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We look at a mechanical dissipation inequality
differing from the standard one by what we call
a relative power, a notion that is appropriate in
the presence of material mutations. We prove that
a requirement of structural invariance for such an
inequality under the action of diffeomorphism-based
changes of observers (covariance) implies (i) the
representation of contact actions in terms of the first
Piola–Kirchhoff stress, (ii) local balances of standard
and configurational actions, (iii) a priori constitutive
restrictions in terms of free energy, and (iv) a
representation of viscous-type stress components.

This article is part of the theme issue ‘Foundational
issues, analysis and geometry in continuum
mechanics’.

1. Introduction
There are two views on the origin of balance equations
in continuum mechanics, when we look directly at
macroscopic scale:

— Foundational analyses developed by Truesdell’s
school, in particular Noll’s work, established
that balance equations are independent of
constitutive relations. Their integral form (balance
of momentum and its moment) can be postulated
[1–3], or deduced from a requirement of
invariance under rigid-body changes of observers
for the power performed by external agencies
over every body part, along any motion [4,5].
Integral balances of forces and couples are
associated with the linear structure of the
classical physical space, identified with R

k.
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— On the other hand, Noether’s theorem states that local balance laws are associated with
the action of diffeomorphisms leaving invariant a Lagrangian density [6].

In the second case, we need to specify the state variables occurring in the Lagrangian density
before deriving the Euler–Lagrange equations that are a consequence of imposing the minimal
action principle. The invariance required by Noether’s theorem to the Lagrangian density is not
restricted to the Euclidean space rigid structure is essential when integral balance equations
are either postulated or derived from invariance of external power with respect to rigid-body-
type changes of observer. This last invariance states that in Euclidean space integral balances
of standard forces and couples are associated with the Killing fields of the metric (those along
which the Lie derivative of the metric vanishes); in Euclidean space such fields are, in fact,
translations and rotations. By contrast, Noether’s theorem allows a more general ambient space,
for example, the finite-dimensional differentiable Riemannian manifold of general relativity.
However, appeal to the Lagrangian implies restriction to conservative mechanical systems; also,
constitutive relations and balance laws do not result mutually independent.

Changes of observers play a structural role in deriving balance equations: in Noether’s
theorem the diffeomorphism leaving invariant the Lagrangian are themselves, in fact, changes
of observers. Attention to their role allows us to reduce axioms with a consequent better control
on mechanical models when we aim at extending their boundaries, driven by the will of
considering non-standard effects. The description of complex materials (from liquid crystals to
active metamaterials) shows clearly, in fact, that a mechanical model does not reduce at all only
to the prescription of constitutive structures in a standard setting [7].

In elementary courses on classical mechanics of point particles, the analysis is commonly
referred to frames of reference determined by the so-called fixed stars; they define privileged
observers considered as external entities once and for all. However, even in that setting we
consider also moving frames and recognize the associated presence of apparent forces.

Here, we avoid preferred observers, rather we focus on invariance with respect to changes
of observers; such a perspective constitutes a tool (i) to discriminate among possible classes
of constitutive choices (e.g. [1]), (ii) to reduce the necessary axioms for deciding and justifying
balance equations (as it happens in the case of mixtures [8], and general complex materials [9]),
(iii) to prove the splitting of total energy into kinetic and internal components, and the existence of
mass as derived entities, rather than being primitive axioms [10]. Also, we detach progressively
from considering only rigid-body-type changes of observers, being aware that in appropriate
cases, we have to couple mechanics with electromagnetic effects that are not strictly connected
only with rigid-body-type changes of observers (see [11, Part B]).

An observer is a family of reference frames assigned over all spaces selected to describe
the morphology of a body and its motion. These ‘environments’ are not limited necessarily
to the physical three-dimensional ambient space and the interval of time. This is clear in the
mechanics of complex materials in which appropriate descriptors (say phase fields) bring at
macroscopic scale information on the microscopic texture. They appear to be necessary when the
microstructure is active in the sense that actions hardly representable through standard stresses
appear. In this case, the differentiable manifold where such descriptors take values enters the list
of spaces needed to describe the body morphology [7,9].

Here, the specific analysis of these issues is avoided and we consider first those bodies, called
Cauchy bodies, with morphology adequately described by regions in the Euclidean space. Then,
we refer to an ambient space that is a more general finite-dimensional Riemannian manifold.

Also, we account for macroscopic material mutations such as growing bulk defects. We picture
the circumstance by resorting to infinitely many such configurations differing from one another
only by the defect pattern. However, rather than referring to the whole family of reference
configurations, we consider their infinitesimal generator determined by a differentiable vector
field on a prototype reference configuration B. With respect to such a field we introduce the
notion of a relative power and first require (§3) its invariance under rigid-body-type changes in
observers in both physical and reference spaces, considered to be distinguished—a key aspect.
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As a consequence, we derive balances of standard and configurational actions from a unique
source. The approach refines the proposal in references [12,13] and does not make use of the
inverse mapping, which would be questionable because the growth of a defect destroys at least
locally the commonly assumed one-to-one instantaneous correspondence between reference and
current configurations. Also, our approach avoids a procedure adopted in references [14,15]:
the introduction of a configurational stress and other a priori unknown actions that require a
subsequent identification in terms of standard actions. At variance, here only driving forces and
configurational couples not related to standard actions need to be introduced. They are power-
conjugated with rupture and reformation of atomic (or molecular) bonds, and with changes of
material symmetry (the couples). In other words, along the path followed here there is economy
in the representation of actions, along the guidelines suggested by Ockham’s razor, if we accept
and use it being careful to avoid epistemic problems (for this last philosophical aspect see [16]
and also [17,18]).

Then, we write a non-standard version of the energy balance including the relative power
(§4). With it, we propose a variant of Marsden–Hughes’s theorem that is different from what
is discussed in reference [19], although the result is analogous: the proof that not only the
balance of standard actions but also the configurational ones can be derived from requirements
of invariance with respect to changes of observers that are not necessarily isometric but involve
general (smooth) deformations of both ambient and reference spaces. This theorem, however,
implies essentially conservative stresses.

We overcome such a limitation and account for dissipative components of the stress by
considering (§6) a mechanical dissipation inequality (an isothermal version of the second law
of thermodynamics), written including the relative power. For it, we require covariance, that is
invariance in structure under diffeomorphism-based changes of observers. Such a requirement
and appropriate regularity assumptions imply alone

(i) the representation of contact actions in terms of the first Piola–Kirchhoff stress,
(ii) local balances of standard and configurational actions,

(iii) a priori constitutive restrictions in terms of free energy,
(iv) a thermodynamically admissible representation of viscous stress components.

This is the main result presented here (§6); it generalizes to the presence of viscous stresses a
theorem proven in reference [20] in the case of large strain multiplicative plasticity. Also, such
a result answers the question on whether there is a counterpart of the Noether theorem in
fully dissipative setting when a dissipation pseudo-potential is not evidently available. It can be
extended to a multi-field setting up to including structured interfaces and junctions; the extension,
however, is left to another work.

This paper, in fact, deals only with basic concepts. The attention is purely focused on
foundational aspects, on concepts rather than formal details and analytical generalizations. This
nature is not in contrast with applied attitudes or needs. A constructive discussion on the
foundations, in fact, has not only academic interest for scholars working on the basic structure of
physical theories: a clear understanding of the foundation of a theory—whatever it be—addresses
applications and, perhaps primarily, can suggest the way to evolve the theory itself, by modifying
the basic axioms where possible, with the consequent emergence of new potentialities (even if,
psychologically, it is often reassuring to adopt existing treatments).

2. Notations and preliminaries

(a) Notations on algebraic structures
With X a finite-dimensional linear space over the field of real numbers, we indicate by {ei} a basis
in it and by {ej} the corresponding basis in the dual counterpart of X , namely X ∗, the space of
linear maps over X . Every ej is defined to be such that ei · ej = δi

j , where δi
j is the Kronecker delta
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and the interposed dot indicates from now on the duality pairing; it associates with ei and ej the
scalar given by the value over ej taken by the linear map ei. The duality pairing corresponds to
the standard scalar product when the metric is flat and trivial, meaning associated with a frame
of reference that is orthonormal with respect to a given scalar product.

