and eventually reconstruct a single output. A particular Model
Parallel technique which is gaining traction for its general purpose practicality is
Pipeline Parallelism, which is actually an Asynchronous Model Parallel paradigm
that straightforwardly applies to feed-forward neural networks (Huang et al., 2018).
Nevertheless, these approaches are still focused at batch-mode learning, applying
the Pipeline Parallelism over mini-batches with independent data traveling through
the pipeline. There is currently little research on how to apply these types of paral-
lelism on streams of individually available samples.

To summarize, we see some open problems in the task of learning from Video
Streams in a Continual and Lifelong Learning setting. a) current approaches are
still far from the idea of learning agents that live in a dynamic environment, relying
on static environments and episodic benchmarks, b) there is the need of suitable
environments in which to let learning agents freely live; c) there is little research on
how reliable and robust are virtual environments to malicious individuals that want
to corrupt benchmarks and training; d) there are no parallel computing paradigm
explicitly designed for online real-time learning. In the next section, we introduce
the contributions in this directions that will be presented in the rest of the thesis.

1.2 Contributions

This thesis aims at answering part of the open problems discussed in the previous
section, designing and developing engineering solutions while evaluating their po-
tential impact on enabling new research that would be otherwise considered too
hard or costly, allowing researchers to break free from the common assumption of
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having huge datasets on which to perform offline batch-mode training, allowing
instead the real-time online generation and processing of new data, ultimately en-
abling research on Continual and Lifelong Learning in a real-time online setting.

The first contribution of the thesis is SAlLenv, a 3D Virtual Environment de-
veloped in the Siena Artificial Intelligence Laboratory, explicitly designed for the
generation of visual streams for enabling task relative to visual recognition, with
support for easy extension of the available scenarios even by users with low exper-
tise on Computer Graphics, since this lack of expertise is the most common reason
for renouncing to use powerful tools such as 3D physical simulators. The contribu-
tion is exposed with more details in chapter 3, focusing on the design and ease of
interfacing with Machine Learning frameworks. SAILenv is able to generate multi-
modal visual streams, producing in particular photo-realistic visual streams with as-
sociated metadata (i. e. dense pixel-wise segmentation, motion information, depth,
etc.), with particular attention to efficiency and performance to achieve real-time
generation and communication capabilities and ease of interfacing to users’ code.
SAlILenv is carefully designed to allow the creation of agents that may freely live,
move and experience the available scenarios. The design of SAILenv pushes to-
wards the direction of enabling Continual and Lifelong learning tasks in real-time
online settings, with real-time generation of data and low-latency communication
to common Machine Learning frameworks, with extensible scenarios that are easily
crafted to the needs of Continual Learning tasks. Based on (Meloni et al., 2021a).

In chapter 4, the thesis focuses on the second contribution, that is a parametric
framework that allows to dynamically generate replicable scenarios in which to let
the agent live, with moving objects and the possibility of slowly introducing new
objects and information to enable tasks that are usually framed as class-incremental
settings. We describe the theoretical groundings of the parametric framework, pro-
ceeding to describe the implementation and integration into SAILenv and the use of
these tools to generate growingly complex scenarios through some examples, and
how such scenarios can be used to enable new research. The parametric generation
framework pushes in the direction of Continual Learning, allowing the researcher to
generate scenarios that gradually increase in complexity, allowing the measurement
of stability-plasticity capabilities of the learning agent without having to resort to
episodic benchmarks that might make the experimental setting too artificial. Based
on (Meloni et al., 2022a).

The third contribution, presented in chapter 5, focuses on the study of the relia-
bility of Virtual Environments to Adversarial Attacks performed on 3D objects. In
the chapter, we describe a possible scenario in which an attacker has access to easily
available differentiable renderers with which to perform adversarial attacks on pub-
licly available objects from the Virtual Environment library. To do so, we design a
variation of the Projected Gradient Descent attack that takes into consideration the
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fact that we are attacking a 3D object that could be seen from various viewpoints
and the fact that the Virtual Environment does not produce the same outputs as
the differentiable renderers, to devise a saliency-based attack that focuses on salient
pixels of the object inside the Virtual Environment. We evaluate how easy it is to
transfer these attacks even with limited resources, demonstrating the importance of
discussing how to process contributions for Virtual Environments to keep them reli-
able and trustworthy tools, suitable to be used as the environment on which learning
Agents can live and learn useful information that might be harmlessly used in the
real-world. Based on (Meloni et al., 2021b).

The fourth contribution, deals with the open problem of not having proper tools
for accelerating the processing of real-time online visual streams. In chapter 6, we in-
troduce PARTIME, a multi-GPU parallelization library to wrap around neural mod-
els to accelerate them in the context of real-time online learning. The contributions
takes inspiration from the recent works in Pipeline Parallelism paradigm for batch-
mode processing, designing and implementing a variation that focuses instead on
accelerating training from samples received one at a time from a temporally coherent
visual stream, as it would be the case in online real-time Lifelong Learning, achiev-
ing considerable speed-ups that scale almost linearly with the number of used GPUs,
at the cost of an approximated gradient computation that is shown to be acceptable
in the context of smoothly evolving visual streams, which would be the primary
case of application for learning and living agents that might be used in real-world
scenarios. Based on (Meloni et al., 2022b).

To summarize, the contributions of the thesis are the following,

e Design and implementation of SAILenv, a 3D Virtual Environment specifically
designed for real-time generation of fully annotated visual streams and en-
abling living learning agents;

e Description of a theoretical parametric framework for generation of dynamical
visual scenes suitable for Continual Learning, among other tasks, as well as
the design and implementation with SAILenv alongside examples and case
studies, such as class-incremental tasks in which objects are slowly introduced
increasing the scene complexity;

e Study on the feasibility of transferable Adversarial Attacks on Virtual Environ-
ments, evaluating how easy itis to transfer such attacks to Virtual Environment
and show the need of careful administration of public contributions;

e Design and implementation of PARTIME, a multi-GPU parallelization library
to wrap around neural models to accelerate them, applying the Pipeline Par-
allelism paradigm shifting it from the context of batch-mode offline learning
to that of real-time online learning.
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1.3 Structure of the Thesis

This thesis is structured as follows.

e In chapter 2, we briefly summarize the current state-of-the-art in the fields
of Virtual Environments, Continual Learning, Adversarial Attacks, and Paral-
lelism.

e In chapter 3, we describe in great detail the design and the implementation of
SAILenv, describing its structure, the design choices, how to easily interface
it with Machine Learning frameworks for carrying experiments in the field
of visual recognition and learning agents freely living and experiencing the
Virtual Environment. We also present experimental results to prove its photo-
realism and its usefulness as a benchmark tool for visual recognition tasks.

e In chapter 4, we describe a theoretical parametrical framework for generation
of dynamical visual scenes that can more appropriately resemble the approach
of Continual and Lifelong learning, with new information and objects that are
gradually and incrementally added to the simulation, increasing the complex-
ity of the scenario and allowing the measure of the capability of the agent to
learn without forgetting previously acquired knowledge.

e In chapter 5, we study the feasibility of transferable Adversarial Attacks from
novel tools that enable 3D adversarial attacks to Virtual Environments, we ar-
gue the potential of malicious users to poison benchmarks created through the
use of Virtual Environments, proving the possible implications of data poison-
ing with a set of experiments designed with this particular question in mind,
introducing a PGD saliency based attack that takes into consideration the par-
ticularities of the Virtual Environment graphical renderer.

e In chapter 6, we describe PARTIME, a Python library specifically designed for
easily wrapping neural models and enabling multi-GPU acceleration for the
task of real-time online Continual Learning, often times not tractable with
modern neural architectures due to their computation-intensive nature that
prevent them from having short enough response times to process a visual
stream sample-by-sample, that is finishing the processing of a sample before
the arrival of a new one.

e Finally, in chapter 7 we draw conclusions on the presented work, expressing
further open questions and presenting some hypothesis on possibly interest-
ing future work.






Chapter 2

Background

In this chapter we define the technical terms, the state of the art, and the main con-
cepts involved in the description of the engineering solutions used across the thesis.
In section 2.1 we briefly describe the technical details of Virtual Environments, in-
troducing the terms that will be used in chapter 3 and in chapter 4. In section 2.2 we
introduce the concepts of Continual and Lifelong Learning, briefly describing some
of the solutions for Continual Learning tasks at the current state-of-the-art and in-
troducing the open problems that will be addressed in the thesis. In section 2.3 we
introduce the terms related to rendering, useful for understanding chapter 3 and
chapter 5. In section 2.4 we introduce Adversarial Attacks, a taxonomy to categorize
them and a formalization of the type of attacks that will be described in chapter 5.
Finally, in section 2.5 we introduce parallelism techniques for Machine Learning,
with a brief description of Pipeline Parallelism, concepts that will be used again in
chapter 6.

