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1 Introduction

The hadro-production of lepton-antilepton or lepton-antineutrino pairs, known, respectively,
as neutral current (NC) and charged current (CC) Drell-Yan (DY) processes [1], are crucial at
hadron colliders since they provide the environment for a precise study of the gauge sector of
the Standard Model (SM) of fundamental interactions. In particular, the NC DY is important
for the determination of the Z-boson mass and the effective weak mixing angle, and the
CC DY is important for the determination of the W -boson mass. These three electroweak
(EW) parameters are known at the moment with small relative errors, 0.01% for the boson
masses and 0.1% for the effective weak mixing angle [2–6], originating from a fitting procedure
between measured kinematical distributions and generated theoretical templates [7–11].

Due to highly precise experimental data, the control on the precision of these parameters
forces the theoretical predictions to involve higher-order perturbative corrections. Next-to-
leading-order (NLO) [12] and next-to-next-to-leading-order (NNLO) [13, 14] QCD corrections
to the total production cross section of a Z or W boson have been computed more than
30 years ago. The inclusion of the following order in the strong coupling constant αs, the
next-to-next-to-next-to-leading-order (N3LO), has been recently completed for the inclusive
production of a virtual photon [15], a W [16], and a Z boson [17]. The NNLO QCD corrections
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have been implemented at the fully differential level in [18–22]. Fiducial cross sections for
the NC DY and CC DY processes at N3LO QCD have been computed in [23–26]. Finally,
more exclusive observables, as the di-lepton rapidity distribution and the transverse mass and
charge asymmetry, have been computed to third order in QCD in [27] and [28], respectively.
The resummation of logharithmically enhanced terms near the production threshold has
been considered in [29–37]. NLO EW corrections are known both for W [38–42], and for
Z production [43–47].

The combination of NLO QCD and EW results with QCD and QED Parton Showers,
has been presented in [48–52]. At the required level of accuracy, NNLO mixed QCD×EW
corrections are also relevant in particular for kinematical distributions [7].

For on-shell inclusive Z production, the NNLO QCD×QED corrections have been
calculated in [53]. Exclusive on-shell Z-boson production has been considered in [54] and
in [55]. The complete NNLO mixed QCD×EW corrections to the total cross section of
production of an on-shell Z boson have been presented in [56–59], while in [60] and [61]
the same corrections have been evaluated differentially in the final-state leptonic variables
for on-shell Z and W production respectively.

Mixed QCD×EW corrections at the W or Z resonances has been evaluated in pole
approximation in [62, 63]. In [64] the gauge-invariant set of corrections that include a closed
fermionic loop, at O(nFαsα), with α the fine-structure constant and nF the number of
active flavors, were evaluated for off-shell Z and W production. In the case of NC DY,
recently, differential distributions and the forward-backward asymmetry have been evaluated
in pole approximation in [65].

The complete set of NNLO QCD×EW corrections to the NC DY process pp → ℓ+ℓ− +X

is available and has been presented in [66], for massive leptons, and in [67] for massless leptons.
The calculation in [66] is based on the exact two-loop amplitudes presented in [68], evaluated
through the reduction to the master integrals [69] and a semi-analytical implementation of
the differential equations method for their calculation [70–72]. The IR singularities have been
treated in the qT subtraction formalism [73, 74], implemented in the MATRIX framework [75].
The calculation in [67] is based on the exact amplitudes presented in [76] expressed in terms
of master integrals evaluated in analytic polylogarithmic form [77, 78].

For the CC DY process pp → ℓνℓ + X, the mixed QCD×EW corrections have been
computed in [79], in the case of massive lepton, with approximated two-loop virtual corrections.
While the full set of double-real and real-virtual contributions due to initial and final state
radiation have been included in the analysis in exact form, the finite part of the two-loop
virtual amplitudes has been evaluated in pole approximation. Large mixed QCD×EW
effects might develop in the large lepton-pair transverse/invariant mass limit, where the pole
approximation is expected to become less accurate, and are relevant for new physics searches.
In this paper, we calculate the virtual two-loop amplitude at O(αsα) exactly. Final-state
collinear divergences are regularized by the finite mass of the final-state lepton. We keep the
exact dependence on the masses of the vector bosons and we find expressions that are valid in
the whole physical phase-space. In section 2, we provide the framework of our computation,
with the description of the ultraviolet (UV) renormalisation procedure. In section 3, the
details of the computation are presented, from the amplitude level up to the renormalised
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matrix elements. In section 4, the infrared (IR) subtraction procedure is discussed and we
describe how we obtain the UV renormalised IR subtracted finite remainder. In section 5
we present our numerical results. Finally, in section 6 we draw our conclusions. The
unrenormalised matrix elements in terms of master integrals are provided as supplementary
material. Appendix A gives the reader the information needed to make use of the files.

