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Figure 1: Schematic architecture of the Generator GCN used for our upsampling model: The input point clouds (three point
clouds are shown on the left) are first processed by a set of Edge Convolution with Attention layers cascaded to generate an
embedding; the Parallel Double Sampling (PDS) layer is then used for upsampling, and the output is summed at the end with
the input following a residual-like schema (the upsampled point cloud given as output is shown on the right).

ABSTRACT
Time varying sequences of 3D point clouds, or 4D point clouds, are
now being acquired at an increasing pace in several applications
(e.g., personal avatar representation, LiDAR in autonomous or as-
sisted driving). In many cases, such volume of data is transmitted,
thus requiring that proper compression tools are applied to either
reduce the resolution or the bandwidth. In this paper, we propose a
new solution for upscaling and restoration of time-varying 3D video
point clouds after they have been heavily compressed. Our model
consists of a specifically designed Graph Convolutional Network
that combines Dynamic Edge Convolution and Graph Attention
Networks for feature aggregation in a Generative Adversarial set-
ting. We present a different way to sample dense point clouds with
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the intent to make these modules work in synergy to provide each
node enough features about its neighbourhood in order to later on
generate new vertices. Compared to other solutions in the literature
that address the same task, our proposed model is capable of ob-
taining comparable results in terms of quality of the reconstruction,
while using a substantially lower number of parameters (≃ 300KB),
making our solution deployable in edge computing devices.
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1 INTRODUCTION
In light of emerging applications such as Augmented and Virtual
Reality (AR/VR), there is a rising interest in capturing the real
world in 3D at high-resolution. For real time applications in dy-
namic settings, such as 3D sensing for robotics, telepresence, au-
tomated driving applications using LiDAR, this technology might
need high-resolution point clouds with up to millions of points
per frame. After taking into consideration the average point-cloud
video, under some constraints such as keeping the identity of a
human subject recognizable, we observe that the size of a single in-
stance, which is a single frame, can be approximated as ∼10 Mbytes,
which translates to a bitrate of ∼300 Mbytes per second without
compression for a 30fps dynamic point cloud. The high data rate
is one of the main problems faced by dynamic point clouds, and
efficient compression technologies to allow for the distribution of
such content are still an important area of research. One result
in this direction is represented by the Point Cloud Compression
standard specifications that include video-based PCC (V-PCC) and
geometry-based PCC (G-PCC) [9] as released in 2020 by the The
Moving Picture Expert Group (MPEG).

Given these premises, our task is to perform upscaling and arti-
fact removal of sparsely populated 3D point cloud videos. The terms
upscaling and artifact removal are usually found in image/video
super resolution literature and so they might not have an immedi-
ate translation in the 3D context. We will use the term upscale to
indicate the operation by which the total number of vertices of an
input point cloud is increased; by using artifact removal, instead,
we will imply the correct reconstruction process after some sort of
compression or subsampling has been performed on an input point
cloud. As shown in Figure 2, a high compression rate can achieve
acceptable bandwidth requirements with a huge decrease in fidelity.
For some applications, for example where the user experience is
important, the identity of the subject must be maintained or, for
autonomous driving, such a low-resolution is not acceptable.

Recent approaches that tackled this task, such as [39], employed
a strategy that uses long sequences of input frames and a large
encoder-decoder model. As we will detail below, we followed a
different approach.

In this paper, we pose the upscaling problem in a Generative Ad-
versarial setting using two architectural modules: the EdgeConvolu-
tion [43] and the Graph Attention Network (GAT) [38]. In particular,
the input point clouds are modeled as graphs and processed by a
Graph Convolutional Network (GCN). The convolution operation
has been performed using a EdgeConv module: this module incor-
porates local neighborhood information, can be stacked to learn
global shape properties, and affinity in feature space captures se-
mantic characteristics over potentially long distances in the original
embedding. While this module was used for CNN-based high-level
tasks on point clouds, including classification and segmentation,
the GAT has been used for feature aggregation performing an at-
tentioned learned mean of the neighbourhood features instead of
simply averaging it out. Experiments have been performed on the

FAUST 4D dataset [2] also in comparison with state-of-the-art so-
lutions. Overall, our method shown upscaling reconstructions that
are comparable with those reported in the literature, while using
a lower number of input frames and an architecture with a much
lower number of parameters. This opens the way to the deployment
of our architecture in edge computing devices.