2.1 Virtual Environments

In the recent decades, the Machine Learning research community started to show
an increasing interest in 3D physical simulators as a mean to artificially recreate ex-
perimental settings close to real world settings but at a fraction of the cost. These
kind of physical simulators are generally known as Virtual Environments, or 3D
Synthetic Environments, 3D Simulation Platforms, but for the rest of the thesis we
use the term Virtual Environment to indicate them. During the recent years, Virtual
Environments have been improved and evolved, steadily increasing the capabilities
of physical and rendering engines, leveraging the industrial standards commonly
used for game development and re-purposing them as scientific tools for Machine
Learning. Virtual Environments have been used in recent years to enable an array
of experiments that would have been to costly to set-up in a real-world setting. For-
mally, we can define a Virtual Environment as a software that allows the user to:
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choose a Scenario (or even build a custom one) populated with photo-realistic ob-
jects meant to recreate a real-world setting; place an entity inside the scenario, called
Agent, that can experience the world in an egocentric manner through the simula-
tion of different type of sensors (i. e. RGB camera, depth sensors, audio sensors) and
augmented with metadata useful for training (i.e. semantic segmentation, optical
flow, instance segmentation); define dynamics and behaviors for the objects in the
scene, allowing interactions and moving objects; communicate the experiences of
the Agents to other software libraries to generate datasets or to provide a real-time
stream of the environment through the eye of the Agent. This capability is crucial
when considering the huge costs incurred by researchers when trying to collect and
annotate datasets that are big enough to properly train recent neural models with
their ever growing complexity. Virtual Environments prove their importance even
more so when considering learning agents that continuously live, learn and interact
with the environment.
Virtual Environments rely on 3 main components:

e A physical engine, which should replicate with high fidelity the physics of the
real world, while allowing the customization of physical behaviors to intro-
duce object dynamics for the purposes of experiments. Some Virtual Environ-
ments employ custom made engines, but currently the most advanced ones, in
terms of degree of realism, use industrial standard engines such as Unity3D.

e A rendering engine, that is a piece of software that takes as input the descrip-
tion of the scenario and the 3D objects inside of it and produces a 2D image
with the attached metadata and sensor data. The rendering engine is cus-
tomizable up to a certain extent, allowing the definition of Agents with dif-
terent kind of real-world setups in terms of cameras, field of view, noise levels,
etc. In section 2.3 renderers are described in more detail.

e A communication protocol, which interfaces the Virtual Environment to a Ma-
chine Learning framework through the proxy of the Agent. Communication
protocols are designed to have low overheads in order to maximize the band-
width and minimize the response times of the data incoming to the learning
algorithm, and concurrently guarantee the fidelity of the data.

Synthetic data can in general be a powerful aid in this matter. In particular, with
Virtual Environments, researchers can easily and procedurally generate potentially
unlimited amounts of annotated data, with costs in both time and money that are
incomparably smaller with regards to those incurred with collecting and annotat-
ing the same amount of real data. Furthermore, for many tasks such as automated
driving or automatic control of a robotic arm, reinforcement learning is a commonly
used solution (Rao, 2000): to enable reinforcement learning in these situations, re-
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alistic and controllable simulations are essential for the training of the model.

Dataset Generation One of the issues that the research community had to tackle
once the complexity of architectures rose to unprecedented levels was how to train
such a huge number of parameters. In some cases, Big Data allowed the creation
of equally huge datasets that made possible to train the networks with outstanding
results. This was the case of ImageNet (Deng et al., 2009; Russakovsky et al., 2015),
Microsoft COCO (Lin et al., 2014), and others. Unfortunately, this is not the case
in many real-world applications, where data collection is hard, or costly, or simply
unfeasible. In such cases, the most common go-to solution was Transfer Learning
and Domain Adaptation, using state-of-the-art models that performed well in simi-
lar context and adapting them with low amounts of data on the desired task. While
this could in principle provide an acceptable performance, it is still sub-optimal. The
research community then started to consider 3D computer graphics to create syn-
thetic data that could act as surrogate for big data, while using expensive real data
in small amounts for ensuring that the network would be able to pick up details
missing in the 3D renderings but useful in real-world applications.

During the last decade, many synthetic dataset were genereated and made avail-
able to the research community. The encompassed tasks are varied, including but
not limited to Object Detection (Meloni, 2019; Di Benedetto et al., 2019, 2021), Au-
tomated Driving (Johnson-Roberson et al., 2016; Quiter and Ernst, 2018), Pose Es-
timation (Fabbri et al., 2018). We summarize some of these works to highlight the
successes of synthetic data in being a surrogate to real-data and still achieving high
performances in many tasks from Object Detection to Automated Driving.

We can consider the work in (Meloni, 2019; Di Benedetto et al., 2019, 2021) to an-
alyze a case where real data collection is often hard and why Virtual Environments
can solve many of the issues involved in annotation and collection. In these works
we study the case of protective personal equipment detection in construction sites,
a task with significant practical applications but with critical issues in the data col-
lection phase. In facts, to the best of our knowledge, public datasets for that task
did not exist previous to the referenced works. The reasons of such difficulty, be-
side the need of manually annotating camera feeds, are all straightforward: data
collection activities require an agreement between the researchers and the construc-
tion company; workers too must agree to privacy policies so that their pictures can
be used, alternatively images must be properly anonymized; it is likely that work-
ers from the same construction company all use similar equipment, reducing the
generalization capability of models trained on such dataset; collecting data in such
a way limits the number of negative examples (i.e. images where workers do not
use equipment) since it is not legal to operate in dangerous conditions; finally, cam-
era feeds collected in such a way are sparse, in the sense that only a few frames
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will actually contain worker activity, and they will have to be manually inspected
to remove useless frames. All of these problems are solved in the referenced works
with the use of Virtual Environments, in particular the graphics engine of the GTA
V videogame. It is used to generate a suitable synthetic dataset, on different con-
struction sites, with variable equipment, with no need for privacy policies, plenty
of examples with workers in dangerous conditions, and dense videos without idle
times.

Given these compelling reasons, an interesting problem left is whether a model
trained on synthetic data is able to generalize well enough to be used on real appli-
cations, or if it will learn particular patterns that belong exclusively to the Virtual
Environments. In (Johnson-Roberson et al., 2016), authors trained an automated
driving model on 50K and 200K synthetic images, and the resulting network out-
performed a network trained on around 3K real images when tested on a validation
set made of real images. Their work proved a positive result of synthetic data, that
can in specific settings completely replace real data.

Similarly, in (Meloni, 2019; Di Benedetto et al., 2019, 2021) the main positive re-
sult is that synthetic data can be used in conjunction to a smaller real dataset to
significantly improve the generalization capability of the network. However, the
accuracy on the real test set is around 76%. One of the factors is that the Virtual En-
vironment did not allow to closely replicate the domain distribution of the real test
set, since most of the images not in the test set are not taken from security cameras.
This highlights an interesting requirement for the Virtual Environments: while in
some cases it is not necessary for the synthetic data to be perfectly photo-realistic
(Mayer et al., 2018), the environment must be carefully handcrafted to match the
test domain distribution. While this may seem a time-consuming task, it is impor-
tant to remind that it is a one-time only job that will later allow to create virtually
infinite data.

Regarding the photo-realism quality of the synthetic data, (Mayer et al., 2018)
proposes interesting guidelines: for low-level computer vision, such as optical flow,
realism is often not necessary, as shown with the Flying Chairs dataset (Mayer et al.,
2016); it is instead useful (but not necessary) simulating flaws of real cameras, such
as distortion and blur; finally, it helps taking advantage of the generative capability
of Virtual Environments to create different virtual datasets with varying domains,
such as lighting and weather conditions. Conversely, high-level computer vision
tasks benefit of high photo-realism data, reducing the gap that have to be bridged
when performing domain adaptation before the deployment and use on real data.

Summarizing, Virtual Environments are powerful yet flexible tools that allow the
research community to reduce costs in the generation of the huge amounts of data
necessary for training current large models, and have proven themselves in many
occasions to yield accurate and precise models even when photo-realism is not as
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strong as most recent 3D computer graphics toolkits allow. Of course, Dataset Gen-
eration was clearly the most obvious and immediate use of Virtual Environments,
given that it reflects a common assumption in Deep Learning, that is training with
batch-mode offline procedures. While this is of course an important aspect of Ma-
chine Learning that drove the evolution of the Artificial Intelligence field until now,
we argue that this is not the most natural paradigm of learning, and it is certainly
different from the way humans learn. We will argue in more detail about this state-
ment in the next section.

In the recent years there has been interesting work in this direction. We can take
as an example ALFRED (Shridhar et al., 2020), a benchmark for navigation and
instructions interpretation generated through the AI2-THOR environment (Kolve
et al.,, 2017), which contains a great amount of episodes and high-level instructions
that can be used to train an agent to interpret language directives and an egocentric
vision to perform a sequence of tasks in an indoor environment. Another example
is AGENT (Shu et al.,, 2021), a benchmark for core psychological reasoning pro-
cedurally generated with ThreeDWorld (Gan et al., 2020), containing a significant
amount of episodes that can be used to test four types of reasoning (goal preferences,
action efficiency, unobserved constraints, and cost-reward trade-offs) and probe key
concepts of core psychological reasoning.

Real-time streams Humans, and more in general animals, live inside a dynamical
environment, where visual stimuli change in a continuous way and follow strict con-
straints given by the laws of physics. This paradigm is significantly different from
the idea of huge datasets that collect big amounts of loosely correlated data. In fact,
one could easily notice that a child does not need annotations for every pixel in their
retina, but it only needs few supervisions on objects on which they are focusing their
attention (Betti et al., 2022). There is certainly value in studying learning agents that
live and learn in an open environment, making them experience the world in which
they operate similarly to how humans do. In fact, this goes in the direction of Life-
long Learning. Lifelong Learning is an advanced paradigm that involves an agent
that learns continuously, accumulating knowledge from the past, adapting it to new
stimuli and putting it to use to effectively learn new knowledge and solve future
problems (Chen and Liu, 2018). It differentiates itself from the paradigm of learn-
ing from huge datasets as it involves open environments, as opposed to closed envi-
ronments. It necessarily needs to be semi-supervised, relying on few supervisions
from other agents (initially humans, but potentially even other more knowledgeable
agents), while acting on self-supervisions when faced with information that can be
interpreted through the lens of past knowledge.

