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Abstract—With the growing availability of large-scale datasets,
and the popularization of affordable storage and computational
capabilities, the energy consumed by AI is becoming a growing
concern. To address this issue, in recent years, studies have
focused on demonstrating how AI energy efficiency can be
improved by tuning the model training strategy. Nevertheless,
how modifications applied to datasets can impact the energy
consumption of AI is still an open question.

To fill this gap, in this exploratory study, we evaluate if data-
centric approaches can be utilized to improve AI energy effi-
ciency. To achieve our goal, we conduct an empirical experiment,
executed by considering 6 different AI algorithms, a dataset
comprising 5,574 data points, and two dataset modifications
(number of data points and number of features).

Our results show evidence that, by exclusively conducting
modifications on datasets, energy consumption can be drastically
reduced (up to 92.16%), often at the cost of a negligible or even
absent accuracy decline. As additional introductory results, we
demonstrate how, by exclusively changing the algorithm used,
energy savings up to two orders of magnitude can be achieved.

In conclusion, this exploratory investigation empirically
demonstrates the importance of applying data-centric techniques
to improve AI energy efficiency. Our results call for a research
agenda that focuses on data-centric techniques, to further enable
and democratize Green AI.

Index Terms—Energy Efficiency, Artificial Intelligence, Green
AI, Data-centric, Empirical Experiment

I. INTRODUCTION

We live in the era of artificial intelligence (AI): new intelli-

gent technologies are emerging every day to change people’s

lives. Many organizations identified the massive potential of

using intelligent solutions to create business value. Hence, in

the past years, the modus operandi is collecting as much data
as possible so that no opportunity is missed. Data science

teams are constantly looking for problems where AI can

be applied to existing data to train models that can provide

more personalized and optimized solutions to their operations

customers and operations [1].

Nevertheless, the energy consumption of developing AI ap-

plications is starting to be a concern. Previous studies observed

that AI-related tasks are particularly energy-greedy [2], [3].

In fact, since 2012, the amount of computing used for AI

training has been doubling every 3.4 months [4]. Controversy

has risen around particular machine learning models that have

been estimated to consume the energy equivalent of a trans-

American flight [5]. Hence, a new subfield is emerging to

make the development and application of AI technologies

environmentally sustainable: Green AI [6].
On a related note, the current research practice of collecting

massive amounts of data is not necessarily yielding better

results. Being able to collect high-quality data is more impor-

tant than collecting big data – a trend coined as Data-centric
AI1. Instead of creating learning techniques that squeeze every
bit of performance, data-centric AI focuses on leveraging

systematic, reliable, and efficient practices to collect high-

quality data.

Therefore, in this study, we conduct an exploratory empir-

ical study on the intersection of Green AI and Data-centric

AI. We investigate the potential impact of modifying datasets

to improve the energy consumption of training AI models. In

particular, we focus on machine learning, the branch of AI that

deals with the automatic generation of models based on sample

data – machine learning and AI are used interchangeably

throughout this paper. In addition to investigating the energy

impact of dataset modifications, we also analyze the inherent

trade-offs between energy consumption and performance when

reducing the size of the dataset – either in the number of

data points or features. Moreover, the analysis is performed

in six state-of-the-art machine learning models applied in the

detection of Spam messages.

Our results show that feature selection can reduce the energy

consumption of model training up to 76% while preserving

the performance of the model. The improvement in energy

efficiency is more impressive when reducing the number of

data points: up to 92% in the case of Random Forest. However,

in this case, it is not cost-free: the trade-off between energy and

performance needs to be considered. Finally, we also show that

KNN tends to be the most energy-efficient algorithm, while

ensemble classifiers tend to be the most energy greedy.

This paper provides insights to define the most relevant

and energy-efficient modifications of datasets used during

the development of the AI models while ensuring minimal

1Understanding Data-Centric AI: https://landing.ai/data-centric-ai/. Ac-
cessed 24th January 2022.
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accuracy loss. We argue that more research in Data-centric AI

will help more practitioners in developing green AI models.

To the best of our knowledge, this is the first study to

explore the potential of preprocessing data to reduce the energy

consumption of AI.

The entirety of our experimental scripts and results are made

available with an open-source license, to enable the indepen-

dent verification and replication of the results presented in this

study: https://github.com/GreenAIproject/ICT4S22.

The remainder of this paper is structured as follows. Sec-

tion II presents the related work on the energy consumption

of Artificial Intelligence models. Section III details the overall

approach and the study design. Section IV describes the

results of the experimentation according to the different dataset

modifications, and Section V presents the related discussion.

The threats to the validity of this study are thoroughly analyzed

in Section VI. Finally, Section VII documents our conclusions

and future work.

II. RELATED WORK

Previous work has addressed the energy consumption of

software systems across different domains, levels and ecosys-

tems. There is ongoing research investigating how different

frameworks [7], data structures [8], programming languages

[9], [10], and so on, affect the energy consumption of soft-

ware. The main outputs of the research in this field –– also

known as Green Software – aim at providing developers

with informed advice on how to design, develop, and deploy

their systems [11]–[16]. Some works have also attempted

at providing tools to help developers automatically improve

the energy efficiency of their code [17], [18]. Despite the

numerous contributions in this field, only a handful of studies

address the energy efficiency of AI-based systems [19].

While numerous studies focus on utilizing AI to address

sustainability concerns [20], [21], only a few investigate how

the sustainability of AI itself can be improved. Strubell et al.
provide a clear landscape that motivates a research agenda

in AI that considers their energy consumption [2]. They pin-

point concrete cases of energy-intensive AI applications and

compare the carbon emissions of training Natural Language

Processing (NLP) models to ordinary daily tasks – e.g., a car

commute or air travel. Their results showcase that training

a state-of-the-art NLP model can generate as much carbon as

five cars during their entire lifespan (including fuel). Although

our work also analyzes the energy consumption of training AI

models, we aim at identifying trade-off decisions that can be

generalized to other AI projects to reduce energy consumption.