The main contributions of our work can be summarized as fol-
lows:

• We propose a new architecture for time varying point cloud
upscaling that combines together a PointNet [32], used as
a Discriminator Network in a GAN, and a Generator that
makes use of Edge Convolution on the input graphs derived
from the point clouds and a graph attention mechanism for
aggregating the features of the local neighbourhood. The
resulting GAN architecture represents a setting that, to our
knowledge, has not been tried before for this task;

• The proposed solution demonstrates a clear advantage over
the existing methods in the capability of producing upscaled
3D point clouds with comparable accuracy but using a way
lower number of parameters in the architecture. Finally, the
inference time is compatible with an online application of
the method handling a stream of input frames.

Figure 2: Left: Sample of an input low-resolution point cloud
with ∼3K vertices. Center: our model reconstruction with
∼12K vertices. Right: Ground truth point cloud with ∼12K
vertices.

2 RELATEDWORK
Numerous studies have been conducted with the goal of recon-
structing a 3D model given inputs in various possible forms: a
mesh, a 3D point cloud, a collection of voxels or an implicit func-
tion. Some of these works focused on the use of a 3D point cloud as
an input [5, 36]. Others, instead, used a discretized version based on
voxels, such as [7, 41], or directly tried to reconstruct a mesh [21, 40].

Point cloud upsampling was first approached using optimization
based solutions, while deep learning based methods were applied
only more recently. Methods from both these categories are sum-
marized below.

Optimization-basedmethods. One of the first work addressing
point sets upsampling was proposed by Alexa et al. [1]. In their
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approach, points at vertices of a Voronoi diagram were interpolated
in the local tangent space. Lipman et al. [23], presented a Locally
Optimal Projection (LOP) operator performing points resampling
and surface reconstruction using L1-median. The LOP operator
showed satisfactory results even in the case the input point set was
affected by noise and outliers. An improved version of the LOP
approach aiming to address the density problem of the upscaled
point set was then proposed by Huang et al. [13]. Overall, good
results were demonstrated by these works though their applicability
scope was limited by the smoothness assumption of the underlying
surface, which is rarelymatched by data acquired with real scanners.
To overcome such limitation, in [14] Huang et al. proposed an
edge-aware point set resampling solution that first resamples away
from edges, then progressively approaches edges and corners. One
limitation of this method is the dependence of the quality of the
results from the normals accuracy at the points, and the need for a
careful tuning of the parameters. A point representation method
based on volumetric voxelization was introduced by Wu et al. [45].
As a preliminary operation, they proposed to fuse consolidation
and completion in one coherent step. However, the goal of this
operation was on filling large holes, so that global smoothness is
not enforced, making the method sensitive to large noise. All these
methods are not driven by the data, rather they strongly rely on
some priors.

Deep-learning based methods. Only recently, methods have
adopted deep architectures to directly learn from point sets. This
was mainly due to the inherent difficulty of such data, where points
are unordered and do not follow any regular-grid structure in their
spatial arrangement. To circumvent such difficulty, some meth-
ods converted point clouds to other 3D representations, based on
graphs [3, 25] or volumetric grids [4, 26, 35, 45]. The PointNet [31]
and Point Net++ [32] were the first successful attempts to directly
process point clouds for classification and segmentation purposes
using a hierarchical feature learning architecture that captures both
local and global geometry contexts. Other networks that were pro-
posed for high-level analysis of point clouds focusing on global or
mid-level attributes of point clouds include [12, 17, 20, 30, 42]. Local
shape properties, like normal and curvature in point clouds, were
estimated by the network proposed in [11]. Interesting network
architectures were also proposed for 3D reconstruction from 2D
images [5, 10, 22]. For example, Fan et al. [5] addressed the problem
of 3D reconstruction from a single image, generating a straight-
forward form of output–point cloud coordinates. The 4D extension
of the resulting Point Set Generation Network (PSGN-4D) was used
in several studies as a baseline for comparison.