Once again, Virtual Environments are clearly a good fit for tackling the problem
of letting a learning agent live in an open environment. They eliminate the risks
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of letting an embodied agent learn in the real world, potentially posing dangers to
humans and things around them while they first learn how to navigate and interact
with the world; they reduce the costs of prototyping, since with Virtual Environ-
ments the cost of repeating an experiment is merely launching the software again,
while in a real environment it would involve rebuilding or at least reprogramming
an embodied agent; supervisions can be provided by humans, but also by the Virtual
Environment itself: in fact, by definition, the Virtual Environment software knows
what is showing to the agent, and can therefore automatically respond to queries by
the agent on the nature of objects.

In summary, Virtual Environments can easily enable this paradigm with few
tweaks and adaptations to the task. In fact, the current technology in 3D physical
simulation already allows real-time performances in the simulation of open worlds
with thousands of simultaneous interactions between entities and users. They also
fancy highly photo-realistic qualities: it is the case of state-of-the-art engine such
as Unity3D, which powers many of the videogames that are played all around the
world on consumer-grade hardware. The future of this field is paved by the recent
release of Unreal Engine 5, which employs ray-tracing technologies (see section 2.3)
to allow the creation of visual streams so realistic that an untrained eye cannot distin-
guish it from a real video taken by a real camera. For example, see Figure 2.1. The
same technological solutions used for generating video datasets such as AGENT
(Shu et al., 2021) and ALFRED (Shridhar et al., 2020) can be readily extended to en-
able the paradigm shift and go through Lifelong Learning. This direction was taken
for example in (Marullo et al., 2022), where a Virtual Environment was used to cre-
ate a visual stream on which an agent is trained to perform Optical Flow estimation
in a Continual Learning fashion.

In this direction, this thesis covers the design and implementation of SAILenv
(Meloni et al., 2021a), which was intended to enable the generation of fully an-
notated real-time photo-realistic streams through the use of Unity3D engine. The
platform was in fact used to enable Continual Learning research in (Tiezzi et al.,
2022b), where visual streams generated in real-time by SAILenv where used as vi-
sual stimuli for the unsupervised learning of visual features, and the annotations
in the stream were used for a few-shot open-class and class-incremental learning
of Object Segmentation task. SAILenv is covered in more details in chapter 3 and
chapter 4.

Safety concerns It is clear that Virtual Environments can be a powerful tool for
many tasks and research work. Another important quality of Virtual Environments
is that they can allow contributions and collaboration between research groups from
different backgrounds. An interesting example is the possibility of contributing to
the Environment by sharing objects and scenes produced for personal experimen-
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Figure 2.1: Rendering demo with Unreal Engine 5, showcasing the photo-realistic
qualities of the engine with a video so realistic that an untrained eye cannot distin-
guish from a real video. Image from https://www.unrealengine.com/en-US/tech
-blog/environment-artist-explains-how-he-created-near-photo-realistic
-train-station-using-ueb.

tation, enlarging the library of readily available object and making it easier for re-
searchers with less experience in Computer Graphics to work on algorithm research
without being hindered by the data generation task. Researchers more versed in
physical simulations and programming can help by extending behaviors and dy-
namics available in the simulator, helping other researchers with less experience
in physics. Therefore, we argue that an open-source approach to the distribution
of these tools would certainly help the tool to prosper in the research community.
Such is the approach taken by SAILenv and AI2-THOR, for example.

There is unfortunately another side to the coin, that is the fact that if we consider
the possibility of letting a loosely regulated community to contribute to the projects,
we also must consider that there may be malicious individuals that intend to poi-
son benchmarks generated through Virtual Environments. A malicious individual
could pose as a regular contributor to the object library, proposing objects that ap-
pear as regular objects to moderators of the community when inspected by human
eyes, but instead act as adversarial examples to some Machine Learning models (see
section 2.4 for more details on Adversarial Attacks). Adversarial Attacks on 3D ob-
jects have been proven possible in many different works (Yao et al., 2020; Toheed
et al., 2022), but in chapter 5 we show that Adversarial Attacks from easily avail-
able differentiable renderers can be effectively transferred to Virtual Environments.
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Therefore, research communities that intend to collaborate to maintain a crowd-
sourced Virtual Environment must carefully take into consideration the possibility
of Adversarial Attacks towards the Virtual Environment and study proper policies
to prevent attacks. On a more positive note, the use of Adversarial 3D Objects could
be intentionally exploited to study the robustness of neural models to Adversarial
Attacks or even use them as training data to increase such robustness (Athalye et al.,
2018).

2.2 Continual and Lifelong Learning

The idea of computational systems that can operate in real-world settings comes
with the assumption that they will be exposed to streams of potentially multi-modal
sensory information from a dynamical environment, therefore they must be able to
learn multiple tasks from a data distribution which is, by its very definition, not
static. A learning agent living in an environment needs to have a learning pro-
cess comprising the capability of gradually and progressively increasing and fine-
tuning its knowledge, use it for bootstrapping the learning of new tasks (i. e. trans-
fer learning) while avoiding catastrophic forgetting of previously learnt information
(McCloskey and Cohen, 1989; McClelland et al., 1995; French, 1999). The ability of
learning over time in a continous settings by adding new tasks to the capabilities of
the agent all the while keeping skills learnt from previous experiences is commonly
called Continual Learning, or even Lifelong Learning in the case of agents that never
stop learning and thus do not have a clear separation between training and testing
phases. During the past decades, this task has been considered a demanding chal-
lenge for neural networks in particular, since they are particularly susceptible to the
catastrophic forgetting phenomenon, and for the progress of artificial intelligence in
general (Thrun and Mitchell, 1995; Hassabis et al., 2017).

Nonetheless, there has been a recent increase in attention directed to Lifelong
Learning, mostly for the implications in the development of autonomous robots that
show similar capabilities to humans in learning and fine-tuning their skills dur-
ing their whole lives, extracting information from multi-modal streams acquired
through different sensory systems (Calvert et al., 2004; Bremner et al., 2012; Tani,
2016). One of the most distinguishing aspect of lifelong learning in humans and
animals is, indeed, the fact that they are born and immediately placed in a dynam-
ical environment, with important interactions and dependencies between the vari-
ous senses with which they experience the world, which inherently offers a rich set
of patterns and regularities that can shape their learning mind (Lewkowicz, 2014;
Murray et al., 2016). This complex interactions between the environment and the in-
herent drive of the living organism to survive and prosper gives the infant organism
the ability of self-imposing goals and objectives, further driving the interaction with
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LEARNING

AGENT

Figure 2.2: Continual Learning schema, where the agent is exposed to a continuous
input stream S(t) with various tasks (Task A and Task B in the example) and is sup-
posed to produce a continuous output stream O(t), autonomously adapting to the
changes in the task and in the distribution of data in the input stream.

the surrounding entities and therefore its learning (Gopnik et al., 1999; Cangelosi
and Schlesinger, 2018).

However, the approach followed by most research on Continual Learning re-uses
concepts from the traditional Machine Learning approaches, devising solutions that
incrementally adapt to new tasks but still learn with shuffled and isolated samples.
This is significantly different from what humans and animals experience in the real-
world environment in which we all live (Cangelosi and Schlesinger, 2018; Krueger
and Dayan, 2009). In general, it seems that the approach taken for visual recognition
tasks has removed the thread of time from the visual stream that is commonly expe-
rienced by humans, shuffling the data in order to simplify the problem, thus losing
the patterns and regularities that can be found on temporal sequences of data, focus-
ing only on those related to spatial information. Thus, the immediate consequence
was focusing on collection of images instead of video streams, which is actually a
problem with many unnecessary degrees of complexity with respect to what bio-
logical learners experience (Betti et al., 2022).

As mentioned, one of the most prominent issues with neural networks is the
phenomenon of catastrophic forgetting, which happens when training a model with
new data brings a sharp decrease in performance or even complete overwriting of
past information. An insight into catastrophic forgetting can be given by the consid-
eration that common learning procedures dictate that the entire dataset is available
at training phase. Whenever the data distribution changes, the network should be
retrained on a new dataset sampled from the new distribution. While this paradigm
has been shown to be extremely useful for solving a wide array of tasks (LeCunetal.,
2015; Guo et al., 2016), it is not suitable for sequentially learning new tasks through
data samples that are progressively made available. In fact, the performance of con-
ventional neural network model is not mantained on previous tasks while progress-
ing in the learning procedure (Kemker et al., 2018; Maltoni and Lomonaco, 2019).
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A naive solution like retraining from scratch with all available data could help in
mantaining high performances even in previous tasks, but it would clearly not be a
teasible solution when considering settings with agents that have reduced memory
and cannot store all previous data or agents that must be continuosly operating and
cannot allow a re-training phase during which they do not work. Another setting
in which retraining is not feasible is the setting where the agent needs to operate
in real-time, responding to environmental changes with low response times while
concurrently adapting to new data distributions without stuttering or blocking for
re-training (Cangelosi and Schlesinger, 2018). We expect that a Continual Learning
agent is instead able to acquire new information through incoming input streams,
use it as a basis and transfer it to newer data, all the while keeping a stable perfor-
mance on older tasks. This is commonly known as stability-plasticity dilemma and
has been the topic of many studies (Grossberg, 1982, 2013; Mermillod et al., 2013;
Ditzler et al., 2015).

