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Abstract
The inflammation of allergic diseases is characterized by a complex interaction be-
tween type 2 and type 3 immune responses, explaining clinical symptoms and histo-
pathological patterns. Airborne stimuli activate the mucosal epithelium to release a 
number of molecules impacting the activity of resident immune and environmental 
cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are 
crucial conditions able to modify innate and adaptive effector cells providing the se-
lective homing of eosinophils or neutrophils. The high plasticity of resident T-  and 
innate lymphoid cells responding to external signals is the prerequisite to explain the 
multiplicity of endotypes of allergic diseases. This notion paved the way for the huge 
use of specific biologic drugs interfering with pathogenic mechanisms of inflamma-
tion. Based on the response of the epithelial barrier, the activity of resident regula-
tory cells, and functions of structural non- lymphoid environmental cells, this review 
proposes some immunopathogenic scenarios characterizing the principal endotypes 
which can be associated with a precise phenotype of asthma. Recent literature in-
dicates that similar concepts can also be applied to the inflammation of other non- 
respiratory allergic disorders. The next challenges will consist in defining specific 
biomarker(s) of each endotype allowing for a quick diagnosis and the most effective 
personalized therapy.

K E Y W O R D S
allergic inflammation, cell plasticity, endotypes, environmental signals, immune response

 13989995, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.15445 by U

niversita D
i Firenze Sistem

a, W
iley O

nline L
ibrary on [12/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.wileyonlinelibrary.com/journal/all
mailto:
http://creativecommons.org/licenses/by-nc/4.0/
mailto:enrico.maggi@opbg.net
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fall.15445&domain=pdf&date_stamp=2022-08-03


3268  |    MAGGI et al.

1  |  INTRODUC TION

Allergic disorders, including bronchial asthma (BA), allergic rhino- 
conjunctivitis (AR), chronic rhinosinusitis with/without nasal pol-
yps (CRSw/sNP), some food allergies (FA) eosinophilic esophagitis 
(EoE), and atopic dermatitis (AD), display a chronic inflammation 
sharing several pathogenic mechanisms.1,2 In the last five decades, 
the knowledge of such mechanisms extraordinarily improved with 
relevant clinical outputs and radical changes in the therapeutic 
approaches.3- 10

These diseases, in particular BA, are multifactorial disorders, 
influenced by genetic and environmental factors.11- 14 Asthma dis-
plays a marked heterogeneity in etiology, symptom triggers, clini-
cal characteristics, and response to therapy.15- 17 Research has been 
determinant to define various phenotypes combining clinical pat-
terns, relevant outcomes, inflammatory features, and response to 
treatment.18 By contrast, the term endotype has been introduced 
to describe “a subtype condition defined by an unique or distinctive 
functional or pathophysiologic mechanism”.19,20 Recent data provide 
evidence that BA and other allergic diseases share endotypes or 
sub- endotypes corresponding to defined clinical phenotypes21 Both 
innate and acquired immune responses contribute to the different 
endotypes while non- allergic mechanisms such as environmental 
factors, activation of metabolic pathways, resident cells, or epithe-
lial barrier dysfunction have been shown to modulate the profile of 
inflammation.22 This review will focus on genetic/epigenetic and 
environmental factors conditioning innate and adaptive immunity, 
mucosal barrier, tissue environmental, and effector cells plasticity 
which, in different combinations, may explain the heterogeneity of 
endotypes/sub- endotypes and the related phenotypes in these pa-
tients (Figure 1).

2  |  GENETIC AND EPIGENETIC FAC TORS 
CONTRIBUTE TO THE DE VELOPMENT OF 
ALLERGIC INFL AMMATION

Genetic- epigenetic alterations influence the development of allergic 
diseases: the main well- documented genes involved in genetic/epi-
genetic alterations in these diseases are listed in Tables 1– 4. Gene 
markers and loci associated with asthma susceptibility have been 
identified; alterations close to ORMDL3/GSDMB genes have been 
associated with childhood- onset asthma, IL- 33 and IL1RL1, single- 
nucleotide polymorphisms (SNPs) associated with atopic asthma, 
and thymic stromal lymphopoietin (TSLP) gene with the protection 
from the T2- high asthma endotype.23