2 Framework of the calculation

2.1 The process

The process under study is the production of a lepton-neutrino pair in quark-antiquark
annihilation

u(p1) + d̄(p2) → νℓ(p3) + ℓ+(p4) . (2.1)

We consider the two-loop mixed QCD-EW corrections to this reaction,1 with explicit results
for massless initial-state quarks. This partonic process has a bare amplitude,2 which admits
a perturbative expansion in the two coupling constants

|M̂⟩ = |M̂(0)⟩ +
(
α̂s

4π

)
|M̂(1,0)⟩ +

ˆ(
α

4π

)
|M̂(0,1)⟩ +

(
α̂s

4π

) ˆ(
α

4π

)
|M̂(1,1)⟩ + · · · (2.2)

We compute the interference terms:3

⟨M̂(0)|M̂(1,0)⟩ , ⟨M̂(0)|M̂(0,1)⟩ , ⟨M̂(0)|M̂(1,1)⟩ , (2.3)

which contribute to the unpolarised squared matrix element of the process in eq. (2.1), at
O(ααs). The virtual corrections to any scattering process amplitude are in general affected
by singularities of UV and IR type, which we regularise working in d = 4 − 2ε space-time
dimensions. We apply the integration-by-parts (IBP) [80, 81] and Lorentz invariance (LI) [82]
identities to reduce all the scalar Feynman integrals appearing in the interference terms (2.3)
to a limited set, the so-called Master Integrals (MIs). The final expression can then be cast as
the sum of the MIs multiplied by their associated coefficients. The latter depend, as rational
functions, on the kinematical invariants of the process, the masses of the internal particles
exchanged in the Feynman diagrams, and the dimensional regularization parameter ε.

The d-dimensional nature of an EW computation performed in dimensional regularisation
requires the extension to d dimensions of the inherently 4-dimensional object γ5. In this work
we follow the same strategy outlined in [68], preserving the anti-commutation proprieties of
γ5 in a fixed-point prescription. We refer the reader to [68] for more details on the procedure.

The cancellation of the UV divergences follows according to a standard renormalisation
procedure. The resulting amplitudes are expressed in terms of renormalised parameters, in
turn related to measurable quantities. The IR divergences have a universal structure, arising

1The production of the ℓ−ν̄ℓ final state can be obtained with a fully analogous calculation, or, assuming
CP invariance, from the amplitude for the positively charged final state, with appropriate transformations of
the external momenta.

2We denote by hat the bare quantities.
3We do not discuss the interference term ⟨M̂(0,1)|M̂(1,0)⟩, also contributing at O(ααs) , which can be easily

obtained with any NLO amplitude generator.
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from the behavior of the amplitudes in the soft and/or collinear limit. The universality of
the divergent factors has been discussed at length in the literature and allows us to prepare a
subtraction term, which is independent of the details of the full two-loop calculation, and
depends only on the lower order amplitudes. We exploit the universality property to check
the consistency of our computation, for the prescription related to the Dirac γ5 matrix.
We write the UV-renormalised amplitude as a Laurent expansion in ε. We have, at one-
and two-loop level respectively:

⟨M(0)|M(0,1)⟩ =
2∑

i=−2
εiC

(0,1)
i (s, t, µW , µZ ,mℓ) , (2.4)

⟨M(0)|M(1,0)⟩ =
2∑

i=−2
εiC

(1,0)
i (s, t, µW , µZ ,mℓ) , (2.5)

and

⟨M(0)|M(1,1)⟩ =
0∑

i=−4
εiC

(1,1)
i (s, t, µW , µZ ,mℓ) . (2.6)

In eq. (2.6) only terms up to ε0 have been kept, because we are interested in the finite
contributions at NNLO only. The higher powers of ε would be relevant for higher-order
calculations. The lepton mass is labelled by ml. Given the mass and decay width MV , ΓV

of the gauge boson V (V = W,Z), we define µV as the position in the complex plane of
the pole of the boson propagator

µ2
V = M2

V − iMV ΓV . (2.7)

The Mandelstam variables are defined as:

s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2 with s + t + u = m2
l , (2.8)

while the on-shell conditions of the external particles are:

p2
1 = p2

2 = p2
3 = 0; p2

4 = m2
l ; (2.9)

The main result of this paper is the IR-subtracted expressions that can be obtained by the
combination of the two-loop coefficients C

(1,1)
i in eq. (2.6) with the universal subtraction

term. The latter is based on the availability of the Born and the one-loop matrix elements
in eqs. (2.4), (2.5).

2.2 Ultraviolet renormalisation

The NC DY process renormalisation, at O(ααs), has already been discussed in detail in [64, 68].
For the CC DY process we follow similar steps, that we summarize in this section.

2.2.1 Charge renormalisation

The SU(2)L and U(1)Y bare gauge couplings g0, g
′
0 and the Higgs doublet vacuum expectation

value v0 can be related, with appropriate counterterms, to their renormalised counterparts
g, g′, v. We link g, g′, v to a set of three measurable quantities: for instance Gµ, µW , µZ (which
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we dub Gµ-scheme, with Gµ the Fermi constant) or e, µW , µZ (which we dub α-scheme, with
α = e2/(4π) the fine structure constant and e the positron charge). The choice of the three
measurable quantities defines the so called input scheme. The relation between bare and
renormalised input parameters is

µ2
W0 = µ2

W + δµ2
W , µ2

Z0 = µ2
Z + δµ2

Z , e0 = e + δe . (2.10)

The on-shell electric charge counterterm δe at O(α2) and O(ααs) has been discussed in [83],
from the study of the Thomson scattering. The mass counterterms δµ2

W , δµ2
Z in the complex

mass scheme [84] have been presented in [64]. In terms of the transverse part of the
unrenormalised V V gauge boson self-energies, which are defined in [85], they are:

δµ2
V = ΣV V

T (µ2
V ) , (2.11)

at the pole in the complex plane q2 = µ2
V of the gauge boson propagator, with V = W,Z.

