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ABSTRACT
Configuring supply chains (SCs) is critical to spare parts retailers’ success, entailing two key aspects:
stock deployment into distribution centres (DCs) (i.e. inventory centralisation or decentralisation)
and stock supply in each DC (how many spare parts to supply and how often). Given the unpre-
dictability of spare parts demand, stock deployment and supply policies should be regularly
reviewed, adapting to fluctuations in customer needs. A viable way to do this is to adopt a multi-
criteria ABC criticality classification. However, themulti-criteria ABC criticality classification has often
been used to plan stock supply policies in a single DC, but only once to plan spare parts deployment.
Nevertheless, the available literature methodology presents major limitations, being not applicable
in real companies. Therefore, this paper provides a novel methodology, called SP-LACE, which first
reviews the configuration of spare parts SCs based on a multi-criteria criticality classification. Then,
allows, for the first time, to evaluate the economic benefits of the reviewed SC configuration. SP-
LACE was tested on two case studies and compared with the literature methodology. The results
indicate that it provides economic benefits (in terms of total SC cost), overcoming the limitations of
the literature methodology and ensuring high service levels.
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1. Introduction

Spare parts retailers have identified as ever-growing cru-
cial aspects for their success the adoption of a customer-
centric perspective and the proper management of cus-
tomer needs in supply chains (SCs) (Esmaeili, Teimoury,
and Pourmohammadi 2021; Giannikas, McFarlane, and
Strachan 2019). As Stoll et al. (2015) stated, a good way
to increase spare parts retailers’ serviceability is to opti-
mally configure SCs, ensuring alignment between stocks
in distribution centres (DCs) and spare parts demand.
However, configuring spare parts SCs is not an easy task
because a typical challenge is tominimise inventory costs
while facing demand volatility and guaranteeing high
service levels (Jiang, Shi, and Shen 2019). Given this
challenging context, spare parts retailers should embrace
structured methodologies for configuring SCs (Cantini
et al. 2022; Ahmed, Heese, and Kay 2023).

Based on Manikas, Sundarakani, and Iakimenko
(2019) and Gregersen and Hansen (2018), a sound SC
configurationmethodology should focus on defining two
aspects of primary importance: the optimal stock deploy-
ment and the optimal stock supply policy to be adopted
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for individual stock keeping units (SKUs). Concerning
optimal stock deployment (first decision of SC configu-
ration), the SC configuration methodology should deter-
mine in which DCs to locate each SKU, thereby estab-
lishing how to serve customers with DCs. Two antitheti-
cal stock deployment policies can be distinguished from
which the SC configuration methodology has to choose,
namely centralisation and decentralisation. A decen-
tralised stock deployment implies storing SKUs in mul-
tiple DCs, each meeting the demand of local customers.
As a result, SC flexibility, SC responsiveness, and low out-
bound transportation costs are ensured (Milewski 2020),
but also eliciting high holding costs since many DCs are
managed, each needing to guarantee high service levels.
Conversely, a centralised stock deployment involves stor-
ing SKUs in a single DC that serves all customers. As a
result, holding and ordering costs are reduced (due to the
‘risk-pooling’ effect), but to the detriment of SC flexibil-
ity, SC responsiveness, and transportation costs (Schmitt
et al. 2015; Li et al. 2019). Instead, concerning stock sup-
ply policies (second decision of SC configuration), the
SC configuration methodology should indicate in each

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or
built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2023.2201939&domain=pdf&date_stamp=2023-04-18
http://orcid.org/0000-0001-6288-484X
http://orcid.org/0000-0001-6857-8392
mailto:alessandra.cantini@unifi.it
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 A. CANTINI ET AL.

DC which SKUs to keep in stock and which to order on-
demand, as well as how many stocks to supply and how
often (Yazdekhasti, Sharifzadeh, and Ma 2022).

Due to the volatility of spare parts demand, spare
parts SCs should not be configured only once (when the
business is founded), but rather periodically (Del Prete
and Primo 2021; Van der Auweraer and Boute 2019).
Indeed, regularly reviewing the SC configuration over
time allows for adapting stock deployment and supply
policies to changes in spare parts demand. Accordingly,
DCs’ inventory levels are optimised by minimising hold-
ing and ordering costs, while ensuring high service levels,
fewer stock-outs, and reduced backorder costs (Eldem,
Kluczek, and Bagiński 2022; Alfieri, Pastore, and Zotteri
2017). The practical relevance of reviewing the SC con-
figuration was confirmed by two real companies, whose
consultation prompted this research study. CompanyA is
a retailer of bus spare parts from southern Europe, while
Company B is a retailer of spare parts for trams, subways,
and their infrastructure (e.g. railways) from northern
Europe. Both companies, operating in the transportation
sector, emphasised that, by keeping the SC configuration
unchanged over time, spare parts retailers experience
many side effects on both total SC costs and customer
service level. Any change in customer demand (due to
changes in market conditions, new trends, or develop-
ments in technologies and assets on which spare parts are
installed) may result in two undesirable impacts. First, if
customer demand grows but stock deployment and sup-
ply policies are not reviewed, the wrong allocation of
spare parts in DCs and the wrong inventory levels lead
to spare parts unavailability. Therefore, the provided ser-
vice level drops, causing increased backorder costs, loss
of customers, and reduced SC profitability. Second, if
customer demand decreases, inventory levels may turn
excessive, resulting in unnecessary ordering and holding
costs, which translate into opportunity costs related to
capital invested in DCs that is not remunerated.

Despite the need to review SC configurations, the
extant literature proposes SC configuration methodolo-
gies that are conceived and applied to configure spare
parts SCs when they are founded. Conversely, as Cantini
et al. (2021) and Cohen, Agrawal, and Agrawal (2006)
confirmed, the problem of reviewing the configuration
of existing SCs over time (based on spare parts demand
fluctuations) has rarely been addressed, preventing spare
parts retailers from understanding the benefits of con-
ducting this review. For this reason, as Hu et al. (2018)
reported, many spare parts retailers are far from imple-
menting methodologies to review their starting SC con-
figuration, and quite often, instead, the SC configura-
tion is chosen only once and never questioned. There-
fore, stock deployment and supply policies continue to

be static, arbitrary, and based on experience, while a
quick and easy-to-use methodology for reviewing the SC
configuration is greatly needed to increase spare parts
retailers’ serviceability and performance, thus ensuring
customer satisfaction over time (Basto et al. 2019).

According to several authors (Sheikhar and Matai
2022; Teunter, Babai, and Syntetos 2010), a valuable way
to address this gap is to define heuristic methodologies
for reviewing SC configurations based on spare parts crit-
icality classification techniques. Indeed, spare parts crit-
icality classification techniques are particularly suitable
for this purpose for two reasons. First, Basto et al. (2019)
and Zhang, Hopp, and Supatgiat (2001) reported that
criticality classification techniques require little invest-
ment in computational resources and advanced technolo-
gies, which are still lacking in many enterprises. Sec-
ond, Manikas, Sundarakani, and Iakimenko (2019) and
Amirkolaii et al. (2017) stated that spare parts SCs are
typically characterised by a wide variety of SKUs, but
the computational costs and complexity associated with
optimising the SC configuration for each individual SKU
through exact optimisation techniques are practically not
feasible. Hence, spare parts criticality classification tech-
niques are preferable since they suggest similar stock
deployment and supply policies for all SKUs belonging to
the same criticality class, without performing individual
SKU analyses (Braglia, Grassi, and Montanari 2004). In
this context, due to its simplicity and popularity, Amirko-
laii et al. (2017) and Persson and Saccani (2007) rec-
ommended multi-criteria ABC criticality classification
as a successful solution for reviewing spare parts SC
configurations. In a multi-criteria ABC criticality classi-
fication, spare parts criticality is differentiated based on
several possible criteria (e.g. demand, unitary cost, etc.)
and relying on Pareto’s principle (Teunter, Babai, and
Syntetos 2010; Van Wingerden, Tan, and Van Houtum
2016). Then, spare parts are classified into three criticality
classes, where A includes critical SKUs, B comprises the
moderately critical ones, and C includes the non-critical
ones. As described by May, Atkinson, and Ferrer (2017),
ABC classification assumes different names depending
on the criticality criterion considered to rank SKUs. For
example, by choosing average unitary cost as the classifi-
cation basis, ABC takes the name of ‘HML analysis’ (Jad-
hav and Jaybhaye 2020), in which SKUs are divided into
High, Medium, or Low-cost spare parts. Alternatively,
when the ABC classifies spare parts based on demand-
related criteria (e.g. average demand, coefficient of varia-
tion of demand, or number of withdrawals in DCs), we
meet the ‘XYZ classification’ (Stoll et al. 2015), where
X are critical SKUs, Y the moderately critical ones, and
Z the non-critical ones. Finally, when the ABC is car-
ried out using criteria related to impacts from spare part
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unavailability on a system’s functioning, it is called ‘VED
classification’ (Gupta et al. 2007) and classifies SKUs as V
– vital, E – essential, and D – desirable.

Although many studies have investigated multi-
criteria ABC criticality classifications of spare parts, few
provide clear indications on how to use classification
results to review the configuration of spare parts SCs.
In particular, Mehdizadeh (2020) and Roda et al. (2014)
showed that across studies proposing multi-criteria ABC
criticality classifications of spare parts, most of them
explain how to use classification results to optimise stock
supply policies within a single DC, planning reorder lev-
els and quantities of different SKUs according to their
respective criticality classes. Contrarily, multi-criteria
ABC criticality classifications of spare parts have barely
been used to plan stock deployment policies in multi-
ple DCs, thereby determining whether to centralise or
decentralise individual SKUs according to their critical-
ity. To the best of the authors’ knowledge, the study by
Stoll et al. (2015) is the only one that has proposed a
methodology based on a multi-criteria ABC criticality
classification for planning both stock deployment and
supply policies in theDCs of a spare parts retail company.
However, as Stoll et al. (2015) stated, their methodol-
ogy is characterised by some limitations that hinder not
only its applicability in real cases, but also its suitabil-
ity for regularly reviewing SC configurations (which is
necessary in spare parts SCs). Therefore, a quick and
easy-to-use methodology to review both stock deploy-
ment and supply policies (i.e. SC configuration) based on
a multi-criteria ABC criticality classification is currently
missing, undermining spare parts retailers’ ability to keep
their performance optimised against changes in customer
needs. Moreover, Stoll et al. (2015) lack an economic
analysis of the benefits achieved (in terms of holding,
ordering, and backorder costs) by reviewing spare parts
SC configurations. Consequently, this methodology’s
effectiveness has not been demonstrated, nor has the
importance of reviewing spare parts SC configurations.

To summarise the identified literature gaps: (i) the
literature has neglected quick and easy-to-use method-
ologies to regularly review spare parts SC configurations.
This shortcoming prevents spare parts retailers from
keeping stock deployment and supply policies aligned
with customer needs, undermining the optimisation of
their economic and service performance. (ii) Method-
ologies based on multi-criteria ABC criticality classi-
fications of spare parts show potential for addressing
this shortcoming. However, although the literature pro-
poses many multi-criteria ABC criticality classifications
of spare parts, only one study has indicated how to
use classification results to simultaneously review stock
deployment and supply policies in spare parts SCs.