The research community tackled the problem with various solutions, trying to
avoid catastrophic forgetting while avoiding re-training from scratch on incremen-
tal datasets. Continual Learning approaches can be separated into three big cat-
egories (De Lange et al., 2021): Replay Methods, Regularization-based Methods, and
Parameter Isolation Methods. Replay Methods approximates the idea of re-training
the model on the whole datasets, loosening the requirement by storing only a sub-
set of the past training samples, which are then injected into the training inputs for
a new task to refresh the performances of the model on previously seen tasks (Re-
buffi et al., 2017; Rolnick et al., 2019; Isele and Cosgun, 2018; Chaudhry et al., 2019).
This category of approaches comes with significant limitations: first of all, there is
an important memory overhead due to the storage of previously seen samples; fur-
thermore, storing data can be seen as a privacy issue in some tasks, for instance in
medical applications, where retaining raw input data is not allowed for legal rea-
sons. There has been research exploring the idea of leveraging generative models to
learn the data distribution of inputs from previous tasks and automatically gener-
ate suitable inputs to mantain the performances on past tasks, reducing the memory
overhead involved in storing used samples and avoiding privacy issues (Shin et al.,
2017). Regularization-based Methods act on the stability-plasticity trade-off, avoid-
ing to store information about previous tasks, by adding a regularization term to
the loss function that drives the learning of the model. For instance, some methods
estimate the importance of individual weights, penalizing changes on weights that
are considered important for previous tasks (Kirkpatrick et al., 2017; Nguyen et al.,
2017; Zenke et al., 2017; Aljundi et al., 2019). Finally, Parameter Isolation Methods
also act on the stability-plasticity trade-off by isolating the parameters used for each
task. Usually, they divide a model into sub-parts, each dedicated to a single task.
Usually, these kinds of methods need to be told what task are they currently exe-
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cuting, activating the correct branch of the model and limiting the versatility of the
solution (Fernando et al., 2017; Mallya and Lazebnik, 2018; Serra et al., 2018; Rusu
et al., 2016; Xu and Zhu, 2018).

All the above solutions have been an important step in the direction of incremen-
tal learning tasks, but they are still often based on the assumption of randomly shuf-
fled annotated data samples, which is different from the idea of Continual and Life-
long Learning that sees an agent not only incrementing its knowledge on particular
domain-specific skills, but actually learning general knowledge and how to apply
it to previously unseen situations and tasks. Learning agents that live and operate
in the real world are supposed to experience a continuous real-time stream, with
multi-sensory information that must be processed efficiently while learning differ-
ent task concurrently and without interference between tasks (Parisi et al., 2019).
Some ideas have been presented in this direction (Betti et al., 2022) which rely on the
availability of continuous streams of information. This kind of stream is currently
not easily available to researchers, but Virtual Environments are promising candi-
dates for yielding the type of information needed to validate these ideas (Meloni
etal., 2021a, 2022a). Similarly, there is currently little research on the parallelization
of Machine Learning models to achieve real-time performances on online streams
while keeping high accuracies, instead focusing on smaller models that reduce the
computational cost to achieve lower latencies, but sacrificing learning capabilities.
In this case, further expanding the idea of Pipeline Parallelism for the context of
online real-time learning is a promising candidate to solve the issue of deep neural
models high response times and low frame-rates (Meloni et al., 2022b).

2.3 Renderers

Since the 1970s, the field of Computer Graphics became increasingly sophisticated,
leading to advanced works on rendering techniques and making it a more distinct
subject of study. We define rendering as the process that outputs a 2D image of a
3D scene by taking as input the definition of the scene made of 3D objects and their
physical properties, the lights that hit the objects, and the properties of the virtual
camera on which to project the scene. Formally, we can define the rendering process
as a function r that takes a 3D scene s and a camera c to produce a 2D image I; ..

Lc.=r(s,c), (2.1)

The definition of s is not straightforward and heavily depends on how r is defined. In
fact, rendering is a complex process, it is not uniquely defined and the final results
heavily depend on the assumptions and physical approximations of the behavior
of light that are used in the algorithms. In general, an object is defined by its ge-
ometric properties and its surface properties, usually called surface material. Thus,
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there are different variants of rendering, which are differentiated by the way they
represents the geometric properties of objects, namely mesh-based, voxel-based, point
cloud-based, and neural implicit representation-based rendering, on which recent works
are focusing. Similarly, there are variants differentiated by the approximations on
the behavior of light, namely non-PBR, PBR, and Raytracing. Commonly, virtual en-
vironments and videogames rely on mesh-based rendering alongside PBR and thus
we will describe it with more detail. We will instead give a brief account of the other
types to allow comparison.

First, let us focus on the differences between the representation of 3D objects.
There are three main categories of object model representation for renderers: Voxel-
based, Point cloud-based, Neural implicit representation-based, and Mesh-based rendering.

Voxel-based rendering. Itassumes that the 3D space is discretized into unit cubes,
and each of the cubes is assigned a N-dimensional vector that encodes various in-
formation about the occupancy of that voxel. Basically, a voxel is the 3D extension
of a pixel in a 2D image. Voxel-based rendering is often used in medical imaging,
for example in Computed Tomography scans, in which case the tensor is actually a
scalar value that contains the opacity to x-rays of the substance in that voxel; in the
case of image rendering, the vector contains the description of the surface material
of the object in that voxel.

Point cloud-based rendering. Itrepresents objectasa list of points defined by their
position in cartesian coordinates, attached to the vector describing the surface ma-
terial. Point clouds can be used in many cases where voxel-based rendering can
be used, such as medical imaging, and in other industrial cases such as industrial
Computed Tomography to check for differences between a manufactured part and
the corresponding project.

Neural implicit representation-based rendering. Itassumes that the N-dimensional
vector representing the physical properties of a point (x,y,z) is described by the
output of a Neural Network F(x,y,z). This method of rendering works similarly
to point cloud and voxel-based rendering, but an important difference is that its
memory footprint is not coupled to spatial resolution. Since the object properties
are encoded by the continuous function F, the object can be rendered at any spatial
resolution without needing huge amounts of memory.

Mesh-based rendering. It assumes that the objects are represented by a set of ver-
tices in 3D cartesian coordinates and a set of faces (usually triangles) connecting the
vertices. It is widely used in videogames and simulations due to the fact that can
represents complex 3D structures in a compact and memory efficient way. Such rep-
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resentation is called mesh. The surface material is usually represented by 2D images,
called textures, and each vertex in mesh is mapped to a coordinate on the texture
(commonly called UV coordinates). Each visible triangle, i. e. the triangle closest to
the camera viewpoint and not occluded by any other triangle, is projected on the
camera view plane. Then, the algorithm determines what pixels are encompassed by
the triangle. The properties of inner pixels are computed as a weighted sum of the
properties of the three vertices based on the distance from them.

Then, let us focus on the differences between the approximations of light behavior.
There are three main categories of light models for renderers: Non-PBR, PBR, and
Raytracing.

Non-PBR. It assumes a very simple physical model where the texture represents
the color that is refracted by a given point of the mesh. The light information is com-
bined with this information to compute simple shadows and to properly modulate
the refracted color based on the color and intensity of the incident light. Often, the
quality of the appearance of the object is handcrafted by artists to give a satisfying
result from a given set of viewpoints.

PBR. Itassumesamore complex physical model which simulates many properties
of the interaction between the surface and the incident light. Usually, more than one
texture is associated to a PBR material. The main textures are albedo, which repre-
sents the refraction color of the surface, normal map which represents the direction of
the surface normal and is useful to represents bumps or imperfections in the surface,
smoothness /metallic which represents how smooth or rough the object is, or alterna-
tively how metallic-looking it is, and emission which represents light emitted directly
from the surface. These textures are combined with the properties of the incident
light, such as angle of incidence, color and intensity, to produce a convincing and
realistic appearance from virtually any viewpoint.

Raytracing. Itis very similar to PBR, with the main difference that in this case, ray
of lights are individually simulated and the textures and other information about
the surface are used to change the trajectory of the ray alongside its color and in-
tensity. This allows Raytracing to give an even more convincing and photo-realistic
appearance to the rendering, even more so when considering reflections in bodies of
water or metallic objects (these kind of reflections are harder in PBR) and shadows.

As we can see, rendering is a complex process that has no straightforward dif-
ferentiation, therefore the integration into Machine Learning algorithm is not easily
achieved. Therefore, the research community took an interest in developing dif-
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ferentiable alternatives for rendering. The first straightforward method was to ap-
proximate the gradients, while keeping the rendering process the same (Loper and
Black, 2014; Kato et al., 2018; Kato and Harada, 2019; Genova et al., 2018). Other
research work focused on making the rendering process differentiable by loosen-
ing some parts of the algorithm introducing differentiable approximations (Rhodin
et al., 2015; Liu et al.,, 2019; Chen et al.,, 2019). A few Differentiable Rendering li-
braries stemmed from these research works, namely Kaolin (Jatavallabhula et al.,
2019), PyTorch3D (Ravi et al., 2020) and Mitsuba 2 (Nimier-David et al., 2019). Dif-
ferentiable Rendering enabled many interesting research works, such as 3D object
reconstruction (Kato et al., 2018; Yan et al., 2016), material estimation (Azinovic
et al., 2019), and adversarial attacks (Zeng et al., 2019; Xiao et al., 2019; Liu et al.,
2018; Alcorn et al., 2019; Meloni et al., 2021Db).

2.4 Adversarial Attacks

During the years, Neural Networks, and in particolar Deep Neural Networks have
demonstrated a remarkable capacity of learning various tasks with outstanding per-
formances, ranging from image classification to object detection, from pose estima-
tion to autonomous driving. Given their successes, Deep Learning solutions have
been chosen to power many services that are used each day by millions of users,
such as Cloud Al Computing from Google ! and NVIDIA 2, and tools such as au-
tunomous cars, malware detection, drones, robotics, face recognition, voice assis-
tants, and uncountably more. The widespread use of these tools have brought forth
many advantages to the people, but when this kind of tools are moved from con-
trolled laboratory environments, in which they are studied and designed, to real-
world settings, their integrity, safety, and security mustd be guaranteed, since the
lack of any of those poses serious concerns to the public interest.