From the study of the muon-decay amplitude, we derive the following relation

Gµ√
2

= πα

2
µ2

Z

µ2
W (µ2

Z − µ2
W ) (1 + ∆r) . (2.12)

The finite correction ∆r has been introduced, with real gauge boson masses, in [86] and its
O(ααs) corrections were presented in [87, 88]. We evaluate it here with complex-valued masses.

We consider now the bare couplings which appear at tree-level in the interaction of
the photon and W boson with fermions. The UV divergent correction factors δg

Gµ

W and
δgα

W contribute to the charge renormalisation of the Wff̄ ′ vertex in the Gµ- and α-scheme,
respectively, as

g0 =
√

4
√

2Gµµ2
W

[
1 − 1

2∆r + δe

e
+ 1

2
µ2

W

µ2
Z − µ2

W

(
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

)]
(2.13)

≡
√

4
√

2Gµµ2
W

(
1 + δg

Gµ

W

)
(2.14)

and

g0 = e

√
µ2

Z

µ2
Z − µ2

W

[
1 + δe

e
+ 1

2
µ2

W

µ2
Z − µ2

W

(
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

)]
(2.15)

≡ e

√
µ2

Z

µ2
Z − µ2

W

(
1 + δgGα

W

)
. (2.16)

Working out the explicit expression of δgGµ

Z , the dependence on the electric charge counterterm
cancels out.

The counterterm contributions to the renormalised amplitude are obtained by replacing
the bare couplings in the lower order amplitudes with the expressions presented in eqs. (2.14)–
(2.16) and expanding δgW up to the relevant perturbative order. We show in the next section
how δgW enters in the renormalisation of the W boson propagators.
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2.2.2 Renormalisation of the gauge boson propagators

The renormalised gauge boson self-energies are obtained, at O(α), by combining the unrenor-
malised self-energy expressions with the mass and wave function counterterms. In the full
calculation, which includes the quark doublets of the three fermion families, we never introduce
wave function counterterms on the internal lines, because they would systematically cancel
against a corresponding factor stemming from the definition of the renormalised vertices. We
exploit instead the relation in the SM between the wave function and charge counterterms [85]
and we directly use the latter to define the renormalised self-energies. We obtain:

ΣW W
R,T (q2) = ΣW W

T (q2) − δµ2
W + 2 (q2 − µ2

W ) δgW , (2.17)

where ΣV V
R,T is the transverse part of the renormalised V V vector boson self-energy. The

charge counterterms have been defined in eqs. (2.14)–(2.16). At O(ααs) the structure of
these contributions does not change: the corrections to the gauge boson self-energies stem
from a quark loop with one internal gluon exchange and, in addition, from the O(αs) mass
renormalisation of the quark lines in the one-loop self-energies.

The expression of the two-loop Feynman integrals required for the evaluation of the
O(ααs) correction to the gauge boson propagators and all the needed counterterms can
be found in [64, 87, 88].

3 The UV-renormalised unsubtracted amplitude

3.1 Generation of the full amplitude and evaluation of the interference terms

Different kinds of Feynman diagrams contribute, at O(ααs), to the scattering amplitude, and
we compute them using the background field gauge (BFG) [89]. We present4 in figures 1 and 2
a few representative examples. The initial state two-loop vertex corrections (figure 1-(a)), are
combined with the two-loop external quark wave function corrections (figure 1-(b)) and with
the one-loop external quark wave function correction with initial-state QCD vertex correction
(figure 2-(f)). The combination yields an UV-finite, but still IR-divergent, result. We treat
as a separate subset the sum of two-loop W self-energy, together with the corresponding
two-loop mass counterterms and with the insertion of charge renormalisation constants in
the initial and final state vertices. Representative diagrams are shown in figures 1-(c),(d),(e).
The combination yields an UV- and IR-finite contribution. An example of a two-loop box
with the exchange of one W and one neutral EW boson is given in figure 1-(f). We remark
the absence of contributions from closed fermionic triangles, because of colour conservation.

The factorisable contributions are schematically represented in figures 2-(a),(f). They
all include, at O(ααs) , an initial-state QCD vertex correction. The second factor can
be, alternatively: the final-state EW vertex corrections, the external lepton wave function
correction, the one-loop W self-energy corrections, the one-loop W mass renormalisation
counterterms, the one-loop external quark wave function correction and the one-loop charge
renormalisation contributions. The properties of the BFG allow to identify UV-finite Feynman
diagrams combinations.

4The straight line with an arrow represents a fermion line (blue: quark, red: leptons), the wavy lines
represent EW gauge bosons (green: W , red: Z, black: photon) and the spiral coils represent gluons.
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Figure 1. Sample Feynman diagrams of two-loop corrections and associated two-loop counterterms.

Figure 2. Sample Feynman diagrams of factorisable corrections, including one-loop counterterm cor-
rections.