For a ∈X and b ∈X ∗, a second-rank linear operator from X onto itself is given by the dyad
a ⊗ b, defined to be such that for every h ∈X , (a ⊗ b)h = (b · h)a.

Let A be a linear operator from X onto itself. With respect to a basis {ei} in X , we have
A = Ai

jei ⊗ ej, where we adopt here and throughout this paper the usual summation convention
concerning repeated indices.

For A and B two linear maps from X onto itself (two tensors indeed), we indicate by A · B

the scalar given by Ai
jB

j
i and by AB the second rank tensor given by AB = Ai

kBk
j ei ⊗ ej. Analogous

notations hold for linear maps from X onto its dual X ∗ and vice versa, or from X ∗ onto itself.
Consider another finite-dimensional real linear space Y , and a linear operator G from X to Y ;

in short G ∈ Hom(X ,Y). Two other linear operators are associated with G. One is the transpose
GT ∈ Hom(Y ,X ); the other operator is the adjoint G∗ ∈ Hom(Y∗,X ∗). If dimX = dimY = m̄ and G
is non-singular, namely det G �= 0, its inverse G−1 belongs also to Hom(Y ,X ) but is in general
different from GT; when GT = G−1, itself G is said to be orthogonal and we write G ∈ O(m̄); in
this case det G = ±1; the subspace SO(m̄) ⊂ O(m̄) contains orthogonal tensors such that G ∈ SO(m̄)
implies det G = 1.

If g and g̃ are metrics in X and Y respectively, with g non-singular, for G ∈ Hom(X ,Y) we have
GT = g−1G∗g̃. If the two metrics are flat and trivial, G∗ and GT coincide.

Sym(X ,X ) and Skew(X ,X ) denote, respectively, the spaces of symmetric and skew-symmetric
tensors that map X onto itself. We have Hom(X ,X ) = Sym(X ,X ) ⊕ Skew(X ,X ). Precisely, A ∈
Hom(X ,X ) is such that A = symA + skwA, with symA = 1

2 (A + AT) and skewA = 1
2 (A − AT).

Consider a space–time field a with values a(x, t) in a linear space. Assume that it is continuous
everywhere but a fixed smooth surface Σ in space, oriented by the normal m. Define a± :=
limε−→0+ a(x ± εm). We commonly indicate by [a] the jump across Σ , namely the difference
[a] := a+ − a−. We say that a is PC1 when it is C1 outside Σ and suffers bounded jumps across Σ .

(b) Recalling Cauchy’s theorem
LetΩ be any open set in R

k and b any open bounded subset ofΩ endowed with non-zero volume
and Lipschitz boundary. We call b a proper domain or part ofΩ . A balance law overΩ states that the
production R of a (scalar) extensive quantity in any proper domain b of Ω is balanced by a flux
Q of the same quantity through the boundary. Formally, we write

Qb(∂b) =R(b),

where R(b) is a signed Radon measure overΩ and there is a density flux function f̂b ∈ L1(∂b) such
that, for any open bounded subset C of ∂b, the flux Qb through C is given by

Qb(C) =
∫
C

f̂b(x) dHk−1(x),

where Hk−1 is the (k − 1)-dimensional Hausdorff measure.

Theorem 2.1. [21, p. 3] With the above assumptions, let |f̂b(x)| ≤ K for some constant K for any x ∈ ∂b
and all proper domains b.

— With each normal n in the k − 1 sphere Sk−1 is associated a bounded measurable function an on
Ω with the following property: Given b, suppose that x is a point in ∂b such that the normal to b

exists and is n. Assume also that x is a Lebesgue point for f̂b, with respect to Hk−1, and that the
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upper derivative of |R| at x, with respect to Lebesgue measure, is finite. Then,

f̂b(x) = an(x),

meaning that f̂b depends on ∂b only through the normal n.
— There exists a vector field a ∈ L∞(Ω ; M1×k) such that, for any fixed n ∈ Sk−1,

an(x) = a(x) · n

almost everywhere in Ω .
— The vector function a satisfies the field equation

diva=R

in the sense of distributions on Ω .

In short, and only for the sake of completeness, we recall that a measure is said to be a Radon
one when it is defined on Borel sets of a Hausdorff topological space and is such that (1) the
measure R(U) of any Borel set U is the supremum of values R(K) computed on all compact
subsets K of U , and (2) every point in the domain of R has a neighbourhood U such that
R(U) is finite. The notion of upper derivative of a measure with respect to another refers to the
Radon–Nikodyn theorem: it is the lim sup of a ratio between values of the two measures over
non-degenerated closed balls.

Finally (and roughly speaking), Lebesgue points in the domain of a certain function f are those
points around which f does not oscillate too much.

3. Mutant reference configurations and the relative power

(a) Configurations
Consider R

k and an isomorphic copy of it, namely R̃
k, the isomorphism being simply given by

the identification i : R
k −→ R̃

k. R
k is taken to be a reference space, while R̃

k is the physical space
endowed with metric g̃. Typically, k = 3.

We indicate by B a fit region in R
k, simply intended here as a connected proper domain,

which we take as a reference configuration for a continuous body. Points x ∈B are places occupied
by material elements with internal structure not otherwise specified. A non-singular metric g is
associated with B.

Deformations are commonly taken as differentiable, orientation preserving, one-to-one maps
x �−→ y := ỹ(x) ∈ Ẽ3. We speak of motions when we consider time-parameterized families of
deformations, namely

(x, t) �−→ y := ỹ(x, t) ∈ R̃
k,

with the time t ranging in an interval of the real line R. The map ỹ is assumed to be twice
differentiable with respect to time. We indicate by ẏ the velocity field over Bc := ỹ(B, t), seen
as a field defined over B by ẏ := ∂ ỹ(x, t)/∂t ∈ TyBc, where TyBc is the tangent space to Bc at
y. The velocity field can be also considered as a time-dependent section of the tangent bundle
TBc = �y∈BTyBc, so that we have a field (y, t) �−→ v := ṽ(y, t) such that ẏ = v at every y and t. As
usual, we indicate by F the derivative Dy = Dỹ(x, t) = (∂yi/∂xA)ẽi ⊗ eA, where ẽi is the i-th element
of a basis in R̃

k, eA is the A-th element of a dual basis in R
k. A standard nomenclature indicates F

as a deformation gradient. In fact, we have ∇y = (Dy)g−1, that is, in components, (∇y)iA = (Dy)i
CgCB.
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From now on, we consider metrics to be time-independent.

(b) Observers
Observers are frames of reference assigned to all spaces selected to represent the body
morphology and its motion. Here, in the definition of observer, we involve the assignment of
reference frames on R

k, R̃
k, and the time scale.

By leaving invariant the time scale, we consider in both R
k and R̃

k independent rigid-body-
type changes of observers, those governed by action of the semi-direct product R

k
� SO(k). Let

ẏ be a velocity evaluated by an observer O in R̃
k and ẏ′ the corresponding value recorded by

an observer O′ that differs from O by a rigid-body motion. The pull-back of ẏ′ in the frame of
reference defining O′, namely ẏ� := Q�ẏ′, with Q := Q(t) ∈ SO(k) is given by

ẏ� = c + q × (y − y0) + ẏ,

where c and q are the instantaneous value of smooth maps t �−→ c := c̃(t) ∈ R̃
k and t �−→ q := q̃(t) ∈

R̃
k, with Q = exp(q×). The sum c + q × (y − y0), where y0 is an arbitrary fixed point selected in

R̃
k, is the infinitesimal generator of the R

k
� SO(k) action over R̃

k, with q× an element of the Lie
algebra so(k), a space of skew-symmetric tensor over R̃

k.
We consider an analogous action on the reference space R

k. For any vector field defined over
B, with values w ∈ R

k, we write w and w′ for the vectors recorded by O and O′, respectively, and
write w� for the pull-back of w′ into O. Once again we have

w� = ĉ + q̂ × (x − x0) + w,

with ĉ and q̂ the values in R
k of time-dependent smooth maps, and x0 is an arbitrary point in R

k.