One of the first work aiming to perform point cloud upsampling
was proposed by Yu et al. [48]. They introduced the PU-Net that
learns per point features at multiple scales, and expands the set of
points using aMulti-layer Perceptron (MLP) with multiple branches.
However, to learn multi-layer features the input point sets were
downsampled, thus potentially causing a loss of resolution. In [47],
the same authors proposed an edge-aware network for point set
consolidation (EC-Net) that used a specific loss to encourage learn-
ing to consolidate points for edges. On the negative side, a very
expensive edge-notation was needed for training the EC-Net. In the
work of Yifan et al. [46], a progressive network (3PU) was proposed
that duplicates the input point patches over multiple steps. The

progressive architecture of 3PU makes its training computationally
expensive. More data were also required to supervise the middle
stage outputs of the network. A Generative Adversarial Network
designed to learn upsampled point distributions (PU-GAN) was
proposed by Li et al. [19], with the main performance improvement
obtained by the discriminator. Qian et al. [34] proposed to upsample
points by learning the first and second fundamental forms of the
local geometry. However, their PUGeo-Net needs additional super-
vision in the form of normals. The PU-GCN proposed by Qian et
al. [33] performed upsampling by leveraging on an Inception based
module to extract multi-scale information, and using a GCN-based
upsampling module to capture local point information. This has
the main advantage of not needing for additional annotations, like
edges, normals, point clouds at intermediate resolutions, etc., while
also avoiding the use of a sophisticated discriminator.

Recently, more and more works shifted the attention towards
4D reconstruction, where a sequence of 3D objects is reconstructed
from time-varying point clouds given as inputs [18, 28].

In the Occupancy Network (ONet) proposed by Mescheder et
al. [27], a 3D object was described using a continuous function that
indicates which sub-sets of the 3D space the object occupies, and
an iso-surface retrieved by employing the Marching Cube algo-
rithm. Tang et al. [37] learned a temporal evolution of the 3D hu-
man shape through spatially continuous transformation functions
among cross-frame occupancy fields. To this end, they established,
in parallel, the dense correspondence between predicted occupancy
fields at different time steps via explicitly learning continuous dis-
placement vector fields from spatio-temporal shape representations.
Niemeyer et al. [29] introduced a learning-based framework for
object reconstruction directly from 4D data without predefined
templates. The proposed OFlow method calculates the integral of a
motion field of 3D points in a 3D point cloud specified in space and
time to implicitly represent trajectories of all the points in dense
correspondences between occupancy fields. Vu et al. [39] proposed
a network architecture, called RFNet-4D, that jointly reconstructs
objects and their motion flows from 4D point clouds. It is shown
that jointly learning spatial and temporal features from a sequence
of point clouds can leverage individual tasks, leading to improved
overall performance. To this end, a temporal vector field learning
module using unsupervised learning approach for flow estimation
was designed that, in turn, leveraged by supervised learning of spa-
tial structures for object reconstruction. Jiang et al. [15] introduced
a compositional representation that disentangles shape, initial state,
and motion for a 3D object that deforms over a temporal interval.
Each component is represented by a latent code via a trained en-
coder. A neural Ordinary Differential Equation (ODE) is used to
model the motion: it is trained to update the initial state condi-
tioned on the learned motion code, while a decoder takes the shape
code and the updated state code to reconstruct the 3D model at
each time stamp. An Identity Exchange Training (IET) strategy is
also proposed to encourage the network to learn decoupling each
component. With respect to the above solutions, our approach is
characterized by a specific design that combines two GCNs to work
in an adversarial setting. The resulting architecture proved to be
flexible in the number of frames used as inputs and conjugated
effective reconstructions with inference times that are compatible
with online execution.
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3 PROPOSED METHOD
3.1 Problem statement
We consider a sequence of point clouds in the 3D space. Each point
cloud can be regarded as a frame of a 4D video at time 𝑡 . In the
following, we consider 𝑛 point cloud frames fused together form-
ing a time varying point cloud as an unordered lists of {𝑥,𝑦, 𝑧, 𝑡}
points. Our task is to upscale, a term borrowed from the 2D image
super-resolution domain, each of the point cloud (frame) of the
input sequence 𝐹𝑡 and get a more detailed one by leveraging the
information of the previous 𝑛−1 low-resolution point cloud frames
(i.e., 𝐹𝑡−1, . . . , 𝐹𝑡−𝑛+1).