(iii) This literature methodology suffers from limita-
tions being not applicable in real contexts. Furthermore,
its effectiveness has not been proven due to the lack
of methodologies to evaluate the economic benefits of
reviewing an SC configuration (instead of keeping it
unchanged over time). As a result, spare parts retailers
who experience significant changes in customer demand
claim a quick and easy-to-use methodology based on a
multi-criteria ABC criticality classification of spare parts,
that can be regularly applied over time to accomplish two
tasks. First, to keep stock deployment and supply policies
aligned with customer needs. Second, to demonstrate the
economic benefits of reviewing the SC configuration.

To fill these gaps, the present study aims to pro-
pose a novel methodology (henceforth referred to as
‘SP-LACE – Spare Parts suppLy chAin Configuration
rEview’), which will answer the following research ques-
tions (RQs):

• RQ1: How can a multi-criteria ABC criticality classi-
fication of spare parts be used to review the configu-
ration of spare parts SCs, aligning both stock deploy-
ment and supply policies with changes in customer
needs?

• RQ2: How can the economic benefits of reviewing an
SC configuration be evaluated?

SP-LACE represents the main contribution of this
study, being the first data-drivenmethodology based on a
multi-criteria ABC criticality classification of spare parts,
which is suitable for regularly reviewing the configura-
tion of spare parts SCs in a quick and easy-to-use way.
SP-LACE comprises two stages. In stage 1, optimal stock
deployment and supply policies are suggested for each
SKU, answering RQ1 and supporting spare parts retailers
in achieving high service levels and a trade-off between
holding, ordering, and backorder costs in DCs. Then, in
stage 2, for the first time in the literature, the economic
benefits of the reviewed spare parts SC configuration are
evaluated, answering RQ2 by comparing the achieved
total SC cost (which includes holding, ordering, backo-
rder costs, as well as the costs incurred to perform the
review process) with the same cost in the starting SC
configuration (before the review process).

The remainder of this paper proceeds as follows.
Section 2 provides the study’s background, investigat-
ing the extant literature on the use of multi-criteria ABC
criticality classifications to review spare parts SC configu-
rations. In Section 3, SP-LACE is presented. In Section 4,
SP-LACE is tested on two case studies (companies A and
B), showing how the reviewed SC configuration improves
spare parts retailers’ performance compared with the
starting SC configuration. Furthermore, SP-LACE is also
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compared with the existing literature methodology by
Stoll et al. (2015) to show how it overcomes the latter’s
limitations. Finally, Section 5 offers some conclusions.

2. Research background

According to Ding and Kaminsky (2020) and Mangia-
racina, Song, and Perego (2015), the methodologies for
reviewing the configuration of spare parts SCs fall under
three categories: exact optimisation, heuristic optimisa-
tion, and simulationmethodologies. As discussed earlier,
when looking for a quick and easy-to-use methodology
for reviewing spare parts SC configurations, the litera-
ture suggests adopting heuristic methodologies, particu-
larly those based on spare parts criticality classification
techniques (Gregersen and Hansen 2018; Cohen et al.
1990). More in detail, among existing spare parts criti-
cality classification techniques, Amirkolaii et al. (2017)
and Persson and Saccani (2007) suggested adopting a
multi-criteria ABC criticality classification, which, due
to its user-friendliness, remains the most employed tech-
nique in real companies (Gong et al. 2022). Building on
this research domain, the present section examines the
literature on multi-criteria ABC criticality classifications
of spare parts, focusing on how previous studies sug-
gested using the classification results in industrial appli-
cations, and discussing those that provided indications
for reviewing an SC configuration.

According to Van Wingerden, Tan, and Van Houtum
(2016) and Persson and Saccani (2007), a methodology
to review the configuration of spare parts SCs based on a
multi-criteriaABC criticality classification should consist
of two steps. The first is to create spare parts classification
classes (A – critical SKUs, B – moderately critical, and
C – noncritical) by differentiating SKUs’ criticality based
on predefined criticality criteria and relying on Pareto’s
principle. Concerning this, Kauremaa and Holmström
(2017) reported that, due to the heterogeneous nature
of spare parts, a multi-criteria ABC criticality classifica-
tion should be preferred to a mono-criterion one, and
the spare parts demand should be included among the
considered criticality criteria (correlating it to the impor-
tance of stocking specific SKUs in DCs). The second step
is to use class membership for guiding rule-based SC
configuration decisions, thus defining appropriate stock
deployment and supply policies for each class, such as
complex control methods for the most critical SKUs and
simpler procedures for the remaining ones (Chen 2011;
Chen et al. 2008). By repeating this procedure during the
business lifetime, the SC configuration can be reviewed,
aligning it with customer needs, rationalising the use of

economic resources, and avoiding investments in non-
critical spare parts (Cohen, Zheng, and Wang 1999).

Despite the potential effectiveness of a quick and
easy-to-use methodology for reviewing spare parts SC
configurations based on a multi-criteria ABC criticality
classification, the literature in this field is not exhaus-
tive. Few studies have provided structured methodolo-
gies to exploit the results of an ABC classification to
review spare parts SC configurations (thereby planning
both stock deployment and supply policies in multiple
DCs). Specifically, albeit multiple studies have inves-
tigated multi-criteria ABC criticality classifications of
spare parts, most of them belong to two research streams
(Millstein, Yang, and Li 2014). The first research stream
comprises studies proposing brand-new ABC classifica-
tions or improvements to existing classifications (Lolli,
Ishizaka, and Gamberini 2014). These studies usually
consider a single DC, in which they explain how to rank
spare parts’ criticality, discussing how different criticality
criteria and splitting rules impact the achieved classifi-
cation. Examples of studies belonging to this research
stream include those by Gajpal, Ganesh, and Rajendran
(1994), Wang (2019), and Sheikh-Zadeh, Rossetti, and
Scott (2021). However, these studies are not relevant
to the present research since they only debate how to
classify SKUs, without providing indications on how to
exploit the classification results for industrial applica-
tions (Babai, Ladhari, and Lajili 2015). Therefore, they
do not support spare parts retailers in reviewing their SC
configurations.

The second research stream includes studies showing
how to use the results of an ABC criticality classifica-
tion to manage spare parts inventories within a single
DC, focusing on optimising stock supply policies and,
thus, determining when to reorder each SKU and in what
quantity (Muthalib et al. 2022). Mehdizadeh (2020) and
Roda et al. (2014) confirmed this research stream, show-
ing that the multi-criteria ABC criticality classification
has been mainly used for planning stock supply poli-
cies in a single DC (first decision of SC configuration),
without suggesting any stock deployment policy (sec-
ond decision of SC configuration). Relevant examples of
studies belonging to this second research streamaremen-
tioned below. Flores andWhybark (1986) introduced the
first multi-criteria ABC criticality classification, which
entails performing three steps to plan stock supply poli-
cies in a single DC. The first step involves developing
two mono-criterion ABC criticality classifications (using
the SKUs’ unitary cost and procurement lead time as
criticality criteria). The second step involves combin-
ing the results of the two classifications to generate a
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‘joint-criteria matrix’, classifying SKUs into nine critical-
ity classes. Finally, the third step involves associating opti-
mal stock supply policieswith the SKUsbelonging to each
class, where noncritical SKUs are ordered on-demand,
while critical and moderately critical SKUs are kept in
stock. After Flores and Whybark, many other authors
proposed approaches to plan the stock supply policies in a
single DC based on amulti-criteria ABC criticality classi-
fication, e.g. Petrović andPetrović (1992), Celebi, Bayrak-
tar, and Ozturkcan (2008), Lukinskiy, Lukinskiy, and
Sokolov (2020), and Sheikhar and Matai (2022). In this
context, not only approaches to plan stock supply policies
based on the sole use of ABC analyses were suggested,
but also approaches based on the combined use of multi-
criteria ABC criticality classifications with other critical-
ity classification techniques, such as the Analytic Hier-
archy Process (AHP) (Stoll et al. 2015), Artificial Neu-
ral Networks (ANNs) (Partovi and Anandarajan 2002),
genetic algorithms (Durán et al. 2019; Yu 2011), failure
mode effect and criticality analysis (FMECA) (Gong et al.
2022), fuzzy classifications (Luluah, Baidowi, and Jauhari
2020; Chu, Liang, and Liao 2008), and Data Envelop-
ment Analysis (DEA) (Ramanathan 2006). Recently, the
joint-use of ABC criticality classifications and machine
learning algorithms has been frequently proposed to plan
stock supply policies in a DC (Lolli et al. 2019; Svoboda
and Minner 2022). Moreover, strong attention has been
paid to analysing the impact of ABC criticality classifica-
tions and the consequent stock deployment policies on
the costs of a DC (Odedairo 2021). Finally, along with
planning stock supply policies, multi-criteria ABC crit-
icality classifications have also been proposed to locate
SKUs on the shelves of a DC, thus optimising logistic
flows and turnover rates (Islam, Pulungan, and Rochim
2019; Hanafi et al. 2019).

While stock supply policies have frequently been
planned based on multi-criteria ABC criticality classi-
fications, few studies have discussed how to use clas-
sification results to plan stock deployment policies in
multiple DCs. Cantini et al. (2021) andHuiskonen (2001)
confirmed this lack, asserting that existing methodolo-
gies based onmulti-criteria ABC criticality classifications
focus on optimising stock supply policies in a single DC
while overlooking stock deployment policies. To reiterate
this gap, Manikas, Sundarakani, and Iakimenko (2019)
and Mangiaracina, Song, and Perego (2015) stated that,
although spare parts deployment policies are key drivers
of a company’s profitability, the problem of choosing
between centralisation and decentralisation of SKUs in
multiple DCs is not yet sufficiently explored and practical
solutions to address it are scant.

To the best of the authors’ knowledge, only one heuris-
ticmethodology based on amulti-criteria ABC criticality

classification has been proposed for planning both stock
deployment and supply policies in multiple DCs (Stoll
et al. 2015), thus addressing the entire SC configura-
tion review. Such a methodology relies on developing a
three-criteria criticality classification of spare parts. Two
criticality criteria (unitary cost and coefficient of varia-
tion of demand) are used to estimate SKUs’ value and
their expected demand (by performing an HML and an
XYZ analysis, respectively). The third criticality crite-
rion is used to classify SKUs based on the impact of
spare parts’ unavailability on the system’s maintenance
and production performance (using a VED analysis, a
decision tree, and an AHP). However, Stoll et al. (2015)
pointed out that their methodology is characterised by
two major limitations, that hamper its applicability in
real companies and its suitability for regularly reviewing
spare parts SC configurations. First, a large amount of
data must be collected, some of which are hardly avail-
able in company databases. Second, maintenance experts
must be consulted, making the methodology applica-
tion time-consuming and its SC configuration results not
entirely data-driven, but rather affected by subjectivity.
In addition, Stoll et al. (2015) lack an economic anal-
ysis with which to evaluate the benefits achievable by
reviewing the SC configuration. In fact, no comparison is
provided between holding, ordering, and backorder costs
in the reviewed SC configuration and the same costs in
the starting SC configuration (before the review process).
Besides, the costs incurred to review the SC configuration
are completely neglected. Consequently, the effectiveness
of the methodology by Stoll et al. (2015) is not demon-
strated, nor is the importance of reviewing the spare parts
SC configuration.

Overall, spare parts retailers lack a quick and easy-to-
use methodology based on a multi-criteria ABC critical-
ity classification for reviewing spare parts SC configura-
tions. To fill this gap, SP-LACE was developed, which is
described in the next section.