The human genes involved in IgE response include those con-
trolling the IgE locus and those encoding the HLA class II complex 
favoring the expansion of allergen- specific Th2 cells and the IgE 
switch of B cells. These genes are located in the chromosome (chr) 
5 (region 5q23- 35) encoding type- 2 cytokines, chr6 encoding HLA 
class II alleles and the peptide transport molecules TAP1 and TAP2, 
chr11 for the high- affinity Fcε receptor (FcεRI), chr12 for the signal 
transducer and activator of transcription 6 (STAT6), and chr16 for 
the IL- 4R α- chain.24- 26 Several polymorphisms associated with can-
didate genes for respiratory allergy have been described, which may 
vary according to racial diversity.27 The principal well- documented 
genes involved in the genetic alterations in these diseases are listed 
in Table 1.

Among epigenetic factors, DNA methylation is the most de-
scribed mechanism, while others include histone modifications and 
changes in miRNAs expression. Since DNA methylation pattern 
is tissue-  and cell- specific, several studies have focused on DNA 
methylation of different cell types and tissues of asthmatic patients 

F I G U R E  1  A comprehensive view 
of factors contributing to the different 
endotypes and related phenotypes in 
allergic diseases
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TA B L E  1  Reported genes associated with asthma, allergic rhinitis, and chronic rhinosinusitis (in bold loci involved in the pathogenesis of 
asthma)a

Chr- Genes Possible function in allergy Refs

1 SFPQ, ZMYM4, RUNX3, RERE, TNFRSF14, FAM213B, C1orf54, MRPS21, 
FLG, IL6R, RORC, RPTN, HRNR, PYHIN1, DARC, FCER1A, OR10J3, 
NDUFS2, FCER1G, CD247, FASLG, TNFSF18, TNFSF4, CRB1, 
DENND1B, CHI3L1, ITPKB

IgE receptor in epithelial and immune 
cells, apoptosis- associated 
transcription factor, cytokine 
receptor

28- 33

2 ASB3, SOCS, JUND, CEBPB, IL18R1, IL1RL1, IL1RL2, BCL2L11, ANAPC1, 
IL1B, KYNU, ARHGAP15, PLCL1, IKZF2, CCL20, DAW1, INPP5D, 
D2HGDH

Cytokines and chemokines, cytokine 
receptors

29,31,34,35,42

3 RYBP, GLB1, IL5RA, ABI3BP, FAM172B, TRMT10C, SLC15A2, GATA2, 
RASA2, BCL6, LPP, DLG1, FBXO45, CEP19

Cytokine receptor, transcription factor 29,31

4 TLR1, TLR6, TLR10, STX18, MSX1, SRIP1, GC, MANBA, ADAD1, IL2, IL21, 
GAB1

PRR of innate immunity, NFκB- 
dependent activation of inflammatory 
pathways, immune regulatory effects, 
cytokines

31,34,36

5 DAB2, PTGER4, IL7R, FBXL7, FAM105A, PDE4D, TMEM232, SLC25A46, 
TSLP, WDR36, CAMK4, TNFAIP8, C5orf56, IL13, RAD50, IL5, 
DIAPH1, NDFIP1, LMAN2, RGS14

Type 2 immune response, Immature IL- 
7R+T cells subset

29,31,34,37,42

6 GRM4, HGMA1, ITPR3, BTNL2, C6orf10, HLA- DPB1, HLA- DOA, HLA- 
DPA1, HLA- DQA1, HLA- DQA2, HLA- DQB1, HLA- DRA, BTNL2, 
NOTCH4, PBX2, HLA- B, MICA, HLA- C, NCR3, AIF1, PSORS1C1, 
TNXB, CREBL1, HLA- A, HLA- G, HLA- J, BACH2, ATG5, PTPRK, 
TNFAIP3, ARID1B, RNASET2

Antigen presentation, self tolerance 29,31,34,35,36,37,38,39,40

7 C7orf72, IKZF1, JAZF1, NPY, FERD3L, ITGB8, ABCB5, GSAP, CDHR3 Transcription repressor 29,31

8 TUSC3, ZBTB10, TPD52, SLC30A8, MYC Unknown 31,39

9 EQTN, TEK, MOB3BZBTB10, JKAMPP1, TYRP1, JAK2, RANBP6, IL33, 
PHF19, TRAF1, C9orf114, LRRC8A, PTGES

Defensins 29,31,35,40

10 GATA3, SFTA1P, AKR1E2, IL2RA, ZNF365, JMJD1C, REEP3, PSAP, HPSE2, 
C10orf95, ACTR1A, TCF7L2

Transcription factor of the type 2 
response, NFκB complex subunit 
involved in TLR signaling regulation