More in detail, given a buffer composed of 𝑛 previous frames,
the input point cloud 𝑃𝑖 is defined as:

𝑃𝑖 = {𝑝−𝑛+1, 𝑝−𝑛+2, ..., 𝑝0}; 𝑃𝑖 ∈ R4×𝐿×𝑛, (1)

where each low-resolution point cloud 𝑝𝑖 is composed of 𝐿 points:

𝑝𝑖 ∈ R4×𝐿 . (2)

We are interested in learning amap 𝑓 (𝑃𝑖 , 𝜃 ) from 𝑃𝑖 → 𝑃𝑇 , where
𝑃𝑇 is the target point cloud and it represents the zeroth frame
upscaled to have 𝐻 = 𝑆 × 𝐿 ×𝑛 points, with 𝑆 being the scale factor :

𝑃𝑇 ∈ R3×𝐻 . (3)

We note the target frame has just the three spatial components
{𝑥,𝑦, 𝑧}. Our proposedmethodmakes use ofmessage passing Graph
Networks, different neighbourhood sampling techniques and Gener-
ative Adversarial training. More in detail, our architecture has been
developed starting from [32]. The employed architecture works on
unordered lists of {𝑥,𝑦, 𝑧, 𝑡} points, representing the last 𝑛 frames
fused together, using two GCNs in an adversarial setting. The dis-
criminator is based on [32], while the generator improves on the
same architecture. In particular, we used different neighbors sam-
pling techniques that were developed with the intent of collecting,
for each point, features contemporaneously of its immediate neigh-
borhood and also from furthest vertices of the whole point cloud
without making the computation too expensive. The fully convo-
lutional nature of our generator network allows us to potentially
train and test at different input and output resolutions.

3.2 Edge Convolution and GAT
The basic module composing our generator network is made of
the combination of Edge Convolution [43] and GAT [38]. The Edge
Convolution allows us to perform message passing over a dynamic
graph in which the edges are updated as the point cloud changes.
The GAT side is used to perform an attentional aggregation over
the features collected from the dynamic local neighbourhood. This
is in contrast with much more common choices for aggregation
such as𝑚𝑎𝑥 or 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 . We refer to this combination module as
Edge Convolution with Attention.

3.3 Parallel Double Sampling (PDS) module
The core of the generator side of the architecture is the Parallel
Double Sampling (PDS) module that performs two different graph
convolutions using two different sets of sampled points. A simplified
illustration of this module is presented in Figure 3. For each point,

two sets of operations are performed in a parallel fashion. The first
set, is a pipeline composed of:

• Radius filtering: For each vertex, a filtering step leaves
as neighbors, with the capability of passing messages, only
those vertices that belong to a sphere of radius 𝑟 , centered
on the vertex;

• Furthest Point Subsampling: We used the Furthest Point
Subsampling (FPS) algorithm in [32] to sample temporarily,
a fraction 𝑠 of the original points that are the farthest away,
inside the radius, from a starting point;

• Convolution: Graph convolution is applied over the remain-
ing vertices, independently of their number, and their
features are aggregated.

The second set of operations, performed in parallel to the first one,
is composed of:

• K-NN: A fixed number of 𝑘 closest vertices is selected as
neighbors;

• Convolution: Graph convolution is applied over the ver-
tices, and their aggregated features.

Finally, the two sets of features are concatenated and fed to a linear
layer that maps 2 ×𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑖𝑛 → 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑜𝑢𝑡 .

Ball Query
EdgeConv

KNN
EdgeConv

MLP

Parallel Double Sampling

Figure 3: Schematic representation of the proposed Parallel
Double Sampling (PDS) module.

3.4 Our Architecture
The proposed architecture is composed of twoGraphGCNsworking
in an adversarial setting [8]. It is illustrated in the bottom of Figure 4.
Basically, the point cloud given as input is processed as a graph
using message passing based convolution.

3.5 Discriminator
The discriminator is inspired by the PointNet++ architecture [32],
since it also targets a classification task. We used the same structure
that progressively reduces the number of points using max-pooling
operations and finally a sequence of linear layers before the output
as shown in the bottom part of Figure 4.

