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A set of well-defined operations on succession rules

ELisA PERGOLA, RENZO PINZANI AND SIMONE RINALDI' Dipartimento di Sis-
temi e Informatica, Via Lombroso 6/17, Firenze.
{elisa, pinzani, rinaldi}@dsi.unifi.it

Abstract. In this paper we introduce o system of well-defined operations on the set of
succession rules. These operations allow us to tackle combinatorial enumeration problems
simply by using succession rules instead of generating functions. Finally we suggest several
open problems the solution of which should lead to an algebraic characterization of the
set of successton rules.

1 Introduction

A succession rule 2 is a system having the form:

{ (b)
(k) ~ (e1(k))(ea(k)) . .. (ex(k)),

where b, k € Nt and e; : Nt — Nt (b) is the aziom and (k) ~ (e1(k))(e2(k))
... (ex(k)) is the production; (b), (k), (ei(k)), are called labels of {2. The rule {2 can
be represented by means of a generating tree, that is a rooted tree whose vertices
are the labels of ); (b) is the label of the root and each node labelled (k) produces
k sons labelled (e;(k)), ..., (ex(k)) respectively. We refer to [4] for further details
and examples. A succession rule {1 defines such a sequence of positive integers
{fn}n>0, that f, is the number of the nodes belonging to the generating tree
defined by © and lying at level n. By convention the root is at level 0, so fy = 1.
The function fo(z) = 3,5 fnz" is the generating function derived from .

The concept of succession rules was first introduced in [6] by Chung and al.
to study reduced Baxter permutations; later, West applied succession rules to the
enumeration of permutations with forbidden subsequences [11]. Moreover, they
are a fundamental tool used by the ECO method [4], which is a general method
for the enumeration of combinatorial objects consisting essentially in the recursive
construction of a class of objects. A generating tree is then associated to a certain
combinatorial class, according to some enumerative parameter, so that the number
of nodes appearing on level n of the tree gives the number of n-sized objects in the
class. In [1] the relationships between structural properties of the rules and the
rationality, algebraicity or trascendance of the corresponding generating function
are studied. We wish to point out that in the present paper we deal with “pure”
succession rules [4], instead of generalizations [2], or specializations [7].

Two rules ; and Q9 are said to be equivalent, Q; = s, if they define the
same number sequence, that is fo, (z) = fa,(z). For example, the following rules
are equivalent and define Schréder numbers ([5]):

IThis work was partially supported by MURST project: Modelli di calcolo innovativi: metod:
sintattici e combinatort.
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{ (2) { (2)
(2k) ~ (2)(4)° ... (2k)*(2k + 2), (k) ~ (3)...(k)(k+1)?

where the power notation is used to express repetitions: (h)' stands for (h) repeated
1 times.

Starting from classical succession rules we define coloured rules in the follow-
ing way: a rule 2 is coloured when there are at least two labels (k) and (k) having
the same value but different productions. For example, it is easily proved, that the
sequence 1,2,3,5,9,17,33,...,2"! + 1, having f(z) = % as generating
function, can only be described by means of coloured rules, such as:

)
)(2)
)(2).

A succession rule 2 is finite if it has a finite number of different labels. The number
sequences {an, i }n, defined by the recurrences:

S (1 (f) Gaih=0 REN

j=0

having ;= as generating function, have finite succession rules:

(*)
@ = (1)
-+ (1)(2
UEY: 4 (3) w (1)@Q)3)

(k) ~ (1)(2)(3) ... (k - 1)(k).

Moreover, let {a,}, be the sequence of integers satisfying the recurrence:

an = kan_1 + hay,_», keNt . heZ,

subject to the initial conditions ag = 1, a; = b € Nt ; every term of the sequence
is a positive number, if k 4+ h > 0. In this case, the sequence {a,}, is defined by
the finite succession rule:

(b) ,
) (B~ (k)7 k+h)
Qrin® \ (k) = (K)(k +h) ™)
(k +h) ~ (k)¥+ =1 (k + h).
Finite succession rules play an important role in enumerative combinatorics,

such as in the enumeration of restricted classes of combinatorial objects ([8]).
Moreover, we can regard any finite succession rule () as a particular PDOL system
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(19]), (X, P,wp), where the alphabet ¥ is the set of labels of §2, P is the set of its
productions and wg € E. These remarks lead to the solution of two open problems
for finite succession rules:

Equivalence. Let Oy and ()2 be two finite succession rules having hy and hy labels
respectively, then (1 = Qa, if and only if the first hy + ho terms of the two
sequences defined by 1 and £y coincide.