In fact, it is now well known that malicious attackers can easily craft adversar-
ial examples that induces serious mistakes in an otherwise well-behaving Neural
Model. It was first shown in the field of computer vision, by applying human-
imperceptible perturbations to well-recognized images which would then be classi-
fied with an unrelated label (Szegedy et al., 2013; Biggio et al., 2013; Biggio and Roli,
2018) (see Figure 2.3 for an example). Some tentative explanation was given to this
phenomenon, suggesting that it was at least partly caused by the significant linear-
ity of neural models, given that many of their components (ReLUs, LSTMs, etc.) are
designed to behave in a linear way, and non-linear components such as sigmoids are
optimized to operate in their mostly linear region (Goodfellow et al., 2014). Also the
insufficient regularization of the pure supervised learning approach could be par-

https://cloud.google.com/products/machine-learning
Zhttps://www.nvidia.com/object/gpu-cloud-computing.html
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Figure 2.3: Traditional Neural Networks are particularly susceptible to simple Ad-
versarial Examples, where an Attacker can easily craft an imperceptible perturbation
(2.3b) to a previously recognized image (2.3a) to obtain a completely wrong classi-
fication (2.3c).

(b) Adversarial Perturbation (c) Weasel

tially responsible for the vulnerability to simple perturbations. The susceptibility of
neural networks to this kind of attacks was demonstrated even on speech recogni-
tion (Carlini et al., 2016; Zhang et al., 2017), and on autnomous vehicles (Kurakin
etal., 2016).

Adversarial Attacks can be categorized along various axes through a taxonomy
that was first introduced for general Machine Learning (Barreno et al., 2010) and
extended later due to new developments in the field of security in Machine Learning
(Kumar and Mehta, 2017; Chakraborty et al., 2018), with particular consideration for
Computer Vision (Akhtar and Mian, 2018).

In the following, we define terms that will be used in the rest of the thesis to
describe entities and concepts in Adversarial Attacks. We define an Attacker as an
entity that has interest in disrupting the correct functionalities of a system. Usually,
attacks to any computational systems are defined by a Threat Model, which describes
what are the Attacker’s Goals and Capabilities. It is common for the Attacker’s Goal
to either attack Integrity, where the intent is evading detection causing False Nega-
tives (e. g. preventing the recognition of a cat inside a picture), or Attack Availability,
where the intent is making the system not available to users by saturating the normal
operations through many False Positives (e.g. causing recognition of a cat in many
pictures to reduce the trust of the user in the system).

The scope of the Attack can be distinguished between Targeted Attacks, where the
Attacker intends to disrupt the functioning of the model only for a particular class of
inputs, while leaving intact the rest of the operations for the rest of the classes, and
Indiscriminate Attacks, where the Attacker intends to completely deny the function-
ing of the system for any class. Usually, Evasion Attacks are Targeted Attacks, since
the intent of evading detection for an input can be framed as disrupting the func-
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tionality for a class of inputs it (it can be even composed of a single example), while
Denial Attacks are Indiscriminate Attacks, since they generally cause malfunction-
ing to the system without focusing on any particular class.

Similarly, we can distinguish the Attacker’s Capabilities based on what part of
the model it has access to. We call White-Box Attacks those in which the Attacker has
complete information on the architecture of the model, and optionally the training
procedure or the training set. We call Black-Box Attacks those in which the Attacker
has limited information on the model and can only query the system by providing
inputs and inspecting corresponding outputs. Usually, White-Box Attacks are eas-
ier as they can exploit much more information and a wider Attack Surface, that is the
portion of a model that can be used to freely interact with and to attack the system.
An interesting property of Adversarial Attacks is Transferability, that is the capability
of an attack crafted using a surrogate White-Box model to be effective when attack-
ing a target Black-Box model on which the Attacker has limited knowledge.

For the scope of the thesis, we formalize an Evansion Attack to a Neural Clas-
sifier. Let us consider, for instance, a classification task and a generic annotated
pair (x,y), where x € R“ denotes an input pattern and y is the associated su-
pervision. We also consider a neural network classifier C(-|C) with parameters
8 € RP. Let us indicate with 7 the output yielded by the classifier when processing
x, that is ¥ = C(x|0), and the loss function L(i,y, x) that measures the mismatch
between the prediction and the ground truth. A common learning procedure aims
at identifying the model parameters 6 which minimize the empirical risk function
E (1, y)~x [L(Jk Yk|xx)]. 1t has been shown that neural classifiers are vulnerable to
the injection of a perturbation in the input, which results in the misclassification of
the provided input. In particular, we define a perturbation ¢ that when added to
the input x causes the classifier C(-|6) to misclassify the input, i.e. § = C(x + J|0)
with § # y. Of course, stealthy attacks are those that limit the perturbation ¢ to
a set of admissible perturbations P that prevents human observers from detecting
the perturbation while causing the intended damage to the classification. A com-
mon choice for this set, in particular for Computer Vision tasks, is restricting the
perturbation to fall upon a ¢>-ball or a {-ball. In the example in Figure 2.3, we can
identify x in Figure 2.3a, J in Figure 2.3b, and x + ¢ in Figure 2.3c. In the simplest
case, the attackers aims to increase the prediction loss value by chosing a suitable J,
practically finding a solution to the following optimization problem,

L(7,y,x +0). 2.2
max (7,y,x+9) (2.2)

There are many variations of attack procedures for solving Equation 2.2 to es-
timate the best § for a given task, which usually differ by the properties described
in the previous paragraphs, based on the Attacker’s capabilities and knowledge of
the model. In the case of CComputer Vision and in particular for the task of Im-
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age Classification, for the scope of the thesis, we consider two attack procedures:
Fast Gradient Sign Method, or FGSM (Goodfellow et al., 2014) and Projected Gradient
Descent, or PGD (Madry et al., 2017).

FGSM. This attack was motivated by the idea that the linear behavior of many
components in neural networks would make them susceptible to linear adversarial
perturbations (Goodfellow et al., 2014). The Fast Gradient Sign Method is based on
a linearization of the loss function around the current values of 8, which is then used
to compute a perturbation in a £«-ball with radius € through the following equation,

£ =x+¢e-sign((V:L)(7,y,x)). (2.3)

The attack is very simple, it works with Black-Box Attacks (excluding the loss func-
tion, which in the case of classification can often times be safely guessed to be the
cross-entropy) and with only one query to the model for each input that the At-
tacker wants to perturbate. Even in its simplicity, it is extremely effective for many
neural models. GoogLeNet, for example, can drop to an accuracy of 0.1% by crafting
Adversarial Examples through FGSM (Goodfellow et al., 2014).

PGD. This method can be seen as an iterative version of the FGSM attack. In fact,
we see that the perturbation is gradually improved by computing a new lineariza-
tion of the loss function around the current values of 6 and x! (which implicitly
contains the perturbation #), similarly to how gradient descent is performed for
training. The Adversarial Example is obtained through the following iterative com-
putation, repeated a given number of times.

= TIp (¥ + a - sign((ViL)(7,y, x5)) (2.4)

Where P is the «-ball with radius ¢ and 2 = 0 or randomly initialized within the
loo-ball. There are strong empirical reasons to consider PGD a “universal” first-order
attack, meaning that, while it is not guaranteed that PGD will find the absolute max-
imum of the optimized function, it will often reach local maxima that have similarly
suitable loss values, thus attacks performed through PGD are quite likely to succeed
(Madry et al., 2017).

The attacks defined thus far are very effective at altering an input so that it makes a
neural model misbehave. However, the perturbation is effective exclusively for that
particular input. Further altering the example by some legal transformation, such
as rotation or translation, will make the perturbation ineffective most of the times.
This is clearly an important factor when considering Attacks towards systems that
operate in real-world settings, such as Continual Learning models. A slight change
in viewpoint, or a rotation of an object, can easily make a perturbation computed
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through the above methods ineffective. While this could seem a good property for
systems that operate on real-time visual streams, it is actually possible to craft Ad-
versarial Examples that are effective over a range of transformations, using the Ex-
pectation Over Transformation algorithm, or EOT (Athalye et al., 2018). Instead of
computing the gradient of the loss on a single input, EOT leverages a distribution of
legal transformations T from which transformations t are sampled and then applied
over the input x. Instead of constraining the distance between £ and x, with EOT
we constrain the distance between ¢(£) and ¢(x). This is especially important when
the output of the transformation and the original input exist in different domains,
as is the case for rendering functions (see section 2.3). In that case, x would be a tex-
ture, while ¢(x) would be the actual rendering of the object under some viewpoint,
lighting conditions, and other properties of the scene. Thus, we want the renderings
to be similar to each other, not only the textures. In practice, for this example, the
optimized problem seen in Equation 2.2 is transformed in the following form,

max E; 7[L(7,y,t(x +95))], (2.5)
6€Per

with Pg/ defined as the set of perturbations that satisfies the following constraint,
E;o7[d(t(x+6),t(x))] <€, (2.6)

where d(-, -) is a suitable distance function and ¢’ > 0. This attack has been success-
ful in crafting real-world 3D objects that could realiably induce error over a broad
range of viewpoints in otherwise well-performing classifiers (Athalye et al., 2018),
and as will be shown in chapter 5, the algorithm is effective also for objects in Virtual
Environments even when using different engines for rendering the Adversarial 3D
Object.

2.5 Parallelism

Deep Learning research has seen an ongoing increase in model complexity. It has
been shown that scaling up network capacity is often an effective approach to en-
hance the performances of neural models. On the other hand, hardware capabilities
are unable to scale as fast as required by such highly complex architectures, raising
the need for the development of alternative parallel computations to take advantage
of multiple GPUs.