3.6 Generator
The generator side of the model is instead built as an initial se-
quence of Edge Convolution with Attention modules followed by
our Parallel Double Sampling (PDS) module. It is also inspired by
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the PointNet++ architecture [32] but undergoing major changes as
detailed in Section 3.3. In the upper part of Figure 4, a simplified
visualization of the PDS generator is presented. The generator is
composed of multiple Graph Convolutions with Attention followed
by a single PDS. The intuition behind this choice is to collect vari-
ous features for each node, using different neighborhood sampling
techniques. Once the original node has been enriched with the local
features, the PDS will use them to generate multiple new vertices
according to the scale factor. Finally, this new vertices position is
summed with the closest one that originated it, in a sort of residual
fashion (see Figure 1).

The generator loss 𝐿𝐺 is composed of an adversarial component
𝐿𝐴𝑑𝑣 coming from the Discriminator, a full reference reconstruction
loss computed as the Chamfer distance (𝐿𝐶𝑑𝑖𝑠𝑡

) between the restored
point cloud and the original one, and an additional Density loss
𝐿𝐷𝑛𝑡 . We used the LSGAN from [24] loss for our training, which
assumes the form:

𝐿𝐴𝑑𝑣 = min
𝐺

𝐿 (𝐺) = 1
2
Ez∼𝑝z (z)

[
(𝐷 (𝐺 (z)) − 𝑐)2

]
, (4)

for the generator 𝐺 , and:

min
𝐷

𝐿 (𝐷) = 1
2
Ex∼𝑝𝑑𝑎𝑡𝑎 (x)

[
(𝐷 (x) − 𝑏)2

]
+ (5)

+1
2
Ez∼𝑝z (z)

[
(𝐷 (𝐺 (z)) − 𝑎)2

]
, (6)

for the discriminator 𝐷 .

Graph Convolution
Message passing for 
neighbours features

Graph Convolution
New point generation from 
neighbours features

Graph Convolutional Network Generator

Graph Convolution
Message passing for 
neighbours features

M
axP

ool

Real

Fake

M
LP

Graph Convolutional Network Discriminator

Ball query

KNN

Figure 4: Schematic representation of the proposed GCN ar-
chitecture. Top: Generator architecture; Bottom: Discrimina-
tor architecture.

3.7 Loss functions
The model is trained end-to-end using multiple losses. Beside the
adversarial component 𝐿𝐴𝑑𝑣 , we also computed the point-to-set
Chamfer distance, 𝐿𝐶𝑑𝑖𝑠𝑡

, between the reconstructed point cloud
and the target one and, similarly to [44], we take into account the

neighbourhood of each point. That is, for each reconstructed point
𝑝𝑟 ∈ 𝑃𝑟 , we find the closest point 𝑝𝑡 ∈ 𝑃𝑡 in the target point cloud,
and compute both the distance between them and the difference in
terms of local neighbors:

𝐿𝐶𝑑𝑖𝑠𝑡
(𝑃𝑟 , 𝑃𝑡 ) =

∑︁
𝑟 ∈𝑃𝑟

min
𝑡 ∈𝑃𝑡

| |𝑟 − 𝑡 | |22 +
∑︁
𝑡 ∈𝑃𝑡

min
𝑟 ∈𝑃𝑟

| |𝑟 − 𝑡 | |22 . (7)

We define a vertex 𝑝 neighbourhood density 𝐷𝑛𝑡 (𝑝) as the nor-
malized sum of its neighbours in a given radius:

𝐷𝑛𝑡 (𝑝 ∈ 𝑃) = 1
𝑁𝑚𝑎𝑥

∑︁
𝑛∈𝐵𝑎𝑙𝑙𝑝

1, (8)

𝐿𝐷𝑛𝑡 (𝑃𝑟 , 𝑃𝑡 ) =
∑︁
𝑟 ∈𝑃𝑟

min
𝑡 ∈𝑃𝑡

| |𝐷𝑛𝑡 (𝑟 ) − 𝐷𝑛𝑡 (𝑡) | |22 + (9)

+
∑︁
𝑡 ∈𝑃𝑡

min
𝑟 ∈𝑃𝑟

| |𝐷𝑛𝑡 (𝑟 ) − 𝐷𝑛𝑡 (𝑡) | |22 . (10)

The generator final loss is therefore given by:

𝐿𝐺 = 𝜆1𝐿𝐶𝑑𝑖𝑠𝑡
+ 𝜆2𝐿𝐷𝑛𝑡 + 𝜆3𝐿𝐴𝑑𝑣, (11)

where values for 𝜆𝑖 have been empirically determined (𝜆1 = 1.0, 𝜆2 =
0.5, 𝜆3 = 0.1).