We follow a general procedure to compute the bare matrix elements up to two-loop
order. We generate the Feynman diagrams with two completely independent approaches, one
based on FeynArts [90] and a second one on QGRAF [91]. The in-house Mathematica
package ABISS has been used to perform the Lorentz and Dirac algebra and obtain the
interference between the virtual corrections and the Born amplitude. It has been compared
with the independent results of a second set of procedures written in FORM [92]. The large
number of scalar Feynman integrals appearing in the intermediate expressions is reduced
to a smaller set of MIs by means of IBP and LI identities. The reduction algorithms are
implemented in two independent in-house programs based on Kira [93] and LiteRed [94, 95].
We have cross-checked at one- and two-loop level the corresponding expressions, finding
perfect agreement. Additional technical details, common to the NC and CC DY processes,
are described in [68].

We retain the exact dependence on the lepton mass mℓ, both at the one- and two-loop
level, only in the diagrams where an internal photon couples to the final-state lepton, featuring
the complete set of contributions enhanced by log(m2

ℓ). The lepton mass regulates in this
case the final-state collinear divergences. These diagrams also yield a gauge-invariant subset
of terms proportional to m2

ℓ/µ
2
W , which are however phenomenologically negligible. In all the

other cases, we do not have final-state IR divergences, and therefore we can keep the lepton

– 7 –



J
H
E
P
0
7
(
2
0
2
4
)
2
6
5

massless. The use of this approximation reduces by one the number of independent mass scales
in the computation and thus its complexity, allowing for a faster evaluation of the amplitude.

3.2 Integral families and the representation of the result in terms of MIs

The scattering amplitude, after the computation of the interference terms, appears as a
sum of scalar Feynman integrals.

In order to classify all the integrals entering in our computation, we need 11 different
integral families. Among them, 7 can be defined exactly as the ones introduced in [68] for
the case of the NC DY process:

B0 : {D1,D2,D12,D1;1,D2;1,D1;12,D2;12,D1;3,D2;3}
B1 : {D1,D2,D12,D1;1,D2;1,D1;12,D12;2,D1;3,D2;3}

B11 : {D1,D2,D12 − µ2
V ,D1;1,D2;1,D1;12,D2;12,D1;3,D2;3}

B12 : {D1,D2,D12,D1;1 − µ2
V ,D2;1,D1;12,D2;12,D1;3,D2;3}

B13 : {D1,D2,D12 − µ2
V ,D1;1,D2;1,D1;12,D12;2,D1;3,D2;3}

B14 : {D1,D2 − µ2
V ,D12,D1;1,D2;1,D1;12,D2;12,D1;3,D2;3}

B18 : {D1,D2,D12,D1;1,D2;1,D1;12,D2;12,D1;3 − µ2
V ,D2;3 − µ2

V } , (3.1)

where V can be either Z or W , and we have defined the denominators D as follows:

Di = k2
i ,Dij = (ki −kj)2,Di;j = (ki −pj)2,Di;jl = (ki −pj −pl)2,Dij;l = (ki −kj −pl)2 (3.2)

The remaining 4 integral families only appear for the case of CC DY:

B̃14 : {D1,D2 − µ2
V ,D12,D1;1,D2;1,D1;12,D2;12,D1;3,D2;3 −m2

ℓ}
B̃14p : {D1,D2 − µ2

V ,D12,D1;2,D2;2,D1;12,D2;12,D1;3,D2;3 −m2
ℓ}

B̃16 : {D1,D2 − µ2
V1 ,D12,D1;1,D2;1,D1;12,D2;12 − µ2

V2 ,D1;3,D2;3}
B̃16p : {D1,D2 − µ2

V1 ,D12,D1;2,D2;2,D1;12,D2;12 − µ2
V2 ,D1;3,D2;3} , (3.3)

where V1 and V2 are two different vector bosons.
The integral families listed in eq. (3.3), despite being specific to the charged current

case, can also be seen as an extension of integral families already appearing in the neutral
current process, where the value of the masses in the propagators has been modified. In
particular, B̃16 describes box integrals with a W -Z exchange and is the natural extension
of B16, already introduced in [68] to describe the Z-Z and W -W box integrals. The latter
can in fact be obtained from B̃16 in the equal mass limit µV1 → µV , µV2 → µV . Similarly,
by considering a massless lepton, mℓ = 0, in the integral family B̃14, we retrieve the integral
family B14 listed in eq. (3.1).

In the NC DY case, we introduced the integral family B14 instead of the more general
B̃14 because the final state collinear singularities, like e.g. those stemming from the γ-Z boxes,
were cancelling between different contributions [96]. We were thus able to take the massless
limit for this subset of diagrams. The integral family B14 yields collinear poles in dimensional
regularization, while such singularities appear in B̃14 as lepton-mass logarithms.
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Figure 3. Master Integrals with two different internal masses, belonging to topology B̃16. Thin plane
lines represent massless particles. Thick and double lines represent massive particles. External dashed
lines indicate the Mandelstam invariant s.

After performing the reduction to MIs, the bare result can be cast in the following,
compact form:

⟨M̂(0)|M̂(1,1)⟩ =
274∑
k=1

ck(s, t, {mi}, ε)Ik(s, t, {mi}, ε) (3.4)

where ck are rational coefficients, functions of the kinematical invariants (s, t), the set of real
and complex masses {mi} and of the regularisation parameter ε, while Ik are the MIs.5 In
addition to the MIs employed for the NC DY, in the case of the CC DY we have to evaluate
two more sets. In figure 3 we show the additional MIs belonging to topology B̃16, that,
therefore, have two different masses in the propagators. In figure 4, instead, we show the MIs
of topology B̃14, that have two different masses in the propagators and a massive external leg.

