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A vast literature strongly suggests that the endocannabinoid (eCB) system and

related bioactive lipids (the paracannabinoid system) contribute to numerous

physiological processes and are involved in pathological conditions such as

obesity, type 2 diabetes, and intestinal inflammation. The gut paracannabinoid

system exerts a prominent role in gut physiology as it affects motility,

permeability, and inflammatory responses. Another important player in the

regulation of host metabolism is the intestinal microbiota, as microorganisms

are indispensable to protect the intestine against exogenous pathogens and

potentially harmful resident microorganisms. In turn, the composition of the

microbiota is regulated by intestinal immune responses. The intestinal microbial

community plays a fundamental role in the development of the innate immune

system and is essential in shaping adaptive immunity. The active interplay

between microbiota and paracannabinoids is beginning to appear as potent

regulatory system of the gastrointestinal homeostasis. In this context,

oleoylethanolamide (OEA), a key component of the physiological systems

involved in the regulation of dietary fat consumption, energy homeostasis,

intestinal motility, and a key factor in modulating eating behavior, is a less

studied lipid mediator. In the small intestine namely duodenum and jejunum,

levels of OEA change according to the nutrient status as they decrease during

food deprivation and increase upon refeeding. Recently, we and others showed

that OEA treatment in rodents protects against inflammatory events and changes

the intestinal microbiota composition. In this review, we briefly define the role of

OEA and of the gut microbiota in intestinal homeostasis and recapitulate recent

findings suggesting an interplay between OEA and the intestinal microorganisms.
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1 Synthesis and degradation of OEA

The oleic acid derivative OEA belongs to the so-called

endocannabinoid-like compounds as it shares with anandamide a

similar chemical structure and the enzymes for the biosynthesis and

degradation, although it does not bind to either CB1 or CB2
receptors. Hence, it is more appropriate to assign OEA, along

with palmitoylethanolamide (PEA) and similar bioactive lipids to

the endocannainoidome ensemble. As other N-acylethanolamines

(NAEs), OEA is found in various tissues and its synthesis increases

or decreases according to the different homeostatic functions that

OEA controls. OEA endogenous levels depend on the balance

between biosynthesis and deactivation processes; it is involved in

the regulation of lipid metabolism, body weight and feeding

behavior (1–5).

Presumably, fat digestion in the small intestine triggers the

release of free oleic acid, which is internalized by the enterocytes

lining the lumen of the proximal gut and is directed to produce

either chylomicrons or OEA. Indeed, duodenal infusion of

individual nutrients revealed that fat, in particular oleic acid, is a

potent stimulator of OEA synthesis, whereas proteins and sugar are

not (6, 7). OEA is synthesized via a two-step reaction mechanism

catalyzed by the sequential action of N-acyl transferase (NAT) (8–

10) and N-acyl-phosphatidylethanolamine-selective phospholipase

D (NAPE-PLD) (11–14). NAPE-PLD is widely expressed in animal

tissues, including various regions of the rat brain (15), and in the

enterocytes of the mouse duodenum, where its activity and

expression are enhanced by feeding (16). OEA synthesis is also

enabled by an alternative biosynthetic pathway via a/b-hydrolase-4
(ABHD4) and glycerophosphodiesterase1 (GDE1) (17, 18).

OEA released from small-intestinal enterocytes of various

species indirectly signals satiety to hypothalamic nuclei, in

particular to histaminergic neurons in the tuberomamillary

nucleus. Indeed, we demonstrated that OEA requires a

functioning brain histaminergic system to fully exert its satiating

effect (19).

Newly formed OEA binds to peroxisome proliferator-activated

receptors-a (PPAR-a), which activate sensory fibres of the vagus

nerve through an ill-defined mechanism, promoting satiety (4).

OEA signaling takes place also via the transient receptor potential

vanilloid 1 (TRPV1), which presumably mediates intestinal

hyperpermeability (20) and visceral pain (21).

Other key elements that bind OEA are the membrane

glycoprotein fatty-acid transporter CD36 which plays an

obligatory role in food-stimulated OEA production, and the Gas-
coupled receptor GPR119. CD36 binds long-chain fatty acids and

translocate them through cell membranes (22); presumably it acts

as a biosensor for food derived oleic acid, as its deletion abrogates

food-stimulated production of OEA (23). The GPR119 activation is

thought to mediate OEA regulation of glucose homeostasis

[reviewed in (24)].