3. SP-LACEmethodology

SP-LACE aims to optimise stock deployment and supply
policies associated with individual SKUs within existing
two-echelon SCs, where spare parts retailers already own
DCs (Cantini et al. 2022). Two-echelon SCs are consid-
ered since the multi-echelon ones have been reported to
be uncommon in the field of spare parts retail (Cantini
et al. 2021; Botter and Fortuin 2000). However, SP-LACE
can also be applied inmulti-echelon SCs by splitting them
into a series of two-echelon SCs.

SP-LACE is composed of two stages. In stage 1, the
SKUs’ criticality classification is performed according
to two criticality criteria: the SKUs’ value and their
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historical number of withdrawals in DCs, which are
assessed through an HML and an XYZ analysis, respec-
tively. Based on the achieved classification, each criti-
cality class is associated with optimal stock deployment
and supply policies, obtaining (as the outcome of stage
1) detailed information on which and how many SKUs
to reorder in each DC and how often to supply them.
In this way, the SC configuration is reviewed (answering
RQ1), and spare parts retailers are allowed to keep stock
deployment and supply policies of multiple SKUs inmul-
tiple DCs aligned with spare parts demand. The reviewed
SC configuration improves both the economic and ser-
vice performance of spare parts retailers. High service
performance is ensured by imposing pre-established ser-
vice levels for SKUs in DCs, then defining stock sup-
ply policies to limit the number of backorders. More-
over, high service performance is enabled by associating
appropriate SKUs with a decentralised stock deployment
policy, which ensures SC flexibility and responsiveness
(as already introduced in Section 1). Meanwhile, eco-
nomic performance is improved by reducing the total SC
cost. Specifically, a trade-off between holding, ordering,
and backorder costs is found by associating appropriate
SKUs with a centralised stock deployment policy (bene-
fiting from risk-pooling, as mentioned in Section 1), and
adopting optimal stock supply policies to control inven-
tory levels in DCs, the number of supply orders, and the
number of backorders.

In stage 2, once the SC configuration is reviewed, its
total cost (including holding, ordering, and backorder
costs, as well as the cost incurred to carry out the review
process) is compared with the one of the starting SC
(before the review process). The comparison provides (as
the outcomeof stage 2) an evaluation of both the achieved
economic benefits and the importance of reviewing the
SC configuration (answering RQ2). The achieved bene-
fits are evaluated only in economic terms since service
performance is ensured by imposing the desired ser-
vice levels as input parameters for SP-LACE. Regard-
ing the benefits related to SC flexibility and respon-
siveness, these are not quantitatively measured in this
work.

Figure 1 provides a high-level schematic representa-
tion of SP-LACE, depicting its constituent stages, their
functioning, input parameters and expected outcomes,
and ultimately highlighting how SP-LACE contributes to
the extant literature by answering RQ1 and RQ2. Figure
1 is built considering the notation on which SP-LACE
relies, which is summarised in Tables 1 and 2. Table 1
reports the indexes and input parameters, while Table
2 lists the decision variables and cost items considered

to evaluate the economic benefits of the reviewed SC.
Overall, SP-LACE constitutes a data-drivenmethodology
that relies entirely on the analysis of objective data usually
available in companies, without needing to consult main-
tenance experts or performqualitative analyses (e.g. VED
analysis orAHP).Consequently, SP-LACEovercomes the
limitations of the methodology by Stoll et al. (2015) since
three beneficial side effects are obtained. First, SP-LACE
provides results unaffected by subjectivity. Second, the
application of SP-LACE is not time-consuming, allow-
ing to manage thousands of SKUs and enabling, for the
first time, regular reviews of the SC configuration. Finally,
SP-LACE, unlike the methodology by Stoll et al. (2015),
includes an economic evaluation of the performance of
the reviewed SC configuration.

Before describing SP-LACE, the assumptions on
which it relies are listed, reporting the scientific contri-
butions on which they are based:

• DCs are assumed to have an unlimited capacity
(Tapia-Ubeda et al. 2020).

• No costs related to the purchase or rental of DCs are
considered because spare parts retailers already own
DCs (Cantini et al. 2022).

• No inboundor outbound transportation costs are con-
sidered, being negligible comparedwith other SC costs
(Cohen, Kleindorfer, and Lee 1988).

• No issues related to spare parts sustainability and
closed-loop SCs are considered (Zijm, Knofius, and
van der Heijden 2019).

• Lateral transhipments are treated as described in
Appendix A.

• Spare parts procurement lead times are assumed to
be deterministic (Lolli et al. 2022; Kouki and Larsen
2021), while spare parts demand is assumed to be
stochastic (Liu et al. 2014). Specifically, based on Syn-
tetos and Boylan (2006) and the Italian National Stan-
dard (Italian Technical Commission for Maintenance
2017), SP-LACE considers a normal distribution for
SKUs with an average demand during the procure-
ment lead time greater than 15 units, while consider-
ing a Poisson distribution for the other SKUs. In this
sense, SP-LACE improves the methodology by Stoll
et al. (2015), which imposes a normally distributed
demand for all SKUs.

Below SP-LACE is presented, showing, in Section 3.1,
how to apply the methodology for reviewing the spare
parts SC configuration (stage 1), then, in Section 3.2,
how to evaluate the economic benefits of the reviewed SC
configuration (stage 2).
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Figure 1. Schematic representation of SP-LACE.

3.1. Stage 1: reviewing the spare parts SC
configuration

To review the spare parts SC configuration, SP-LACE
entails performing in each company DC a two-criteria
criticality classification of SKUs, which is achieved
through an HML and an XYZ analysis, as follows.

The HML analysis is carried out to assess the SKUs’
value by ranking them based on their unitary cost (ck,
which, in spare parts retail companies, is the cost of pur-
chasing spare parts from suppliers). To this end, each
SKU’s cost is normalised with respect to the total cost of

the SKUs’ spectrum, and the cumulative frequency curve
is developed. Then, according to the tangent method
(Ultsch and Lötsch 2015; Van Wingerden, Tan, and
Van Houtum 2016), the cumulative frequency curve is
divided into three criticality classes (H, M, and L), thus
associating each SKU with a specific class.

The XYZ analysis is performed to evaluate spare parts’
criticality based on their historical number of with-
drawals executed during the period of analysis in each
DC. Therefore, SKUs are ranked according to Nwi,k,r ,
which depends on how often customers demand spare
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Table 1. Indexes and parameters adopted in SP-LACE.

Indexes Description Unit measure

r Considered SC configuration. r is 0 in the starting SC configuration while being 1 in the
reviewed SC configuration

–

i Considered DC. i assumes integer values between 1 and the total number of DCs (I) –
k Considered SKU. k assumes integer values between 1 and the total number of SKUs (K) –

Input parameters Description Unit measure

Period of analysis Time interval considered to evaluate the cost performance of the SC time
ck Unitary cost of purchasing each SKU from the supplier e/unit
h Holding cost rate for keeping inventory of SKUs in the period of analysis. According to

Khajavi, Partanen, and Holmström (2014), it includes the obsolescence rate of SKUs
time−1

Xi,k,r Total demand received for each SKU in each DC in the period of analysis. It depends on
the demand distribution xi,k,r , which can be a normal or a Poisson one, as already
explained

units/time

Li,k Procurement lead time of each SKU in each DC time
μLi,k,r Average demand received for each SKU in each DC during the procurement lead time units
σi,k,r Standard deviation of demand for each SKU in each DC during the period of analysis. It

is considered when the demand distribution (xi,k,r ) is a normal one
units/time

Nwi,k,r Number of withdrawals executed by the company in the period of analysis to meet
customer demand for each SKU in each DC

supply orders/time

ok Cost of issuing one supply order for an SKU e/supply order
bk Unitary backorder cost of each SKU e/backorder
SLi,k,r Desired service level for each SKU in each DC –
Zi,k,r Service factor associated with the desired service level (SLi,k,r ) in a standard normal

distribution
–

Tk Threshold value established based on the type of spare parts retailed by the analysed
company

e

mh Cost of manpower who applies SP-LACE, updating its mathematical calculations and
the consequent stock deployment and supply policies associated with SKUs

e/time

d Average distance between the central DC and the decentralised ones in the analysed
company

km

VC Capacity of the vehicle used by the analysed company to displace SKUs between DCs
and deliver them to customers

m3

ut Cost per kilometre of the vehicle used to displace SKUs e/km
vk Volume of each SKU m3

tc Average computational time required to run stage 1 of SP-LACE and update its
mathematical calculations

time

tm Average management time required to update the supply policy of one SKU in the
company Information Technology (IT) system

time

parts. As in the HML analysis, the X, Y, and Z classes are
identified based on the tangent method and the cumu-
lative frequency curve. Regarding the XYZ analysis, two
considerations are worth mentioning. First, for some
reasons (e.g. planned renewal of assortments or main-
tenance campaigns), spare parts retailers may know in
advance that their future number of withdrawals in DCs
will differ from the expected one (evaluated by look-
ing at the historical value of Nwi,k,r ). To deal with this
issue, they can adjust demand projections by increasing
or decreasingNwi,k,r according to the known information,
then following the XYZ analysis as usual. Second, the
XYZ analysis is intentionally not performed by consid-
ering the coefficient of variation of spare parts demand
(as in the methodology by Stoll et al. [2015]) nor the his-
torical total demand (Xi,k,r). Rather, the historical num-
ber of withdrawals is considered for three reasons. First,
the deviation and expected value of spare parts demand
are already taken into account when defining the sup-
ply policy in DCs (e.g. when calculating SKUs’ reorder
levels). Therefore, it is not necessary to consider them
twice. Second, the standard deviation and expected value

are parameters that typically describe a normal distribu-
tion, but the demand for many SKUs follows a Poisson
distribution. Finally, classifying spare parts according to
their total demand (without examining withdrawal fre-
quencies) would make critical those SKUs requested by
customers in high quantities but once in a while and
never again, making spare parts retailers unnecessarily
increase inventory levels. Conversely, this classification
wouldmake noncritical the SKUs frequently requested in
small quantities, suggesting spare parts retailers to keep
no stocks in DCs, and leading to frequent service level
disruptions.

Once the HML and XYZ analyses are performed, their
results are combined in a 3× 3 matrix, whose quad-
rants can be reclassified into three main criticality classes
(α – critical, β – moderately critical, and γ – noncrit-
ical), achieving the mono-criterion matrix in Figure 2
(Flores andWhybark 1987; Frandsen et al. 2020). Specif-
ically, SKUs belonging to HX, HY, andMX quadrants are
moved into class α. Indeed, an SKU that is critical in at
least one of the two classifications (HML and XYZ anal-
yses) should be critical also in the final mono-criterion
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Table 2. Decision variables and cost items considered in SP-LACE.