3.3 Numerical evaluation of MIs via series expansions

The final step of the calculation consists in the numerical evaluation of the MIs. The
additional complication of the charged-current calculation, with respect to the neutral-current

5This intermediate result is provided as supplementary material attached to this paper.
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Figure 4. Master Integrals with two different masses, belonging to topology B̃14. Thin plane lines
represent massless particles. Thick and double lines represent massive particles. External dashed lines
indicate the Mandelstam invariant s.

one presented in [68], is given by the presence of the B̃14 and B̃16 topologies, that are two-loop
boxes with two internal (and one external in the case of B̃14), and different, massive lines.
In the case of B̃16, the analytical result for the equal masses case has been presented in [69]
in terms of Chen-iterated integrals and an analytical expression in terms of GPLs has been
found in [77]. However, for the different masses case, no analytical expressions are available in
the literature. We have opted to compute the integrals using the series expansion approach.

We have generated the differential equations using in-house Mathematica routines,
which rely on the external package LiteRed for computing the derivatives with respect to
kinematic invariants s and t and on the IBPs relations provided by Kira. The boundary
conditions for all the MIs have been computed in a point in the physical region by using
AMFlow [97], interfaced with Kira. Their numerical evaluation, up to 50 digits, requires
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∼ 4.5h on a laptop using 8 threads. Finally, we have solved the system of differential equations
in the Mandelstam variables s and t using the Mathematica package SeaSyde [72], that
allows us to consider complex-valued internal masses.

Since when combining the numerical values of the MIs with their rational coefficients
big numerical cancellations can occur, it is extremely important to keep under control the
numerical precision of the evaluation of the MIs. Within SeaSyde, we have decided to keep
70 terms in the expansion in the kinematic invariants. The estimate for the relative error
provided by SeaSyde is, at worst, 10−14 in every point of the phase-space.6 In several points
of the phase-space we have performed a cross-check against AMFlow by computing the
MIs with 50 digits precision, finding agreement for the first 14 digits, in accordance to the
uncertainty estimated by SeaSyde. Cross-checks with analytical expressions, when available,
have been performed as-well, finding agreement.

Using SeaSyde we were able to generate a numerical grid in (
√
s, cos θ), consisting in

3250 points, as described in detail in section 5.1. The numerical evaluation of the complete
grid for all the topologies requires, in total, ∼ 3 weeks on a cluster with 26 cores. The most
complicated case is the two-loop box with two massive internal lines, for which we have to
solve a system with 56 equations. The calculation of its grid requires ∼ 10 days by itself.

3.3.1 Mass evolution

Finally, we have done a self-consistency check by exploiting the flexibility given by the
method of differential equations and the series expansion approach. We observe, indeed,
that in the limit of the two masses being equal, the B̃16 topology reduces to the B16 from
the neutral-current case. Hence, another way for computing a numerical grid for B̃16 is,
firstly, to create a numerical grid in (s, t) for B16 and, secondly, to write down the differential
equations w.r.t. one of the two masses to evolve B16 to B̃16. We have explicitly verified, for
different points in the phase-space, that the result obtained by evolving the equal masses
box in s and t and then in one of the two masses, is in agreement with the one obtained
by evolving directly the two-masses box in the Mandelstam variables s and t. The two
possibilities are schematically depicted in figure 5.

3.4 Additional comments on the numerical evaluation of MIs

In this work, our main objective is to pursue the automation of all the steps in the calculation of
virtual corrections, in particular, the numerical evaluation of the MIs. Within our framework,
all the steps are handled automatically (computing the differential equations, obtaining the
boundary conditions and solving the system) thus opening the door to more complicated
problems with the presence of a larger number of topologies.

However, this automation comes at a price. In [68], indeed, the computation of a
numerical grid for the B16 topology takes ∼ 12 hours. Even considering a factor 1.5/2 related
to the bigger size of the system (56 equations for B̃16 against 36 for B16), we are a factor
10/15 slower with respect to the case of NC DY. This big difference in time is mainly due
to the state of the system of differential equations. In the previous case, in fact, we have

6The error is estimated by considering the relative contribution of the last 3 terms in the series expansion
over the complete series, both evaluated at half the radius of convergence.
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(s, t) = (s0, t0)
BCs for B̃16

(s, t) = (s0, t0)
BCs for B16

evolve (s, t)

evolve (s, t)

evolve uppermass

grid for B16

grid for B̃16

Figure 5. The two possibilities for creating a numerical grid for the B̃16 topology. The first one,
represented by the blue line, is to get the BCs for B̃16 and then use the diff. eqs. w.r.t. s and t for
obtaining the final grid. The second one, indicated by the orange lines, is to obtain the BCs for B16,
use the diff. eqs. for creating a grid in s and t for B16 and, finally, use it as new BCs for evolving B16
to B̃16.

put a strong effort in simplifying the system by choosing a suitable change of basis to cast
the system in pre-canonical form. This simpler form of the system enormously speeds up
the computation. On the contrary, in this work, we have taken the MIs suggested by Kira
and we have blindly written down their differential equations. This means that, other than
standard algebraic simplifications, we have not performed any other optimization. Finding
a change of basis which simplifies the system of differential equations is indeed important.
However, it requires a big effort and a profound knowledge of the problem, while this blind
approach relies only on computational power.