In a similar direction, Schwartz et al. present the dichotomy
between Red AI and Green AI. While traditional (Red) AI
only aims to improve accuracy metrics, Green AI includes

computational cost as a performance metric. Green AI favors

the selection of algorithms that have comparable accuracy

while consuming less energy. In their work, Schwartz et al.
highlight the need for more research in the area of Green AI,

showcasing the exponential growth of computational power

required to train models over the past six years. Our work

follows their call for a new research agenda in AI that

brings energy consumption into the landscape of training an

AI model. However, we take a step further by empirically

investigating the potential of using data-centric over model-

centric approaches to enable Green AI.

More research has been calling for a new research agenda in

AI. Bender et al. [5] provide a list of high-level recommenda-
tion to mitigate the unprecedented growth in the size of state-

of-the-art NLP models. Recommendations include investing

resources to curate datasets and reflecting on the potential

risks entailed by models before developing them, to address

AI sustainability. A different work reported concrete numbers

on how the growth of AI is impacting the entire infrastructure

of datacenters which need to grow in bandwidth, data storage,

and power capacity [22]. While not focusing directly on AI

sustainability, in other studies, researchers investigated the

impact that utilizing smaller models [23] or down sampled

datasets [24] can have on accuracy. Our study paves the way

in directly addressing AI sustainability concerns by providing

empirical evidence on how dataset modifications can be used

to drastically save AI model training energy at a negligible

accuracy loss.

Martin et al. [25] focused on studying the energy consump-
tion of a specific machine learning algorithm, namely the Very

Fast Decision Tree (VFDT). The authors analyzed the energy

consumption of VFDT at the function level, investigating how

different parameters affect the energy consumption across all

functions of the training algorithm. Their results demonstrate

how function-level energy profiling can lead to improvements

of up to 70% in energy efficiency with minimal impact on

the accuracy of the algorithm. In our research, we consider

six different machine learning algorithms rather than a single

one, as pinpointed in Section III-D1. Besides, we investigate

for the first time if data-centric approaches can improve the

energy efficiency of machine learning algorithms.

Previous work has studied the impact of machine learning

algorithms in the context of mobile applications [26]. The

authors compare eight mobile implementations of well-known

training algorithms (e.g., k-Nearest Neighbor, Decision Trees,

etc.) in terms of accuracy and energy consumption. In sum,

the work shows that 1) energy consumption is often related

to the algorithmic complexity of the algorithms, and 2) to

achieve optimal energy efficiency practitioners ought to factor

in application-specific variables – e.g., whether the model

needs to be regularly updated. Our work differentiates by

1) focusing on general-purpose implementations of machine

learning algorithms rather than mobile-based ones and 2)

providing a thorough analysis of the impact of the input data

in the energy consumption of training a model.

Finally, a recent study analyzed the energy consumption

of using different deep learning frameworks – namely, Py-

Torch and TensorFlow [27]. Results suggest that TensorFlow

achieves better energy performance at the training stage,

while PyTorch is more energy-efficient at the inference stage.

Our work differs by approaching energy efficiency from a

data-centric perspective rather than a comparative analysis of
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different frameworks and libraries.

III. STUDY DESIGN AND EXECUTION

In this section we document the empirical experiment

executed for this study, in terms of goal (Section III-A), re-

search questions (Section III-B), study subject (Section III-C),

experimental procedure (Section III-D), and data analysis

(Section III-E).

A. Goal

The aim of this research is to conduct an investigation

into what influences the energy consumption of AI-based

systems. More formally, by utilizing the Goal-Question-Metric

approach [28], this objective can be described as follows:

Analyze the energy consumption of model training
For the purpose of identifying the impact
With respect to dataset modifications
From the viewpoint of software practitioners and researchers
In the context of artificial intelligence.

B. Research Questions

In order to achieve our goal, we address the following three

research questions (RQ):

RQ1 Do AI algorithms differ in terms of energy consump-
tion?

By answering this introductory research question, we aim at

understanding if AI algorithms impact differently the energy

consumption of their underlying hardware, and in the affirma-

tive case, the extent of this difference. The results gathered

for this first research question allow us to gain sufficient

knowledge on potential energy consumption difference of AI

algorithms through which the following research questions,

focusing on data-centric green AI, can be assessed.

RQ2 Does modifying the dataset impact the energy efficiency
of AI algorithms?

While RQ1 focuses on the potential difference in energy

consumption of algorithms, with RQ2 we explicitly focus

on data-centric green AI, i.e., if modifications of the dataset
used by the algorithms can impact their energy consumption.

Specifically, we split RQ2 into two sub-RQs to study the

potential impact of different facets of the dataset on the energy

consumption of AI algorithms:

RQ2.1 Does the size of the dataset impact the energy con-
sumption of AI algorithms?

RQ2.2 Does the number of features impact the energy con-
sumption of AI algorithms?

With RQ2.1 we aim at understanding if utilizing only a

portion of a dataset, instead of its entirety, can lead to a

significant energy consumption difference of AI algorithms.

Similarly, with RQ2.2, we study if varying the number of

features, i.e., the dimensionality of the dataset, can lead to

a significant energy consumption variation.