Parallel computations are usually tailored to the task at hand, by keeping into
consideration the characteristics of the algorithm and the available hardware and
its topology. This handcrafting process is mostly characterized by a difficult trade-
off among flexibility, scaling capacity and achievable performances. We can split
parallel computations into two main categories: data parallelism and model parallelism.



2.5 Parallelism 31

GPU 1 GPU 2 GPU 1 GPU 2
GPU 3 GPU 4 GPU 3 GPU 4
(a) Data Parallelism (b) Model Parallelism

Figure 2.4: Schemes of Data Parallelism and Model Parallelism. With Data Paral-
lelism (Figure 2.4a), a small model with 4 layers is replicated on each GPU, and each
replica takes a different input in parallel. With Model Parallelism (Figure 2.4b), a
bigger model with 16 layers is split across all GPUs, and each sub-model takes as
input the output of the previous sub-model.

Data Parallelism. The dataset is split into N parts, and each of the parts is dis-
tributed to a different GPU. The model is instead replicated into each GPU, which
will independently process its own assigned portion of data, aggregating the output
with all of the other outputs at the end. Gradients are similarly computed by split-
ting the correspondent outputs and performing back-propagation on each replica of
the model. The benefits of this parallelism paradigm are clear: almost linear speed-
up in training and little to no need of adapting the model, which is just replicated
and not changed in any way. The weakness is that we can use this paradigm only
with models that are small enough to fit in each GPU and it is really useful only
when considering batch-mode offline processing. See Figure 2.4a and Figure 2.5a.

Model Parallelism. The model is split into N parts, one for each available GPU,
and each of the portions runs on that GPU, the dataset instead is not divided. The
main benefits are that portions of the model that work on independent data can
run concurrently, obtaining modest speed-ups in some cases, but more importantly
it allows to run models that cannot fit into a single GPU. On the contrary, how to
split models is not always straightforward and the paradigm often incurs in under-
utilization of computational resources. See Figure 2.4b and Figure 2.5b.

It is clear that these two types of parallelism have different cases of applications
and they solve two very different problems. In the case of Data Parallelism, we take
advantage of multiple accelerators and split the data among them while keeping the
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Figure 2.5: Timelines of execution for Data Parallelism and Model Parallelism. In

Figure 2.5b we can see how most of the times each GPU is idle, wasting precious
computational resources.
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same model, replicated across the GPUs, to significantly reduce the training times,
reaching almost linear speed-up with the overhead of synchronizing the replicas
after having computed the gradients to keep consistent parameters. In the case of
Model Parallelism, we use the memory available to multiple accelerators to split a
model that would not otherwise fit into a single GPU, thus enabling it for training
without taking into consideration the possible speed-ups of parallel computations.
Of course, this is sub-optimal since most GPUs remain idle while waiting for one
to complete its computation, therefore another type of Model Parallelism was intro-
duced, that is Asynchronous Model Parallelism.

Asynchronous Model Parallelism. The issue of under-utilization can be tackled
with the introduction of asynchronous computations, that is starting processing new
data as soon as a part of the model becomes idle. While this clearly reduces idle
times, preventing under-utilization and thus significantly speeding-up computa-
tions, it also introduces new problems that must be taken into consideration, such as
weight staleness, i. e. when different data samples use different versions of the weights
to derive gradients leading to inconsistent updates and weight version mismatch, i.e.
when different GPUs have different version of weights at a given istant.

Asynchronous Model Parallelism can include any form of model parallelism which
does not synchronize every GPU to a single computational graph, but a straightfor-
ward yet effective example of this paradigm is Pipeline Parallelism, which separates
a feed-forward computational graph into several non overlapping stages, each one
being fed the output of the previous stage, and operating independently as soon as
a new input is ready.

Pipeline Parallelism. This paradigm allows to run huge models that would not
tit into a single GPU, while at the same time allowing significant speed-ups in the
computation. The speed-up is usually heavily limited by the need of synchronizing
weights updates and communication overheads between different GPUs. In Fig-
ure 2.6 we see the simplest implementation of Pipeline Parallelism as seen in GPipe
(Huang et al., 2018), which separately parallelizes the forward and the backward
pass, effectively leaving a bubble of idle time which reduces the achievable speed-
up, and introducing a flush phase which takes care of issues such as weight staleness
and weight version mismatch, but further limiting the possible speed-up. Other
types of Pipeline Parallelism have been studied in the recent years, trading off low
memory footprint for increased speed-up Narayanan et al. (2019) or gradient accu-
racy for increased speed-up (Narayanan et al., 2021). In chapter 6 we introduce a
Pipeline Parallelism variant, called PARTIME, that keeps limited memory footprint
and almost linear speed-up leveraging a gradient approximation, specifically focus-
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Figure 2.6: Simple Pipeline Parallelism timeline as implemented in GPipe (Huang
et al., 2018)

ing on the online real-time processing case.



Chapter 3

Making Virtual Environments Simple:
SAILenv

Developing Machine Learning algorithms to solve a target task usually follows a
well-established offline process in which data are collected from the real-world op-
erational environment and then used to learn the models parameters and to evaluate
the quality of the trained model. In the recent years, researchers in Machine Learn-
ing algorithms, particularly Computer Vision scientists, have shown an increasing
interest towards 3D computer simulations of real environments as a mean to artifi-
cially recreate experimental settings similar to real world environments (Kolve et al.,
2017; Savva et al., 2019; Gan et al., 2020). As mentioned in section 2.1, in the last
decade, many different Virtual Environments were released focusing on a diverse
array of tasks and situations, such as Automated Driving (Johnson-Roberson et al.,
2016), Robotic Arm Control (Rao, 2000), Indoor Navigation (Shridhar et al., 2020;
Zhu et al., 2017; Gupta et al., 2017), visual QA (Gordon et al., 2018), and other vari-
ous tasks (Chaplot et al., 2018; Beattie et al., 2016). These tools allow the researchers
to perform controlled tests that would incur in high costs if performed in the real
world, both in terms of time and resources, and in some cases dangerous to people
and things (Savva et al., 2019).

Most popular benchmarks generated through Virtual Environments and shared
by the scientific community have their own characteristic features, with specifically
designed 3D environments that accurately resemble the target working conditions.

If we depart from the case of the most popular benchmarks shared by the sci-
entific community, such as the ones aimed at showing the quality of Visual Naviga-
tion Algorithms (Shridhar et al., 2020), Visual Recognition (Lomonaco and Maltoni,
2017), and others, each research project has its own characteristic features, and it
actually requires to design the 3D environment that correctly resembles the target
working conditions. Moreover, the way a virtual agent will exploit the informa-
tion coming from the virtual world, and how it will react to it, need to be designed

35
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coherently with the target setting. This clearly suggests that there is the need of pro-
viding flexible and easy-to-use tools to encourage the use of virtual environments
and to favour the development of those research activities that exploit them. An-
other important consideration to remark is that not all researchers have robust skills
in creating 3D scenes, and this aspect might discourage the use of virtual environ-
ments.

In this chapter, we present SAILenv, the Siena Artificial Intelligence Laboratory?,
a freely available and open platform? that is specifically designed to cover the needs
of a platform to easily design and customize visual environments to experiment
with visual recognition and computer vision algorithms in general. The platform
comes with an integrated library of photo-realistic 3D objects and scenes, acces-
sible through a light-weight Python library that allows the researchers to quickly
prototype experiments interfacing Machine Learning algorithms to the Virtual En-
vironment with few lines of code. SAILenv is based on Unity, a popular game en-
gine developed by Unity Technologies?, that supports many operating systems and
includes advanced 3D modeling and state-of-the-art quality real-time rendering.
When released, SAILenv was the only platform (to the best of our knowledge) that
yielded optical flow data alongside the RGB stream, providing real-time motion-
related information inherited from the 3D engine (thus being extremely accurate),
and not computed afterwards from multiple 2D observations, as commonly done
in optical flow algorithms (Hui et al., 2018; Farneback, 2003), providing important
data that can be used in benchmarks and training Computer Vision algorithms that
benefit from the motion field. Furthermore, differently from other platforms (Kolve
etal., 2017; Gan et al., 2020), SAILenv transfers data without relying on higher-level
communications protocols (such as HTTP), reducing the communication overhead
and allowing higher framerates and lower response times by the Python APIL

SAILenv is powered by the Unity 3D engine, which includes a powerful editor
to create and customize 3D scenes, that, however, is not always intuitive and might
discourage researchers that are starting from scratch on the field of Virtual Environ-
ments. To overcome this issue, we designed SAILenv following the approach used
by most game development team, that is separating the scene designer by the engine
programmer. In facts, Unity allows augmenting the editor with ad-hoc tools that can
be programmed and integrated into the existing editor, abstracting many details of
the programming interface and allowing unspecialized users to create rich scenes
without the need of ever touching the inner code. Thus, SAILenv includes a ready-
to-use Unity project, initially derived from AI2-THOR 2.1.0 (Kolve et al., 2017) and
later augmented by adding realistic textures and lighting effects by means of state-

ISAILab, https://sailab.diism.unisi.it.
2See https://sailab.diism.unisi.it/sailenv
3See https://unity.com for further details.
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of-the art texturing software, making them strongly photorealistic. Thus, SAILenv
comes with ready-made scenes that can be customized with simple operations of
drag-and-drop. Similarly, dynamics can be applied to any object with intuitive tools
integrated into the editor, using the included templates or programming new be-
haviors for expert users. More details are included in section 3.4.