A second comment applies to the possibility of using AMFlow for the evaluation of the
MIs in all the points of the phase-space. The evaluation of all the MIs takes ∼ 3h15m per
point, running on 8 cores and asking for a precision of 16 digits. By using the same setup as
the one used for SeaSyde, the complete run would approximately take 130 days.7

A final comment regards a severe limiting factor when working with numerical grids.
Usually, all the input parameters are fixed to their numerical values and they cannot be
modified without rerunning the final steps of the calculation. This requires a large amount of
time. The series expansion approach, however, can be exploited for providing, with limited
additional work, also the dependence on an additional variable e.g. δMW ≡ MW − M̄W ,
where M̄W is a reference value for the mass of the W boson. This can be done following
the idea of the mass evolution introduced in section 3.3.1. In particular, for each topology,
we use the grid in (s, t), that we already have with a reference value M̄W , as a boundary
condition, and we solve the differential equations w.r.t. MW around M̄W . By doing so, it
is possible to provide a grid in (s, t) where each point is a series in δMW . Moreover, since
the δMW we are interested in are of the order of 0.1 GeV at most, only a small number of
terms in the series is needed. Therefore, the solution can be computed in a small amount of
time. For illustration, the evaluation of the δMW dependence for the B̃16 topology, for all

7The run-times have been estimated by using the latest public versions of each code.
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3250 points, has taken ∼ 1.5 days, keeping 15 terms in the series. The difference between the
SeaSyde solution, evaluated in δMW = 0.1 GeV, and AMFlow is on the 13th significant
digit. This approach opens the possibility for implementing this kind of corrections in frontier
studies like, but not limited to, the W -boson mass determination.

4 Infrared singularities and universal pole structure

The bare result presented in eq. (3.4), thanks to the renormalisation procedure described in
section 2.2, is free of divergences of UV origin. Nevertheless, it still contains divergences of
IR origin, generated by the exchange of soft and/or collinear massless partons. While these
singularities are guaranteed to cancel in the computation of an IR-safe observable, where
the two-loop amplitude is combined with the corresponding real emission contributions, they
are expected to appear at intermediate stages of a calculation. Their presence requires the
development of techniques to systematically handle and subtract them in a consistent way
among the different contributions to an IR-safe observable.

At NLO, the Catani-Seymour dipole subtraction [98–100] and FKS subtraction [101]
are the two methods most widely used. In their complete generality, they can be applied to
any process and they have been implemented in automatic routines in several computational
frameworks. At NNLO several techniques have been proposed (see e.g. [102] and references
therein) but none of them can yet claim full generality. Regardless of the subtraction procedure,
the IR poles are removed from the virtual contribution by using a process-independent
subtraction operator. Such operators can in principle be different for each subtraction method
but, because of the universal nature of the IR structure of the amplitude [103–111], they
can at most differ from each other by a finite contribution.

In this paper, we present as our final result the amplitudes after the subtraction of
the IR divergences according to the qT subtraction formalism [79, 112]. We show them in
the form of the hard function H(1,1), defined as the ratio of the 2-loop subtracted matrix
element and the Born squared matrix element:

H(1,1) = 1
16

[
2 Re

(
⟨M(0)|M(1,1),fin⟩

⟨M(0)|M(0)⟩

)]
. (4.1)

The computation of the IR-subtracted matrix element ⟨M(0)|M(1,1),fin⟩ requires the
knowledge of the subtracted two-loop amplitude |M(1,1),fin⟩. We define it as follows:

|M(1,1),fin⟩ = |M(1,1)⟩ − I(1,1)|M(0)⟩ − Ĩ(0,1)|M(1,0),fin⟩ − Ĩ(1,0)|M(0,1),fin⟩ , (4.2)

where the Is are the IR subtraction operators and |M(1,0),fin⟩, |M(0,1),fin⟩ are the finite
reminders of the one-loop QCD and EW amplitudes respectively:

|M(1,0),fin⟩ = |M(1,0)⟩ − I(1,0)|M(0)⟩ , (4.3)

|M(0,1),fin⟩ = |M(0,1)⟩ − I(0,1)|M(0)⟩ . (4.4)

The subtraction operators can be obtained from the ones used in the case of the NC
DY process after appropriately changing the charges of the initial state quarks and after
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neglecting the contribution stemming from the exchange of a photon between two final state
particles, which is not present in the case of CC DY. By indicating with Qi the value of the
electric charge of the particle i in positron units,8 and with CF = N2−1

2N the Casimir of the
fundamental representation of SU(N), the subtraction operators at one loop read:

I(1,0) =
(

s

µ2

)−ϵ

CF

(
− 2
ϵ2 − 1

ϵ
(3 + 2iπ) + ζ2

)
, (4.5)

I(0,1) =
(

s

µ2

)−ϵ [Q2
u + Q2

d

2

(
− 2
ϵ2 − 1

ϵ
(3 + 2iπ) + ζ2

)
+ 4

ϵ
Γ

(0,1)
l

]
, (4.6)

where

Γ
(0,1)
l = −1

4

[
Q2

l (1 − iπ) + Q2
l log

(
m2

l

s

)
+

+ 2QuQl log
((2p1 · p4)

s

)
− 2QdQl log

((2p2 · p4)
s

)]
. (4.7)