While improving the energy efficiency of AI algorithms is

at the core of our investigation, ensuring that energy efficiency

improvements do not drastically deteriorate the effectiveness

of AI algorithms, and hence defy their final purpose, is

paramount. In order to systematically address this concern with

our final research question, we investigate potential trade-offs

between energy efficiency and algorithm accuracy (in terms

of F1-score). This is expressed in RQ3 as follows:

RQ3 Can we improve the energy efficiency of AI algorithms
through a data-centric approach without compromising
their accuracy?

C. Experimental Subject

In order to answer our RQs, we consider as experimental

subject the SMS Spam Collection dataset [29]. The SMS
Spam Collection is a dataset of labeled SMS messages
collected for mobile phone spam research. The complete

dataset is made publicly available at the University of Cal-

ifornia Irvine Machine Learning Repository2 and comprises

5,574 text message instances, labeled either as legit (“ham”

label, 4,827 instances) or spam (“spam” label, 747 instances).

The dataset is also made available via the data science platform
Kaggle3, where it was downloaded over 86,8K times, and used

in more than 700 Jupiter notebook projects.

To preprocess our dataset, i.e., prepare the raw SMS Spam
Collection data for the subsequent “ham”/“spam” classi-
fication, we make use of widely adopted standard techniques.

Specifically, given that the SMS Spam Collection entails
a text classification problem, we use a method involving

term frequency–inverse document frequency (tf-idf), whereby

words are tokenized based on their appearance in the dataset,

and subsequently the term-frequency metric for each token

is calculated. To execute the tokenization and term-frequency

calculation, we utilize the standard implementation as provided

in the Python package scikit-learn 1.0.4 In total, the
dataset includes 8169 features (i.e., 8168 token occurrence

frequencies and a last feature corresponding to the length of

the SMS messages).

In order to train and test our models, we utilize a 70%/30%

train/test split. We do not allocate a portion of the dataset

for validation purposes since, as further discussed in the

threats to validity section (Section VI), model optimization

via hyperparameter tuning falls outside the scope of this

investigation.

D. Experimental Procedure

1) Experimental design: Our controlled empirical experi-
ment is characterized by a set of Dependent Variables (DV )
and Independent Variables (IV ). We design the experiment
as a set of treatments, i.e., “sub-experiments” considering
a specific combination of independent variable values.5 For

each sub-experiment, we exclusively vary one independent

2https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection. Accessed
3rd January 2022.
3https://www.kaggle.com/uciml/sms-spam-collection-dataset. Accessed 3rd

January 2022.
4https://scikit-learn.org/stable/modules/generated/sklearn.feature

extraction.text.TfidfTransformer.html. Accessed 5th January 2022.
5While independent variable values vary among sub-experiments, the same

set of dependent variables are collected for all sub-experiments.
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variable, while fixing all the other ones to a default level.

This allows us to independently study the potential impact

that each independent variable has on our dependent variables,

while allowing us to adopt a straightforward and transparent

research design.

In addition, to answer our research questions, we are

required to adopt a blocking factor, namely the factor AI
algorithm (IV1). This entails that our sub-experiments are

divided into different sets (or blocks), according to the specific

utilized AI algorithm.

More specifically, in order to answer RQ1, we consider the

entire experimental dataset by fixing the number of data points

(IV2) and the number of features (IV3) to their default level

(i.e., 100%), while exclusively varying the used AI algorithm

(IV3). This allows us to compare the energy consumption of

AI algorithms (DV1) in their “default” setting, i.e., without

carrying out any ad hoc manipulation of the original dataset.
To study the impact of dataset size (RQ2.1) instead, we

vary both the used AI algorithm (IV3) and the number of

data points (IV2), by keeping the number of features (IV3)

to its default value. This allows to study the impact that

the number of data points, i.e., the size of the dataset, has

on the energy consumption of each algorithm (DV1), while

avoiding potential variation of experimental measurements due

to different numbers of features.

Similarly, to answer (RQ2.2), we vary the used AI algo-

rithm (IV1) and the number of features (IV3), while fixing

the number of used data points (IV2) to its default value. This

enables us to investigate the potential impact that the number

of features has on the execution of AI algorithms (DV1), while

avoiding the potential impact on energy consumption due to

variations of the number of data points.

Finally, to answer (RQ3), we apply both experimental

techniques employed to answer RQ2, i.e., we vary AI al-

gorithms (IV1) and alternatively either the number of data

points (IV2) or number of features (IV3), while fixing the

other independent variable (IV3 or IV2) to its default value.

This approach allows us to study independently the impact that

the number of data point and the number of features have on

accuracy (DV2), while also enabling us to consider the data

collected for RQ2 to systematically answer this last RQ.

To ensure we gather statistically significant data, and to

mitigate potential threats to internal validity, we repeat the

execution of each sub-experiment 30 times. In addition, to

mitigate the impact of potential confounding factors (e.g., an

unnoticed execution of a background process affecting our

energy measurements), rather than simply repeating sequen-

tially the 30 executions of a sub-experiment, we shuffle the

executions of sub-experiments uniformly at random.

An additional confounding factor may arise from the tem-

perature of the utilized hardware. To mitigate this threat, prior

to the execution of our experiment, we perform a dummy

CPU-intensive warm-up operation, carried out by calculating

a Fibonacci sequence for approximately 5 seconds, and hence

ensure that the hardware is not experiencing a “cold boot”

when the first execution is run.

Finally, to avoid the potential influence of subsequent runs

on our energy measurements, we introduce a sleep time equal

to 5 seconds between each run, to allow the hardware to cool

down, and execute all runs under the same initial hardware

conditions.

2) Experimental Variables: Our experiment is character-
ized by a total of 3 independent variables and 2 dependent

variables.

Independent Variables (IVs). The independent variables
of our experiment, i.e., the factors we adopt, and their cor-

responding values, are reported below. The default value of

each independent variable (see Section III-D1) is distinguished

with an under strike (except for the AI algorithm independent

variable, as it is our experimental blocking factor).