28,29,31,36,40,42

11 DBX1, NAV2, HTATIP2, PRMT3, AP5B1, OVOL1, WNT11, LRRC32, 
C11orf30, SESN3, FAM76B, LAYN, SIK2, DDX6, CXCR5, 
KIRREL3- AS3, ETS1

T cells regulation, TGF- β signaling, 
epithelial barrier function, chemokine 
receptors expressed on Tfh or B cells

29,31,33,34

12 HDAC7, AQP2, CDK2, SUOX, IKZF4, STAT6, NAB2, ATXN2, SLC22A5, 
C12orf65, CDK2AP1, SPPL3, HNF1A- AS1

Transcription factor of Th2 cells, 
hematopoiesis, and downstream of 
TCR activation

29,31,36

13 FOXO1, PIBF1, KLF5 B cell re- editing 18,29

14 PSMA6, FOXA1, TTC6, RAD51B, JDP2, BATF, RCOR1, TRAF3 TLR signaling 4,18

15 RTF1, ITPKA, RORA, SMAD3, IQGAP1 Inhibition of immune signaling, tyrosine 
kinase activity downstream TCR 
activation, natural helper cells

2,4,8

16 CLEC16A, RMI2, LITAF Expression in the lung, in T and B cells 
with unknown function

4,44

17 SMTNL2, ALOX15, GRB7, GSDMA, GSDMB, CRKRS, ORMDL3, PERLD1, 
IKZF3, PNMT, PSMD3, ZPBP2, CCR7, SMARCE1, STAT5B, MAP3K14, 
ARHGAP27,ZNF652

Chemokine receptor, transcription factor 
of Tfh cells

31,35,41,42

18 LPIN2, DYNAP, RAB27B, TNFRSF11A Unknown 23,44

19 SLC7A10, CEBPA, ZNF614, ZNF841, ZNF432, ZNF776 Lung development, inflammatory 
adhesion process

28

20 NFATC2, ZNF217, RTEL1 Unknown 23,44

21 RUNX1, SIK1 Unknown 23,44

22 IL2RB, TEF, TOB2 Cytokine receptor 35,43

aGWAS/SNPs with p level <10−8.
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3270  |    MAGGI et al.

with regard to airway remodeling, phagocytosis, and other lung 
functions.35,42,45 Genes involved in the epigenetic alterations well- 
documented in these diseases are listed in Tables 2– 4.

Life- style changes have been considered the most relevant epi-
genetic factor able to increase the prevalence of allergy in devel-
oped countries. The reduced exposure to pathogens during the first 
years of life is the critical factor for IgE- mediated pathology. Such 
Hygiene Hypothesis foresees that, in early life, a failure of the phys-
iological shift of the type 2 response to allergens toward a more 

protective type- 1 profile occurs. The reduced microbial insults 
with the consequently decreased cytokines promoting the Th1 cell 
development are favored by the use of vaccines, antibiotics, and 
cryopreserved foods, as well as reduced promiscuity and increased 
environmental hygiene.108- 112 Reduced regulatory mechanisms have 
been also emphasized to explain the Hygiene Hypothesis,109 which 
is based on (i) the reduced prevalence of allergy in countries with 
widespread helminth infestations inducing Th2 response, (ii) the 
parallel increase in the developed countries of diseases associated 