For example, the number sequences defined by Q' and by Q2 (the rule for
Fibonacci numbers) coincide for the first 4 terms, but not for the fifth, so the rules
are not equivalent.

Generating functions. The function f(z) is the generating function of a finite
succession rule iff:

1. f(z) = 5, with P(z),Q(z) € Z[z], and Q(0) = P(0) = 1;
2. 1(f(z) — 1) — f(z) is N-rational.

Roughtly speaking, M-rational functions are the generating functions of reg-
ular languages, and their analytic characterization is given by Soittola’s Theorem
[9] (for further details see [3]). We are so ensured that each generating function of a
finite succession rule is the generating function of a regular language, while the con-
verse does not hold. For example, let g(z) = =gz and h(z) = Tl_—ﬁlm_}%;%ﬂ;
h(z) is a rational function having all positive coefficients (see [3] for the proof) but
it is not M-rational, since the poles of minimal modulus are complex numbers. Let

f(z) = g(z*) + z[g(z?) + h(2?)] = Ky (2?) + zha(2®); (2)

f(z) is N-rational, since it is the merge of the two functions ky (z) and ks(z), each
of them having a real positive dominating root, z = 10. This proves the existence
of a regular language having f(z) as its generating function. Moreover, it is clear
that f(z) defines a strictly increasing sequence of positive numbers. Neverthless
L(f(z) = 1) = f(z) is not Nrational, since it is a merge of g(z) and h(z), and
h(z) is not M-rational. Thus there are no finite succession rules having f(z) as its
generating function. The previous problems remain still open in the case of not
finite succession rules.

2 Operations on succession rules

A n-ary operation o on the set S of all succession rules is said to be well-defined
if the equivalences £ = 0,..., = Q) imply o(Q,...,0n) = o(Q],..., ).
Our aim is to determine a set of well-defined operations on §, in order to build an
algebraic system on S.

Let 2 and Q' be two succession rules, defining the sequences { fn }n and {gn}n,
and having f(z) and g(z) as generating functions, respectively. In the sequel we
deal with Q and Q' having the following general forms:
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) (a) ()
f: { (h) ~ (ex(h))(e2(h))...(en(h)), ks { (k) ~ (c1(k))(e2(k)) - .. (e (k).

2.1 Sum of succession rules

Given two succession rules  and ', their sum, 2 & ', is the rule defining the
sequence {hy, }, so that hg = 1and h,, = f,+gn,if n > 0, and having f(z)+g(z) -1
as generating function. Let (a) ~ (Ay)...(A,) and () ~ (By)...(B}) be the
productions for the axiom (a) in Q and (b) in §', then the following succession
rule:

(a+b)
' (@+b) ~ (A1) ... (A.)(B1)-..(By)
-k (B) > (ex () (e2(R)) .. (en(h))
(F) ~ (@R (@(F) ... e (),

gives the sequence {hy }n.

2.2 Bisection of succession rules

Given a succession rule (2, its bisection, denoted as £, is the rule defining the
2

sequence { fon}n, and having ﬂﬁ/i)—";(_—ﬁl as generating function. Let (a) ~

(Ay)...(As) be the production for the axiom (a), and s = Ay + ... + A,, then

(s) is the axiom for £. Let e;(h) ~ ei(h)... ei,(hj(h’) be the production for e;(h),

i=1,...,h,and g(h) = e;(h) + ...+ ex(h), then the rule for ¢ is:

(s) '
{ (g(R)) ~ (9 (). (g€l (ny(B)) - -- (alel(h)) - (alel (py (M)).