The two-loop subtraction operator for the mixed contribution reads:

I(1,1) =
(

s

µ2

)−2ϵ

CF

[
Q2

u + Q2
d

2

( 4
ϵ4 + 1

ϵ3 (12 + 8iπ) + 1
ϵ2 (9 − 28ζ2 + 12iπ)+

+ 1
ϵ

(
−3

2 + 6ζ2 − 24ζ3 − 4iπζ2

))
+
(
− 2
ϵ2 − 1

ϵ
(3 + 2iπ) + ζ2

) 4
ϵ
Γ

(0,1)
l

]
. (4.8)

Following the same convention used in the case of the NC DY process, in eq. (4.2) the
subtraction of the one-loop-like divergences from the two loop amplitude is performed by
using the subtraction operators Ĩ(1,0) and Ĩ(0,1), which can be obtained from I(1,0) and I(0,1)

by dropping the term proportional to ζ2.
The approximation of the amplitude in the small lepton mass limit retains all the terms

enhanced by log(ml), divergent in the mℓ → 0 limit. The structure of these corrections reflects
the universality property of the final-state collinear divergences, and is given, normalised
to the Born squared matrix element, by

lim
mℓ→0

⟨M(0)|M(1,1),fin⟩
⟨M(0)|M(0)⟩

= K + CF

2 Q2
l (−8 + 7ζ2 − 3iπ)

[
− log

(
m2

ℓ

s

)
+ log2

(
m2

ℓ

s

)]
, (4.9)

where K represents all the other terms in the interference, constant in the mℓ → 0 limit.
Note that the coefficients of the lepton mass logarithms are exactly with a factor half of those
of the NC DY, indicating the universal behaviour of these logarithms.

5 Results

5.1 Numerical results

The evaluation of the finite IR-subtracted UV-renormalised hard function H(1,1), defined in
eq. (4.1), requires the combination of several contributions, with a non-negligible evaluation
time for the MIs. For this reason it is of practical interest to prepare a numerical grid,

8E.g. Qu = 2
3 .
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Figure 6. The complete correction to the finite hard function in the Gµ-scheme, due to
O(ααs) correction, in two different phase-space regions, as a function of

√
s and cos θ. The cor-

rection is normalized by the Born and expressed in units α
π

αs

π .

which covers the whole phase space relevant in the applications at hadron colliders, making
negligible the evaluation time of the results, at any arbitrary point. We consider the partonic
centre-of-mass energy

√
s and scattering angle cos θ and compute a grid with respectively

(130x25) points, covering the intervals
√
s ∈ [40, 8000] GeV and cos θ ∈ [−1, 1]. The sampling

is based on the known behaviour of the CC-DY NLO-EW distribution, with special care
for the W resonance region, where a finer binning is necessary. We have verified that the
interpolation describes the exact results with an accuracy, in the whole phase space, at least
at the 10−3 level, guaranteed by the smoothness of the IR-subtracted H(1,1) function.

We present in figure 6 the hard function H(1,1) in the Gµ-scheme, which is normalised to
the Born cross section and expressed, as a function of

√
s and cos θ, in units α

π
αs
π . We consider

for the partonic center-of-mass energy, two different intervals, namely 40 ≤
√
s ≤ 120 GeV

and 500 ≤
√
s ≤ 7500 GeV, while the range in cos θ is [−1, 1]. In figure 6, we use the

following parameters:

MZ 91.1535 GeV ΓZ 2.4943 GeV
MW 80.358 GeV ΓW 2.084 GeV
mH 125.25 GeV mt 173.2 GeV

The possibility to have an exact dependence on the W -boson mass, within this numerical
approach, is discussed in section 5.3.

We provide in table 1 a few benchmark values of the function H(1,1) in the Gµ-scheme,
for different

√
s and cos θ choices.

5.2 Checks

The scattering amplitude develops UV and IR divergences, which appear as poles in the
dimensional regularisation parameter ε. Their cancellation provides a non trivial check of the
consistency of the calculation. This check exploits the restoration of some QED-like Ward
identities, valid in the BFG. In the construction of the UV-finite renormalised propagator we
observe the cancellation of the W self-energy wave function divergence against the one of the
charge counterterms. We verify that the sum of external wave function factors, vertex and
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√
s [GeV] cos θ H(1,1)

88.066 0 61.318
88.066 -0.66 45.970
222.362 0 48.189
222.362 -0.66 -15.753
1035.37 0 29.029
1035.37 -0.66 -6.990

Table 1. Benchmark values for the finite hard function, in the Gµ-scheme, due to O(ααs) correction.
The correction is normalized by the Born and expressed in units α

π
αs

π .

box corrections is UV finite, thanks to the validity of the above mentioned Ward identities,
featuring only IR singularities. The latter have indeed a universal structure, leading to the
independent construction of an IR subtraction term, presented in section 4. The singularities
of this subtraction term exactly match those of the sum of wave function, vertex and box
corrections, leaving a finite remainder, free of any divergence.

In several stages of our computations and checks, we have used GiNaC [113], Harmon-
icSums [114, 115], PolyLogTools [116] and LoopTools [117].

5.3 Full dependence on the W -boson mass in the numerical grids

In sections 3.3 and 3.4 we have introduced the idea of using the series expansion approach
in order to provide a grid in (s, t) in which each point is a series expansion in δMW , thus
featuring the exact µW dependence. In this section we discuss the sensitivity to a parameter
like the W -boson mass and the accuracy of a series expansion approach compared to the
exact evaluation.