TA B L E  2  miRNAs, target genes, epigenetic modifications, and clinical outcomes in bronchial asthma and allergic rhinitis

miRNAs Target genes Function
Clinical 
outcomes Refs

miR- 21 IL- 3, IL- 5, IL- 12 Suppression of eosinophil response BA 46

miR- 21 IL- 12p35 Induction of type 1 response Severe BA 46,47

miR- 146a IRAK1 Neutrophil migration, IL- 5/IL- 13 expression BA 48

miR- 1248 IL- 5 Eosinophil response BA 50

miR- 1 VEGF/Mpl, SELP, CCL26, 
TSLP

Th2 inflammation, eosinophil regulation BA 53

miR23 IL- 4 regulator genes IL- 4 expression BA 54

miR27 IL- 4 regulator genes IL- 4 expression BA 54

circHIPK3 miR326/STIM1 axis Airway remodeling BA 56

miR- 15a VEGF BA 58

miR- 19b TSLP Airway remodeling BA 59

miR- 192- 5p MMP- 16, ATG7 Airway remodeling BA 60

miR- 27- b- 3p SYK, EGFR Pediatric BA 61

miR- 323- 3p IL- 22 BA 62

miR- 20a- 5p HADAC4 Allergic inflammation BA 63

Let- 7 JAK1/STAT3, IL- 13, SOCS4 Regulation of IL- 13 secretion, modulation of type 2 
inflammation

BA/AR 49,64,73

miR- 16 ADRB2, Ikb/NFkB Prevents IL- 13- driven cytokine secretion BA/AR 55,65,73

miR- 155 S1pr1, IL- 13Ra1 Th1/Th2 response, control of proliferation of Treg cells, 
regulates IL- 13 pathway in macrophages

BA/AR 52,65,66,73

miR- 126 VEGF, IRS1, TOM1 Regulation of IL- 4 effects, eosinophil recruitment BA/AR 51,67,73

miR- 19a TGF- β1PTEN/A20 Reduces allergen suppression by IL- 10 in peripheral DC, 
airway remodeling

BA/AR 57,67,73

miR- 206 S100A7A, VEGF VEGF pathway AR 68

miR- 338- 3p WNT/β- catenin E- M transition by inhibiting the WNT- β catenin 
pathway

AR 68

miR- 498 STAT3 Inhibition of Th17 differentiation AR 64,68

miR- 187 CD276 T cell response regulation AR 64,69

miR- 143 TGF- β1 Inhibition of memory T cell differentiation AR 64,69

miR- 886- 3p SMAD3, FoxO1 Regulation of TGF- β pathway AR 64,69

miR- 224 SMAD4 Regulation of TGF- β pathway AR 64,69

miR- 18a CTGF TGF- β pathway AR 68

miR- 205 MICAL2 Activation of ERK17 pathway AR 64

miR- 375 JAK2/STAT3 Prevention of apoptosis of nasal epithelial cells AR 70

miR- 26a SMAD2/SMAD3 Modulation of TGF- β- dependent pathway, Inhibition of 
NF- kB, promoting Treg cells

AR 68

miR- 135a GATA- 3 Increased levels of IL- 4 and IgE in the nasal mucosa, 
prevention of mast cells activation

AR 71- 73

Abbreviations: AR, allergic rhinitis; BA, bronchial asthma; miRNAs, micro- RNAs.
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with a Th1 response (i.e., Type I diabetes and Crohn's disease), and 
(iii) the ability of microbial stimuli to induce high levels of regulatory 
cytokines.109 Figure 2 summarizes the main mechanisms of condi-
tioning allergy development in newborns.

3  |  EFFEC TOR AND REGUL ATORY T CELL S 
PL AY A MA JOR ROLE IN BA AND OTHER 
ALLERGIC DISORDERS

Effector and regulatory T cells are usually referred to as immune 
cells able to favor (T helper [Th] and T cytotoxic [Tc] cells) or inhibit 

(T regulatory cells [Treg]) the function of other cells involved in aller-
gic inflammation. In addition, other cells not belonging to the T- cell 
lineage may display effector (such innate lymphoid cells [ILCs], mast 
cells, eosinophils, and others) or regulatory (immature dendritic cells 
[iDCs], myeloid- derived suppressor cells [MDSCs], and others) activ-
ity at the mucosal level.