OEA is hydrolyzed into oleic acid and ethanolamine, the

primary mechanism through which its biological actions are

terminated. The structurally unrelated enzymes involved in this

transformation are the fatty acid amide hydrolase (FAAH) and
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N-acylethanolamine acid amidase (NAAA). FAAH is highly

expresses in the central nervous system (CNS), liver and small

intestine (25), whereas NAAH is distributed in the liver, brain,

kidney (26) as well as well as in epithelial and lamina propria cells of

the mouse jejunum (16).
2 Dietary regulation of OEA
production in different organs
and tissues

2.1 Regulation of OEA levels in
the intestine

Not only food composition is a key element that regulates the

complex processes of OEA metabolism, but also its availability;

animal studies have shown that food deprivation for 24h decreases

OEA biosynthesis in the mucosal layer of rat duodenum and

jejunum, whereas OEA levels increase upon refeeding (16). On

the other hand, excessive high-fat exposure suppresses intestinal

OEA synthesis and renders the homeostatic processes controlled by

this NAE dysfunctional (27). This suggests that a diet too rich in fat

promotes overeating, at least in part, by suppressing the satiating

effects of gut derived OEA.

Overconsumption of dietary fats also dampens the activity of a

brain reward circuit involving dopamine release, which leads to

compensatory intake of even more high-fat foods to restore reward

sensitivity (28). An elegant work by (27) showed that infusion of

OEA via intraperitoneal catheters to mice that had been

accustomed to a high-fat diet, restored the brain dopaminergic

response, and these animals began to eat more low-fat foods. In this

regard, another study demonstrated that in a rat model of bariatric

surgery, the ultimate treatment strategy for long-lasting weight loss

in patients with morbid obesity, ingested fat mobilizes OEA

production, which is associated with vagus nerve-dependent

increase in dopamine D1 receptor expression and striatal

dopamine release (29).

Furthermore, a high fat-high sucrose (HFHSD) diet fed to male

mice induced early and persistent weight gain, hyperinsulinemia

and glucose intolerance, along with alteration in the

endocannabinoidome. In particular, the HFHS diet elevated AEA

levels, decreased OEA and PEA in the plasma and changed, in a

segment-specific fashion, the relative abundance of several

intestinal microbiota genera (30). Hence, the authors demonstrate

the existence of an interaction between the endocannabinoidome

and intestinal microbiota during a maladaptive response that leads

to diet-induced obesity and metabolic complications.

All these observations indicate that the intestinal regulation of

OEA production may have fundamental consequences on eating

misbehavior of human patients. Indeed, the clinical implications of

these findings are beginning to emerge; for instance, a couple of

studies demonstrated the beneficial effects of OEA in morbid obese

patients (31) and in obese patients diagnosed with non-alcoholic

fatty liver disease (NAFLD) (32). Furthermore, animal data indicate

a cholesterol lowering effect of OEA treatment (33) and a clinical
frontiersin.org
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investigation showed a positive correlation between serum OEA

levels and high-density lipoproteins (HDL), and a negative

correlation with BMI and anthropometric measurements in

hemodialysis patients (34). However, discordant results were

obtained in subjects fed a high-protein diet, as OEA was found to

be positively associated with cardiometabolic risk markers, such as

total and LDL serum cholesterol (35). As suggested by the authors,

establishing whether OEA provides a compensatory/regulatory

factor in these human experimental sett ings require

further research.
2.2 Regulation of OEA content in the liver
and fat mass

An interesting aspect of OEA metabolism is that its levels

change according to the nutrient status with different modalities

in different tissues and organs; for instance, contrary to what

happens in the intestine, fasting increases the content of OEA in

the white adipose tissue and liver and return to basal levels upon

refeeding (16, 36). The differential regulation of OEA biosynthesis

substantiates its regulatory role in distinct aspects of energy balance,

not only on energy intake (1, 37), but also in fat utilization (38) and

ketone bodies synthesis (39). This regulation is relevant for the

synthesis of hepatic ketone bodies as source of energy during food

scarcity. Ketogenesis is a crucial metabolic response to prolonged

periods of food paucity and is initiated by the stimulation of PPAR-

a which control transcription of many genes involved in

ketogenesis and fatty acid oxidation in response to fasting (40).