We also provide experimental evidence on the quality of the scenes generated
by SAILenv, showing that a state-of-the-art neural model (He et al., 2017) trained
on Object Detection with real-world data, can actually easily recognize most of the
objects in the SAILenv library, proving its photo-realism, thus suggesting that mod-
els trained on SAILenv need reduced adaptation when adapting to real-world do-
mains. Furthermore, we also measure and compare the speed at which SAILenv is
able to generate motion features, showing that the platform leads to smaller running
times when compared to popular optical flow estimators (Farnebéack, 2003), includ-
ing neural models (Hui et al., 2018), apart from intrinsically being more accurate in
most cases.

The features provided by SAILenv, ranging from a diverse library of ready-to-use
objects and scenes, to a efficient and real-time response oriented data generation and
communication protocol, are particularly designed to enable the task of Continual
and Lifelong learning from visual streams in a real-time online setting. In fact, the
diverse library of objects allows researchers to quickly design scenarios with increas-
ing levels of complexity, gradually incrementing the number of objects in the visual
stream and enabling, for instance, tasks as object detection in class-incremental set-
tings, where the agent needs to learn to recognize previously unseen objects without
forgetting what they had already learnt. The Python interface through which the
environment is accessible by the user code allows the researcher to design experi-
mental protocols without having to manually code complex code for the 3D engine
(this will be further explored in chapter 4). Finally, the data generation executes in
real-time even on low-end user-grade hardware, while the data communication pro-
tocol is handcrafted without high-level dependencies to focus on lowering response
times to its minimum, so that the communication does not become a bottleneck that
slow down the real-time processing of the visual stream.

The rest of the chapter is organized as follows. In section 3.1 we describe sim-
ilar platforms and highlight the differences with SAILenv. In section 3.2 we detail
the architecture of SAILenv and its design choices. In section 3.3 we describe what
kind of data is generated by SAILenv and the structure of such data and associated
metadata. In section 3.4 we describe the library of available ready-to-use objects and
scenes integrated into SAILenv. In section 3.5 we describe how SAILenv handles dy-
namical objects and how the movement of the agent is supported. In section 3.6 we
describe the Python interface which enables researchers to integrate their Machine
Learning code to the Virtual Environment, presenting a few examples that highlight
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Table 3.1: Comparison of the main features of SAILenv with other popular plat-
forms. LightNet refers to lightweight communication over the network (n.a. means
network communication is not directly provided).

PLATFORM ‘ PHOTOREAL ‘ DeprtH ‘ OrptFLow ‘ LigHTNET ‘ OS
DeepMind Lab (Beattie et al., 2016) v n.a. Unix
Habitat (Savva et al., 2019) v v n.a. Unix
AI2-THOR (Kolve et al., 2017) v v v Unix
ThreeDWorld (Gan et al., 2020) v v v Win+Unix
SAILenv (Meloni et al., 2021a) v v v v | Win+Unix

the ease of use of the API. In section 3.7 we describe the experimental evaluation
of the photorealism and generation-communication speeds of SAILenv, implicitly
showing how the platform can be integrated into Machine Learning code. Finally,
in section 3.8 we summarize the chapter and introduce some works which leverage
SAlLenv as the platform for generating visual streams.

3.1 Related Platforms

Several environments and simulators have been developed by the scientific com-
munity in the last few years. Some simulators are not photorealistic, or they are
specifically designed to handle specific tasks. Some examples are DeepMind Lab
(Beattie et al., 2016), UETorch (Lerer et al., 2016), Scene (Handa et al., 2016). The
main issue with these platforms is that they are not photo-realistic. Moreover, some
of them expose the full environment to the agent, while an agent operating in real
world does not see the entire environment. For example, a robot that operates in
an apartment does not see the entire apartment. Amongst the virtual environments
with visual-realistic appearance we mostly focus on the recent AI2-THOR (Kolve
et al., 2017) and Habitat (Savva et al., 2019). Other existing frameworks are Home
(Brodeur et al., 2017), Chalet (Yan et al., 2018), Gibson (Xia et al., 2018), SceneNet
RGBD (McCormac et al., 2017). These environments are used to study embodied
agents (Xia et al., 2018), to instantiate tasks that are about visual navigation with re-
inforcement learning (Zhu et al., 2017; Gupta et al., 2017), interactive VQA (Gordon
etal., 2018), task-oriented language grounding (Chaplot et al., 2018) or vision-and-
language navigation (Wang et al., 2018).

SAILenv, coherently with what is commonly done in related platforms, captures
RGB representations with or without depth information, acquired from the agent
camera position and orientation. Similarly to what we propose, also AI2-THOR
(Kolve etal., 2017) is based on the Unity engine, but it focuses on the interaction with
the environment, so that actions can be attached to objects. Differently, SAILenv fo-
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cuses on visual recognition, and it simplifies the assignment of new semantic cate-
gories to objects, an operation that does not require knowledge of the code structure,
and that can be done through the Unity GUI. Moreover, the client-server architec-
ture of AI2-THOR is based on HTTP communication between Unity and the Python
API, where the 3D engine acts as a client while the server is implemented on the
Python side of the architecture. SAILenv, as we will describe in section 3.2, imple-
ments a more natural organization in which the virtual world is a server to which a
Python client connects to retrieve data that will be processed by the target algorithm.
Habitat (Savva et al., 2019) is mostly focused in allowing the access to different 3D
datasets (Song et al., 2017; Chang et al., 2017) by a uniform interface, and it includes
its own fast simulation engine. In principle, the direct customization or creation of
3D environments is possible, but it is not straightforward. For this reason, SAILenv
is built around the Unity engine, that is a very popular and multi-platform software
solution easily accessible and customizable, widely used for videogames and phys-
ical simulations. In Table 3.1 we summarize a comparison of the main features of
SAILenv with some of the aforementioned frameworks. The features considered in
the table are Photorealism, Depth Rendering, Optical Flow, Lightweight Network Com-
munications, and Operating System. Each of these features is of particular importance
in the context of the generation of Virtual Visual Streams. Photorealism, as shown
in (Johnson-Roberson et al., 2016; Meloni, 2019; Di Benedetto et al., 2019) and ex-
plained in the Dataset Generation paragraph of section 2.1, is extremely important
to reduce the efforts needed to transfer models between the real and the virtual
world. In practice, when deploying a model that was trained on virtual data in the
real world, the model needs to be finetuned on real data to account for the differ-
ences between virtual and real. The more the virtual data is similar to real world
footage, the less effort is needed to achieve higher performances. Depth Rendering
is useful when generating virtual data to make up for the lack of binocular vision
when understanding the depth and relative position of objects in the scene. Optical
Flow is a fundamental piece of metadata of dynamical scenes, as it encodes how the
pixels of each static frame are evolving over time from the agent point of view. Ligh-
weight Communication is an important feature of a Virtual Environment that focuses
on real-time interactions with a ML agent. Well-known network protocols such as
HTTP, which is used in AI2-Thor and ThreeDWorld, are easy to integrate to the Vir-
tual Environment, but introduce overheads which are suitable for dataset generation
but not for real-time stream generation, since strict timing are required. Finally, a
wide Operating System Support is relevant as it allows the researcher to deploy the
Virtual Environments on a wider set of systems.

Notice that only SAILenv includes lightweight communication over the network,
and that, differently from AI2-THOR (Kolve et al., 2017) and Habitat (Savva et al,,
2019), but similarly to ThreeDWorld (Gan et al., 2020) it can also run on a Win-
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Figure 3.1: Organization of the SAILenv architecture.

dows machine. When SAILenv was released, it was the first to introduce motion
information metadata attached to the visual stream, but the feature has been since
integrated in AI2-THOR and ThreeDWorld. Currently, ThreeDWorld has the ad-
vantage of a wider library of objects, some of them even being fully physically sim-
ulated (e.g. foldable cloths, liquids), but the code is not open source and cannot be
easily extended. AI2Thor has a procedural scenario generation for indoor explo-
ration which is used for training and testing robotic agents through Reinforcement
Learning. Similarly, ThreeDWorld introduced a procedural indoor scene generation,
which uses heuristics to automatically create scenes with suitable object density.

3.2 Architecture

SAlILenv is organized in a client-server architecture, that in a natural way imple-
ments the idea of having a virtual scene (simulated in the server) and an agent that
experiences and explores the environment (controlled by the client). The overall
SAILenv architecture is exemplified in Figure 3.1. The agent, which lives inside the
Virtual Environment instance, is controlled through the Agent API, which consists
in a set of high-level commands implemented through a lightweight Python APIL
The API allows the client to move the agent in the environment, create and delete
objects, set their trajectories, and most importantly query the environment for the
informatione experienced by the Agent. When queried, the server replies with a
number of views that capture different properties of what the agent is experienc-
ing, that is RGB views with associated metadata, such as pixel-wise labeling, which
can be used by Computer vision algorithms, fed to Machine Learning frameworks,



3.2 Architecture 41

recorded and generally used for any needed purpose.

We built the server within the Unity framework, providing an ad-hoc Unity server
that responds to client requests. The Unity server is more than simply a network in-
terface layer; it is a computing module that is in charge of constructing the virtual
environment, handling the physics simulation, and real-time rendering while fully
utilizing the Unity infrastructure. It generates the data in the views requested by the
client, and thanks to the powerful engine embedded in Unity, the physics simulation
runs at real-time speed on most laptops and servers, allowing the generation of real-
time streams with no hiccups or long wait times between one view and the other.
For debug reasons, that will be clearer in the rest of the chapter, the Unity instance
running on the server allows to show what the agent camera is currently capturing
in the screen attached to the server, allowing some special server-side interactions.