• AI Algorithm (IV1): Support-Vector Machine,
Decision Tree, Multinomial Naive Bayes,
K-Nearest Neighbour, Random Forest,
Adaptive Boost, Bagging Classifier.

• Number of data points (IV2): 10%, 20%, 30%, . . . ,
100% of the total number of data points. To select data
points, we adopt stratified sampling, and pick points of

our population uniformly at random from each stratum

(i.e., messages labeled as “spam” and “ham”).

• Number of features (IV3): 10%, 20%, 30%, . . . , 100%
of the total number of features. To select features, we

adopt the Chi-Square Test (Chi2) [30], to ensure that only

the most relevant features are considered for each level.

The set of AI algorithms (IV1) was chosen by considering

the most popular ones. We use the implementation provided

in the Python library scikit-learn6, which was used to
implement the algorithms for this study. The discretization step

size of the number of data points and features (10%) was in-

stead adopted to ensure sufficient granularity of results, while

guaranteeing an a-priori feasible number of experimental runs.
Dependent Variables (DVs). In terms of metrics used to

answer our research questions, i.e., our observed dependent

variables, we consider the following ones in our experiment:

• Energy consumption (DV1): the energy consumed by
the hardware on which the AI algorithms are executed,

measured in Joules (J);

• F1-score (DV2): Overall accuracy measure of the model,
defined as F1 = 2∗ P∗R

P+R , where P is the model precision,
and R the model recall.

The energy consumption (DV1), measured during the ex-

ecution of AI algorithms, is the dependent variable used to

answer RQ1 and RQ2. The F1-score (DV2) is instead adopted

to answer RQ3. The F1-score is chosen over precision (P ) and
recall (R) metrics, as it allows us to gain an encompassing
summary overview of the overall accuracy of AI algorithms,

while overcoming potential representation problems due to the

uneven distribution of labels present in the dataset used (see

Section III-C).

6https://scikit-learn.org/stable/whats new/v1.0.html#version-1-0-0.
Accessed 3rd January 2022.
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3) Experimental Setting: All sub-experiments are run on a
machine equipped with a 2.4GHz Quad-Core i5 processor and

16 GB 2133 MHz LPDDR3 of memory. The entirety of the

experiment and data analysis is implemented in Python 3.10.7

In order to measure energy consumption (DV1), we leverage

codecarbon8, a Python package allowing to estimate the
energy consumption of code running on Intel and AMD CPU

processors. All the AI algorithms (IV1) follow the implemen-

tation as provided in the Python package scikit-learn
1.0, and use the standard hyperparameters as defined in the

library.

In total, by considering the combination of independent

variables and sub-experiment repetitions, 3.6K experimental

runs are executed to gather data to answer our research

questions.

E. Data Analysis

In this section, we report the data analysis procedure that

we adopt to derive our results from the gathered data.

As a preliminary step, in order to assess if the energy

consumption (DV1) data we collected is normally distributed,

we carry out a visual normality assessment by means of

quantile-quantile (Q-Q) plot, followed by a Shapiro-Wilk

normality test. From the inspection of the generated Q-Q plot,

and the Shapiro-Wilk test result (W=0.52 and p-value=2.2e-

16), we can confidently conclude that the data collected is

not normally distributed. Hence, for each sub-experiment, we

sample the data gathered in the run reporting the median

energy consumption value. Subsequently, in order to evaluate

if a correlation exists between our dependent and independent

variables, we leverage the calculation of the one-tailed Spear-

man’s rank correlation coefficient (ρ). We adopt Spearman’s ρ
as it provides a non-parametric measure, and can be used to

calculate the potential correlation between our ordinal (IV1-

IV3) and continuous variables (DV1 and DV2). Finally, to pro-

vide further insights into our results, we calculate percentage

changes to summarize the difference in energy consumption

and F1-scores between different algorithms, number of data

points, and number of features.

IV. RESULTS

In this section, we report the results of our empirical

experimentation according to the research questions guiding

this study (see Section III-B).

A. Results RQ1: Energy Consumption Variability of AI Algo-
rithms

With our first research question, we aim at investigating

the potential difference between the energy consumption of

AI algorithms. An overview of the median consumption of

each AI algorithm, as measured in our empirical experiment,

is depicted in Figure 1.

7https://www.python.org/downloads/release/python-3100/. Accessed 3rd
January 2022.
8https://github.com/mlco2/codecarbon. Accessed 3rd January 2022.

Fig. 1. Median Energy Consumption of AI Algorithms

By inspecting Figure 1, we can immediately notice that the

energy consumption drastically varies among AI algorithms.

More specifically, Random Forest results to be the most

energy greedy algorithm, with a median energy consump-

tion of 1.98 Joules per run, followed by AdaBoost, which

nevertheless resulted to consume less than half (48.9%) of

the energy required by Random Forest. The most energy

efficient algorithm results to be KNN, which reports a median

energy consumption of 0.01 Joules, followed by Decision Tree,

which requires 0.12 Joules. By considering minimum and

maximum variation values, we note that energy consumption

varies between algorithms from a minimum decrease of 20%

(Bagging Classifier - SVM) up to a 99.49% decrease in energy

consumption (Random Forest - KNN).

B. Results RQ2: Impact of dataset modifications on energy
consumption

With RQ2, we aim at investigating if dataset modifications,

and more specifically the number of data points (RQ2.1) and

the number of features (RQ2.2), may have an impact on the

energy consumed by AI algorithms. An overview of the results

we collected for RQ2 are depicted in Figure 2, and are further

described below.