The newly formed OEA during fasting together with lipolysis-

derived free fatty acids activate PPAR-a in the hepatic tissue. This

mechanism is presumably based on extrahepatic mast cells

secretion of histamine into the portal circulation. We recently

demonstrated that histamine acts as a paracrine signaling system

which enhances ketogenesis during fasting, as demonstrated with

pharmacological and genetic treatments which inactivate the

histaminergic signaling and consequently diminish both

ketogenesis and hepatic OEA synthesis (39). Long exposure to a

high fat diet disrupts this homeostatic process as it suppresses both

fasting-dependent histamine release in the portal blood and OEA

production in the liver. When OEA is administered exogenously,

though, all fat-induced markers of liver steatosis such as fibrosis,

lipid accumulation and several parameters associated with oxidative

stress, are reduced (41, 42). Furthermore, OEA differently regulates

the expression of nuclear factor erythroid-derived 2-related factor 1

(Nrf1) and Nrf2, two transcription factors involved in the control of

lipid metabolism and antioxidant genes (41) and reduces

inflammation and fat accumulation in a rat model of non-

alcoholic fatty liver (NAFLD) (43). These fundamental results

suggest new targets of the protective effect of OEA in the liver.

In white adipose tissue, b-adrenergic receptor activation and

cold exposure stimulate OEA production (44), which is responsible

for stimulating glycerol and fatty acid release, and lipolysis (45).

Short-term cold exposure and acute b3-adrenoceptor activation

elevate OEA levels also in the brown adipose tissue, suggesting a

role for this NAE in the control of thermogenesis (17).
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Diet-fed mice, contributing to lower adiposity (46), and controls

lipid metabolism in genetically obese rats and Diet-Induced Obesity

(DIO) mice (33, 38). In a clinical context, it is interesting that OEA

contributes to the reduction of inflammation associated with gastric

bypass surgery of morbidly obese subjects (31). These authors

designed a translational project including clinical and in vitro

studies with morbid obese patients submitted to gastric bypass

surgery (GBS) and found an inverse correlation independent of

body mass index between palmitoylethanolamide (PEA) and OEA

levels, and inflammatory molecules in the adipose tissue.

The potential clinical utility of OEA in the treatment of obesity

has been addressed in clinical and preclinical studies with overall

positive results. As examples, the administration of OEA in synergy

with a b-adrenergic receptor agonists caused a significant fat mass

reduction and enhanced energy expenditure in rats, along with

decreased plasma levels of leptin and TNFa (47). More recent

clinical trials in obese subjects and patients with NAFLD

demons t ra ted tha t OEA supplementa t ion decreased

anthropometric measures including body mass index and waist

circumference (32, 48).
3 OEA is a predominant player in
intestinal physiology

Many bioactive lipids regulate several physiological processes

that maintain the gut-barrier integrity, control inflammation, pain

and energy metabolism (see (49) for a comprehensive review). OEA

in particular exerts prominent roles in intestinal physiology; it

reduces intestinal motility together with other lipid mediators

such as PEA and oleamide, suggesting a potential target for the

development of efficient drugs to reduce intestinal motility (50);

OEA presumably partakes in the maintenance of normal glucose

homeostasis as it increases the secretion of Glucagon-like Peptide-1

(GLP-1, an intestinal hormone with potent insulinotropic effects)

by binding to GPR119 expressed on enteroendocrine L-cells (51).

Experiments in vitro demonstrated that OEA decreased intestinal

epithelial cells permeability (20), and we recently reported that OEA

affects the polarization of TH lymphocytes in intestinal Peyer’s

patches (52). Peyer’s patches, together with small intestine epithelial

cells, are in the optimal position to discriminate between

commensal bacteria and pathogens. Several cytokines and

chemokines released by lymphocytes are modulated by OEA, as it

decreases release of proinflammatory IFNg, IL6, IL17, IL4, and
chemokines CXCL1 and CXCL2, which are necessary to recruit

neutrophils in inflammation. Immunohistochemical studies

demonstrated that the expression of PPAR-a, for which OEA has

a high affinity, was decreased in biopsies of the colonic epithelium

taken from patients with active colitis compared to healthy subjects

(53). We therefore evaluated the protective effects of OEA

administration in a mouse model of ulcerative colitis, by exposing

mice to dextran sodium sulphate (DSS). It was found that a sub-

chronic treatment with OEA ameliorated the inflammatory profile

of DSS-treated mice by decreasing systemic and colonic expression

of pro-inflammatory cytokines as well as the expression of
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inflammatory cytokines in mesenteric lymph nodes of diseased

mice (54). Furthermore, OEA exerted a protective action on the gut

barrier by restoring mRNA transcription of tight junctions and

other factors such as mucin that maintain colon integrity (54).