Example 2.1

i) Bisection of the rule for the Fibonacci numbers. By applying the previous defi-
nition we obtain:

@) . (3)
A { ()= (2) Lo L @~
(2) - (1)(2), (3) - 2)3)(3).

i1) Bisection of the rule for Catalan numbers. We start from the rule Qe¢,

(2)
{ (h) ~ (2)(3)...(R)(h + 1);
the axiom for S¢ is (5); moreover, g(h) = 2+ 3 +...h + h+1 = K338 g5 the

rule for Catalan numbers of even index, (1,5, 42,429, .., .-2-;44—_3 (;213)) is:
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Q [ O ,
o ¢ { (.-ﬁizsn) ~ (5)"(9)"(14)*-1(20)2 ... ((n+1} -12—3(h+1)) ((u+z)2;s[n+fz)) .

2.2.1 Product of succession rules

Given the rules {2 and €', their product @ ® V', is the succession rule defining
the sequence {3, ., fn—kgk }n, and having f(z) - g(z) as generating function. Let
(b) ~ By ... B be the production of (b), then:

{a+b)
Q20 : { (h+b) ~ (e1(h) + b)(e2(h) +b)...(en(h) + b)B; ... By
(k) ~ er(k) - .. ex(k).

This statement is easily proved as follows: let ¢t(z) = f(z) - g(z), and t, the
number of nodes at level n in the generating tree of 1 ® V', The statement clearly
holds for n = 0, tp = 1 = fogo, and for n = 1, t; = figo + fog1 = a + b. Figure 1
shows the generating tree for the rule Q2 @ ('; the number of nodes at level n of
the tree can be considered as a sum of n + 1 terms, which are as follows:

- n = fogn; indeed this is the number of nodes at level n in ' generating tree,
which is a proper subtree of Q2 @ 2’ having the axiom as its root.

- fign-1; indeed, by construction, the generating tree of ) ® ' has f; subtrees,
isomorphic to ', the roots of which lie at level 1; each of them has g,,—; nodes
at level n of @ ® ) generating tree. Generally, at level n of 2 @ (V' generating
tree, there are f; times the nodes at level n — i of ' generating tree (that is g,,_;
nodes), 0 <i < n.

(heXy,) (h+X,) -~ Lagth8 vhe,

N X T A e

Figure 1: The generating tree for Q ® Q'.

Thus the total number of nodes at level n of 2 ® Q' generating tree is t, =
fogn+. ..+ fngo. As the product is commutative, R ® )’ and (V' ® (] are equivalent
rules but of a different shape.
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Example 2.2 i) Product of Catalan and Fibonacci numbers. The succession rule
obtained by applying the operation ® to the rules for Catalan and Fibonacci
numbers is as follows:

)
k+2) ~ (1)(2)@)(5)...(k) (k + 1)

1)~ (2)

(4
e ® N E
(2) ~ (1)(2),

and it defines the number sequence 1,4,12, 35,95, ....

ii) The rule for the square Catalan numbers. The rule obtained is:
(4)

g (k +2)

(k) ~ (

which can be easily simplified as the following nice rule:

(2)(3)(4)(5)--.(k)(k +1)(k + 2)(k + 3)

)3)-..(k)(k +1).

i

E - S
(%]

. (4)
Q% { (k) ~ (2)(3)...(k)(k + 1).

2.3 The Star of a succession rule

The star of the succession rule 2, denoted as 7, is the rule deﬁning the number
sequence having iﬁ =1+ fo(@) + fE@) +... + (@) +... = X5 [z

as generating function, where fy(z) = f(z) — 1. Let (a) be the axiom and (a) ~
Ay ... A, the production of (a). The rule 0* is:

(a)
- { (a) ~ (A +a)...(A; +a)
(h+a)~ (A1 +a)...(4s +a)(er(h) + a)(ea(h) + a)...(ex(h) + a).

The proof is similar to the one given for the product of two succession rules.

Example 2.3 The star of Schrider numbers. We start from the rule Qg:

(2)
{ (2k) ~ (2)(4)%...(2k)2(2k + 2), and obtain Q% :

(2)
( (4)(
(2k + 2) ~ (4)2(6)°. .. (2k + 2)2(2k + 4).



A set of well-defined operations on succession rules 147

2.4 An application of rule operations to enumerative com-
binatorics

A Grand Dyck path is a a sequence of rise and fall steps ((1,1) and (1, —1) respec-
tively) in the plane M x Z, running from (0,0) to (2n,0).