As an example, we consider the integral B̃14[1, 1, 1, 1, 0, 1, 1, 0, 1], which is defined as:∫
ddk1
(2π)d

ddk2
(2π)d

1
D1 (D2 − µ2

W ) D12 D1;1 D0
2;1 D1;12 D2;12 D0

1;3 (D2;3 −m2
ℓ )

(5.1)

with the Ds introduced in eq. (3.2). This integral can be represented graphically as

where the blue (red) indicates that a particle with mass µW (mℓ) is running in the line, and
it appears, for example, in diagrams with the exchange of a photon and a W boson. In the
left panel of figure 7 we plot the real and imaginary part of the integral, for different values
of µW , as a function of

√
s, with cos θ = 0.165. The intensity of the color corresponds to

different choices of δMW , from −500 MeV to 500 MeV, in steps of 250 MeV. The shift of the
peak position illustrates the sensitivity of this integral to the choice of the mass value. In
the right panel of figure 7 we compare the exact evaluation of the integral9 against different

9The exact solution is obtained using AMFlow, asking for a precision of 30 digits.
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Figure 7. On the left panel we plot the real and imaginary part of the O(ε0) of B̃14[1, 1, 1, 1, 0, 1, 1, 0, 1]
for different values of δMW . On the right panel we plot the relative error of the solution for different
number of terms in the δMW -series expansion, as a function of δMW .

approximations. We consider
√
s = 80.1315 GeV in order to have a strong dependence on

µW and cos θ = 0.165. The curves correspond to a different number of terms in the δMW

expansion, and their ratio with the exact result is plotted as a function of δMW . From the
plot we can see that if we consider only shifts in δMW of order 100 MeV, 15 terms in the
expansions are sufficient for maintaining a relative precision of 10−15.

6 Conclusions

We have presented in this paper the details of the complete calculation, for the CC DY process,
of its exact O(ααs) two-loop virtual corrections. These results represent the companion to the
ones discussed in ref. [68] for the NC DY case, with a higher level of technical complexity in
the Master Integrals, because of the presence of two different mass values in the internal lines.
When included in the Matrix framework, for the evaluation of the fiducial cross sections,
these results will allow a consistent simultaneous analysis of both NC and CC DY processes
at NNLO QCD-EW level. Such consistency is required by the interplay between the two
final states: for example, in the W -boson mass studies the NC DY channel plays a crucial
calibration role, which would be spoiled if corrections at different orders were considered; at
large lepton-pair transverse/invariant masses, CC and NC channels have different sensitivity
to the parton-parton luminosities, thus allowing an effective reduction of the associated
uncertainties, crucial in the New Physics searches.

The results have been obtained thanks to an increased level of automation of every
step of the calculation, opening the way to the systematic study of the mixed QCD-EW
corrections in other 2 → 2 scattering processes. In particular, it is worth mentioning the
possibility to study in a uniform way all the relevant MIs, with 0,1, or 2 internal massive
lines, in the same semi-analytical framework offered by the SeaSyde code, with excellent
control on the cancellation of UV and IR divergences.

The flexibility of the differential equations technique to solve the MIs has been exploited
to preserve the exact dependence on the W -boson mass, even when we prepare the numerical
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grid for the total correction factor. We achieve in this way excellent performances in the
numerical evaluation together with full control on the accuracy of the result.
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A Description of the supplementary material

In this appendix we describe the ancillary Mathematica file CCDY_M11.m. This file
contains the expression for ⟨M̂(0)|M̂(1,1)⟩ i.e. the unrenormalised interference term between
the Born and the bare 2-loop amplitude as defined in eq. (3.4). In particular, within |M̂(1,1)⟩,
there are all the pure 2-loop contribution, which are schematically depicted in figure 1-(a),
(c), (f) and 2-(a), (c).

The result is provided as a sum of rational coefficients times a MI:∑
k

ck(s, t, {mi}, d) Ik(s, t, {mi}, d). (A.1)

In the file, we make use of the following symbols:

mz = µZ , mzC = µ∗
Z , mw = µW , mwC = µ∗

W ,

sw = sW , swC = s∗W , cw = cW , cwC = c∗W ,

mm = mℓ , mt = mt , mh = mH , d = 4 − 2ε

prefactor =
(

α

4π

)2
(4π)8µ8−2d, (A.2)

where sW and cW are the sine and cosine of the Weinberg angle, the ∗ indicates the complex
conjugate and µ is the renormalisation scale.

In the file, we label each MI as:

Topology[{masses__}, x__], (A.3)

where Topology is the name of the topology, {masses__} is a list of the masses in the same
order as they appear in the topology definition and x__ is the list of powers to which each
denominator is raised. Additionally, all the integrals have a normalization factor 1/(2π)d

for each loop.
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For example, B16tilde[{mw,mz}, 0, 1, 1, 0, 0, 1, 1, 0, 0] is a short notation for:∫
ddk1
(2π)d

ddk2
(2π)d

1
(D2 − µ2

W )D12D1;12(D2;12 − µ2
Z) . (A.4)

We provide also the file integralfamilies.yaml with all the integral families expressed in
a format suitable for a reduction with Kira.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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