1) Results RQ2.1: Impact of the number of data points
on energy consumption: The first row of diagrams reported

in Figure 2 depicts the median energy consumption of each

algorithm at a varying number of data points (reported on

the x-axis). As we can intuitively notice from the linear

regression lines reported in the plots, the energy consumption

appears to be correlated with the number of data points.

This observation is confirmed by the Spearman’s rank corre-

lation coefficient values reported in Table I. By considering

the ρ values reported in Table I, we note that there is a
definitive positive correlation between the number of data

points and the energy consumption, of either strong nature

(i.e., 0.70 ≤ ρ ≤ 0.89 for KNN, Random Forest, Bagging

Classifier) or very strong nature (i.e., ρ ≥ 0.90 for SVM,
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Fig. 2. RQ2 results. Small multiples showing the energy consumption of the different algorithms when using different data points (first row) and when using
different numbers of features (second row).

TABLE I
CORRELATION ANALYSIS BETWEEN ENERGY CONSUMPTION (DV1) AND

NUMBER OF DATA POINT (IV2) OR NUMBER OF FEATURES (IV3)

Algorithm (IV1) Indep. Variable ρ p-value
SVM Num. data points (IV2) 0.95 7.16e-151
Decision Tree Num. data points (IV2) 0.92 9.58e-120
KNN Num. data points (IV2) 0.80 3.24e-68
Random Forest Num. data points (IV2) 0.87 4.25e-95
AdaBoost Num. data points (IV2) 0.91 6.64e-115
Bagging Classifier Num. data points (IV2) 0.87 3.07e-92
SVM Num. features (IV3) 0.69 3.09e-43
Decision Tree Num. features (IV3) 0.75 2.29e-56
KNN Num. features (IV3) 0.04 0.54
Random Forest Num. features (IV3) 0.64 2.02e-36
AdaBoost Num. features (IV3) 0.79 6.01e-66
Bagging Classifier Num. features (IV3) 0.76 4.54e-58

Decision Tree, and AdaBoost). The corresponding p-values

showcase that the identified correlations are with very low

probability due to chance.

By considering the energy reduction achieved by using

fewer data points, we notice that this independent variable

(IV2) influences the considered AI algorithms differently, and

can lead to a maximum energy reduction ranging from 61.72%

(KNN) up to 92.16% (Random Forest).

2) Results RQ2.2: Impact of the number of features on
energy consumption: The second row of diagrams reported in
Figure 2 depicts the energy consumption for each algorithm at

a varying number of features (reported on the x-axis). From
the distribution of median energy consumption values, and

the linear regression lines, the number of features and the

energy consumption appear to be correlated for most algo-

rithms. The relationship is confirmed by the Spearman’s rank

correlation coefficient values ρ reported in Table I. In com-
parison with the number of data points (see Section IV-B1),

the number of features results to possess an overall weaker

positive correlation with the energy consumption, while still

being either strongly (i.e., 0.70 ≤ ρ ≤ 0.89, for Decision
Tree, AdaBoost, Bagging Classifier) or moderately correlated

(0.40 ≤ ρ ≤ 0.69 for SVM and Random Forest). Interestingly,

varying the number of features does not noticeably affect the

energy consumed by KNN, by showcasing only a very weak

correlation (0.0 ≤ ρ ≤ 0.19), which was with high probability
dictated by chance (p-value=0.54).

For all algorithms other than KNN, the energy reduction

obtained by varying the number of features results to be lower

than the one obtainable by varying the number of data points,

while still being appreciable. As for the number of data points,

varying the number of features affects differently the energy

consumption of the considered AI algorithms. Interestingly,

for KNN, lowering the number of features leads in numerous

cases to a higher energy consumption w.r.t. the case of using

all features. In addition, the best energy efficiency achieved

by KNN by lowering the number of features results to be

only a 0.92% decrease. In comparison, the algorithm which

showcases the highest energy efficiency by varying the number

of features is AdaBoost, which achieves up to a 75.8% energy

reduction when compared to its baseline.

C. Results RQ3: Trade-offs between energy consumption and
accuracy

With RQ3, we aim at investigating if potential trade-offs

between AI energy efficiency and accuracy are possible. An

overview of the accuracy results, in terms of F1-score collected

via our empirical experiment, is reported in Figure 3. As

described in the figure, both by varying the number of data

points (IV2, first row of Figure 3) or the number of features

(IV3, second row of Figure 3) we generally do not observe a

notable F1-score decrease (reported on the y-axis, Figure 3),
with both numbers of data points and features not being

correlated to F1-scores.

More detailed insights into the correlation analysis are

provided by the Spearman’s rank correlation coefficient values

ρ reported in Table II. From the ρ values reported in the table,
we notice that, when considering the number of data points

as independent variable, most algorithms report only a very
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TABLE II
CORRELATION ANALYSIS BETWEEN F1-SCORE (DV2) AND NUMBER OF

DATA POINTS (IV2) OR NUMBER OF FEATURES (IV3)

Algorithm (IV1) Indep. Variable ρ p-value
SVM no datapoints -0.018 0.960
Decision Tree no datapoints 0.733 0.016
KNN no datapoints 0.661 0.038
Random Forest no datapoints 0.855 0.002
AdaBoost no datapoints -0.006 0.987
Bagging Classifier no datapoints 0.661 0.038
SVM no features N.D. N.D.
Decision Tree no features -0.042 0.907
KNN no features 0.954 1.788e-05
Random Forest no features 0.541 0.106
AdaBoost no features 0.585 0.075
Bagging Classifier no features 0.316 0.374

weak correlation with F1-scores (for SVM and AdaBoost) or

a moderate correlation (for KNN and Bagging Classifier). The

only exceptions are the algorithms Decision Tree and Random

Forest, both reporting a strong correlation between number of

data points and F1-score. The relative p-values indicate that

such correlation is statistically significant, i.e., w.h.p. not due

to chance.