4 EXPERIMENTS
The proposed solution for point clouds upscaling has been evaluated
in a comprehensive set of qualitative (Section 4.3) and quantitative
(Section 4.4) experiments. An ablation study aiming to evidence
the relevance of different components of our architecture is also
reported in Section 4.5.

4.1 Implementation details
Our model was implemented using the PyTorch Geometric (PyG)
library [6]. This library is specifically designed for Graph Neural
Networks. The two networks are implemented as twoMessage Pass-
ing Networks put in an adversarial setting. Both the Discriminator
and the Generator are optimized with Adam, using the standard
learning rate 𝑙𝑟 = 1𝑒−4 and betas 𝛽1 = 0.9, 𝛽2 = 0.999, using a
linear decaying scheduler that drops the learning rate to 1/10th
every 10 epochs. Other hyperparameters, such as the radii for the
Ball Query for the FPS sampling (𝑟𝑠𝑚𝑎𝑙𝑙 = 0.06, 𝑟𝑙𝑎𝑟𝑔𝑒 = 0.1) and
the number of neighbours for the KNN sampling (𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 = 9)
were empirically determined trough grid search.

4.1.1 Augmentation. The training data was augmented using dif-
ferent operations. Each sequence of input point clouds and its rela-
tive ground truth point cloud was randomly flipped along any of
its axes, per point random noise was added, and finally a random
scale along any axes was applied in a range between [0.9, 1.1]. As
a form of augmentation, we also exploited the fully convolutional
nature of the generator architecture; similar to the case of 2D image
super-resolution, where patches of the target high resolution image
are used in the training, we randomly feed a 3D slice of the video
instead of the full body. As a further form of augmentation during
training, a time inversion inside the sequence was also applied.
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Input Point Cloud Feature map 1 Feature map 2 Feature map 3

Figure 5: The top and bottom row show: (left) the point clouds of a three-frame input sequence with movements. Colors indicate
the movement of a point with respect to the previous frame; (right) different features obtained from subsequent edge graph
convolutional layers of the proposed architecture as a response to the three-frame sequence shown on the left. It can be noted
the response of layers seems to shift from spatial (feature map 1) to temporal (feature map 3) details.

4.2 Dataset
To evaluate our proposed solution, we used the Dynamic FAUST
(D-FAUST) dataset [2]. It contains animated meshes for 129 se-
quences of 10 human subjects (5 females and 5 males) with various
motions such as “shake hips”, “punching”, running on “spot”, or
“one leg jump”. In order to compare with other methods, we used
the train/test split proposed in [29]. For each sequence, at training
time, we randomly pick an index and then subsample the following
frames according to the model’s frame rate. We trained multiple
models at different frame rates. We also followed the evaluation
setup used in [29]. Specifically, for each evaluation, we carried out
two case studies: seen individuals but unseen motions (i.e., test sub-
jects were included in the training data but their motions were not
given in the training set); and unseen individuals but seen motions
(i.e., test subjects were found only in the test data but their motions
were seen in the training set).

4.3 Qualitative results
Some qualitative results of the proposed upscaling approach are
given in Figures 6 and 7. In Figure 6, the input low-resolution frame,
our reconstruction point cloud and the ground truth are given from
left to right. A second example is shown in Figure 7, where the input
frame, our reconstruction and the ground truth are compared both
in terms of point clouds (top) and in terms of mesh reconstruction
using the Poisson algorithm (bottom). Additional qualitative results
are given as videos in the supplementary material.

To give some insights on the behaviour of the network layers, we
inspected the response of the various convolutional layers given an
input point cloud, and visualized them. As an example, on the left of
Figure 5, three frames of an input point cloud are shown (the frames
are taken at three consecutive times, 𝑡0, 𝑡0 + 1 and 𝑡0 + 2). Points in
the clouds are colored to highlight their movement with respect to

the previous frame. On the right of Figure 5, instead, the response
features of different layers are visualized (the depth of the layers
increases from left to right). It is interesting to note as, similarly
to CNNs, depth correlates to complexity: The first convolutional
layers seem to have strong response for large physical parts of
the human subject, while the later ones focus more on time and
movement.