(c) Material mutations and relative power
Consider any arbitrary part b of B and its current image bc := ỹ(b, t) in Bc. Actions on bc, seen as
values of fields defined over b, are commonly classified into bulk and contact families; they are
also defined by the power that they perform on the rate at which bc changes in time. We look at
the power performed by external agencies, the one that we can in principle measure directly. We
indicate it by Pext

b (ẏ), a functional defined by

Pext
b (ẏ) :=

∫
b

b‡ · ẏ dx +
∫
∂b

t∂ · ẏ dHk−1(x),

and called an external power in Lagrangian (referential) representation. The covectors b‡ and t∂
indicate, respectively, densities of bulk and contact standard actions, the former assumed to
admit an additive decomposition into inertial, bin, and non-inertial, b, components, the latter
depending on the boundary ∂b, as recalled by the subscript ∂ , in addition to x and t. In 1963,
W. Noll remarked that if we raise at first principle a requirement of invariance for Pext

b under
rigid-body-type changes of observer, namely we require Pext

b (ẏ) =Pext
b (ẏ�) for any choice of c and

q, we obtain the integral balance of forces and the one of couples as derived entities rather than
assuming them as first principles [4].

In Noll’s analysis, B is considered to be fixed once and for all. Also, ỹ is assumed to be one-
to-one [4,5,22]. If a defect evolves in the current configuration Bc with respect to Bc itself, the
map ỹ is in general no more one-to-one. Precisely, at every instant t the current shape Bc is in
one-to-one correspondence with another reference shape that differs from the initially chosen B
by a non-material picture of the defect pattern. So, a family of reference configurations, all occupying
B but differing just by a pre-image (under ỹ) of the defect pattern, is related in principle with a
defect evolution: a structural mutation of a body at the spatial scale under analysis. An analogous
approach can be used to describe even growing bodies—they are mutant bodies too in a broader
sense. In this case, we have to call upon a notion of body content (a concept formalized by R. Segev
in reference [23]).
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Families of reference configurations connected by maps [24], parameterized by time [14], or by
measures [25] have been considered in various settings that involve structural material changes.
The idea that a defect evolution could be described by altering the reference configuration appears
already in Eshelby’s work [26] and has its roots in the common notion of horizontal variations for
integral functionals [27].

To simulate a multiplicity of reference configurations, we refer here to an infinitesimal
generator of it, a differentiable vector field x �−→ w ∈ R

k, which describes virtually the incoming
mutation in the body structure.

In this setting, we define a power functional with the following features:

— For any part b of B, it describes the power of bulk and contact actions with respect to the
relative velocity ẏ − Fw. The difference makes sense because Fw is the push-forward in
R̃

k of w ∈ R
k along ỹ.

— It accounts for variations in the energetic landscape induced in B by the material
mutation.

For the second aspect, we need to introduce (presume or derive from an abstract setting) the
notion of free energy, with density ψ . However—and this is a key point—we do not presume any
explicit constitutive structure for the energy at this stage. We only affirm that ψ is of the type ψ(x, t, ς ),
where explicit time dependence implies possible ageing and ς indicates the list of state variables
to be decided later, when the second law of thermodynamics is used to determine restrictions
a priori to state functions. The list ς depends also on space and time. As a function ψ(·, t, ς ) of
x alone, the energy takes into account inhomogeneity due to the redistribution of defects, along
which material bonds can be broken and/or others formed. Forces f and couples μ are conjugated
with the power developed in the process of annihilation and/or reformation of material bonds,
which characterizes the mutation. Couples μ can be generated even in a conservative setting by
changes of the material symmetry, for example when isotropy is broken. They are undetermined in
principle

With f we only indicate actions having dissipative nature, and we assume that f admits the
additive decomposition

f = f ba + f da,

with f ba the part due to the annihilation of bonds and f da the indirect effects of bulk processes
evolving far from thermodynamic equilibrium, for example what is due to the presence of viscous
stresses.

— For f ba we postulate
f ba · w ≥ 0,

the equality sign holding only when w = 0. The assumption is compatible with a structure

f ba = â(·)w,

with â(·) a positive definite scalar function of the state variables, their rates, and other
possible indicators of the annihilation process, depending on circumstances.

— f da can be identified in terms of stress dissipative component, entropy and (possibly)
chemical affinities once the second law of thermodynamics is used in the standard way to
restrict a priori constitutive structures. When the setting is conservative, that is, we are in
elastic, isothermal case, we have f da = 0.

Sections of the tangent bundle TB = �x∈BTxB are velocity fields over B, as w is, without any
special status. Linear functions over TB, namely elements of T∗B, take values that are powers.
In this sense, f and μ are configurational actions (see [14,15] for discussions about the notion of
configurational forces); at every x ∈B and t, they belong to the cotangent space T∗

xB. At variance,
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the standard actions, expressed here in Lagrangian representation, belong at every x and t to
T∗

ỹ(x,t)Bc and perform power over the velocity, which belongs to Tỹ(x,t)Bc.
With all these elements we define what we call a relative power: a functional over any part b,

depending on ẏ and w. We indicate it by Prel
b (ẏ, w) and presume that its values are given by the

sum

Prel
b (ẏ, w) :=Prel-a

b (ẏ, w) + Pdis
b (w),

where

Prel-a
b (ẏ, w) :=

∫
b

b‡ · (ẏ − Fw) dx +
∫
∂b

t∂ · (ẏ − Fw) dHk−1(x)

is the relative power of bulk and contact actions, namely b‡ and t∂ , already mentioned and defined by
the power that they perform, while

Pdis
b (w) :=

∫
∂b

(n · w)ψ dH2 −
∫
b

(∂xψ + f ) · w dx +
∫
b
μ · curlw dx,

is what we call a power of disarrangements, where ∂xψ is the explicit derivative of ψ(x, t, ς ) with
respect to x, holding fixed all the other entries of the energy, whatever they are. Such a definition
of Pdis

b (w) differs from what I have proposed previously in reference [12]. This new version seems
to me more satisfactory from the viewpoint of a physical interpretation of the entities defined.

Theorem 3.1. Assume that Prel
b is invariant under rigid-body-type changes of observers in both physical

and reference space, namely Prel
b (ẏ, w) =Prel

b (ẏ�, w�) for any choice of c, q, ĉ, q̂, and b.

— Invariance implies the validity of integral balance laws of forces and couples, namely
∫
b

b‡ dx +
∫
∂b

t∂ dHk−1(x) = 0, (3.1)

and ∫
b

(y − y0) × b‡ dx +
∫
∂b

(y − y0) × t∂ dHk−1(x) = 0, (3.2)

in R̃
k, and the integral balances of configurational actions

∫
∂b

(ψn − F∗t∂ ) dHk−1(x) −
∫
b

F∗b‡ dx −
∫
b

(∂xψ + f ) dx = 0, (3.3)

and ∫
∂b

(x − x0) × (ψn − F∗t∂ ) dHk−1(x) −
∫
b

(x − x0) × F∗b‡ dx

−
∫
b

(x − x0) × (∂xψ + f ) dx +
∫
b

2μdx = 0 (3.4)

in R
k.

— Under the assumptions of theorem 2.1, there is a covector-valued function t̃ such that

t∂ = t := t̃(x, t; n), (3.5)

with n the normal to ∂b at x, in all points where it is uniquely defined, and

t̃(x, t; n) = −t̃(x, t; −n). (3.6)

Also, there exists a map (x, t) �−→ P = P̃(x, t), with P = PA
i ẽi ⊗ eA, such that

t= t̃(x, t; n) = P(x, t)n, (3.7)

where n is taken as a covector.
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— Assume also that b‡ = bin + b, with the inertial component bin such that

d
dt

∫
b

1
2
ρẏ
 · ẏ dx +

∫
b

bin · ẏ dx = 0 (3.8)

for any choice of the velocity field, where ẏ
 is the covector associated by the metric to ẏ, namely
ẏ
 = ẏg̃. Define P :=ψI − F∗P (we call it Hamilton–Eshelby’s stress), with I the second-rank
unit tensor. If the fields x �−→ P and x �−→ P are of class PC1(B) ∩ C0(B̄) with discontinuity set
a (fixed) smooth surface Σ in B, oriented by the normal m, and the fields x �−→ b, x �−→ F∗b, and
x �−→ ∂xe are continuous over B, in the absence of inertial powerless terms, we have