Altogether these findings are of relevance in the context of intestinal

pathologies and prompted the question of whether OEA and the

intestinal microbiota somehow cooperate to maintain the

gastrointestinal functional integrity and physiology.
4 Intestinal microbiota: A real
metabolizing organ

4.1 Diet composition affects the
microbiota profile

The intestinal microbiota, a complex microbial community

residing in the gastrointestinal tract, has a major role in

maintaining the health of the host organism, providing essential

metabolic capabilities, such as the availability of nutrients, vitamins,

energy, as well as contributing to the detoxification and resistance

towards infectious diseases (55). The intestinal microbiota is also

capable of metabolizing biologically active molecules from food,

which would otherwise be discarded from the intestinal tract,

recovering energy, producing “microbiota-derived metabolites”

that orchestrate and support physiological responses in the host,

including metabolism, immune response, inflammation, and

defense against infections (56). The intestinal microbiota is also

capable of influencing the host energy balance, as demonstrated by

several studies on germ-free animals. These require 30% more

energy in the normal diet to maintain the ideal weight (57).

Indeed, intestinal bacteria draw the necessary energy from sugars

and proteins metabolism, through the process of fermentation. The

transformation of non-digestible polysaccharides of the diet

(cellulose, hemicellulose, pectin, non-digestible starch) takes place

thanks to bacterial enzymes, such as glycoside hydrolase which

converts glycans into useable sugars (>81 different glycoside

hydrolase families) and transform food-derived components into

volatile substances (carbon dioxide, hydrogen sulphide) and short-

chain fatty acids (SCFAs) such as acetic, butyric and propionic acid,

derived from the fermentation of the fibers which represent the

main source of nourishment of the colonic mucosa (58). The

composition of the human intestinal microbiota is extremely

variable between healthy people as well as between individuals

with different BMI (lean and obese) (59). The microbiota is very

sensitive to variations in the diet, producing relevant changes in

host metabolism such as absorption, storage, and metabolism of

dietary lipids, which are tightly regulated by the intestinal

microbiota. Understanding the interactions between diet and

intestinal microbiota is a topic of great interest to cure and

prevent many diseases when gut microorganisms seem to be

involved. The elegant work by David and collaborators (60)

carried out on ten volunteers who agreed to follow a strictly

vegetarian diet for 5 days and then switched to a strictly

carnivorous diet in the following 5 days, demonstrated that the
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intestinal microbial communities react very quickly. Within 24-48

hours the composition of the intestinal microbiota changed

significantly: during the vegetarian diet, bacterial species digesting

complex carbohydrates prevailed, whereas during the animal

proteins-based diet, Bilophila wadsworthia was selected, a

bacterial species that metabolizes proteins and toxic compounds

derived from the combustion of meat, with a strong

proinflammatory potential.
4.2 Intestinal homeostasis and short chain
fatty acids

SCFAs are volatile fatty acids produced by intestinal bacteria

with fewer than six carbons and are the most important metabolites

in host-microbiota interactions. Bacteria express glycoside

hydrolase which converts glycans into usable sugars. In the

human genome no enzyme is capable of digesting glycans;

indeed, many carbohydrates are digestible only by bacteria and

produce SCFAs, the primary fuel for colonocytes. The most

common SCFAs are acetic, propionic and butyric acid (in a molar

ratio of 3:1:1), and they constitute 90%-95% of all SCFA present in

the human colon.

In addition to being the main source of energy for the

colonocytes, butyric acid is involved in maintaining the intestinal

mucosa health state. Numerous effects have been highlighted both

at the intestinal and extraintestinal level. Butyrate has been shown

to inhibit inflammation, promote colonic healing in colitis (61) and

reduce carcinogenesis (62) with mechanisms that include

stimulation of apoptosis (63). Interestingly, acetic acid appears to

play a central role in appetite suppression; in mice it has been

demonstrated that acetic acid produced during colonic

fermentation crosses blood-brain barrier and act through central

hypothalamic mechanisms (64).