When considering the correlation between number of fea-

tures and F1-score, a different picture emerges. In fact, from

the ρ values reported in Table II, we can observe for most
algorithms that the number of features is correlated to the F1-

score either via a very weak correlation (for Decision Tree and
Bagging Classifier), or a moderate one (for Random Forest and

AdaBoost). The ρ value is not definable (N.D.) for SVM, as
no variation is observed in F1-score values, i.e., the covariance

between number of features and F1-score is zero. Interestingly,

KNN is the only algorithm which reports a ρ value indicating
a very strong correlation between number of features and F1-

score. By inspecting the relative p-value, we can conclude that

such correlation is statistically significant.

V. DISCUSSION

This empirical experiment provides exploratory evidence

of the potential of using data preprocessing techniques to

reduce the energy consumption of AI. Below, we answer each

research question by analyzing the results of our experimenta-

tion. Several conclusions are drawn with regard to the energy

consumption of AI models and the impact of the input dataset

modifications.

A. Do AI algorithms differ in terms of energy consump-
tion? (RQ1)

Yes, different training algorithms yield considerably differ-

ent energy footprints. The algorithm with the least energy

consumption is KNN, using almost 200× less energy than

Random Forest. However, that does not necessarily mean

that KNN should always be chosen, as we prove later with

research questions RQ2 and RQ3. Nevertheless, the energy

consumption data collected with our experiment showcases the

importance of logging such information. Practitioners resort

to different performance metrics when selecting and tuning

models. In agreement with previous work [6], we argue that

practitioners will consider different models when they are

aware of these differences w.r.t. energy consumption. Hence,

selecting a machine learning model should be a trade-off

analysis encompassing not only accuracy metrics but also

energy metrics.

Random Forest, AdaBoost, and Bagging classifiers were the

most energy greedy algorithms. This is somehow expected

since they all belong to a class of algorithms known as ensem-
bles, which combine the results of training multiple classifiers
(a.k.a. weak learners) using slightly different parameters or

training datasets. In other words, the energy consumption

of ensembles is equivalent to training multiple models: it is

affected by the number of weak learners being used internally

and their individual energy consumption.

To make energy metrics available to machine learning

practitioners, we need better and more accessible ways of

measuring energy consumption. As seen in this study, collect-

ing energy consumption is not a trivial task. We need simple

techniques to approximate energy consumption. Although this

is out of the scope of this study, other studies suggest looking

at duration, CPU usage, or the number of floating point

operations [2], [31], [32]. Ideally, metrics could estimate

energy consumption before even training the models – i.e.,

by using static analysis approaches.

The experimental nature of machine learning can also

magnify the energy consumption reported in this paper. Prac-

titioners have to retrain their models several times before

converging to a final model. Previous studies have suggested

this to increase energy consumption by a factor of roughly

2000×: Strubell et al. [2] show that, while training one of their
natural language processing models has an electricity cost of

$5, the electricity cost of performing the full R&D required

to develop that model is estimated to be $9,870. Hence, small

improvements in energy efficiency in the early stages of the

pipeline can lead to large savings in the long run.

Main findings RQ1 (Algorithm Energy Consumption
Comparison): Different algorithms yield completely
different energy footprints. The difference goes up to
a 99.49% energy consumption decrease, with KNN
being the most energy-efficient algorithm, and Random
Forest Energy the least energy-efficient one. We ar-
gue that easy-to-use energy metrics are quintessential
when selecting the best model for a machine learning
project.

B. Does modifying the dataset impact the energy efficiency of
AI algorithms? (RQ2)

Yes, except for KNN, all algorithms yield less energy con-

sumption when we reduce the dimensionality of the dataset.

In other words, there is a positive correlation between the size

of the dataset and the measured energy consumption: using

fewer data leads to more energy efficiency. Improvements go

up to 92% when reducing the number of rows and up to
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Fig. 3. RQ3 results. Small multiples showing the F1-score of the different algorithms when using different data points (first row) and when using different
numbers of features (second row).

76% when reducing the number of features. Hence, instead

of collecting the biggest amount of data, we must aim for

smaller but meaningful datasets.

Our results demonstrate the importance of adding

data-centric Green AI as a key topic in the research agenda

of AI development. For example, recent work on core set

extraction (i.e., extracting the smallest subset that keeps the

key dataset properties) and dataset distillation have shown

promising results in AI applications [33]–[35]. We argue that

such strategies have a potential on Green AI that has been

overlooked in previous research.

Although this work focuses on the dimensionality of data,

it paves the way to study other properties of the input

data. For example, one can expect that the data types used

when loading the data into memory lead to different energy

footprints when training the model. However, this kind of

control is not fully supported by AI libraries/frameworks. For

example, the widely utilized library adopted for this study,

scikit-learn, automatically converts all data to floating-
point with 64 bits (as of version 0.24.2). Users have no way

of intervening in this data transformation. It is not yet known

whether using data types with unnecessarily high precision

can lead to unnecessary energy costs. We argue that this is

a missed opportunity in AI libraries. This is amplified if we

consider IoT systems, where small devices are used to collect,

process, and transmit data. Depending on the use case, these

devices may operate with different precision levels – e.g., 16

or 32 bits. Developers of AI libraries ought to reconsider some

design choices, to give back control to their users and enabling

further energy efficiency opportunities.

Based on our results, we foresee potential in studying

data-centric techniques to democratize Green AI. Several AI-

leading organizations are aiming to be carbon-free by 2030.