Figure 6: Left: Sample of a single frame from an input low
resolution point cloud with ∼512 vertices, Center: reconstruc-
tion obtained with our proposed solution; Right: Ground
truth point cloud.

4.4 Quantitative results
To measure the quality of the reconstructed point set, we applied
the standard Chamfer Distance (CD), a point-to-set metric, In doing
so, we follow the same protocol as reported in [39], where the CD
was used as a reconstruction metric for measuring the dissimilarity
between a point and a point set.
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Figure 7: Top: Point cloud visualization. Bottom: Mesh re-
construction using Poisson surface reconstruction from [16].
Left: Sample obtained from a single frame of an input low-
resolution point cloud with 1024 vertices; Center: Model re-
construction using our proposed approach; Right: Ground
truth point cloud.

4.4.1 Compared Methods. We compared our approach with re-
spect to six state-of-the-art solutions in the literature for 4D re-
construction from point cloud sequences, namely PSGN 4D, ONet
4D, OFlow, LPDC, 4DCR, and RFNet-4D. The PSGN 4D extends the
PSGN approach [5] to predict a 4D point cloud, i.e., the point cloud
trajectory instead of a single point set. The ONet 4D network is an
extension of ONet [27] to define the occupancy field in the spatio-
temporal domain by predicting occupancy values for points sample
in space and time. The OFlow network [29] assigns each 4D point an
occupancy value and a motion velocity vector and relies on the dif-
ferential equation to calculate the trajectory. The LPDC [37] learned
a temporal evolution of the 3D human shape through spatially con-
tinuous transformation functions among cross-frame occupancy
fields. The 4DCR solution [15] used a compositional representation
that disentangles shape, initial state, and motion for a 3D object that
deforms over a temporal interval. Finally, RFNet-4D [39] jointly
reconstructs objects and their motion flows from 4D point clouds.

4.4.2 Results. Tables 1 and 2 report results for our solution and
for the other methods as given in [39]. For our method (last line
in the tables), we used 3 frames for upscaling at 60fps with a scale
factor of ×4 starting from low-resolution point clouds composed of
1024 vertices. For the unseen individual and seen motion protocol in
Table 1, our approach achieved the second best score. From Table 2,
it can be observed that our method reached a reconstruction error of
similar magnitude with respect to the two best performing methods,
i.e., RFNet-4D and LPDC. It is worth noting that RFNet-4D obtained

the reported error using a larger number of input frames (i.e., 17
against 3 to 8 as used in our tests). It was not possible to test
the RFNet-4D with our setting because the code was not publicly
available.

Method Chamfer Distance ×10−3 ↓
PSGN-4D [5] 0.6877
ONet-4D [27] 0.7007
OFlow [29] 0.2741
4DCR [15] 0.2220
LPDC [37] 0.2188
RFNet-4D [39] 0.1594
Ours 0.1758

Table 1: Reconstruction accuracy for the unseen individuals
and seen motions protocol. We report the Chamfer distance
(lower is better). Results for the best and second best perform-
ing methods are given in bold and underlined, respectively.
Our approach scored the second best accuracy.

Method Chamfer Distance ×10−3 ↓
PSGN-4D [5] 0.6189
ONet-4D [27] 0.5921
OFlow [29] 0.1773
4DCR [15] 0.1667
LPDC [37] 0.1526
RFNet-4D [39] 0.1504
Ours 0.1638

Table 2: Reconstruction accuracy for the seen individuals and
unseen motions protocol. We report the Chamfer distance
(lower is better). Results for the best and second best perform-
ing methods are given in bold and underlined, respectively.
Our approach results in the third best performance.

In Table 3, we report the inference time, in seconds, for various
different configurations of our model. All the measurements cor-
respond to experiments executed on an Nvidia 2080Ti GPU. The
values reported in the table evidence that our approach can open
the way to real-time upscaling. As reported in [39], their method
used 17 inout frames to reconstruct an output frame, while our
range of frames is between 3 (for models using larger input point
clouds) and 8 (for smaller inputs) due to memory constraints at
training time.