Server and client are connected through a lightweight communication protocol,
which ensures minimal overhead for the transmission of data from and to the Virtual
Environment. The Unity server awaits for incoming connections on a target port.
The client can contact the server through that socket, calling the provided Python
API and triggering the generation of the agent inside the 3D environment. The so
created agent is associated to a worker thread which runs in background, listening
and replying to further requests, but operating in a asynchronous fashion with re-
spect to the physics engine. To an expert Unity user, this choice could seem counter
intuitive. Commonly, simulations in Unity follow a simple pattern, in which there is
a single thread that runs in a loop (the so called game loop), which is the only thread
allowed to apply changes and interactions to the simulation. The loop is composed
of several phases, which we omit for brevity since it is not fundamental for the un-
derstanding of what follows. Each entity in the simulation can register a behavior,
in the form of a piece of code or a script, to any phase or even more than one. During
each phase, the main thread running the game loop will call every behavior regis-
tered to that phase, in no particular order, but synchronously. This means that until
a behavior does not return, the main loop will wait indefinitely. If a behavior slows
down, all the simulation is slowed. Of course, during network operations, issues
such as network slowdowns or communication errors are common, causing the as-
sociated agent to slow down. Keeping the network code on a separated background
thread allows the simulation to proceed without hiccups due to the network. Since
secondary threads cannot directly interact with the simulation, they collect com-
mands from the client APIs and enqueue them on the main thread as soon as they
are ready to be executed without further delays. When the command completes
execution, the reply is sent back to the secondary thread which sends it back on
the network. Finally, the network protocol also offers the possibility of sending raw
data or by GZipping them beforehand, reducing the overhead on low-bandwidth
networks.
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Figure 3.2: Pixel-wise annotations yielded by SAILenv. In Figure 3.2a it is shown the
pixel-wise semantic segmentation at category level, that is pixels belonging to the
same class of objects (e.g. couch or pillow) have the same label. In Figure 3.2b it
is shown the pixel-wise semantic segmentation at instance level, meaning that each
pixel has a label that uniquely identifies the particular instance of that object. In
Figure 3.2c it is shown the depth view of the scene, where each pixel has a gray-
scale value which is whiter for objects close to the camera and darker for objects far
from the viewpoint.

3.3 Details on the generated views

As we briefly mentioned before, the client is implemented as a lightweight cross-
platform Python API, with a small dependency tree. Itis, in fact, a very tiny interface
that exposes high-level commands which allow control on the virtual environment,
such as creating a new agent, moving it or obtaining views of the current state of the
environment from the point of view of the agent. The views and metadata available
through the API are the following: a) RGB view; b) Category Level Semantic Seg-
mentation; c) Instance Level Semantic Segmentation; d) Pixel-wise Depth Labeling;
e) Optical Flow. See Figure 3.2 and Figure 3.3 for an example of such views.

Going into more details, the RGB view is a straightforward representation of
what the agent views inside of the environment, representing each pixel with the
classic 24-bit encoding; each pixel is annotated with a category identifier (seman-
tic labeling) and an instance identifier, encoded in the category (Figure 3.2a) and
instance (Figure 3.2b) views. The instance identifier is automatically and uniquely
assigned by Unity when the object is created. The category identifier is instead cre-
ated and assigned through the Unity Editor, without any code-level operation. In
particular, categories are represented as Unity objects (called Scriptable Objects),
and they can be attached to every 3D object by a simple drag-and-drop operation.
Every scene also includes a category holder, which allows the researcher to easily or-
ganize set of categories and allow the user to quickly add them to custom scenes.
Depth information is taken directly from the rendering engine, represented as gray-
scale texture representing the distance of the pixel from the position of the agent
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Figure 3.3: Optical flow yielded by SAILenv. In Figure 3.3a we see the optical flow
given by the agent motion. In Figure 3.3b we see the optical flow given by the objects
motion, while the agent stands still. In Figure 3.3c we show how LiteFlowNet (Hui
et al., 2018) estimates the optical flow in the same conditions, while in Figure 3.3d
we show the estimation of the OpenCV implementation of the Farneback Optical
Flow.

(see Figure 3.2c as an example, lighter pixels indicate elements closer to the agent).

SAlILenv also yields highly precise and dense motion information about the ob-
jects in the environment. Differently from what is commonly done by most optical
flow algorithms, SAILenv does not estimate optical flow by observing consecutive
views, but is instead fully computed by the physics engine of Unity. Since the engine
already holds information about the motion of the objects in the scene in relation to
the agent viewpoint (after all, it already uses it to drive the simulation and to ren-
der it). This is normally used in games to create visual effects such as motion blur
for fast moving objects, but we can easily use the same information to generate a
view that includes motion vectors for all pixels of the frame. In detail, such view
isa H x W x 2 tensor of single-precision floating point numbers, being H and W
respectively the height and the width of the view. To each of the pixels corresponds
a pair of floats which describes the velocity of each pixel in pixels per second. This
numerical representation is not easy to interpret and visualize on a screen, there-
fore SAILenv includes an utility to convert it to the HSV color space, as shown in
Figure 3.3. In practice, we consider the pair as cartesian coordinates (x, y) which are
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Figure 3.4: HSV color wheel

first converted into polar coordinates («, ®), where « is the magnitude and @ is the
phase. Then, weset H = ©, S = 1 and V = a. The resulting HSV image is con-
verted into RGB and shown on the screen. The resulting representation is easier to
interpret with the help of the HSV color wheel (Figure 3.4): the value of H indicates
the angle in the color wheel (starting from the top), i. e. it associates each color to
its respective direction. The intensity of the pixel is instead directly associated to
the value V and thus the magnitude of the motion vector: a slow moving pixel will
appear darker, a fast moving pixel will appear brighter.

In Figure 3.3b-d, we report three examples of the optical flow computed in a
scene that contains exclusively a rotating cube, that has no special textures and a
uniform color. Of course this makes it harder to correctly estimate the pixel-level mo-
tion using classic algorithms. Nonetheless, SAILenv can correctly represents the ro-
tation of the cube (Figure 3.3b). Instead, widely used solutions such as the OpenCV
implementation of Farneback algorithm, or even modern approaches based on con-
volutional neural networks (Hui et al., 2018), fail to correctly capture the motion, as
it is evident in Figure 3.3c and Figure 3.3d. Interestingly, despite its very high preci-
sion, SAILenv incurs in an almost null computational burden to compute the optical
flow. While some overhead due to data normalization operations and transmission
is to be expected, it is still negligible with respect to what is needed to estimate mo-
tion from pairs of static frames with other solutions. This will become clearer in
section 3.7.
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3.4 Photo-realistic Objects and Scenes

We take advantage of the Unity physics engine to handle the virtual environment,
allowing SAILenv to rely on all the facilities of the powerful 3D editor integrated in
Unity. However, as mentioned before, creating new scenes and objects from scratch
is a time-consuming procedure that requires advanced skills in 3D graphics. This is
even more clear when working on photo-realistic objects, activity that requires the
designer to carefully pay attention to many details and aspects to obtain the target
appearance for an object. To help new researchers get into the field and mitigate
some of these issues, SAILenv is integrated with a library containing more than 65
objects that can be readily placed in any scene, plus other 3D objects that will help
create the structure of new scenes, such as walls, windows, etc. In Figure 3.6 are
shown examples of objects in the library. The library is integrated in a ready-to-go
Unity project that contains all the photo-realistic elements and four sample scenes,
meant to showcase the capabilities of the framework and to run simple prototype
experiments in simple context, similar to those described in section 3.7. The user
can edit these scenes, adding, moving or removing objects inside it, or create a com-
pletely new one from scratch, using the SAILenv library or even adding custom 3D
objects.

Sample scenes depict different rooms, with varying contexts, sizes and number
of objects. Some of them even include moving objects to evaluate motion-based
algorithm. The scenes available are:

e Room 01: Bedroom. Main objects: laptop, bed, desk, chairs and writing mate-
rials. See Figure 3.5a.

e Roowm 02: Sitting and dining areas. Main objects: chairs, couches, dining table,
paintings. Object movement: a toy rusty plane flies around the room. See
Figure 3.5b.

e Roowm 03: Bathroom. Main object: toilet, bathtub, cleaning supplies and hands
towels. Object movement: many of the objects inside the scene will occasion-
ally be pushed in a random direction, moving from their original position. See
Figure 3.5c.

e OrticaL: It includes rotating cubes and a cylinder. This scene is not realis-
tic and is meant to be used for debugging purposes (for example, to test the
optical flow feature). See Figure 3.5d.

Most of the 3D meshes are originally from the library of AI2-THOR project, then
significantly re-worked, improving their appearance so to reach a more advanced
photo-realistic level. To achieve this objective, we employed several state-of-the-art
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Figure 3.5: Sample scenes in SAILenv

techniques that are commonly used in game design to improve the rendering qual-
ity. In particular, we started from Phisically Based Rendering (PBR), which is a state-
of-the-art rendering technique which harnesses advanced physical models that sim-
ulates the behavior of light as it comes in contact with the surface of the object*. We
manually tuned the Albedo, Metallic, Specular, Emission, and Normal textures to care-
fully handcraft a believable and realistic effect on rendering. The Albedo texture
represents the plain color of the texture, regardless of anything else, while its alpha
channel represents the opacity; the Metallic texture represents how a certain part
of a material will act as a metallic surface, from 0 (not metallic) to 1 (fully metal-
lic), while its alpha channel represents the smoothness of the material from 0 (fully
rough) to 1 (fully smooth); the Specular texture represent how reflective a certain
part of a material is, and it is very similar to the metallic one, while its alpha channel
works the same as the metallic one (in fact, Metallic and Specular are exclusive al-
ternative