Decision variables Description Unit measure

Q′
i,k,r Optimal order quantity of each SKU in each DC units

RL′i,k,r Reorder level associated with each SKU in each DC units
SSi,k,r Safety stocks of each SKU in each DC units
Ii,k,r Average inventory level of each SKU in each DC units
Noi,k,r Number of supply orders issued for each SKU to replenish each DC in the period of analysis –
Nbi,k,r Number of backorders experienced for each SKU in each DC in the period of analysis –
Ndepi,r Number of γ SKUs in each DC, whose deployment policy changes when moving from the starting

SC configuration to the reviewed one
–

Ndr Number of displacements to be performed in the reviewed SC configuration to move stocks from
decentralised DCs to the central one

–

Nsupi,r Number of SKUs in each DC, whose supply policy changes when moving from the starting SC
configuration to the reviewed one

–

Costs Description Unit measure

CTr Total cost of the SC e/time
CHr Holding cost e/time
COr Ordering cost e/time
CBr Backorder cost e/time
CRr Cost incurred to review the SC configuration e/time
CS Software cost incurred, each time the SC configuration is reviewed, to run the mathematical

calculations and apply stage 1 of SP-LACE
e/time

CDr Displacement cost to move, in the central DC, the γ SKUs that in the starting SC configuration
were decentralised and, after the SC configuration review, have to be centralised (changing
their deployment policy)

e/time

CAr Administrative cost to update, in the IT system, the ROP′
i,k,r and Q

′
i,k,r values of the SKUs whose

supply policy has changed when moving from the starting SC configuration to the reviewed
one

e/time

Figure 2. Transformation of the multi-criteria classification
matrix (before) into a mono-criterion one (after).

classification. For similar reasons, SKUs belonging to LY,
MZ, and LZ quadrants are placed into class γ . Finally, the
remaining SKUs are grouped into class β .

At this point, positioning of SKUs into criticality
classes (α, β , and γ ) is used to review the SC configu-
ration of each SKU in each DC, defining both optimal
stock deployment and supply policies. The SC config-
uration of each SKU is selected – achieving a trade-
off between holding, ordering, and backorder costs –
as follows. A decentralised stock deployment is sug-
gested for SKUs in α and β classes. Indeed, stor-
age near peripheral customers is suggested for criti-
cal and moderately critical SKUs to reduce delivery

times, thus ensuring SC flexibility and SC responsiveness
(Van Wingerden, Tan, and Van Houtum 2016). Besides,
according to Ivanov (2021), in each DC, a continuous
(RL,Q) supply policy is indicated for SKUs in α and β

classes, where, RL is the reorder level calculated to pre-
vent stock-outs of critical and moderately critical SKUs
(reducing backorder costs), while Q is the optimal order
quantity, which allows for keeping optimal inventory lev-
els and finding a trade-off between holding and ordering
costs.

Conversely, centralisation in a single DC1 is indi-
cated for SKUs in the γ class since they are noncritical
and rarely required. Hence, their stock deployment and
supply efforts should be simplified as much as possible,
while benefiting from the risk-pooling effect (Moham-
maditabar, Ghodsypour, and O’Brien 2012). For γ SKUs,
no stock is kept in decentralised DCs, while the central
DC should keep stocks based on an (RL,Q) policy, fac-
ing the demand of all customers (i.e. cumulated local and
peripheral requests).

The application of stage 1 of SP-LACE is schematically
summarised in Figure 3, which refers, as an example, to
a company with three DCs (DC1,DC2, andDC3; see Step
0 in Figure 3), where DC2 is assumed as the central DC.
As depicted in Figure 3, to review the SC configuration,
the following steps are performed:

• In Step 1, the multi-criteria criticality classification of
spare parts (HML and XYZ analyses) is accomplished
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Figure 3. Example application of stage 1 of SP-LACE. A detailed description of the steps composing this figure is provided in the text.
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in peripheral DCs (DC1 and DC3), associating SKUs
with α, β , or γ criticality classes.

• In Step 2, stock deployment policies are defined, indi-
cating to centralise noncritical γ SKUs while keeping
the α and β SKUs decentralised.

• In Step 3, demand for γ SKUs is cumulated with
demand already faced by the central DC. The multi-
criteria criticality classification of spare parts is carried
out inDC2, and SKUs inDC2 are associated with α, β ,
or γ criticality classes.

• Finally, in Step 4, stock supply policies are defined in
each DC. No stock is kept for γ SKUs in DC2 (since
they are noncritical both in the peripherals and cen-
tral DC). Instead, optimal quantities are kept in stock
for the remaining α and β SKUs based on the (RL,Q)

supply policy, which is defined as reported below.

To calculate the optimal (RL,Q) supply policy associ-
ated with each SKU (k) in each DC (i) in the considered
SC configuration (r), first, the values of reorder level
(RLi,k,r) and optimal order quantity (Qi,k,r) are initialised
using Equations 1 and 2, respectively.

RLi,k,r = μLi,k,r + SSi,k,r (1)

Qi,k,r =
√
2 · Xi,k,r · ok

h · ck
(2)

where SSi,k,r are the safety stocks (Equation 3) calculated
to compensate for demand fluctuations of each SKU (k)
in each DC (i) with the desired service level.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
SSi,k,r = Zi,k,r ∗ √

Li,k ∗ σi,k,r if k has a normal demand

1 −
SSi,k,r−1∑
n=0

[
(μLi,k,r)n

n! ∗e−(μLi,k,r)
]

≥ (1 − SLi,k,r) if k has a Poisson demand
(3)

Next, the RLi,k,r and Qi,k,r values are transformed into
RL′

i,k,r and Q′
i,k,r, respectively, to control the stocks in

eachDC and prevent excessive inventory levels or unnec-
essary supply orders from being issued for expensive
and slow-moving SKUs. Specifically, two constraints are
introduced based on Alvarez and van der Heijden (2014)
andCantini et al. (2021) to achieve the final (RL′,Q′) sup-
ply policy. The first constraint (Equation 4) updates the
optimal order quantity (Q′

i,k,r) of SKUs by imposing not to
reorder more than twice the units required in the period
of analysis (Xi,k,r). The second constraint (Equation 5)
updates the reorder level (RL′

i,k,r), so that no stock is held
for low-turnover, high-cost SKUs.

Q′
i,k,r =

{
Xi,k,r ifQi,k,r > (2∗Xi,k,r)

Qi,k,r else
(4)

RL′
i,k,r =

⎧⎪⎨
⎪⎩
on - demand supply of k in i ifNwi,k,r ≤ 1 andXi,k,r ≤ 1
on - demand supply of k in i ifNwi,k,r ≤ 1 and ck ≤ Tk
RLi,k,r else

(5)

3.2. Stage 2: evaluating the economic benefits of
the reviewed SC configuration

Once the spare parts SC configuration has been reviewed
(stage 1), an economic evaluation has to be performed
to check the achieved cost benefits and verify the impor-
tance of reviewing the SC configuration. To this end,
stage 2 is carried out, which provides, for the first time,
a mathematical model for comparing the total cost of
the reviewed SC with the one of the starting SC (before
the review process). Specifically, total SC costs are deter-
mined using Equation 6 and based on the notation
reported in Tables 1 and 2. Then, the reviewed SC con-
figuration (r = 1) is considered economically beneficial
with respect to the starting one (r = 0) if it has a lower
total cost, according to Equation 7.

CTr = CHr + COr + CBr + CRr (6){
ifCT1 ≤ CT0 → review economically beneficial
else → review not economically beneficial

(7)

where:

• CHr , according to Equation 8, depends on the average
inventory levels of SKUs in DCs (Ii,k,r), which, in turn,
depend on Q′

i,k,r and SSi,k,r as reported in Equation 9.
For this reason, differences between the holding cost
in the reviewed SC configuration (CH1) and the one
in the starting SC configuration (CH0) will only arise
with SKUs (Nsupi,r ) whose supply policy changes dur-
ing the review (Q′

i,k,1 �= Q′
i,k,0) in response to demand

fluctuations (Xi,k,1 �= Xi,k,0).

CHr =
I∑

i=1

K∑
k=1

h · ck · Ii,k,r (8)

Ii,k,r = Q′
i,k,r
2

+ SSi,k,r (9)

• COr , according to Equation 10, depends on the num-
ber of supply orders issued for SKUs in DCs (Noi,k,r ),
which, in turn, depends on the ratio betweenXr,i,k and
Q′
i,k,r (Equation 11). Like in CHr , differences between

the ordering cost in the reviewed SC configuration
(CO1) and the one in the starting SC configuration
(CO0) will only arise with SKUs (Nsupi,r ) whose supply
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policy changes during the review (Q′
i,k,1 �= Q′

i,k,0).

COr =
I∑

i=1

K∑
k=1

ok · Noi,k,r (10)

Noi,k,r = Xi,k,r

Q′
i,k,r

(11)

• CBr , according to Equation 12, depends on the number
of backorders experienced for SKUs in DCs (Nbi,k,r ),
which, in turn, depends on the stock-out probabili-
ties allowed in the considered SC configuration based
on the desired SLi,k,r (Equation 13). Again, differences
between the backorder cost in the reviewed SC config-
uration (CB1 ) and the one in the starting SC configura-
tion (CB0) will only arise with SKUs whose supply pol-
icy changes during the review (Nsupi,r ). Indeed, when
demand changes for some SKUs (Xi,k,1 �= Xi,k,0), the
reviewed SC configuration updates the related safety
stock values (Equation 3) to ensure the desired ser-
vice level and prevent stock-outs. On the contrary, by
not reviewing the SC configuration, the safety stocks
are not updated even if demand increases (SSi,k,1 �=
SSi,k,0). Therefore, the respective customer service
level is lowered (SLi,k,1 �= SLi,k,0).

CBr =
I∑

i=1

K∑
k=1

bk · Nbi,k,r (12)

Nbi,k,r = Xi,k,r · (1 − SLi,k,r) (13)

• CRr , according to Equation 14, is null when the review
of the SC configuration is not performed (r = 0) while
being the sum of three cost items in the opposite case
(r = 1).

CRr =
{
0 if r = 0
CS + CDr + CAr if r = 1

(14)

where: CS (Equation 15) is a fixed cost independent
on r; CDr (Equations 16–17) depends on the vehi-
cle used to perform displacements of SKUs; and CAr

(Equation 18) can be neglected because tm is very
small (on the order of seconds) compared with the
period of analysis (on the order of days, months, or
even years). Notably, CDr is calculated by consider-
ing only γ SKUs because they are the only SKUs
for which a displacement must be made (switching
from decentralisation to centralisation). Conversely,
α and β SKUs for which a switch is required from
centralisation to decentralisation are not considered.
Indeed, such SKUs have high/moderate demand and
high/moderate turnover rates. Hence, it is not neces-
sary to displace their inventories from the central DC

to the decentralised ones, but rather RL′
i,k,r and Q′

i,k,r
values can be updated in decentralised DCs while
waiting for customers to consume current stocks in the
central DC.

CS = mh · tc (15)

CDr = ut · d · Ndr (16)

Ndr =
∑I

i=1
∑Ndepi,r

j=1 Xi,j,r ∗ vk
VC

(17)

CAr =
I∑

i=1
Nsupi,r · tm · mh (18)

Two considerations emerge based on the economic
evaluation here proposed, which will be demonstrated
in the next section (through two case studies). On
one hand, when performing the first review of a spare
parts SC configuration (i.e. the considered company
never performed an SC configuration review before),
the review process is expected to be strongly economi-
cally convenient, especially whether stock deployment
and supply policies have been planned in an empirical
manner so far (e.g. based on personnel experience).
In fact, in the first review, although a large review
cost (CRr ) is expected (since for many SKUs a change
in stock deployment and supply policies is attended),
CRr are likely to be much smaller than the savings
achieved by optimising holding, ordering, and backo-
rder costs. Therefore, CT1 is expected to be lower than
CT0 . On the other hand, after the first review of the
SC configuration, in the subsequent reviews, a lower
CRr is expected (since only small adjustments of stock
deployment and supply policies will be suggested), but
the benefits of aligning stocks with the spare parts
demand will still be perceived (especially in terms of
backorder costs CBr ). More benefits will be perceived
by performing regular reviews of the spare parts SC
configuration because a shorter review interval is asso-
ciated with fewer fluctuations in spare parts demand,
resulting in lower values of Nsupi,r, Ndepi,r, and
thus CRr .