As previously stated, SCFAs may be used as energy source by

the colonocytes, which can oxidize fatty acids to carbon dioxide and

ketone bodies. Leftover SCFAs reach the liver through the portal

circle where acetate is used as a precursor for the synthesis of

cholesterol and long-chain fatty acids (65). Layden and

collaborators (66) demonstrated that obese women who follow a

Western diet rich in sugars, fatty acids, refined carbohydrates and

low in fiber, have reduced levels of cholic acetate, which are

negatively associated with visceral fat and fasting insulin levels.

Propionic acid is the second most abundant SCFA and is largely

taken up by the liver; it has a potential role in the reduction of

lipogenesis, in the inhibition of cholesterol synthesis, in the increase

of the sense of satiety, and has anti-inflammatory properties (67).
4.3 Microbiota and obesity

Many experimental and clinical studies have highlighted the

complex role played by the intestinal microorganisms and their

influence on multiple functions including the regulation of the

neuro-immuno-endocrine system. As demonstrated by Buffington
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et al. (68), a change in the “core microbiome’’ can lead to the onset

of obesity, as observed in twin pairs with reduced bacterial diversity

and an enrichment of obesity-associated genes, 75% of which

belong to Actinobacteria.

Other studies conducted in 2004 by the group of Gordon (57)

and collaborators demonstrated a potential relationship between

the intestinal microbiome and the development of an obese

phenotype. An abundance of Firmicutes and a relative decrease of

Bacteroidetes were found in the microbiota of obese mice.

Colonization of adult germ-free mice using strains of bacteria

taken from the distal intestine of conventional adult mice

determined a dramatic increase in body fat within 10-14 days,

despite a reduction in food consumption. The cause of these

changes can be attributed to numerous mechanisms including the

microbial fermentation of some food polysaccharides indigestible

for the host, the consequent intestinal absorption of

monosaccharides and SCFAs and their conversion in the liver

into more complex lipids. Backed and collaborators have also

demonstrated how germ-free mice are resistant to the typical

Western diet rich in fats and sugars (69). Other studies using

genetically obese mice (ob/ob) or Zucker obese rats (fa/fa)

revealed differences in their “metabotypes” attributable in part to

the presence of Bacteroidetes, Firmicutes, Actinobacteria in

different proportions (70). Of note, faecal microbiota

transplantation (FMT) from obese mice into lean germ-free

recipient mice modifies body weight (71), as germ-free mice that

received faecal microbiota of obese mice increased their body

weight, whereas mice receiving a faecal microbiota from lean

mice remained lean. The study also demonstrated that genes

coding for enzymes involved in the degradation of food

polysaccharides were enriched with a consequent increase in

energy extraction. A study conducted on volunteers subjected to a

body weight reduction program by using a low-calorie diet,

demonstrated that the weight loss of obese individuals with a

BMI>30 was accompanied by a significant increased number of

Bacteroidetes, from 3% to 15%, which contributes to a better

intestinal energy extraction (72). However, based on many studies

on obese subjects, the relationship between Bacteroidetes and

Firmicutes remains debated as differences in genotype and

lifestyle are unresolved contributing factors. A recent review on

the role of the gut microbiota in obesity analyzed 60 studies

reporting that the phylum Proteobacteria is most frequently

associated with obesity (73). Many Proteobacteria species are

proinflammatory and have been associated with chronic

inflammatory conditions such as Crohn’s disease and ulcerative

colitis (74).

The complex interactions between environmental, genetic and

behavioral factors are actually responsible for the etiology of obesity

and its metabolic complications, including low-grade inflammation,

hyperlipidemia, hypertension and diabetes. The metabolic activities

of the gut microbiota facilitate the extraction of calories from

ingested foods and help store calories in host adipose tissue for

later use, providing energy and nutrients for microbial proliferation

and growth. In turn, differences in calorie extraction may be due to

the different compositions of the intestinal microbiota. Gut

microorganisms favour fat storage in adipocytes through the
Frontiers in Endocrinology 05
inhibition of Fasting Induced Adipocyte Factor (FIAF), an

inhibitor of lipoprotein lipase (LPL), consequently causing an

increase in LPL activity, and thus promoting increased fatty acid

uptake and the accumulation of triglycerides in adipocytes (69).