This requires massive investments in infrastructure and is far

from being a realistic norm for the rest of the AI industry.

For example, previous work on Green AI bring awareness to

the importance of using energy-efficient hardware, datacenters

in locations with better access to clean energy, etc. [3], [36].

While such measures are important, they might be inaccessible

to most practitioners and organizations that operate on tight

budgets. Our results show that, with very simple techniques

available to any AI practitioner, one can effectively reduce the

carbon footprint of developing AI models.

It is important to note that there is an energy consump-

tion overhead when we manipulate the number of rows and

columns. We did not factor in this overhead as we focus on

studying the impact of the dataset shape and not preprocessing

techniques. This is an important detail since machine learning

techniques such as cross-validation or parameter tuning will

require training the model multiple times with the same pre-

processed data. Nevertheless, assuming that each development

cycle executes model training and data preprocessing exactly

once, we observed an overhead revolving around 5% on

average. Moreover, most machine learning projects already

resort to data reshaping methods for other purposes beyond

energy efficiency. More research is needed to help practitioners

define trade-offs, but our results show evidence that, as a rule

of thumb, row sampling and feature selection should always

be considered.

Another remark relates to the fact that improvements in the

efficiency of AI are being followed by a massive increase

in the usage of AI-based systems – the so-called rebound

effect. This is also referred to in another fields as the Jevons

paradox [37], i.e, there is a correlation between the usage of

natural resources and the improvements in the efficiency of a

given technology. In particular, improvements in the energy

efficiency of AI are often targeted at leveraging more AI

models in contexts where energy resources are prohibitively

scarce – for example, AI-based apps for smartphone devices.

In these contexts, improvements on energy efficiency aim

at delivering more AI systems, failing to reduce the overall

carbon footprint of AI. We argue that our study is less prone

to this rebound effect, as it provides meaningful advice that

can be used by an AI project and lead to immediate savings on
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energy consumption. Nonetheless, we call for more research in

Green AI that investigates the rebound effects in this context.

Main findings RQ2 (Impact of dataset modifications
on energy consumption): Extracting smaller datasets
poses a great opportunity to reduce the energy con-
sumption of our machine learning models. Improve-
ments in energy efficiency go up to 92% when we
reduce the size of the dataset. Our results call for
more research on data-centric techniques to enable
and democratise Green AI and for AI frameworks to
give more control over how data is manipulated.

C. Can we improve the energy efficiency of AI algorithms
through a data-centric approach without compromising their
accuracy? (RQ3)

Yes, one can use data preprocessing techniques to improve

energy efficiency without compromising the accuracy of the

models. When reducing the number of features (IV3) in the

dataset, the trained models perform the same, in terms of

accuracy, while consuming less energy. In other words, we

prove that using more data does not always mean better

models, while it leads to energy efficiency improvements.

The exception to this rule is KNN, which shows a strong

positive correlation between the F1-score and the number of

features in the dataset. This observation gets more interesting

if we combine it with the results from RQ2, where we observe

that reducing the feature space does not yield any significant

energy improvement. Reducing the number of features not

only does not influence the energy efficiency of KNN, but

also hinders the performance score.

Using SVM did not produce a model with a F1-score above

0.6, denoting an overall very low accuracy of the generated

model relative to the other algorithms examined. A parameter

tuning strategy to accommodate the imbalance and sparsity

of our data could have yielded models with higher accuracy.

However, we did not delve into optimization strategies (see

Section VI for more details), since we wanted to compare

the energy consumption between different algorithms in a fair

and intuitive way. Hence, the energy improvements observed

for SVM in RQ2 require further scrutiny before drawing

generalizable conclusions.

Random Forest consistently yields the best performance.

Despite being the most energy-greedy algorithm, it trained the

most accurate model. Other algorithms, AdaBoost, Bagging

Classifier, and Decision Tree follow close behind, showing

competitive results. Nevertheless, it is not possible to fairly

say which algorithm is the best. Different algorithms may work

better with different problems. Once again, our observations

reiterate that energy metrics provide useful information when

selecting the best machine learning model, and are quintessen-

tial for AI development.

When it comes to the number of data points (IV2), Ad-

aBoost and Bagging Classifier yield no correlation between

the size of the dataset and F1-score, meaning that the energy

improvements shown earlier in RQ2 do not bring any cost in

the performance of the models.

For the remaining algorithms, the results are not as unani-

mous. Random Forest, Decision Tree, and KNN yield a posi-

tive correlation between cardinality and F1-score. This means

that, despite the benefits in energy consumption, reducing the

number of data points might prompt losses in the accuracy of

these models. Nevertheless, this is worth considering because

the models still showcase reasonable performance: with Deci-

sion Tree and Random Forest, F1-score drops less than 0.05

when we use at least 20% of the original dataset. Depending

on the use case, such a drop in F1-score might be appropriate.

Main findings RQ3 (Trade-offs between AI energy
consumption and accuracy): In the vast majority of
cases, decreasing the number of data points / features
drastically reduces energy consumption, while imply-
ing only a negligible accuracy deterioration (e.g., by
reducing features, Random Forest can achieve a maxi-
mum of 74.81% energy reduction at the cost of only a
0.06% F1-score reduction). However, this observation
does not hold for all algorithms. For example, feature
selection when using KNN has almost no impact on
energy consumption, while considerably reducing its
model performance (with a maximum of 0.92% energy
reduction, associated to a 98.05% F1-score loss).

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study,

by following the categorization provided by Wholin et al. [38].

A. Conclusion Validity

A threat to conclusion validity in our study could be

constituted by low statistical power of the tests used to answer

our RQs. To mitigate this threat, we systematically collected

and analyzed data by following a process defined a priori. By
considering the combination of factor, treatments, and reruns,

a total of 3.6K data samples were used to answer our RQ.