DivP + b = ρÿ
, (3.9)

skwPF∗ = 0, (3.10)

DivP − F∗(b − ρÿ
) − ∂xψ = f (3.11)

and skwP = −2μ× (3.12)

in the bulk, and
[P]m = 0 and [P]m = 0, (3.13)

along Σ .
— An extended version of the virtual power principle holds:

Prel
b (ẏ, w) =Prel−inn

b (v, w), (3.14)

where

Prel-inn
b (ẏ, w) :=

∫
b

(P · Dẏ + P · Dw + μ · curlw)dx. (3.15)

— If the material is homogeneous, no driving force is present, and μ= 0, the tensor P is symmetric
and, in the absence of body forces, ∫

∂b
Pn dH2 = 0. (3.16)

The proof is rather straightforward. In fact, the requirement of invariance implies Prel
b (c + q ×

(y − y0), ĉ + q̂ × (x − x0)) = 0. Since c, q, ĉ, and q̂ do not depend on x and are arbitrary, the
previous identity implies the integral balances in theorem 3.1, distinguished in the spaces R

k

and R̃
k. Cauchy’s theorem 2.1 thus applies to the integral balance of forces and determines

the representation of t∂ in terms of the first Piola–Kirchhoff stress P. The balance (3.8) implies
bin = −ρÿ
 + bpl, where ÿ
i = ÿjg̃ji and bpl is a powerless term. (Such a result allows one to define
inertial frames of reference as those for which bpl = 0.) Then, use of the Gauss theorem under the
assumed regularity implies the pointwise balances in both R

k and R̃
k. The extended virtual power

principle and the last identity are a matter of direct calculation.
Here is a list of comments to theorem 3.1.

— In avoiding to indicate the list of state variables, we maintain unaltered the distinction
between derivation of balance equations and assignment of constitutive structures as
separated steps of a conceptual hierarchy.

— If we restrict the treatment to a conservative setting, and to simple bodies, once the free
energy is assigned to be ψ =ψ(x, F), so the stress P is P = ∂ψ/∂F, and the bulk forces
are conservative too, equation (3.14) reduces to the integral version of the pointwise
balance appearing in Noether’s theorem referred to nonlinear elasticity of simple bodies,
provided that ψ is invariant with respect to the action of diffeomorphisms in physical
space and volume-preserving changes of the reference space.

— Requiring invariance for the relative power with respect to ẏ �−→ ẏ� and w �−→ w� is not
related with any material symmetry compatible with a diffeomorphism determined by
w. In fact, we do not impose any rule of related changes for stress and/or energy. We just
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test the same class of actions on velocity fields differing by rigid-body motions. So, we do
not fall within conditions defining material symmetry classes (see [1, pp. 217-to-205], [10,
pp. 157-to-161], [28, pp. 217-to-225]).

— The invariance requirement imposed to the relative power implies a standard condition
in the physical space, while in the reference space it means essentially that configurational
actions do not play a significant role when a defect—a bulk one in the case we are treating
here—does not evolve relatively to the body. There is a link with the notion of horizontal
variations for integral functionals (those involving the integration domain)1 : in fact, w
could be interpreted only as an infinitesimal generator of the action exerted by the group
of volume-preserving diffeomorphisms that determine horizontal variations, not as a
variation itself, which would be a flow associated with w. Per se w indicates only a field
superposed to B, where all the integrals are defined, and B does not vary in time; w virtually
describes an incoming time-varying behaviour.

— Under appropriate conditions, the balance of configurational actions has been interpreted
as the projection through inverse motion of the standard Cauchy balance of forces written
in terms of the Piola–Kirchhoff stress (see [30–32]). The projection requires sufficiently
smooth deformations. The necessary smoothness is not always granted. Consider for
example standard nonlinear elastic bodies. Minimizers of the energy subjected to
Dirichlet boundary conditions belong to the space difp,1, p> 1, of weak diffeomorphisms
[33]. Such a space is included in dif1,1, a subspace of the Sobolev space W1,1, endowed
with closure and compactness properties. It contains orientation preserving maps that
allow self-contact without self-penetration and do not allow formation of fractures or
holes (see also [34]). As Sobolev maps, they do not admit in general tangential derivatives
everywhere. A consequence with physical interest is that, in trying to evaluate the
first variation of the energy, we find only conditions implying the standard balance
of forces in terms of the Cauchy stress2 and configurational balances in terms of
the Hamilton–Eshelby stress tensor. These equations emerge from distinct procedures.
Further conditions are also needed to assure that minimizers admit inverse (see [34–36]).

— The independent nature of the balance of configurational actions has been supported in
reference [14] (see also [37]). Along this point of view, a balance of configurational actions
has been postulated a priori. Then, its unspecified (at the beginning) ingredients, namely
Hamilton–Eshelby stress and some configurational bulk forces, have been identified
in terms of energy and standard actions, by referring to a version of the second law
of thermodynamics, written on time-varying control volumes, selected in the reference
space, and exploiting an invariance requirement of such a law under re-parameterization
of the defect boundary (see [14,15]). In conservative setting, the independent nature
of standard force balance (the one arising from vertical variations of the energy)
from those arising from horizontal variations (the configurational balances without the
dissipative driving forces) was already known [27, vol. I, pp. 152–153], [34].

— The requirement of relative power invariance implies not only standard and
configurational integral balances but also allows the identification of configurational
actions in terms of the standard ones in a direct way. The process does not make use
of the inverse mapping and does not require a priori assumption of configurational stress
and counterpart of b‡, with the need of their subsequent identification.

— In invoking the relative power invariance, we preserve the intrinsic independence of
standard and configurational balances because the two velocity fields involved in the
definition of Prel are independent from one another; also changes of observers in physical
and reference spaces are independent too.

1As I have already mentioned, the idea of connecting horizontal variations with defect evolution in solids appears already
in Eshelby’s work [26] and is linked—there explicitly—with Noether’s theorem, although the latter is originally proven in
purely conservative setting. Extensions of it to some special non-conservative structures appear in [29].
2Under appropriate bounds for the derivatives of a polyconvex energy, the weak form of the balance of forces in terms of the
Cauchy stress can be derived in conservative setting by the first variation of the energy, under some growth assumptions; a
consequence is that the stress is locally L1 in space.
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(d) An alternative representation of the relative power: connection with the material
momentum

At times, authors show a preference to write equation (3.11) in terms of what is called material
momentum, defined by ρF∗ẏ (e.g. [30]), which is the pull back of ρẏ in the reference configuration.
A reason is that such an expression produces a version of equation (3.11) that allows in
conservative setting a direct comparison with what is furnished by the Noether theorem as a
consequence of horizontal variations, namely changes in the reference place produced by the
special group of diffeomorphisms (e.g. [28]). On the other hand, it is just Noether’s theorem, or
better, the use of it made by J. D. Eshelby [26], which seems to have suggested in dissipative
setting only by analogy the version of (3.11) that includes the material momentum. It reads

Div
(

P−1
2
ρ(ẏ
 · ẏ)I

)
− F∗b − ∂xψ + 1

2
(ẏ
 · ẏ)Dρ = f −

·
ρF∗ẏ
. (3.17)

When the reference mass density ρ is uniform in space, we get

Div
(

P−1
2
ρ(ẏ
 · ẏ)I

)
− F∗b − ∂xψ = f −

·
ρF∗ẏ
. (3.18)

The map between equations (3.11) and (3.17) is assured by the identity (e.g. [15, p. 47])

ρF∗ÿ =
·

ρF∗ẏ
 + D
(

1
2
ρ(ẏ
 · ẏ)

)
− 1

2
(ẏ
 · ẏ)Dρ

or, when ρ is uniform in space, equation (3.11) transforms obviously into (3.18) thanks to the
identity

ρF∗ÿ =
·

ρF∗ẏ
 + D
(

1
2
ρ(ẏ
 · ẏ)

)
.