This phenomenon occurs exclusively at the level of the intestinal

epithelium, and not at the level of other areas, such as the liver,

which continue to synthesize FIAF.
5 Intestinal microbiota interactions
with the endocannabinoidome

There is no doubt that the microbiota affects gut physiology and

its role in the gut brain-axis has been convincingly established (75).

Many physiological roles of intestinal microorganisms are

associated to the regulation of the intestinal endocannabinoid

tone [the so called endocannabinoidome (49) as extensively

described in recent exhaustive reviews (76–78). There is

increasing evidence that both selected intestinal microorganisms

and bioactive lipids covary in pathological conditions such as

obesity, type 2 diabetes and inflammation (76). eCB and

associated bioactive lipids are now considered to be putative

‘gate-keepers’ that contribute to securing the intestinal barrier and

to reducing inflammation.
5.1 Endocannabinoids and intestinal
microbiota regulate gut homeostasis

In this paragraph we report a few significative examples of the

crosstalk between intestinal microbiota and eCB, whereas the

following paragraph will be dedicated to the crosstalk between the

paracannabinoids and intestinal microorganisms.

The gut microbiota and the eCB system are fundamental

modulators of energy homeostasis and obesity, which is

characterized by massive expansion of adipose tissue and is

associated with inflammation (79). Obesity is also characterized

by a relevant increase of endocannabinoids levels in both plasma

and adipose tissue, decreased expression of FAAH, and altered

expression of cannabinoid receptor 1 (CB1) (80). Whether the

upregulated peripheral eCB system offers a protecting mechanism

in obesity, remains to be established. The eCB system also regulates

the intestinal barrier function: in obese ob/ob mice with metabolic

endotoxemia and disturbed intestinal barrier, blocking the CB1

receptor, reduced food intake, markedly reduced intestinal

permeability and plasma LPS levels (81). An interesting

hypothesis of these authors holds that the eCB system links the

development of intestinal permeability to higher LPS plasma levels

associated with obesity. The same authors reported that in obese

mice fed with prebiotics, CB1 receptor expression as well as

anandamide contents in the colon were normalized, whereas

FAAH expression was increased (81). LPS controls eCB synthesis

both in vivo and in vitro through mechanisms that depend on LPS

receptor signaling. It was suggested that LPS acts as a master switch

that controls adipose tissue metabolism by blocking cannabinoid-

mediated adipogenesis (81). Kuipers and collaborators (2019)
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demonstrated in mice that a High Fat Diet (HFD) rapidly activates

the adipose tissue increasing endocannabinoids synthesis with

aggravation of HFD-induced obesity. Elevated systemic LPS levels

predispose to increased gut permeability by reduced expression of

tight junction proteins which predisposes to LPS translocation

resulting in endotoxemia and relative high level of pro-

inflammatory cytokines (82–84).

The intestinal microbiota, therefore, determines the physiology

of adipose tissue through the regulatory loops of the LPS-eCB

system and could have critical functions in adipose tissue plasticity

during obesity. The microbiota also modulates intestinal eCB tone;

as an example, Rousseaux et al. (85) showed that the expression of

intestinal epithelial CB2 receptor increases when mice or rats are

orally administered the bacterium Lactobacillus acidophilus. More

recently it was found that the bacterium Akkermansia muciniphila

is a prominent regulator of the gut eCB tone, gut permeability, and

secretion of gut peptides (86); see also (78) for a comprehensive

review. The role of A. muciniphila in pathological conditions has

also been investigated. For instance, Akkermansia spp. has been

inversely related to the severity of irritable bowel disease,

appendicitis and obesity, suggesting a protective or anti-

inflammatory activity (reviewed by (87).
5.2 Paracannabinoids and intestinal
microbiota regulate gut homeostasis

Much less is known about the interplay between the PEA, OEA

and other biogenic lipids and the microbiota in the context of

intestinal homeostasis. As an example, A. muciniphila regulates

intestine levels of various fatty acid amides (FAA), among which 2-

oleoyl glycerol, (a lipid mediator associated with protection against

inflammation, as well as gut permeability), and the secretion of

glucagon-like-peptide 1 (GLP-1) (86), a gut peptide with broad

pharmacological potentials [see also (78) for a comprehensive

review]. Recently some studies (88) questioned the beneficial

effects of A. muciniphila, as plasma analyses of obese and

overweight subjects treated for three months with daily ingestion

of either alive or pasteurized A. muciniphila were not linked to an

overall modification of the endocannabinoidome.