As a threat to the reliability of measures, unknown tasks run-

ning in the background during the execution of our experiment

may have acted as confounding factors, hence influencing our

energy measurements. To mitigate this threat, prior to the ex-

periment execution, we ensured that only the piece of software

necessary to run the experiment was running and/or able to be

executed. In addition, each experiment was repeated 30 times,

by shuffling the executions of sub-experiments uniformly at

random, to avoid that potential confounding factors could

influence only a specific set of sub-experiments.

B. Internal Validity

A threat to internal validity, related to history, could be

constituted in our experiment by the influence that executing

subsequent runs could have had on our measurements (e.g.,

due to hardware increasing temperature). To mitigate this
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threat, each experimental run was preceded by a 5-second

sleep operation, to allow all runs to be executed under identical

hardware conditions. Similarly, a warm-up operation was

performed to ensure the first run was executed under the same

conditions as the subsequent ones (see Section III-D1).

C. Construct Validity

A mono-method bias may have affected the results of

our study, as we utilized a single metric to measure energy

consumption (DV1, Section III-D2) and calculate algorithm

accuracy (DV2, Section III-D2).

Regarding energy consumption, we do not deem that adopt-

ing only energy consumption as dependent variable constitutes

per se a prominent threat in our experiment. In addition,

utilizing exclusively energy consumption measurements is

a common practice in the field of software energy effi-

ciency [15], [39]–[41]. However, relying on a specific tool

to estimate the energy consumption (namely CodeCarbon),
could have influenced the construct validity of our experiment.

To mitigate this threat, we ensured that the tool was made

available as an open-source project (hence allowing us to

independently scrutinize the appropriateness and correctness

of the implementation), and that the tool relied on a widely

used estimation method provided by a prominent technology

company – as we investigated, CodeCarbon uses the Intel®

Power Gadget9 tool under the hood.

Regarding accuracy, we adopted a single metric, namely

the F1-score. We chose this metrics over other ones, e.g.,

precision, recall, or logarithmic loss, as F1-score allowed us

to provide a summary and intuitive presentation of the overall

model accuracy via a single, well established, metric. To

further mitigate potential threats related to the adoption of the

F1-score, during the experiment execution, we also collected

measurements of precision and recall, that are made available

for scrutiny in the replication package of this study.

D. External Validity

A prominent threat to the external validity of our study is

posed by the adoption of a single experimental subject and

a subset of AI algorithms. To mitigate this threat, we chose

our experimental subject and independent variables to be as

representative as possible. Specifically, we selected a common

AI classification problem, namely text classification, selected

a widely utilized peer-reviewed dataset [29], and considered a

total of 6 different algorithms provided in the largely adopted

Python library scikit-learn.
As a further external validity threat, the experimental setup

of this study did not integrate all the life cycle stages of

AI models, as outlined by [42], and was limited to certain

aspects of the model training phase. This outlines the in vitro
nature of our empirical experiment, which focused on studying

data-centric approaches, and disregarded other aspects of AI

model training (e.g., hyperparamether tuning) which would

9https://www.intel.com/content/www/us/en/developer/articles/tool/
power-gadget.html. Accessed 28 January 2022.

have commonly appeared in an in vivo experimentation. The
narrow focus on energy consumption of data pre-processing

of our study is intentional. More specifically, this research

aimed at providing exploratory insights on the impact that AI

data-centric approaches can have to AI energy consumption,

and not how these approaches can be integrated in practice.

As a result, numerous performance-optimization techniques

common in a typical AI pipeline are excluded from our exper-

iments, e.g., hyperparameter tuning, dimensionality reduction,

and linear separability tests.

Albeit our best efforts, given the discussed threats to ex-

ternal validity, the results presented in this exploratory study

have to be considered only as promising introductory insights,

paving the way for future research on data-centric Green AI.

VII. CONCLUSION AND FUTURE WORK

With the popularization of large-scale datasets and afford-

able computational/storage capabilities, the energy consumed

by AI is experiencing an unprecedented growth, which can

no longer be neglected. With this study, we aim at exploring

Green AI from a novel angle. Specifically, we investigate if

modifying exclusively datasets, rather than the model training

strategies, can optimize AI energy efficiency. To achieve our

goal, we conduct an empirical experiment by considering 6 AI

algorithms, two dataset modification strategies, and a dataset

of over 5K data points.

The results we obtained provide the first empirical evidence

that not only data-centric strategies can be used to optimize

AI energy efficiency, but also that such techniques can lead

to a drastic energy consumption reduction. While AI accuracy

may be negatively impacted by data-centric strategies, we also

observed that in most cases such accuracy loss is negligible.

From a practitioner perspective, our results highlight the

high impact that dataset modifications have on AI energy

efficiency, demonstrating that often “designing for less” while

preprocessing a dataset can drastically reduce the energy

consumed, while not sacrificing accuracy.

For researchers, our results open a new area of inves-

tigation, namely data-centric Green AI, which, by consid-
ering the results documented in this research, demonstrates

very high potential to address the sustainability of AI-based

software-intensive systems.

As future work, we plan to generalize our results by

considering other AI application areas, e.g., image and audio

recognition, and by utilizing additional large-scale datasets.

Furthermore, we intend to investigate how other dataset mod-

ifications (e.g., data representations) may impact AI energy

efficiency and related accuracy. Finally, we aim to conduct

in vivo experiments on data-centric Green AI, in order to

investigate how data-centric techniques can be integrated in

real-world AI pipelines, and how combining data-centric with

other Green AI techniques (e.g., model training strategies) may

impact energy efficiency and accuracy of AI models.
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