Let us determine a succession rule that enumerates Grand Dyck paths according
to their semilenght, by applying some operations to succession rules. Grand Dyck
paths are in bijection with Grand Dyck words, which are generated by the following
non-ambiguous grammar:

A - aAbAle

S — aAbS|bBaS|e
B — bBaBl|e,

where a encodes a rise step, and b a fall step; its generating function is f(z) =

v’ll—ﬁ' Let fp(z) be the generating function for Dyck words, enumerated by Cata-

lan numbers. We can write f(z) as:

1
—[(fo(z) = 1) + (fp(z) - 1))

Thus the rule  for Grand Dyck paths can be obtained as Q = (Q¢ @ Q¢)*, where
Q¢ represents the rule for Catalan numbers:

f@) =1

o
faie { (h) ~ (2)(3)... (W)(h + 1. =

By applying sum and star operations, we obtain the following rule:

e -
s { (h) ~ (3)B)@)-.. (R) (h +1). )

It should be noticed that this is the same rule found in [8] and which recur-
sively constructs the class of Grand Dyck paths according to the ECO method.

2.5 Partial sum of a succession rule

Let € be a succession rule, defining the sequence {f,}, and having f(z) as gen-
erating function. The partial sum €2, is the rule defining the sequence {Fp}n =
{ngn fj} . We can obtain £} by means of the product operation, since F'(z) =
D Fat™= Iiz - f(z). Thus:

¥N=0e0,

(1)
where £ { (1) ~

the product operation we get:

(1) is the natural rule for the sequence f, = 1, Vn. By applying
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{ {a--kl}
Q¢ (1)~ (1)
(h+1) ~ (1)(ex(h) + 1)(e2(h) +1) ... (en(h) + 1).

For example, the rule Q¢ for Catalan numbers leads to the rule:

e
e { (1) = (1)(h +1) ~ (1)@)E) ... (h + 1)(h +2),

giving the sequence 1,3,8,22, 64, ...

3 Other operations

Let ( and @' be succession rules, and as usual, {fn}» and {gn}n their sequences,
with their respective generating functions f(z) and g(z). The Hadamard product of
2 and €)', denoted as 2@ ¥, is the rule defining the sequence {f,gn }n. Generally,
it is not so simple to determine the generating function f(z) ® g(x), but the
Hadamard product of two N-rational series was proved to be N-rational ([9]).

We start by giving an example of how to construct the rule 2 ® Q' in the
case of finite rules. Let {2 be the rule for the Pell numbers, {1,2,5,12,29,...}, and
€)' the rule for the Fibonacci numbers having an odd index, {1,2,5,13,34,...},

(2) @
Q: (2) ~ (2)(3) (P @)~ 2)3)
(3) ~ (2)(2)(3), (3) ~ (2)(3)(3).

For each label (h) of Q and (k) of ', (k- k) is a label of the rule 2 ® (,
and it is coloured only if there is already another label having the same value; the
axiom is (a - b), where (a) and (b) are the axioms of the rules; if the productions
of (h) and (k) are:

then the production of (k- k) is:

(h k)~ (c1-e1)...(cr-ex)...(ch-er)...(ch-ex).

Going back to our example, the labels of @ @ Q' are (2-2) = (4), (2-3) = (6),
(3-2) = (6), (3-3) = (9). For instance, the production for the label (4) is:

(4)=(2-2)~ (2-2)(2-3)(3-2)(3-3) = (4)(6)(6)(9).

In the same way we obtain:
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(4)
(4) ~
Do : (6) ~
(6) ~
(9) ~

The rule 2 @ Q' has ij labels, being i and j the numbers of labels of Q and
) respectively. The method we described above enables us to obtain the product
0 @ QY for finite rules, and it also proves that the Hadamard product of two finite
rules is a finite rule. Some problems arise when attempting to find a general
formula for the Hadamard product of two rules  and Q' having each an infinite
number of labels. Generally speaking, the best we can do is to write a finite rule
Q* which approzimates the rule Q @ Q' with the required precision, depending on
the parameter k € N* (see [8]).

Neverthless there are some cases when the application of the previously de-
fined operation on succession rules becomes particularly easy and helpful.

(1) Let k € N, the rule Q; is a rule for the sequence {F},}, = {k" f, }; since the
generating function F(z) =}, Fpa" = f(z) ® 2, we have:

Q=00 0,

where ; is the rule for {£"},, that is:

by applying the operation @ we get:

. (ka)
R : { (kR) ~ (ex(R))(ea(R)X .. . (en(h))E.