As mentioned in the previous paragraph, diet composition has a

great impact on microbiota profile. It was recently shown that

switching from Western diet to isocaloric Mediterranean diet

decreases plasma levels of the FAA 2-arachidonoyl glycerol (2-

AG), increases plasma PEA and OEA levels, and increases faecal A.

muciniphila abundance (89, 90). These observations have clinical

translational values, as the abundance of A. muciniphila is decreased

in obese and type 2 diabetic mice, and the presence of this

bacterium inversely correlates with body weight in both humans

and rodents. A clinical trial conducted in obese people showed that

the supplementation with OEA reduced body weight, energy intake

and fat mass along with the significant increase in the abundance of

A. muciniphila (91). Overall, these observations suggest a direct link

between gut microbiota and intestinal endocannabinoidome which

may constitute one of the pathways involved in the crosstalk

between gut microbes and enteroendocrine host cells.
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We recently described a previously unexplored modulatory effect

of OEA on the intestinal microbiota profile, as well as on intestinal

immune responses (52). OEA administered sub-chronically to mice

fed a normal chow pellet diet changed the faecal microbiota

composition, shifting the Firmicutes: Bacteroidetes ratio in favour

of Bacteroidetes mostly of the Bacteroides genus. Further analysis

indicated that the predominant Bacteroides in the microbiota of

OEA-treated mice were attributable to B. acidifaciens. On the other

hand, OEA treatment reduced significantly Firmicutes, especially the

genus Lactobacillus, especially L. reuteri and L. gasseri. Prediction

analysis of how the observed differences in microbiota profiles

reflected enriched functional pathways in OEA-treated mice,

showed, among others, enrichment of metabolic pathways

associated with amino acids metabolism, (e.g., tryptophan and

phenylalanine metabolism), lipoic acid metabolism, glycan and

glycosaminoglycan degradation and reduced biosynthesis of

unsaturated fatty acids. Overall, the consequences of OEA on the

microbiota profile are comparable to those afforded by a fibre-rich

diet which promotes the survival of saccharolytic bacteria, such as

Bacteroides, which use glycans as energy sources. Therefore, it

appears that the homeostatic and metabolic effects of OEA may

change the intestinal environment and the ecological fitness of

bacterial community.

OEA has also profound effects on the polarization of TH

lymphocytes in the Peyer’s patches, which are considered the

immune sensors of the intestine, towards an anti-inflammatory

profile (52). The observation that OEA changes the microbiota

profile concomitantly with Peyer’s patches environment suggests a

double, possibly related, effect of OEA in the intestine that may be

exploited to counteract obesity-induced, local and systemic

inflammation. In this regard, there are other controversial studies

regarding the direct interaction between intestinal microbiota and

OEA levels. In mice, microbiota disruption with a cocktail of

antibiotics did not modify OEA levels in the intestine (92),

whereas a more recent study showed that OEA levels in mice

caecum were significantly decreased after antibiotic treatment (93),

suggesting that the intestinal microbiota is responsible in part for

the production of OEA.

In a very elegant study using GF mice, Manca et al. (94)

demonstrated relevant changes in eCBome signalling that are

partially reversed by faecal microbiota transplant (FMT). GF mice

were characterized by global changes in eCBome gene expression,

and colonization by intestinal microbiota following FMT partially

reversed this effect. Hence, these results provide a cause-effect

relationship between the presence or absence of gut microbiota

and endocannabinoidome signalling. As mentioned previously,

OEA controls the secretion and efficacy of GLP-1, suggesting a

synergistic actions of this FAA with intestinal microorganisms in

the regulation of several homeostatic functions, as GLP-1 has

numerous metabolic actions among which decrease gastric

emptying, inhibition of food intake, glucose-dependent

stimulation of insulin secretion (95).