If we want to interpret the circumstance in terms of relative power, we need to vary the
definition of Prel. Write P̃rel

b (ẏ, w) for its new expression defined by

P̃rel
b (ẏ, w) :=Prel-a-ni

b (v, w) + Pdis
b (w) + Prel-a-in

b (v, w),

where Pdis
b (w) is the same power of disarrangements defined above, Prel-a-ni

b (v, w) indicates the
relative power of non-inertial actions (the superscript ni reminds this nature) defined by

Prel-a-ni
b (ẏ, w) :=

∫
b

b · (ẏ − Fw) dx +
∫
∂b

t∂ · (ẏ − Fw) dHk−1(x),

and, finally, Prel-a-in
b (v, w) is the inertial relative power given by

Prel-a-in
b (v, w) :=

∫
b

bin · (ẏ − Fw) dx

+
∫
b
ρẏ
 · Ḟw dx −

∫
∂b

1
2

(ρẏ
 · ẏ)(n · w) dHk−1(x),

when the density of mass is uniform in space, or

Prel-a-in
b (v, w) :=

∫
b

bin · (ẏ − Fw) dx

+
∫
b
ρẏ
 · Ḟw dx −

∫
∂b

1
2

(ρẏ
 · ẏ)(n · w) dHk−1(x)

+
∫
b

1
2

(ẏ
 · ẏ)Dρ · w dx,

when the mass is not uniformly distributed in space. The term∫
b
ρẏ
 · Ḟw dx
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can be interpreted as a power that the momentum develops in the apparent change of w induced
by the time-variation of F, which does not represent any incoming material (structural) mutation.
The addendum ∫

∂b

1
2

(ρẏ
 · ẏ)(n · w) dHk−1(x)

is a flow of kinetic energy across the boundary of a generic part ∂b generated by w. Finally,
∫
b

1
2

(ẏ
 · ẏ)Dρ · w dx

is a production of kinetic energy due to inhomogeneous mass distribution—in a sense we could
interpret it as a production of kinetic energy along variations of the mass distribution, due to a
material mutation.

To understand better the difference between P̃rel
b (ẏ, w) and the relative power Prel

b (ẏ, w),
defined previously, we have just to note that, for any constant vector field c,

∫
b

(
ρẏ
 · Ḟc + 1

2
(ẏ
 · ẏ)Dρ · c

)
dx −

∫
∂b

1
2

(ρẏ
 · ẏ)(n · c) dHk−1(x) = 0,

as it is immediate to recognize by using the Gauss theorem on the last integral.

(e) Notes on the identification of f da

Let us write the standard expression of the mechanical dissipation inequality—a way to call the
Clausius–Duhem inequality in isothermal setting—just to allow an immediate comparison with
its varied version presented later. It reads

d
dt

∫
b
ψ dx − Pext

b (ẏ) ≤ 0 (3.19)

for every body part b and any choice of the rates involved. Although the inequality is written
with respect to the reference configuration, it refers only to phenomena occurring in the current
configuration, the ones determined by a deformation. It is well known that such an inequality is
a tool for (i) selecting admissible constitutive structures, (ii) furnishing an admissibility criterion
for shock waves, (iii) restricting the possible choices of evolution laws for other singular surfaces
moving relatively to the rest of the body.

Under the regularity assumptions for the stress field x �−→ P(x) listed in theorem 3.1 to grant
pointwise balance equations, we get the identity

Pext
b (ẏ) =

∫
b

P · Ḟ dx

(see definition (3.15) and set w = 0). The right-hand side integral is commonly called an internal
(or inner) power. The previous relation allows us to write the mechanical dissipation inequality in
the more common form

d
dt

∫
b
ψ dx −

∫
b

P · Ḟ dx ≤ 0. (3.20)

When we refer to non-isothermal processes, by using θ to indicate the absolute temperature, η for
the entropy density and q for the heat flux, linked to the entropy flux in the standard way by the
factor 1/θ , the Clausius–Duhem inequality reads

d
dt

∫
b
ψ dx +

∫
b
θ̇η dx +

∫
b

1
θ

q · Dθ dx −
∫
b

P · Ḟ dx ≤ 0. (3.21)

From these two versions of the Clausius–Duhem inequality, we can identify in the bulk
configurational action f the component f da due to the dissipative part of standard actions.

Case 1. Standard viscoelastic materials in isothermal setting. We consider first the inequality (3.20).
Standard assumptions apply
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— The first Piola–Kirchhoff stress P admits an additive decomposition into an energetic
(linked to the free energy ψ) component, Pe, and a purely dissipative one, indicated
by Pd, namely P = Pe + Pd.

— Pe has constitutive structure of the form Pe = P̂e(x, F), while Pd = P̂d(x, F, Ḟ).
— For the free energy, we take ψ = ψ̂(x, F). (Note that we could choose ψ = ψ̂(x, F, Ḟ)

but the inequality (3.20) forbids the dependence of the free energy on Ḟ—this is
matter of standard textbooks.)

Insertion of these assumptions in (3.20) and arbitrariness of rate fields and b imply the
standard results

Pe = ∂ψ

∂F
and Pd · Ḟ ≥ 0. (3.22)

The latter inequality is compatible with Pd = â(·)Ḟ, where â(·) is a positive definite
differentiable function of state. So, we can write

∂xψ = Dψ − PeDF∗,

intending with PeDF∗ the covector of components (Pe)A
i Fi

A,B in which the comma
indicates differentiation with respect to xB. By inserting the previous identity in the
pointwise balance (3.11) and putting f ba = 0, we get

f da = −PdDF∗.

In the present example, we do not consider bond breaking. In any case, the structure of
f ba should be assigned independently, with the sole constraint given by its dissipative
nature, expressed by the inequality f ba · w ≥ 0 for every w; in it the equality sign holds
only when w = 0.

Case 2. Standard themo-viscoelastic materials. In non-isothermal setting the list of state variables
includes the temperature θ , so that we presume ψ = ψ̂(x, F, θ ), and, once again, the
additive decomposition P = Pe + Pd, but now Pe = P̂e(x, F, θ ) and Pd = P̂d(x, F, Ḟ, θ ). The
procedure indicated in case 1, now exploiting the inequality (3.21), allows us to get
the counterparts of relations (3.22), including temperature, and the additional standard
relation η= −∂θψ , so that we can write

∂xψ = Dψ − PeDF∗ + ηDθ

and, from the balance (3.11), we get

f da = −PdDF∗ − ηDθ ,

after setting once again f ba = 0.
Case 3. Thermo-viscoelastic materials with internal variables. In some cases, the detachment

from thermodynamic equilibrium is not completely described by the sole account of
temperature and deformation gradient time rate—examples can be found in the presence
of chemical phenomena. In some circumstances and for some models, it is appropriate
to introduce state variables, say α ∈ R

m, depending on space and time, such that there
are no actions producing power in their rates, meaning they are not observable. This is
a crucial aspect marking the difference with what is presented in the general model-
building framework for the mechanics of complex materials, a scheme not discussed
here for the sake of brevity. Also, the derivative of ψ with respect to α is a covector
collecting chemical affinities and contributing only to the production of entropy. If we
include thermal and viscous effects, the assumptions in previous cases vary simply in
this way: ψ = ψ̂(x, F,α), and P = Pe + Pd, with Pe = P̂e(x, F, θ ,α) and Pd = P̂d(x, F, Ḟ, θ ,α).
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By setting π := ∂αψ , the machinery used in the previous examples leads to

f da = −PdDF∗ − ηDθ + πDα,

where πDα is a covector with A-th component given by πr(Dαr)A. The index A refers to
coordinates in the reference space, while r denotes coordinates in the space where the
vector α takes values.

We find even more from the foundational and geometrical side if we imagine versions of the
balance of energy and the Clausius–Duhem inequality including the relative power, as it is shown
in the next two sections.

From now on, we exclude ageing for the sake of simplicity.

4. A variant of Marsden–Hughes’s theorem including the relative power
When the list of state variables is decided from the outset in constructing a mechanical model, in
conservative setting the Noether theorem is a fundamental tool for deriving balance laws. It can
be also arranged to cover some dissipative effects when a pseudo-potential like the Rayleigh one
is available.

Along this path, we could also adopt a Hamiltonian view on the basis of Poisson and (possibly)
dissipative brackets (see [29,38–41]).

Another approach has been suggested by A. M. Green, R. S. Rivlin and P. Naghdi (see
[42–44]): they required invariance under superposed rigid-body motions of the first law of
thermodynamics, obtaining as a consequence pointwise balance equations [28, pp. 148–149].