4.5 Ablation Studies
In this section, we present ablation studies to verify different as-
pects in the design of our model. In particular, we verified each
of the introduced components in our architecture for 4D point
clouds reconstruction by comparing the percentage decrease of the
model when some particular features are removed. We performed
a first set of experiments by using a stream of input point clouds
at 60fps and with 256 points per frame; on this stream, we per-
formed upscaling from subsets of consecutive 3 frames, using an
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Method Input size Upscale × Inference time (s) ↓
Ours 1024 3 0.103
Ours 1024 2 0.089
Ours 512 4 0.046
Ours 512 2 0.039
Ours 256 8 0.034
Ours 256 4 0.030
LDPC [37] - - 0.44
Oflow [27] - - 0.95
RFNet-4D [39] - - 0.24

Table 3: Inference time for different configurations of our
model using a three-frame buffer. Every test was performed
on an Nvidia2080Ti. For the other models it must be noted
that they used a 17 frame input sequence to output a frame.

upscale factor of ×2. From Table 4, we can notice that by removing
individual components of our architecture, the performance of the
model significantly and consistently decreases. In particular, we
removed the attention aggregation module and we substituted it
with a more commonmean aggregation. We also ablated the impact
of the Density loss and the adversarial component.

Variant Chamfer ×10−3 ↓ % wrt F. Featured
No Attention 1.193 +3.11%
No Density Loss 1.226 +5.96%
No Adversarial Loss 1.213 +4.84%
Ours Fully Featured 1.157 -

Table 4: Ablation study for our model using 256 input points,
3 frames, 60fps, and upscale factor ×2.

In Table 5, we repeated the above ablation experiments using
a different setup. In this case, the frame rate is changed to 30fps,
the input resolution to 512 points per frame, and we performed
upscaling using a factor of ×4.

Variant Chamfer ×10−3 ↓ % wrt F. Featured
No Attention 0.5856 +2.82%
No Density Loss 0.6433 +12.95%
No Adversarial Loss 0.5930 +4.13%
Ours Fully Featured 0.5695 -

Table 5: Ablation study for our model using 512 input points,
3 frames, 30fps, and upscale factor ×4.

Also in this case, ablating the density loss term results into the
most significant decrease in the accuracy of the upscaled model. It
is also interesting to observe that, while the percentage increment
in the Chamfer distance when removing the attention layer and
the adversarial loss shows small differences between the two tables,
this is not the case for the density loss: removing this term has
a much larger impact on the results in Table 5 (∼ +13%) than in
Table 4 (∼ +6%).

4.5.1 Importance of the temporal information. A question that
arises with the proposed solution is the actual impact of having the
time buffer compared to using just the last point cloud as an input.
To compare these two solutions, we feed our model with the same
frame repeated 𝑛 times. In this way, we keep the comparison fair
by not changing the input size and the amount of starting points
but only the information contained within it. We refer to this setup
as Static Sequence, whilst we use the term Dynamic to refer the
proposed procedure that uses 𝑛 different frames. In Table 6, we
report some comparative results between the two ways of using
the frames in a sequence. It can be observed that there is useful
information in the time and movement of the cloud. Just like in a 2D
video, the same frame repeated 𝑛 times does not contain the same
amount of useful data for reconstruction as 𝑛 different subsequent
frames.

Sequence Input size Frms × Chamfer x 10−3 ↓
Static 256 3 4 2.876
Dynamic 256 3 4 1.109
Static 256 4 3 2.825
Dynamic 256 4 3 0.745
Static 512 3 2 1.851
Dynamic 512 3 2 0.677

Table 6: Ablation study for our model using the aforemen-
tioned sequences at different resolutions. It shows how the
dynamic approach performs consistently better than the
static one.

5 CONCLUSIONS
In this paper, we presented a fully convolutional graph-based ap-
proach for video point clouds upscaling using a novel and different
approach with respect to most of the state-of-the-art models. Our
proposed method is comparable with state-of-the-art solutions in
terms of upsampling performance using a lighter architecture al-
lowing the deployment on edge devices with limited computational
capabilities. As a possible future development could be the realease
as an update for older LiDAR devices or to allow faster 3D point
cloud streaming by only transmitting/sampling a subset of the orig-
inal points. While our method tackles the problem in a different
way bringing some advantages, it still has some limitations and
drawbacks:

• Training time and memory footprint. Not relying on an
encoder-decoder model implies having the whole point cloud
at every stage of the network in memory. This slows down
the training and limits the number of input frames;

• Results for the reconstruction accuracy are comparable with
those reported in the state-of-the-art, though a bit lower.
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