A recent study conducted in normal subject exposed to 6-week

exercise intervention and a validation cohort (96) revealed that at

baseline, eCB and paracannabinoid levels were associated with

higher microbiome diversity, negatively associated with
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Escherichia/Shigella and Collinsella, whose increased levels are

found in type 2 and gestational diabetes (97), and negatively

associated with weight loss and insulin sensitivity (98). Levels of

endo- and paracannabinoids were also associated with higher levels

of the microbiota-produced SCFA butyrate, along with increases in

the anti-inflammatory cytokine IL-10 and decreases in pro-

inflammatory cytokines like IL-8 and TNFa (96). These data

demonstrate that the anti-inflammatory effects of SCFAs are in

part mediated by the endocannabinoidome, suggesting the existence

of other pathways used by the gut microbiome for the modulation

of the immune system.

The most compelling study that unequivocally causally links

OEA to intestinal microbiota was recently published by the group of

Christoph Thaiss (99). Their elegant paper shows that physical

activity is not strictly regulated by the central nervous system, but is

shaped by peripheral factors originating in the intestinal microbial

community. The authors discovered that certain gut bacteria

enriched in exerting mice contribute to the production of OEA

that excites TRPV1+ sensory neurons. These send an exercise-

induced afferent signal to the brain, indirectly elevating dopamine

levels in the ventral striatum during exercise. The authors suggest

that gut-derived interoceptive circuits are in part responsible for the

rewarding mechanisms of exercise.
6 Conclusions

The intestinal microbiota is without any doubt one of the key

elements contributing to the regulation of host health and it is

tightly connected to the bioactive lipids belonging to both the

endocannabinoidome systems. Indeed, the fact that both these

systems coexist together with gut microorganisms and are

maintained through evolution, points to a strict physiological

relationship between them to ensure the regulation of dynamic

process of the host metabolism.

We may suggest that in this scenario OEA acts as a trait-d’union

between gut microbiota and dynamic physiological and

homeostatic processes. In this article we reviewed data suggesting

that the malfunctioning of the crosstalk between intestinal

microorganisms and the endocannabinoidome is responsible for

intestinal dysfunctions, enteropathies, and a variety of disorders
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such as obesity and associated chronic inflammatory state. OEA

produced in the gastrointestinal tract is a major component of the

gut-brain axis contributing to complex communication between the

periphery and the central nervous system, hence linking cognitive

and emotional brain center with peripheral functions (100). Many

pieces of the puzzle are still missing to fully explain the

communication between the host and its gut microbiome.

Although environmental factors have a markedly stronger effect

on microbiota composition, the host genetics as well may influence

the microbiota profile (101), which adds further complication to the

whole scenario. Nonetheless, the identification of new signalling

pathways connecting the intestinal microbiota with the host

physiology is very fascinating and holds great promise for the

development of novel therapeutic strategies to cure metabolic,

inflammatory, and cognitive disorders, which may represent

valuable and safer alternatives to current treatments.
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47. Suárez J, Rivera P, Arrabal S, Crespillo A, Serrano A, Baixeras E, et al.
Oleoylethanolamide enhances b-adrenergic-mediated thermogenesis and white-to-
brown adipocyte phenotype in epididymal white adipose tissue in rat. Dis Model
Mech (2014) 7(1):129–41. doi: 10.1242/dmm.013110

48. Laleh P, Yaser K, Abolfazl B, Shahriar A, Mohammad AJ , Nazila F, et al.
Oleoylethanolamide increases the expression of PPAR-A and reduces appetite and
body weight in obese people: A clinical trial. Appetite (2018) 128:44–9. doi: 10.1016/
j.appet.2018.05.129

49. Schiano Moriello A, Di Marzo V, Petrosino S. Mutual links between the
endocannabinoidome and the gut microbiome, with special reference to companion
animals: A nutritional viewpoint. Anim (Basel) (2022) 12(3):348. doi: 10.3390/
ani12030348

50. Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, et al. Fatty acid
amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology (2005) 129
(3):941–51. doi: 10.1053/j.gastro.2005.06.018

51. Lauffer LM, Iakoubov R, Brubaker PL. GPR119 is essential for
oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal
enteroendocrine l-cell. Diabetes (2009) 58(5):1058–66. doi: 10.2337/db08-1237

52. Di Paola M, Bonechi E, Provensi G, Costa A, Clarke G, Ballerini C, et al.
Oleoylethanolamide treatment affects gut microbiota composition and the expression
of intestinal cytokines in peyer’s patches of mice. Sci Rep (2018) 8(1):14881.
doi: 10.1038/s41598-018-32925-x
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