4. Results and discussion

SP-LACE was applied to two case studies (companies A
and B) with two purposes. First, to test its applicability
in real companies. Indeed, by selecting as case studies
two spare parts retailers located in different geographical
areas, with different territorial expansions, handling dif-
ferent types of spare parts, and serving customers with
different features, the general applicability of SP-LACE
and its consistency are ensured. Second, to gauge the
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effectiveness of SP-LACE (also confirming the consider-
ations reported in Section 3.2) by comparing its perfor-
mance with both the starting (historical) performance of
the case study companies and the methodology by Stoll
et al. (2015).

For applying SP-LACE (and the methodology by Stoll
et al. [2015]), the following input data were collected,
whose variable names and descriptions have already been
provided in Table 1.

(1) Input data required to apply both SP-LACE and the
methodology by Stoll et al. (2015):
(a) SLi,k,r (and the consequent Zi,k,r) desired by the

company for each SKU in each DC.
(b) Average ck of each SKU (which, due to a non-

disclosure agreement, has been here modified,
multiplying a coefficientm for each SKU).

(c) Li,k of each SKU in each DC.
(d) Daily inventory withdrawals performed in each

DC during the period of analysis, gathering,
for each withdrawal, the following information:
identifier of the specific SKU withdrawn (k),
SKU description, withdrawal date, identifica-
tion of the DCwhere the withdrawal took place,
and quantity withdrawn to fulfil the received
demand. From this information, simple data-
mining activities allowed for determining Xi,k,r,
Nwi,k,r , σi,k,r, and μLi,k,r.

(e) vk of each SKU.
(f) bk associated with each SKU.
(g) ok related to each SKU.
(h) h for keeping stocks in inventory for one year.
(i) mh.
(j) d.
(k) Characteristics (VC and ut) of the vehicle used

to perform displacements.
(2) Input data required only to apply the methodology

by Stoll et al. (2015):
(a) Evaluation of each SKU in terms of the six VED

criticality criteria performed by maintenance
experts.

(b) Pairwise comparison of the VED evaluations,
following a standardAHPprocedure (Feng, Hu,
and Orji 2021).

Moreover, to compare SP-LACE’s results with the his-
torical performance of the case studies, more input data
were collected relating to the historical daily orders issued
by the company to supply each SKU in each DC during
the period of analysis. Specifically, for each supply order,
the following information was gathered: identifier of the
specific SKU ordered (k), SKU description, date of order

issue, identification of theDCwhere the order took place,
and quantity ordered to replenish the DC.

In examining the input data needed to apply SP-LACE,
its main advantage immediately emerges regardless of
the specific case study analysed. SP-LACE (unlike Stoll
et al. [2015]) does not require subjective information
(obtained from time-consuming expert consultations) to
be applied. As a matter of fact, SP-LACE is a data-driven
methodology based on objective data usually available in
company databases. As such, SP-LACE is applicable in
any real-world context, resulting in a reliable, quick, and
easy-to-usemethodology suitable for regularly reviewing
spare parts SC configurations. This advantage is con-
firmed through the following case studies, where other
key performance indicators (KPIs) are also used to dis-
cuss SP-LACE’s effectiveness: cost and time required to
review the SC configuration, average inventory levels
determined in DCs by the suggested stock deployment
and supply policies, number of supply orders, number
of backorders, resulting holding, ordering, and backorder
costs in DCs, and the achieved total SC cost.

Below, Section 4.1 describes case study A, while
Section 4.2 presents case study B.

4.1. Case study A

A bus spare parts retailer from southern Europe was cho-
sen for case study A, which manages more than 3000
SKUs. The company purchases spare parts from a single
supplier (official partner), stores the stocks into five DCs
(DC1 − DC5, managed independently without admit-
ting lateral transhipments), and serves both external and
internal customers. Indeed, on the one hand, company A
offers after-sales and warranty services to external cus-
tomers, to whom it sells spare parts for maintenance
activities. On the other hand, company A installs spare
parts on its internal vehicles, owning a fleet of over 600
buses. In each DC, stock deployment and supply poli-
cies are selected by warehouse managers, who plan the
SC configuration based on experience, without adopting
systematic approaches.

In this context, SP-LACE and the methodology by
Stoll et al. (2015) were applied to review the SC config-
uration of company A. In agreement with company A,
DC1 was selected as the centralDC, being the facilitywith
the largest size and central location with respect to cus-
tomers (d is around 15 km). Furthermore, the input data
(mentioned at the beginning of Section 4) were collected,
considering 2019 as the period of analysis. Specifically,
SLi,k,r desired for each SKU in each DC was defined by
consulting company managers, who asked for it to be
95% for all SKUs. Data related to inventory withdrawals
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and supply orders carried out in 2019 in each DC were
extracted from company databases, as well as the infor-
mation on ck, Xi,k,r in 2019, Li,k, ok (which resulted in
26.1 e/order for all SKUs), and h (which resulted in
9.87% according to a company evaluation). Concerning
Li,k, based on the contract between company A and its
supplier, the procurement lead time depends only on the
DC (i), not on the SKU (k), being equal to 10 days for
SKUs stored in DC2, DC3 and DC5, and 4 days for SKUs
in DC1 and DC4. In addition to this data, to apply only
the methodology by Stoll et al. (2015), ten meetings were
organised with a panel of company maintenance experts
(each lasting approximately four hours), where they were
asked to evaluate SKUs based on VED criticality criteria,
then performing the AHP.

The results achieved by reviewing the SC configura-
tion through stage 1 of SP-LACE and the methodology
by Stoll et al. (2015) are provided in Table 3, consider-
ing a sample of ten SKUs in DC2 and suggesting their
criticality classification (CCi,k,r), stock deployment poli-
cies (DPi,k,r), and stock supply policies (SPi,k,r), where the
latter are calculated with Equations 4–5 (RL′

i,k,r,Q
′
i,k,r) in

the case of SP-LACE, while being calculated with Equa-
tions 1–2 (RLi,k,r,Qi,k,r) in the methodology by Stoll et al.
(2015). In addition to this information, Table 3 reports
the identifier (IDk) and description of each SKU, its total
demand (Xi,k,r) in 2019 in DC2, the unitary cost (ck),
the coefficient of variation of demand (θ(xi,k,r)), and the
number of withdrawals (Nwi,k,r ) performed in 2019 in
DC2.

Table 3 shows how SP-LACE leads to a different
criticality classification (CC) of spare parts than the
methodology by Stoll et al. (2015), resulting in the
same stock deployment and supply policies in only four
out of ten SKUs. Regarding stock deployment poli-
cies, SP-LACE keeps all SKUs decentralised except one,
promoting decentralisation for more SKUs than Stoll
et al. (2015). Concerning stock supply policies, SP-LACE
favours higher reorder levels and optimal order quanti-
ties, preferring large supply batches and sporadic supply
orders, while the methodology by Stoll et al. (2015) often
recommends the opposite (one-unit lots and frequent
supply orders). The aforementioned considerations are
confirmed in Figure 4,which provides an aggregated view
of the results obtained for all SKUs (not just a sample
of ten) in all DCs (not just DC2), comparing the perfor-
mance of SP-LACE (orange), the methodology by Stoll
et al. (2015) (blue), and company A’s historical situation
in 2019 (grey).

Specifically, Figure 4.a shows the sum of the average
inventory levels (Ii,k,r) of all SKUs in each DC, high-
lighting that SP-LACE decentralises stocksmore than the
methodology by Stoll et al. (2015). Indeed, by comparing

the orange and blue histograms in Figure 4(a), it appears
that the methodology by Stoll et al. (2015) stores 55% of
the total stocks in the centralDCwhile holding only small
amounts of spare parts in peripheral DCs (12% in DC2,
17% in DC3, 7% in DC4, and 9% in DC5). Instead, SP-
LACE centralises fewer spare parts (47% of total stocks
are in DC1), while holding in the other DCs 14%, 19%,
9%, and 11% of stocks, respectively.

Figure 4(a) illustrates that, in terms of average inven-
tory levels, both SP-LACE and the methodology by Stoll
et al. (2015) perform better than company A’s histori-
cal situation, indicating that the review of the SC con-
figuration reduces DCs’ filling while ensuring high ser-
vice levels. SP-LACE results in higher average inven-
tory levels than the methodology by Stoll et al. (2015)
due to a stronger tendency towards decentralisation and
the adoption of higher reorder levels and optimal order
quantities for many SKUs. Therefore, from the perspec-
tive of inventory levels, SP-LACE may seem less effective
than the methodology by Stoll et al. (2015). However,
SP-LACE’s effectiveness can be discussed by examining
the number of replenishment orders and the number
of backorders in DCs. Figure 4(b) depicts the sum of
the number of supply orders (Noi,k,r ) issued to replenish
all SKUs in each DC. As Figure 4(b) shows, SP-LACE
strongly reduces the number of supply orders by sug-
gesting large replenishment batches and sporadic supply
orders. On the contrary, the methodology by Stoll et al.
(2015) worsens the historical situation, recommending
frequent supplies of one-unit lots. Therefore, SP-LACE
appears to be a better trade-off between average inven-
tory levels in DCs and the number of supply orders,
improving the company’s performance under both these
KPIs. Finally, Figure 4(c) reports the sum of the num-
ber of annual backorders that occurred for all SKUs
in each DC (Nbi,k,r ). Taking into account Figure 4(c),
it appears that both SP-LACE and the methodology by
Stoll et al. (2015) reduce the number of backorders with
respect to company A’s historical situation. However, SP-
LACE achieves fewer backorders since it is a data-driven
methodology. Indeed, SP-LACE classifies the criticality
of SKUs based on the analysis of objective data (not
on the consultation of maintenance experts). Therefore,
no subjectivity affects the criticality classification results,
and mistakes are avoided (unlike in the methodology
by Stoll et al. [2015]), in which critical SKUs are identi-
fied as noncritical, suggesting keeping few items in stock.
Finally, by keeping higher inventory levels (instead of
one-unit lots), SP-LACE makes the stocks in DCs more
resilient compared with the methodology by Stoll et al.
(2015). Indeed, SP-LACE allows company A to better
cope with unexpected demand fluctuations (typical of
spare parts), preventing future stock-outs and backorder
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Table 3. Comparison of the criticality classification (CC), stock deployment policies (DP), and supply policies (SP) suggested by stage 1 of SP-LACE and the literature methodology (literat.,
[Stoll et al. 2015]) for a sample of ten SKUs in DC2 (i = 2). The symbol ‘-’ suggests keeping no stock for the considered SKUs (i.e. on-demand supply).

k with description X2,k,r ck θ(x2,k,r) Nw2,k,r CC2,k,r literat. CC2,k,r SP-LACE DP2,k,r literat. DP2,k,r SP-LACE
SP2,k,r literat.
(RL2,k,r ,Q2,k,r)

SP2,k,r SP-LACE
(RL′2,k,r ,Q′

2,k,r)