This point of view suggested a result in nonlinear elasticity of simple bodies obtained by J. E.
Marsden and T. R. J. Hughes [28, p. 165]. The structure of their analysis is the following:

— They considered the balance of energy for the nonlinear thermoelasticity of simple bodies.
— At variance of the approach in [42,43], such a balance is written in the current

configuration.
— The energy is assumed to be a function of the spatial metric alone, besides the space variable

y and time t.
— Synchronous changes of observers are considered: they are induced by smooth

diffeomorphisms of the ambient space, which is identified with a generic Riemannian
manifold.

— It is assumed that the internal energy density changes tensorially along a ‘distortion’ of
the ambient space induced by the changes of observers adopted.

Balance equations in local form follow from a requirement of covariance, that is invariance in
structure of the energy balance. From it, we obtain equality between a derivative of the energy
with respect to the spatial metric and the stress tensor, modulo the density of mass and a factor
two: this is what we call the Doyle–Ericksen formula, a result paving the way to relativistic
elasticity. Bulk actions not necessarily associated with a potential are admitted. The local balance
of mass emerges too as an ancillary result.

Such a theorem received renewed attention in [19] where the balance of energy is written in
Lagrangian representation. To it, the common technique of vertical and horizontal variations (of
fields and integral domain, respectively) is applied. Both standard and configurational balances
emerge (for the specification of regularity assumptions justifying the formal use of variations,
at least in the static case, see [34]). Marsden–Hughes’s theorem has been also discussed with
reference to mixtures first in [8].

Here, we prove a version of Marsden–Hughes’s theorem that includes the notion of relative
power. We work in isothermal setting for the sake of simplicity, but we add a remark explaining
how we can tackle a non-isothermal case. The point of view adopted is the following:
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— The ambient space is a finite-dimensional differentiable Riemannian (simply connected)
manifold S that is geodesically complete and endowed with metric g̃. Motions are one-
to-one differentiable maps (x, t) �−→ y := ỹ(x, t) ∈ S. Once again, we write F for Dỹ(x, t). B
is also considered to be a generic differentiable Riemannian (simply connected) manifold
with boundary oriented by the normal n almost everywhere and with dimension k not
greater than the one of S. B is endowed with a metric g. Connections considered in both
manifolds are compatible with the pertinent metrics.

— The first law of thermodynamics adopted here for mutant elastic bodies reads3

d
dt

∫
b

e dx − Prel
b (ẏ, w) = 0 (4.1)

for any k-dimensional Riemannian (simply connected) submanifold b of B. In the
previous equation, e is the internal energy density. It appears also in Prel

b (ẏ, w) where it
replaces the free energy ψ .

— Synchronous changes of observers are involved.

(i) A time-parameterized class of diffeomorphims ht ∈ Diff(S, S), with t ∈ [0, +∞) and
h0 = identity, acts over the ambient space. Dependence on time t is taken to be
smooth. The pertinent infinitesimal generator of the actions of such a class is a vector
field v′ := (d/ds)ht|t=0.

(ii) Another time-parameterized class of diffeomorphisms acts over the reference
manifold, namely we have ĥt ∈ SDiff(B,B), with t in the same interval above and
ĥ0 = identity. So, det Dĥt = 1, which implies that the changes of observer on B
preserve mass; in other words, every observer must record the same type of material
for a certain body (about this principle see discussions in reference [45]). The
infinitesimal generator of their action is a vector field w′ := (d/ds)ĥt|t=t0 . As fields,
both v′ and w′ are bounded.

— Changes of observers described above imply that, at t = 0,

ẏ −→ ẏ� := ẏ + v′ (4.2)

and
w −→ w� := w + w′. (4.3)

Moreover, in the presence of a discontinuity surface Σ for the deformation gradient, a
surface not moving relatively to the body, we assume that both v′ and w′ are continuous
across Σ .

— For bulk and contact actions we presume time-parameterized variations b‡′
t and t′∂ ;t such

that at t = 0, the instant where we evaluate (4.2) and (4.3), we have

b‡′
0 = b‡ and t′∂ ;0 = t∂

(compare [28, p. 163]).
— We write e = ρ ẽ, with ρ the constant referential mass density, and assume that e changes

tensorially under the action of both ht and ĥt (in the standard version of Marsden–
Hughes’s theorem it is required that the energy changes tensorially only with respect to
ht because in that formulation the reference space is not involved). Formally, indicating
by the superscript � values after the changes of observer, as in the previous section, the
requirement of tensoriality means that

ρ ẽ�(x′, t) = ρ ẽ(x, t, ĥ∗
t g, h∗

t g̃),

where ĥ∗
t and h∗

t indicate pull-back, and x′ = ĥt(x) (compare with [28, p. 165], namely
e�(y′, t) = e(y, t, ξ∗

t g(y)), with y′ := ξt(y), ξt a diffeomorphism analogous to ht). With ẽ a

3In the standard balance of energy used in Marsden–Hughes’s theorem, the rate of kinetic energy appears explicitly and bulk
actions are non-inertial. Here, in formula (4.1), inertial effects are included in the bulk actions.
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differentiable function of its arguments, the assumption implies

ρ
dẽ�

dt
= ρ

dẽ
dt

+ ρ
∂ ẽ
∂g

· Lw′ g + ρ
∂ ẽ
∂ g̃

· Lv′ g̃, (4.4)

where Lw′ g and Lv′ g̃ are, respectively, autonomous Lie derivatives4 of g and g̃ along the
vector fields w′ and v′.

Theorem 4.1. If the balance of energy (4.1) remains invariant under changes of observers induced by
h and ĥ as described above, the discontinuity surface considered previously has no relative motion with
respect to the body, and assumptions of the Cauchy theorem on bulk and surface terms hold, we get the
representation of contact actions in terms of the Piola–Kirchhoff stress P and, under PC1 regularity for P
as a function of space, all local balance equations in theorem 3.1 hold true (provided the substitution of ψ
with e), together with the following relations:

P = 2ρ
∂ ẽ
∂ g̃

F−∗ (4.5)

and

symP = 2ρ
∂ ẽ
∂g

. (4.6)

Proof. Set

E(ẏ, w; b) := d
dt

∫
b
ρ ẽdx − Prel

b (ẏ, w) =
∫
b
ρ

dẽ
dt

dx − Prel
b (ẏ, w).

The invariance requirement reads

E�(ẏ�, w�; b) − E(ẏ, w; b) = 0, (4.7)

where E� indicates that the time derivative of the energy is given by relation (4.4). The above
identity is then ∫

b

(
ρ
∂ ẽ
∂g

· Lw′ g + ρ
∂ ẽ
∂ g̃

· Lv′ g̃
)

dx − Pext
b (v′, w′) = 0, (4.8)

where

Prel
b (v′, w′) =

∫
b

b‡ · v′ dx +
∫
∂b

(t∂ · v′ − (ρ ẽn − F∗t∂ ) · w′) dHk−1(x)

−
∫
b

(
ρ
∂ ẽ
∂x

+ f
)

· w′ dx +
∫
b
μ · curlw′ dx.

Set w′ = 0. The identity (4.7) then reads
∫
b
ρ
∂ ẽ
∂g

· Lv′ g dx −
∫
b

b‡ · v′ dx −
∫
∂b

t∂ · v′ dHk−1(x) = 0.