For example, let us take into consideration the rule £2 for Motzkin numbers
{1,1,2,4,9,21,..., M,,...}:

. (1)
f2: { (h) ~ (1)(2) ... (h = 1)(h + 1); (5)

for k = 2 we get the rule (2 giving the sequence {1, 2, 8,32,144, ..., 2"M,,, ... }:

Q, : { (2) .
: (2h) ~ (2)2(4)2 ... (2h — 2)2(2h + 2)2.
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(2) Therule [n+1]Q defines the sequence F,, = (n+1) f,, n € N. As the generating
function is F'(z) = ) Fpz" = f(z)- (1—-_11:—}5, we have:

h+12=0060,

where ' is the rule for the sequence n + 1, that is:

80 we obtain:

(2a)
[n+1)0: {(h) (e1(h))(ez(h)) .- (Bh(h))
~ (er(h))(e2(h)) - . . (en(h))(2e1(h)) . . . (2en(h)).

For example, let ) be the rule for Pell numbers, then:

(4)

(2) ~ (2)(3)

(3) ~ (2)(2)(3)
(4) ~ (2)(3)(4)(6)
(6) ~ (2)(2)(3)(4)(4)(6)

Let G, be the number of Grand Dyck paths having semilength n and C), the
nth Catalan number. As usual, let {2 be the rule (3) for Catalan numbers,

and (g the rule defining the sequence {G,}. From the combinatorial identity
Gn = (n+ 1)C,, we have:

[n+1]92:

Qg = [ﬂ + I]Qc,

and thus

(2)
Qg : {@w(z)(a)...(h)mﬂ) -
(2R) ~ (2)(3)...(h)(h + 1)@)®). ..(R)(2k T 2),

is a rule counting {G,}, equivalent to (4).
Moreover it is easy to prove the following property.

Proposition 3.1 Let Q be a rule defining the sequence {fn}n. Then a rule
defining a sequence {gn}n, such that f, = g, —rgn_1, for n > 1, exists:

(a+r)
Q' : { (r) ~ (r)"
(h+71)~ (r)"(ex(h) + r)(ea(h) + 1) ... (en(h) + 7).
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3.1 Open problems -

There are several open problems related to the definition of an algebra on suc-
cession rules and arising from the operations we have introduced. Below the most
interesting problems are mentioned:

e Equivalence. Is there a criterion allowing us to establish whether two given
succession rules are equivalent simply by working on their labels, that is,
with no need to determine the corresponding generating functions?

e Subtraction. Given two rules 2 and €', defining the sequences {f,} and {g,}
respectively, such that f, > g, for each n > 0, let Q&' be the rule defining

1 ifn=0
the sequence {h,}, such that h, = { g,  otReing

The construction of the rule Q; & Q; constitutes an open problem.

o Inversion. Let {f,}, be a non decreasing sequence of positive integers. Is
there a method allowing us to decide whether a succession rule defining the
sequence {f,}n exists and, in this case, to find it? We remark that this
problem can be solved for finite rules.

3.2 A Conjecture

Conjecture: if a succession rule has a rational generating function, then it is
equivalent to a finite succession rule. It is sufficient to prove that each rational
generating function of a succession rule satisfies the properties of the generating
functions of finite rules established in Section 1. If the conjecture proves true,
rational functions such as (2) cannot be the generating functions of any succession
rule. For example, let ) be the rule, studied in [1], whose set of labels is the whole
set of prime numbers:

; (2)
@ { {pﬂ) o (pn+l)(qn)(rn)(2)p"_31

where p, denotes the nth prime number, and ¢, and r,, are two primes such that
2Ppn — Pne1 + 3 = gn + T; its generating function is rational, f(z) = ﬁ{,
thus, according to our conjecture, a finite succession rule (' equivalent to Q) can

be found:

(2)
- (2) ~ (2)(3)
C ) @~ @O
(4) ~ (2)(3)(4)(4).

It should be noticed that the rule ' was further exploited in [8], being the 4-
approximating rule for Catalan numbers, and it describes a recursive construction
for Dyck paths whose maximal ordinate is 4.
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