415684 splashback 44 72.9 8.1 22 HZV HX→ α Decentralisation of 1 unit Decentralisation according to (RL′ ,Q′) (0,1) (6,14)
1025461 pole socket 96 29.5 5.7 13 LZV LX→ β Decentralisation according to

(RL,Q)
Decentralisation according to (RL′ ,Q′) (10,41) (10,41)

100278 diesel filter 56 65.6 1.8 54 MYV MX→ α Decentralisation of 1 unit
and centralisation in DC1
according to (RL,Q)

Decentralisation according to (RL′ ,Q′) (0,1) (7,20)

100327 damper repair kit 31 366.1 2.2 30 HYV HX→ α Centralisation in DC1 according
to (RL,Q)

Decentralisation according to (RL′ ,Q′) - (3,5)

100998 brake cylinder connection 47 34.4 23.6 6 LZV LX→ β Decentralisation according to
(RL,Q)

Decentralisation according to (RL′ ,Q′) (3,11) (3,11)

851302 front-right fog lamp 1 160.3 0 1 HXD HY→ α No stock No stock - -
415846 left seat rivet 1 213.3 0 1 HXE HY→ α Centralisation of 1 unit in DC1 No stock - -
729813 curtain fastener 19 31.0 16.1 5 LZV LX→ β Decentralisation according to

(RL,Q)
Decentralisation according to (RL′ ,Q′) (4,17) (4,17)

7184090 front hub cover 1 26.0 0 0 LXD LY→ γ No stock Centralisation in DC1 according to
(RL′ ,Q′)

- -

944134 water filter 5 48.4 36.5 4 MZV MX→ α Decentralisation of 1 unit Decentralisation according to (RL′ ,Q′) (0,1) (3,7)
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Figure 4. Total average inventory levels (a), number of orders (b), and number of backorders (c) that occurred in each DC historically in
2019 (grey) by applying stage 1 of SP-LACE (orange) and the methodology by Stoll et al. (2015) (blue), respectively.

costs in the case of demand variations. Overall, unlike
Stoll et al. (2015), SP-LACE improves the company’s his-
torical situation bringing concomitant benefits under all
these KPIs: inventory levels in DCs, number of sup-
ply orders, and number of backorders. Consequently,
SP-LACE improves both company service performance
(reducing backorders and ensuring pre-established ser-
vice levels) and the economic performance (as confirmed
below).

Following stage 2 of SP-LACE, the economic impact
of reviewing company A’s SC configuration was evalu-
ated in terms of total SC cost (CTr , Equation 6). Hence,
the economic performance of the reviewed SC configura-
tion (r = 1) was compared with the starting (historical)
one (r = 0). Figure 5 depicts the achieved results in terms
of holding (CHr , Equation 8), ordering (COr , Equation
10), and backorder costs (CBr , Equation 12), which are
expressed in kilo-euros (ke) and obtained by applying
SP-LACE, the methodology by Stoll et al. (2015), and the
company’s historical performance (starting SC configu-
ration), respectively. Moreover, Figure 5 shows the cost
incurred to review the SC configuration (CRr , Equation
14), where trucks with a capacity of 13m3 (VC) and a
cost of 0.6e/km (ut) were considered to perform spare
parts displacements. To illustrate the benefits of a regular
review of company A’s SC configuration, the review was
not carried out only once, but twice. As shown in Figure
5(a), an initial review was conducted to move from the
starting (historical) SC configuration to a reviewed one,
which was more aligned with the spare parts demand of
2019. After one year, as depicted in Figure 5(b), a sec-
ond reviewwas performed by repeating the application of
SP-LACE in 2020 and moving to another SC configura-
tion aligned with the demand of 2020. Both Figure 5(a,b)
depict the economic evaluation of the reviewed SC con-
figuration (r = 1 in 2019 and 2020, respectively), com-
paring it with the economic performance that company

A would have had by not reviewing the SC configuration
(i.e. maintaining the starting SC configuration, r = 0).

Figure 5 proves that both the first (Figure 5(a)) and
second (Figure 5(b)) reviews (r = 1) of the SC config-
uration were economically convenient for company A
with respect to keeping the starting SC configuration
unchanged over time (r = 0). Indeed, company A never
performed a structured SC configuration review before
2019. Therefore, major holding, ordering, and backorder
cost savings were achieved by aligning the SC configura-
tion with spare parts demand, leading to a drastic reduc-
tion in CTr with both SP-LACE and the methodology by
Stoll et al. (2015).

Specifically, SP-LACE appeared to be more economi-
cally advantageous, resulting in lower total SC cost com-
pared with both Stoll et al. (2015) (−39% in 2019 and
−61% in 2020) and the historical situation (−68% in
2019 and −87% in 2020). According to Figure 5, in
both reviews, SP-LACE’s effectiveness and the reduced
values of CTr were achieved because SP-LACE strongly
decreased ordering and backorder costs, albeit implying
higher holding costs compared with Stoll et al. (2015).
Lower ordering costs and higher holding costs were
obtained since SP-LACE prefers larger supply batches
and sporadic supply orders compared with the method-
ology by Stoll et al. (2015). Instead, lower backorder
costs were obtained because SP-LACE is a data-driven
methodology, reiterating the importance of classifying
the criticality of SKUs based on objective input data.
On the contrary, the methodology by Stoll et al. (2015)
implies consulting maintenance experts, leading to SC
configuration reviews affected by subjectivity, thus caus-
ing backorders when critical SKUs are wrongly classified
as moderately critical or noncritical (suggesting for them
wrong stock deployment and supply policies).

Finally, Figure 5 shows that reviewing the SC config-
uration implied experiencing a review cost (CRr ), which
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Figure 5. Economic assessment of total SC cost (CTr ) achieved without performing SC configuration reviews (r = 0) or by performing a
first (a, in 2019) and a second (b, in 2020) review (r = 1) through SP-LACE and the methodology by Stoll et al. (2015), respectively.

was higher in the first review of the SC configuration
(since the stock deployment and supply policies of 99.2%
of SKUs were changed), while being lower in the second
one (since only small adjustments of stock deployment
and supply policies were suggested, updating the man-
agement of 31% of SKUs). Specifically, CRr was lower in
SP-LACE than in the methodology by Stoll et al. (2015).
This economic benefit was mainly related to time con-
sumption (CS) required to collect input data and perform
the SC configuration review. In fact, in SP-LACE, the
input data related to the 3000 SKUs were collected by
executing a single search query on company databases,
which provided results in less than an hour. Conse-
quently, the reviewed SC configuration was achieved in
one hour (tc), leading to a review cost equal to 403 e
in the first review of the SC configuration and 151 e in

the second one. In contrast, collecting input data for the
methodology by Stoll et al. (2015) not only required per-
forming the same search query in the company databases,
but also consulting maintenance experts to develop the
VED analysis and the AHP. This, as aforementioned,
involved organising ten meetings of around four hours
each, obtaining the results of stock deployment and sup-
ply policies only after forty working hours, and leading
to a review cost of 1378 e in the first review and 1126
e in the second one. The lower time consumption (and
review costs) of SP-LACE resulted in greater applicability
of this methodology in company A, encouraging regular
reviews of the spare parts SC configuration and showing
additional advantages over Stoll et al. (2015).

SP-LACE’s cost benefits were confirmed by perform-
ing a sensitivity analysis, whose outcomes are reported in
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Table 4 (referring to the year 2019). The input parame-
ters ok, h, and SLi,k,r were varied, one at a time, assuming
realistic values and deviating from the baseline (red in
Table 4) to cover wide ranges. Therefore, costs’ sensitivity
to changes in ok, h, and SLi,k,r was assessed, reporting in
Table 4 the following information: the values of CHr , COr ,
CBr , CRr , and CTr achieved in SP-LACE and the method-
ology by Stoll et al. (2015); the percentage deviation of
CTr from the baseline achieved in SP-LACE (�SP−bl)
and Stoll et al. (2015) (�literat−bl); the percentage dif-
ference between CTr in SP-LACE and Stoll et al. (2015)
(�SP−literat); and the percentage difference between CTr
in SP-LACE and the historical performance of Figure
5(a) (�SP−history). The results confirmed that the bene-
fits provided by SP-LACE were not related to a specific
circumstance, but rather generalisable. In particular, in
all scenarios analysed, SP-LACE elicited a cost reduction
compared with both Stoll et al. (2015) and the historical
situation (i.e. �SP−history and �SP−literat are negative).

4.2. Case study B

A spare parts retailer from northern Europe was selected
for case study B, whichmanages almost 8000 SKUs falling
into three categories: spare parts for trams (24% out of
the total 8000 SKUs), spare parts for subways (64%), and
spare parts for repairing or replacing railway and subway
infrastructure (the remaining 12%). The company pur-
chases spare parts from several suppliers, stocking them
into eight DCs (DC1 − DC8) based on the experience of
warehouse staff. Finally, spare parts are installed on the
company’s internal vehicles and infrastructures.

Both SP-LACE and the methodology by Stoll et al.
(2015) were applied in company B, where the input data
mentioned at the beginning of Section 4 were gathered
as follows. The required SLi,k,r for each SKU in each DC
was defined by consulting company managers. As in case
study A, 95% was requested for all SKUs. Then, consid-
ering 2021 as the period of analysis, the data related to
inventory withdrawals and supply orders carried out in
2021 in eachDCwere extracted fromcompany databases,
as well as information on ck, Xi,k,r in 2021, Li,k, ok (result-
ing in 5 e/order for all SKUs), and h (resulting in 10%
according to a company evaluation). In addition to these
data, to apply the methodology by Stoll et al. (2015),
fifteen online meetings (each lasting three hours) were
organised, where a panel of maintenance experts was
asked to evaluate SKUs based on VED criticality criteria,
then performing the AHP.

Notably, three aspects distinguished data extraction
and SP-LACE application in case study B from case study
A. First, in case study B, a specific average procurement

lead time (Li,k) was collected for each SKU (k) in eachDC
(i), not being the same for all SKUs, but varying according
to suppliers, DCs, and the specific SKU ordered. Sec-
ond, in case study B, the DC chosen as central varied
depending on the spare parts typology (while, in case
study A, a single central DC – DC1 – was identified for
the SC configuration related to all SKUs). In particular,
company B chose DC6 as the central DC for the man-
agement of tram SKUs, DC1 for subway SKUs, and DC2
for infrastructure SKUs. Finally, in terms of daily quan-
tities withdrawn from DCs, lateral transhipments were
allowed and treated as indicated in Appendix A. The case
study results are provided below. Table 5 compares the
criticality classification (CCi,k,r), stock deployment poli-
cies (DPi,k,r), and stock supply policies (SPi,k,r) suggested
by stage 1 of SP-LACE and the methodology by Stoll
et al. (2015) for a sample of ten SKUs in DC1, report-
ing the average procurement lead time (Li,k, expressed
in days) and the SKUs’ typology together with the same
information already discussed in Table 3.