Since we presume that bulk and surface terms satisfy assumptions in theorem 2.1, from the
previous identity we get (i) the dependence of t∂ on the boundary ∂b only through the normal
where it is well-defined, (ii) the action-reaction classical relation, and (iii) the linearity of contact
actions with respect to n in terms of the first Piola–Kirchhoff stress P. Consequently, by using the

4Consider a time-parameterized family of diffeomorphisms ϕt of the space onto itself. Write ϕt,s for ϕt ◦ ϕ−1
s (the inverse

being defined by time-reversal, namely ϕ−1
s = ϕ−s), and evaluate the vector field v := (dϕt,s/dt)|t=s, ϕs,s = identity. Take a

differentiable tensor-valued function over the space, say y �−→ B(y). We can evaluate a derivative of B along the vector field
v—write LvB for it—by defining it by LvB := d/dt(ϕt,s∗B)|t=s. In particular, if B is a metric g, we compute

(
Lvg

)
ij = vi|j + vj|i,

where the vertical bar in subscript position denotes covariant derivative.
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Gauss theorem, in the presumed PC1 setting, the equality (4.8) becomes
∫
b

(
ρ
∂ ẽ
∂g

· Lw′ g + ρ
∂ ẽ
∂ g̃

· Lv′ g̃
)

dx −
∫
b

(
(b‡ + DivP) · v′ + (DivP − ρ∂xẽ − f ) · w′)dx

−
∫
b

(P · Dv′ + P · Dw′ + 2(μ×) · skwDw′) dx

−
∫
b∩Σ

([P]n · v′ + [P]n · w′) dx = 0,

for any choice of v′ and w′, and their gradients. Once again, ∂xẽ indicates the explicit derivative
of ẽ with respect to x, maintaining fixed the state variables. The last integral above follows by
considering the continuity of v′ and w′ acrossΣ . The arbitrariness of v′ and w′ implies the validity
of (3.9), (3.11) and (3.13).

We compute

P · Dw′ = symP · symDw′ + skwP · skwDw′

= 1
2

symP · Lw′ g + skwP · skwDw′ (4.9)

and

P · Dv′ = P · (Dyv
′)F = PF∗ · symDyv

′ + PF∗ · skwDyv
′

= 1
2

PF∗ · Lv′ g̃ + PF∗ · skwDyv
′, (4.10)

with Dy the spatial derivative with respect to y so that D(·) = Dy(·)Dy = Dy(·)F. The arbitrariness
of skwDyv

′ implies equation (3.10), while the one of skwDyv
′ implies (3.12). Finally, we get

∫
b

((
ρ
∂ ẽ
∂g

− 1
2

SymP

)
· Lw′ g +

(
ρ
∂ ẽ
∂ g̃

− 1
2

PF∗
)

· Lv′ g̃
)

dx = 0.

The arbitrariness of Lw′ ĝ and Lv′ g allows us to get (4.6) and (4.5). This concludes the proof. �

— The relation (4.5) is a referential version of the Doyle–Ericksen formula (see [46]), which
prescribes that

σ = 2ρa
∂ ẽ
∂ g̃

,

while (4.6) is a version of the Rosenfeld–Belinfante theorem in classical field theories. In
the previous formula, ρa indicates the current mass density. If the target manifold has the
same dimension of B, we have ρ = (det F)ρa.

— Previous theorem requires prescribing explicitly the internal energy. So, at equilibrium
we could appeal directly to a minimality requirement for the energy, obtaining balances
of forces (3.9) and (3.13a) by the energy first variation around a minimizer (provided
the necessary bounds for the energy and its derivatives—see [33]), while the local
configurational balance (3.11) would follow from horizontal variations of the energy, the
one obtained by varying virtually a reference place. The reason of using the first law of
thermodynamics (in the form of Marsden–Hughes’s theorem, although in the variant that
we use here) is only the possibility of considering non-conservative bulk forces. Viscous-
like stresses are not involved in theorem 4.1. They are, in fact, not related with energy.
So, if we would accept the standard decomposition P = Pe + Pd where, once again, the
superscript e stands for energetic and d for dissipative (see [47]), and we would insert
it in the first law of thermodynamics, by developing the same calculations leading to
theorem 4.1, linking only Pe with the energy through (4.5), we would find that PdF∗
would be powerless, a result in contrast with the evidence that in the presence of viscous
effects Pd is intrinsically dissipative, meaning that Pd · Ḟ ≥ 0, the equality holding only
when Ḟ = 0. Including the occurrence of dissipative stresses thus requires to call upon the
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second law—even only in the version of mechanical dissipation inequality—and to prove
a theorem like the previous one. Such a proof is the main result of this paper.

— If we refer to Marsden–Hughes’s theorem [28], to its material version discussed in
reference [19] without relative power, or to what we presented here, in all these cases
we are not postulating a priori the balance equations in weak form as we do in looking at
the principle of virtual power, which requires to introduce from the beginning an inner
power, so to postulate in advance the existence of a stress tensor, not deriving it.

— The extension of theorem 4.1 to the non-isothermal case is straightforward. The balance
of energy changes into

d
dt

∫
b

e dx − Prel
b (ẏ, w) −

∫
b

r dx +
∫
∂b

a∂ dHk−1(x) = 0, (4.11)

where r is a heat source that is a function of space and time, while a∂ a heat flux that
depends also on the oriented boundary ∂b. In this case, the energy is assumed to depend
on temperature θ . An additional assumption is required: under changes of observers, r

and a∂ become r′t and a′
∂ ,t and are such that

r′0 = r and a′
∂ ,0 = a∂ .

Previous analyses apply. Then, one comes back to the definition (4.11) and by Cauchy’s
theorem realizes that there exists a vector field q depending on space and time alone such
that a∂ = q · n, with n the normal to ∂b. The rest is a matter of regularity assumptions,
divergence theorem and localization once we assume that the integral balance (4.11) holds
for any k-dimensional submanifold b of B.

5. Notes on formula (4.6)
The identity (4.6) shows that variations of the metric in B indicate material mutations and induce
configurational stress. To see this from another viewpoint, we look back to the free energy density
ψ and consider for it a structure of the type

ψ = ψ̂(x, g, F).

Assume now that ψ is invariant under the action of the entire group of diffeomorphisms from B onto
itself and also that the first Piola–Kirchhoff stress has only energetic nature—no dissipative component is
present.

Consider sufficiently smooth curves t �−→ ĥt, with ĥ0 = identity, in Diff(B,B). Call once again
w′ the derivative (d/dt)ĥt|t=0. Note that we do not require here that det Dht = 0 at every t as in
the previous section. This choice implies that ĥt induces a material change because, in selecting ĥt

such that det Dĥt �= 0, the mass density is altered so that ĥt is not a material isomorphism. It is not
per se a change of observer on the material manifold B because we always presume (although
often implicitly) that different observers must perceive the same type of material, so that changes
of frames in B must be material isomorphisms in Noll’s sense. Such an aspect does not emerge
often because we commonly assume that different observers record the same material manifold.
However, the issue enters into play indirectly when we compute the horizontal variations of the
energy and select for them the special group of diffeomorphisms.

Under the action of Diff(B,B), the energy changes as

ψ −→ψĥt
= (det Dĥt)ψ(Dĥ−∗

t gDĥ−1
t , FDĥ−1

t ).

The requirement of invariance implies formally that

d
dt
ψĥt

|t=0 = 0.

From it, we get

ψ
(
g, F

)
trDw′ − ∂ψ

∂g
· ((Dw′)∗ g + gDw′)− ∂ψ

∂F
· FDw′ = 0,
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by taking into account that (d/dt)Dĥ−1
t |t=0 = −Dw′. Moreover, since g is symmetric, we obtain

(
ψI − F∗ ∂ψ

∂F
− 2

∂ψ

∂g
g
)

· Dw′ = 0

for any choice of Dw′. The identity

P = ∂ψ

∂F

coming from the Clausius–Duhem inequality, thanks to the arbitrariness of Dw, implies

P = 2
∂ψ

∂g
g ,

where P stands for ψI − F∗P and has components

P
A
B = 2

(
∂ψ

∂g

)AC
gCB.

By multiplying by g−1 (with components gAB) from the right, we finally get

P
AB = P

A
CgCB = 2

(
∂ψ

∂g

)AB
.

6. Covariance of the mechanical dissipation inequality and dissipative
stress components

In discussing a variant of the Marsden–Hughes theorem, we have adopted an argument the
structure of which goes in this way: The balance of energy (4.1) as evaluated by the first observer,
say O, is something like A = 0, with A indicating all terms in the left-hand side in equation (4.1).
Another observer, say O′, writes a balance of energy of the type A′ = 0. After pulling-back in
the frame defining the first observer, we get A◦ = 0, with A◦ = A + A† (pull-back is intrinsic in
the use of Lie derivatives in assumption (4.4) and the definition of v′ and w′). So, the invariance
requirement reduces to imposing A† = 0 for any choice of the rate fields v′ and w′. The theorem
itself implies also that the stress has only an energetic component, in the sense that it is fully
determined by the internal energy.