Table 5 confirms the considerations reported for case
study A (Table 3), showing that SP-LACE suggested the
same stock deployment and supply policies as Stoll et al.
(2015) in only two out of ten SKUs. In the remaining
cases, concerning stock deployment policies, SP-LACE
preferred decentralisation for a higher number of SKUs.
Concerning stock supply policies, a visible inclination
of SP-LACE towards more sporadic and voluminous
reordering batches was seen, while the methodology by
Stoll et al. (2015) preferred one-unit lots. In addition,
Table 5 shows the importance of considering not only
normal demand distributions, but also Poisson distribu-
tions for spare parts, thus validating SP-LACE results.
Indeed, all SKUs except 821302 and 215112 registered an
average demand lower than 15 units during the procure-
ment lead time, demonstrating that not all SKUs have
a normally distributed demand, but instead some fol-
low a Poisson distribution. Therefore, the coefficient of
variation of demand (θ(x1,k,r)) is not an adequate param-
eter with which to delineate SKUs’ criticality, while it is
preferable to rely on Nwi,k,r .

Like in case study A, the aforementioned considera-
tions were confirmed in Figure 6, showing that similar
results of criticality classification (CCi,k,r), stock deploy-
ment (DPi,k,r), and supply policies (SPi,k,r) were obtained
in the other DCs (not only in DC1) while considering
all SKUs (not just a sample). Figure 6 depicts, for each
DC and SKU typology (namely, tram, subway, and infras-
tructure SKUs), the same information already described
in Figure 4, comparing SP-LACE (orange), the method-
ology by Stoll et al. (2015) (blue), and company B’s
historical performance in 2021 (grey).
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Table 4. Sensitivity analysis on case study A’s results. The costs are expressed in ke, and the abbreviation ‘literat.’ refers to the literature methodology by Stoll et al. (2015).

Tested value CHr SP-LACE CHr literat. COr SP-LACE COr literat. CBr SP-LACE CBr literat. CRr SP-LACE CRr literat. CTr SP-LACE CTr literat. �SP−bl �literat−bl �SP−literat �SP−history

ok
5 23.8 26.8 10.1 49.2 1367.7 1894.6 0.4 1.4 1401.9 1971.9 −6% −22% −29% −70%
10 40.4 27.9 26.8 190.1 1365.7 1891.6 0.4 1.4 1433.3 2110.9 −4% −16% −32% −69%
15 51.9 28.7 41.0 330.7 1364.0 1888.9 0.4 1.4 1457.2 2249.6 −3% −11% −35% −69%
20 60.2 29.2 53.7 471.3 1362.5 1886.9 0.4 1.4 1476.8 2388.8 −1% −6% −38% −68%
25 69.2 29.9 66.2 611.6 1361.1 1884.9 0.4 1.4 1496.8 2527.8 0% 0% −41% −68%
h
10% 69.2 29.9 66.2 611.6 1361.1 1884.9 0.4 1.4 1496.8 2527.8 0% 0% −41% −68%
15% 147.9 33.9 77.7 623.0 1362.4 1888.7 0.4 1.4 1588.4 2547.0 6% 1% −38% −66%
20% 223.4 38.2 88.4 634.9 1363.7 1892.2 0.4 1.4 1675.8 2566.7 12% 2% −35% −64%
25% 297.3 42.0 97.1 654.7 1364.7 1895.0 0.4 1.4 1759.6 2593.0 18% 3% −32% −62%
10% 367.1 45.5 104.8 665.4 1365.7 1896.7 0.4 1.4 1838.0 2609.0 23% 3% −30% −60%
SLi,k,r
91% 62.9 29.6 66.2 611.6 1302.1 1688.3 0.4 1.4 1431.5 2331.0 −4% −8% −39% −69%
93% 66.8 29.7 66.2 611.6 1333.7 1791.4 0.4 1.4 1467.0 2434.1 −2% −4% −40% −68%
95% 69.2 29.9 66.2 611.6 1361.1 1884.9 0.4 1.4 1496.8 2527.8 0% 0% −41% −68%
97% 79.3 30.0 66.2 611.6 1383.4 1970.9 0.4 1.4 1529.3 2614.0 2% 3% −41% −67%
99% 96.0 30.3 66.2 611.6 1403.1 2044.9 0.4 1.4 1565.7 2688.1 5% 6% −42% −66%
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[Stoll et al. 2015]) for a sample of ten SKUs in DC1 (i = 1). The symbol ‘-’ suggests keeping no stock for the considered SKU (i.e. on-demand supply).

k with description X1,k,r ck θ(x1,k,r) Nw1,k,r L1,k CC1,k,r literat. CC1,k,r SP-LACE DP1,k,r literat. DP1,k,r SP-LACE
SP2,k,r literat.
(RL1,k,r ,Q1,k,r)

SP2,k,r SP-LACE
(RL′1,k,r ,Q′

1,k,r)

821302
tie rod
(tram SKU)

88 155.1 7.1 18 70 MZV MX→ α Decentralisation of 1 unit Decentralisation according to
(RL′ ,Q′)

(0,1) (20,8)

211405
driver seat
(tram SKU)

5 1816.5 84.1 3 8 HZV HY→ α Decentralisation of 1 unit Decentralisation according to
(RL′ ,Q′)

(0,1) (3,1)

603059
group selector
(infrastructure SKU)

9 4.4 70.1 1 1 LZD LY→ γ Decentralisation of 1 unit Centralisation in DC2 according
to (RL′ ,Q′)

(0,1) -

400006
video receiver unit
(subway SKU)

67 4077.3 1.4 60 79 HXV HX→ α Centralisation of 1 unit in DC1 Decentralisation according to
(RL′ ,Q′)

(0,1) (33,1)

400007
brake control unit
(subway SKU)

42 5858.8 1.7 40 57 HYV HX→ α Decentralisation of 1 unit
and centralisation in DC1
according to (RL,Q)

Decentralisation according to
(RL′ ,Q′)

(20,1) (19,1)

241104
sealing ring
(tram SKU)

14 48.8 35.5 6 80 LZV LX→ β Decentralisation according to
(RL,Q)

Decentralisation according to
(RL′ ,Q′)

(11,6) (11,6)

400001
thread lock
(subway SKU)

22 146.6 13.1 10 12 LZV LX→ β Decentralisation according to
(RL,Q)

Decentralisation according to
(RL′ ,Q′)

(4,3) (4,3)

400018
wheel axle
(subway SKU)

3 3206.4 0 1 90 HXV HZ→ β Centralisation of 1 unit in DC1 No stock (0,1) -

498913
coupling between
gear and engine
(subway SKU)

2 2873.9 0 1 210 HXV HZ→ β Centralisation of 1 unit in DC1 No stock (0,1) -

215112
fire extinguisher
(infrastructure SKU)

370 47.4 13.9 14 17 HZV HX→ α Decentralisation of 1 unit Decentralisation according to
(RL′ ,Q′)

(0,1) (41,28)
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Figure 6. Total average inventory levels (a), number of orders (b), and number of backorders (c) occurred in each DC historically in 2021
(grey), by applying stage 1 of SP-LACE (orange), or the methodology by Stoll et al. (2015) (blue), and considering tram (top), subway
(middle), and infrastructure (bottom) SKUs.

Figure 6 shows the advantages of using SP-LACE to
review the configuration of spare parts SCs. Like in com-
pany A, the stock deployment and supply policies sug-
gested by SP-LACE produced in company B a signifi-
cant decrease in average inventory levels (Figure 6(a)),
number of supply orders (Figure 6(b)), and number of
backorders (Figure 6(c)), resulting in better economic
investments in resources. Figure 6 confirmed the results
of case study A (Figure 4), showing that all aforemen-
tioned KPIs were simultaneously improved compared
with the historical situation. Based on this, Figure 6 cor-
roborated the effectiveness of SP-LACE compared with
the methodology by Stoll et al. (2015), where the latter
reduced inventory levels in DCs, but at the expense of the
other KPIs (even worsening the number of supply orders
compared with the historical situation).

The advantages of SP-LACE over the methodology by
Stoll et al. (2015) were not only perceived in the trade-off
among the three KPIs of Figure 6, but also in the absolute
values of two of them. In fact, despite leading to a smaller
reduction in average inventory levels, SP-LACE strongly
reduced the number of supply orders due to higher values

of reorder levels and optimal order quantities. Moreover,
SP-LACE reduced the number of backorders since, unlike
in Stoll et al. (2015), a data-driven criticality classification
of SKUs was performed. Whereas, due to consultation
withmaintenance experts, themethodology by Stoll et al.
(2015) produced subjective results of SC configuration
review, sometimes associating SKUs with the wrong crit-
icality class, and adopting sub-optimal stock deployment
and supply policies.

Like in case study A, SP-LACE improved both com-
pany service performance (reducing backorders and
ensuring pre-established service levels) and economic
performance. The economic impact of stage 1 of SP-
LACE on company B was evaluated in terms of total
SC cost (CTr , Equation 6). To this end, stage 2 of SP-
LACEwas applied, comparing holding (CHr , Equation 8),
ordering (COr , Equation 10), backorder (CBr , Equation
12), and review costs (CRr , Equation 14) of the reviewed
SC configuration (r = 1) with the ones of the starting
(historical) SC configuration (r = 0). Figure 7 depicts
the results achieved through SP-LACE, the methodol-
ogy by Stoll et al. (2015), and the company’s historical
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Figure 7. Economic assessment of total SC cost (CTr ) achieved historically (in 2021, without performing reviews of the SC, r = 0) or by
reviewing the SC configuration (r = 1) through SP-LACE and the methodology by Stoll et al. (2015), respectively.

performance in 2021, respectively. Since the SC configu-
ration review was performed at the same time for tram,
subway, and infrastructure SKUs (applying SP-LACE to
all SKUs), the cost values in Figure 7 are provided in an
aggregated form. CRr was calculated by considering (for
SKUs’ displacement) vehicles with a capacity of 16m3

(VC) and a cost of 0.7e/km (ut).
Figure 7 shows that reviewing the SC configuration

was economically convenient for company Bwith respect
to the starting SC configuration. Indeed, a reduction in
CTr was achieved both with SP-LACE and the methodol-
ogy by Stoll et al. (2015).

Like in case study A, SP-LACE incurred fewer order-
ing and backorder costs than Stoll et al. (2015), while
implying higher holding costs. However, in case study B,
unlike case study A, SP-LACE led to a higher total SC
cost (+3%) than Stoll et al. (2015) and this result was due
to the reduced cost of issuing one supply order in com-
pany B (ok = 5e/order, different from 26.10 e/order of
company A). Given the reduced value of ok, the small
number of supply orders achieved in SP-LACE (Figure
6) did not compensate for the increase in holding costs
compared with the methodology by Stoll et al. (2015).
This result seems to undermine SP-LACE’s effectiveness
against the methodology by Stoll et al. (2015). How-
ever, it is worth mentioning that SP-LACE would have
become cost-effective compared with Stoll et al. (2015) if
the cost of issuing an order would have been 10 e/order
(instead of 5e/order), downplaying the advantage of the
methodology by Stoll et al. (2015) over SP-LACE. This
consideration was confirmed by performing a sensitivity
analysis like the one already proposed in Table 4. Table
6 summarises the achieved results, pointing out the fol-
lowing aspects. First, by increasing ok, SP-LACE appears
to be more convenient than Stoll et al. (2015), showing
an inflexion point in the value of CTr between ok = 5
and ok = 10, and enabling negative values of �SP−literat .

Second, ok variations produce greater impacts on costs
than h. In fact, by increasing h (while maintaining ok =
5), cost items vary, but with smaller percentages than
those obtained by changing ok. This is due to the reduced
value of ok, which favours frequent supply orders in DCs
while suggesting in all the investigated scenarios to keep
low inventory levels. Third, variations in SLi,k,r deter-
mine greater changes in CHr with SP-LACE rather than
with Stoll et al. (2015). This is because Stoll et al. (2015)
frequently suggest keeping one-unit lots in stock. There-
fore, smaller values of CHr are achieved, but increasing
the number of backorders (higher CBr ), thus negatively
impacting company B’s service performance. Finally, SP-
LACE can be considered effective since it reduces CTr
compared with company’s historical performance (i.e.
negative �SP−history).

Moreover, according to Figure 7 and Table 6, SP-LACE
still conserves strong advantages over Stoll et al. (2015)
in terms of time-savings and review cost, being a data-
drivenmethodology. Indeed, to apply SP-LACE, only one
search query was performed in company databases, col-
lecting input data related to 8000 SKUs and reviewing the
SC configuration in approximately one hour (tc), with a
CRr of 300 e. Instead, to apply the methodology by Stoll
et al. (2015), aside from consulting company databases,
fifteen meetings were required to consult maintenance
experts and conduct the VED analysis and AHP. There-
fore, the input data and the results of stock deployment
and supply policies were obtained in forty-five working
hours (with a CRr of 1499 e). Based on this, despite
the higher total SC cost, SP-LACE appeared to be more
convenient than Stoll et al. (2015) when applied in real
companies, being both less time-consuming and allowing
regular reviews of the spare parts SC configuration. Last
and most important, by not needing to consult company
maintenance experts and requiring less input data (usu-
ally available in company databases), SP-LACE showed
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Table 6. Sensitivity analysis on case study B’s results. The costs are expressed in ke, with abbreviation ‘literat.’ referring to the literature methodology by Stoll et al. (2015).

Tested value CHr SP-LACE CHr literat. COr SP-LACE COr literat. CBr SP-LACE CBr literat. CRr SP-LACE CRr literat. CTr SP-LACE CTr literat. �SP−bl �literat−bl �SP−literat �SP−history

ok
5 4440.1 19401.2 457.0 1227.0 2111.1 3668.9 0.3 1.5 7008.5 6837.5 0% 0% 3% −64%
10 7012.7 2049.8 864.1 6024.3 2105.7 3663.0 0.3 1.5 9982.8 11,738.7 42% 72% −15% −48%
15 8554.5 2152.4 1264.2 10,199.2 2100.6 3657.3 0.3 1.5 11,919.6 16,010.4 70% 134% −26% −38%
20 9948.6 2247.8 1590.3 14,125.9 2095.5 3651.8 0.3 1.5 13,634.8 20,027.0 95% 193% −32% −29%
25 11,247.5 2341.4 1844.8 17,798.6 2090.5 3646.4 0.3 1.5 15,183.1 23,788.0 117% 248% −36% −21%
h
10% 4440.1 1940.1 457.0 1227.0 2111.1 3668.9 0.3 1.5 7008.5 6837.5 0% 0% 3% −64%
15% 4624.4 2019.9 461.5 1239.2 2112.3 3680.8 0.3 1.5 7198.5 6941.4 3% 2% 4% −63%
20% 4807.5 2098.0 466.1 1249.8 2113.5 3694.7 0.3 1.5 7387.4 7044.0 5% 3% 5% −62%
25% 4990.4 2175.4 470.7 1260.0 2114.5 3706.3 0.3 1.5 7576.0 7143.2 8% 4% 6% −61%
10% 5172.5 2252.7 475.2 1270.1 2115.5 3717.3 0.3 1.5 7763.6 7241.5 11% 6% 7% −60%
SLi,k,r
91% 3890.3 1901.5 457.0 1227.0 2023.1 3212.4 0.3 1.5 6370.6 6342.4 −9% −7% 0% −67%
93% 4135.1 1920.2 457.0 1227.0 2073.7 3435.5 0.3 1.5 6666.0 6584.1 −5% −4% 1% −65%
95% 4440.1 1940.1 457.0 1227.0 2111.1 3668.9 0.3 1.5 7008.5 6837.5 0% 0% 3% −64%
97% 4770.2 1999.5 457.0 1227.0 2131.4 3875.0 0.3 1.5 7358.8 7102.9 5% 4% 4% −62%
99% 5090.2 2089.0 457.0 1227.0 2149.1 4073.9 0.3 1.5 7696.6 7391.2 10% 8% 4% −60%
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not only higher applicability in real companies, but also
higher reliability than the methodology by Stoll et al.
(2015), providing results unaffected by subjectivity, and
ensuring that promised improvements in both economic
and service performance are reached.

Since the review of the SC configuration was per-
formed only once in company B (in 2021), a second
review of the SC configuration will be performed at the
end of 2022 to further confirm the previous considera-
tions and the importance of reviewing the SC configura-
tion.

5. Conclusions

This paper proposes SP-LACE, the first data-driven
methodology to review the configuration of spare parts
SCs based on a multi-criteria ABC criticality classifica-
tion. SP-LACE is quick and easy-to-use and constitutes
the main contribution of this work. Its novelty lies in
showing how to exploit the results of a criticality clas-
sification to align both stock deployment and supply
policies of thousands of SKUs in multiple DCs with ever-
changing customer needs. Before SP-LACE, only one
methodology (Stoll et al. 2015) accomplished the same
task. However, SP-LACE overcomes the limitations of
this literature methodology by being based on objective
input data usually available in companies, not requiring
expert consultation, and providing an analysis of the ben-
efits achieved by reviewing the SC configuration (thus
verifying its effectiveness).

SP-LACE is composed of two stages. In stage 1, a
multi-criteria criticality classification of spare parts is
performed, and its results are used to plan stock deploy-
ment and supply policies of SKUs in DCs, ensuring
pre-established service levels and a trade-off between
holding, ordering, and backorder costs. In stage 2, a
mathematical model evaluates the economic benefits
of the reviewed SC configuration (in terms of total
SC cost) with respect to the starting one (before the
review process). SP-LACE was tested on two case stud-
ies, comparing its results with the company’s histori-
cal performance and the methodology by Stoll et al.
(2015). The case studies underlined the importance of
adopting a structured methodology to review the con-
figuration of spare parts SCs. Indeed, SP-LACE sig-
nificantly improved the economic situation of compa-
nies, indicating that stock deployment and supply poli-
cies associated so far with SKUs were not aligned with
customer needs. Moreover, the results highlighted SP-
LACE’s advantages over Stoll et al. (2015). Particularly,
SP-LACE produced lower ordering and backorder costs,
reducing the total SC cost despite higher holding costs
(especially when the unitary cost of issuing one supply

order – ok – was high, or the unitary cost of inven-
tory – h – was low). These advantages were achieved
because SP-LACE decentralises stocks more than Stoll
et al. (2015), also suggesting replenishing DCs through
large batches and sporadic supply orders. Finally, SP-
LACE appeared to be reliable, time-saving, and suitable
for regular applications in companies. In fact, by being
data-driven, SP-LACE only required one hour and low
review costs (CRr ) to be applied, producing objective
results.

Both researchers and practitioners could be interested
in this work. Indeed, for the first time, SP-LACE allows
adopting (in real companies) a multi-criteria ABC crit-
icality classification of spare parts not only for plan-
ning stock supply policies in a single DC, but also stock
deployment policies in multiple DCs (i.e. reviewing SC
configurations). Moreover, for the first time, SP-LACE
shows the benefits of regularly reviewing an SC con-
figuration. Thus, this work could encourage spare parts
retailers to update their starting SC configurations, lead-
ing to greater customer satisfaction (due to a better ability
to follow demand fluctuations), as well as reduced total
SC costs.

However, SP-LACE’s contribution does not come
without limitations. First, SP-LACE estimates spare parts’
criticality based on the historical number of withdrawals
in DCs (XYZ analysis). This implies evaluating expected
demand for spare parts as in a historical regression.
Therefore, expected demand is better estimated when a
short period of analysis is chosen,making SP-LACEmore
effective when spare parts retailers frequently review
their SC configuration. Second, SP-LACE assumes spare
parts with a normal or Poisson distribution. SP-LACE
would not lose generality by considering other demand
distributions (e.g. compound Poisson). However, inves-
tigating different demand distributions lied beyond the
scope of this study. Finally, given its heuristic nature,
SP-LACE does not guarantee finding an SC configura-
tion characterised byminimum (absolute optimum) total
SC cost. Rather, SP-LACE could accept a local optimum.
However, this limitation is tolerated since SP-LACE’s
heuristic nature makes it quick and easy-to-use. There-
fore, spare parts retailers are provided with a method-
ology for reviewing SC configurations in any indus-
trial context, even where computational resources and
advanced technologies are missing.

The authors envision several future developments
of this study. First, some simplifying assumptions in
SP-LACE should be removed, for example, including
transportation costs in the investigation or consider-
ing stochastic lead times instead of deterministic ones.
Second, the optimal time interval for reviewing the SC
configuration should be determined, finding a trade-off
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between review costs and holding, ordering, and back-
order costs. Third, the impact of choosing a different
stock supply policy could also be analysed. For instance,
we might not consider reordering SKUs based on fixed
quantities (Q′

i,k,r) but rather follow an ‘order up to level’
policy, where stocks are replenished by an amount that
brings inventory back to a predetermined target level.
Fourth, SP-LACE’s effectiveness should be quantitatively
tested not only in terms of total SC cost and service level,
but also in terms of SC flexibility, responsiveness, and
resilience to risks such as supply disruptions, abrupt fluc-
tuations in customer demand, or fluctuations in spare
parts unitary costs. Finally, the application of SP-LACE
could be expanded to sectors beyond spare parts, for
example, by optimising the configuration of distribution
networks for food, pharmaceuticals, or other products.

Note

1. Among the DCs that the company owns, the most suit-
able one for centralisation purposes (central DC) can be
selected in many ways. However, investigating these meth-
ods lies beyond the scope of this study. Hence, we only
mention that the central DC can be selected by applying
techniques, e.g. those by Farahani et al. (2015) and Fathi
et al. (2021), or simply by identifying the facility with the
largest size and centrality to customers.
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Appendix A

Lateral transhipments are usually performedwhen the stocks in
aDCare not sufficient tomeet customer needs, so it is necessary
to procure stocks from another DC (Cohen, Kleindorfer, and
Lee 1988). Considering as an example twoDCs (DC1 andDC2),
if DC1 receives a demand for spare parts, but cannot satisfy it,
it can order the required stocks from DC2. Consequently, the
stocks are first withdrawn from DC2 (first type of withdrawal,
namely lateral transhipment) and delivered to DC1 to satisfy
its request. Then, the stocks are withdrawn from DC1 (second
type of withdrawal) to satisfy customer needs. Based on this, in
this work, we considered only the second type of withdrawals
as spare parts demand, while lateral transhipments (first type
of withdrawal) were not considered for the following reason.
In the first instance, it is reasonable to assume that, by apply-
ing SP-LACE in each DC, the suggested stock deployment and
supply policies and the consequent inventory levels (calculated
to compensate for both ordinary demands and those related to
the second type of withdrawals) are sufficient tomeet the needs
of local customers (Tapia-Ubeda et al. 2020). Subsequently,
since SP-LACE can be applied more than once, by recursively
reviewing the spare parts SC configuration, a better alignment
of stocks with customer needs is expected in the company’s
future and, in a long-term evaluation, it is reasonable to expect
a reduction, or even removal, of lateral transhipments.
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