To consider dissipative stress components, we need to require covariance of the Clausius–
Duhem inequality. Write in short B ≤ 0 for it, as the observer O evaluates it, with B involving the
free energy and some power, depending on the scheme that we are following. The inequality is
then B′ ≤ 0 for an observer O′. The pull-back of B′ into O gives rise to another inequality, say
B• ≤ 0, with B• = B + B†, which involves the rates v′ and w′, namely the infinitesimal generators
of the change O −→O′ induced by the Lie groups Diff(S, S) and SDiff(B,B), acting over the
ambient (physical) manifold and the reference one, respectively.

If we start from O′ and consider the change O′ −→O, we have now different (in principle)
infinitesimal generators. Then, in the pull-back change O′ −→O, the Clausius–Duhem inequality
reads B′ + B‡ ≤ 0. Above all, B‡ is in principle different from B†.

We impose the following covariance principle in dissipative setting: it states, essentially, that
both B† and B‡ are always non-positive.

Axiom 6.1. In any change of observer, the additional term arising after pulling-back the Clausius–
Duhem inequality evaluated by the second observer in a frame defining the first one is always non-positive.

By accepting such a principle, which I introduced in reference [20] for a discussion concerning
multiplicative elastic-perfectly plastic behaviour under large strains, we proceed as follows:
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— We write a version of the Clausius–Duhem inequality that includes the relative power,
namely

d
dt

∫
b
ψdx − Prel

b (ẏ, w) ≤ 0, (6.1)

and we presume that it holds for any choice of the rates involved and the part b.
— We presume that contact actions admit an additive decomposition into energetic te∂ and

dissipative td∂ components, as it is customary in viscoelasticity. The former component is
called an energetic one because it is considered to be fully determined by the free energy;
the latter by assumption does not depend necessarily on any potential.

— We assume that the free energy varies tensorially under changes of observers. We replace
ψ with ρψ̃ in the inequality (6.1), with ρ the referential mass density and ψ̃ the free
energy per unit mass. By indicating once again with the symbol � in superscript position
values measured after changes of observers and pulled back in a frame defining the first
observer, we write

ρ
dψ̃�

dt
= ρ

dψ̃
dt

+ ρ
∂ψ̃

∂g
· Lw′ g + ρ

∂ψ̃

∂ g̃
· Lv′ g̃, (6.2)

which is a version of (4.4) where we just substitute ẽ� with ψ̃�; also, w′ and v′ are the
same infinitesimal generators for the changes of observers already introduced in proving
theorem 4.1.

Axiom 6.1 and identity (6.2) imply
∫
b

(
ρ
∂ψ̃

∂g
· Lw′ g + ρ

∂ψ̃

∂ g̃
· Lv′ g̃

)
dx −

∫
b

b‡ · v′ dx

−
∫
∂b

(t∂ · v′ − (ρ ẽn − F∗t∂ ) · w′) dHk−1(x)

+
∫
b

(
ρ
∂ψ̃

∂x
+ f

)
· w′ dx −

∫
b
μ · curlw′ dx ≤ 0.

Set w′ = 0. The inequality reduces to
∫
b
ρ
∂ψ̃

∂ g̃
· Lv′ g̃ dx −

∫
b

b‡ · v′ dx −
∫
∂b

t∂ · v′ dHk−1(x) ≤ 0.

If the assumptions of Cauchy’s theorem hold true, the inequality notwithstanding, by following
the classical proof of Cauchy’s theorem, where a key role is played by an estimate of the contact
actions, we recover the action-reaction relation and t∂ = t(x, t, n) = P(x, t)n, with n the normal to ∂b
at all points where it is well-defined. Then, if x �−→ P(x, t) is a PC1(B) map at every t, with a fixed
discontinuity surface Σ , we get

∫
b

(
ρ
∂ψ̃

∂g
· Lw′ g + ρ

∂ψ̃

∂ g̃
· Lv′ g̃

)
dx −

∫
b

(b‡ + DivP) · v′ dx

−
∫
b

(DivP − ∂xψ − f ) · w′dx

−
∫
b

(P · Dv′ + P · Dw′ + 2(μ×) · skwDw′) dx

−
∫
b∩Σ

([P]n · v′ + [P]n · w′) dx ≤ 0 , (6.3)

for any choice of the rate fields involved, with P :=ψI − F∗P, and I the second-rank unit tensor.
The arbitrariness of w′ and v′ implies the balance equations (3.9), (3.11), and (3.13) in the bulk
and along the unstructured discontinuity surface Σ , after the identification of the inertial term
obtained accepting the identity (3.8) of theorem 3.1. Moreover, the assumption on t∂ requires an
obvious additive decomposition of P into energetic (Pe) and dissipative (Pd) components, namely
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P = Pe + Pd. For such components, we assume that Pe depends on the same entries ofψ while Pd =
P̃d(x, t, . . . , Ḟ), where the dots indicate possible state variables and their derivatives, according to
Truesdell’s equipresence principle. We also compute

P · Dv′ = 1
2

PeF∗ · Lv′ g̃ + PdF∗ · symDyv
′ + PF∗ · skwDyv

′, (6.4)

with Dy the derivative with respect to coordinates y on S. By substituting the identity (6.4) into
inequality (6.3), from the arbitrariness of skwDyv

′ and skwDw′ we get (3.10) and (3.12). The
inequality then reduces to

∫
b

((
ρ
∂ψ̃

∂g
− 1

2
symP

)
· Lw′ g +

(
ρ
∂ψ̃

∂ g̃
− 1

2
PeF∗

)
· Lv′ g̃

)
dx

−
∫
b

PdF∗ · symDyv
′ dx ≤ 0.

Also, the arbitrariness of Lw′ g and Lv′ g̃ implies

symP = 2ρ
∂ψ̃

∂g
and Pe = 2ρ

∂ψ̃

∂ g̃
F−∗. (6.5)

The second equation implies also that PeF∗ is symmetric, due to the symmetry of g̃. Moreover,
since PF∗ = PeF∗ + PdF∗, and (3.10) holds, symmetry of the first two terms in the identity implies
also that PdF∗ is symmetric too. So, we get

PdF∗ · symDyv
′ = PdF∗ · Dyv

′ = Pd · Dv′,

and the inequality above reduces to
∫
b

Pd · Dv′ dx ≥ 0.

The arbitrariness of b implies

Pd · Dv′ ≥ 0 (6.6)

for any choice of Dv′. Such an arbitrariness allows us to identify Dv′ with Ḟ so that an expression
of the type

Pd = a(·)Ḟ, (6.7)

with a(·) a positive-definite scalar function of state variables and, possibly, their gradients, is
compatible with the inequality (6.6).

These results can be summarized in the theorem below.

Theorem 6.2. Consider valid for a mutant body the modified Clausius–Duhem inequality (6.1). Accept
the covariance principle in dissipative setting, under the assumptions stated above, and presume that the
identity (3.8) holds. Then,

(i) contact actions admit the standard representation in terms of stress under the assumptions of
Cauchy’s theorem 2.1;

(ii) under PC1 regularity for the stress field and continuity for the bulk actions, all balance equations
in theorem 3.1 hold true;

(iii) the energetic part of the first Piola–Kirchhoff stress is given by equation (6.5)2;
(iv) the Hamilton–Eshelby stress satisfies relation (6.5)1, and
(v) the dissipative part of P is given by (6.7) or similar relations with a(·) replaced by a positive-

definite second-rank tensor valued function of state variables, not necessarily only those entering
the free energy.
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7. Additional remarks
— The second law of thermodynamics, written in the form of Clausius–Duhem’s inequality

is not only a source of a priori constitutive restrictions on stresses and a criterion of
stability and admissibility for the propagation of discontinuities like shocks: indeed, it
is also a source of the representation of contact actions in terms of stresses and implies
the local forms of the balance equations under appropriate regularity. In other words, it
is intrinsically a source of all basic ingredients of a mechanical model.

— For the reasons above, asking as in the previous section covariance of the second law,
written as (thermo)mechanical dissipation inequality, is a safe tool to build up models
when more refined representations of the body morphology come into play. In this sense,
such a covariance requirement is a counterpart in dissipative setting of the invariance for
the Lagrangian required in Noether’s theorem.
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