Human effector CD4+ Th cells are classified into different sub-
sets on the basis of differentiation signals, cytokine production 
profiles, and the expression of main regulators of transcription.113 
Th1 cells express the transcription factor T- bet, produce interferon 
(IFN)- γ and IL- 2, and are protective against intracellular patho-
gens. Th2 cells express the main regulator GATA- 3, produce type 2 

TA B L E  4  Some well- documented histone- modified genes

Epigenetic modifications Genes Clinical association Refs

Downregulation of histone deacetylase complex 
(HDAC) 2

Glucocorticoid Receptor Severe asthma 97,107

Hyper- acetylation of H3K9, H3K14, H3K16, H3K18, 
H3K27. Trimethylation of H3K4 and H3K79

Notch1 Asthma 98,107

Hypo- acetylation LAT Asthma 99,107

Upregulation f HDAC2 SOX2 Asthma 100,107

Trimethylation of H3K4 IFN- g, IL- 17A, IL- 17F, IL- 4, Foxp3, Rorgt Asthma allergic diseases 101,107

Acetylation IL- 13, Foxp3 Asthma 102

Hypo- acetylation ORMDL3 Asthma 103,107

Acetylation of H3K18 ANp63, STAT6, EGFR Asthma 104

Acetylation of H3K18 CXCL8 Asthma 105

Dimethylation of H3K4 CCR4, CCL3 Asthma 106,107

F I G U R E  2  Mechanisms of the “Hygiene Hypothesis” responsible for allergy development in newborns. Several factors such as early life 
exposure of newborns, newborns' development, and maternal exposure during pregnancy to environmental stimuli together with different 
airway insults may favor a submucosal environment oriented toward a type 1-  and regulatory (Protective lifestyle) or type 2-  (Westernized 
lifestyle) response. These latter conditions heavily contribute to allergy onset in newborns. DAMPS, damage- associated molecular patterns, 
DCs, dendritic cells; ILCs, innate lymphoid cells; PAMPS, pathogen- associated molecular patterns; Th, T helper cells; TSLP, thymic stromal 
lymphopoietin
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cytokines, and protect against helminths.114 The Th17 subset pro-
duces IL- 17A, IL- 17F, and IL- 22,115 expresses the transcription factor 
RORγt116 and the surface lectin receptor CD161,117 and mainly rec-
ognize extracellular bacteria and fungi. Both Th1 and Th17 cells are 
involved in the response to chronic viral and bacterial infections as 
well as in the majority of autoimmune diseases, whereas Th2 cells 
associate with allergy and parasitic infections.118 Finally, Th9 cells 
produce IL- 9 and IL- 10, express the main regulator PU1, and are in-
volved in allergic inflammation and tumors, while the Th22 subset 
synthesizes mainly IL- 22, expresses aryl hydrocarbon receptor and 
associates with mucosal defense, tissue repair, and wound heal-
ing.1,8,9,119 Features of the main Th cell subsets are summarized in 
Figure 3.

3.1  |  Th2 cells

In people with genetic susceptibility for atopy, the first contact 
with an allergen induces the development of effector T cells with 
a type- 2 profile which has been extensively characterized.1,8,9 They 
develop from naïve T cells following a contact (interaction between 
Notch1 ligand/- Delta4- expressed on DCs and Notch1 on T cells), 
and soluble signals (IL- 4 produced by circulating or tissue eosino-
phils, mast cells [MCs] or activated NKT cells). Alarmins (IL- 25, IL- 33, 
and thymic stromal lymphopoietin [TSLP]) produced by epithelial 

cells (and subepithelial DCs), are the main contributors to the Th2 
cell development.1,120 Transcription factors STAT6 and cMaf and the 
main regulator GATA3 are activated by alarmins which also favor 
the expression of chemokine receptors (CCR3, CCR4, CCR8, and 
CRTh2) relevant for tissue homing.119 Once activated, cells with a 
Th2 phenotype are detectable in the bloodstream or within tissues 
(CD11a+CD49a+CD69+CD103+T resident memory [Trm2] and 
CXCR5+T follicular helper cells [Tfh2]).

Trm2 cells survive in inflamed bronchi and influence the local 
immune response121 while circulating memory Th2 cells provide 
systemic host defense.122- 125 In allergic inflammation circulating 
Th2 and Trm2 cells display distinct nonredundant functions and 
transcriptional analysis indicates that they share a core of Th2 gene 
signature but also distinct transcriptional profiles.126 In the mouse 
Trm2 cells are able to promote airway hyperreactivity (AHR) and cell 
homing even when circulating Th2 cells have been depleted123,125

IL- 4 and IL- 13 in addition to the surface signal CD154 (CD40L) 
favor the cooperation between Tfh2 and mature B cells promot-
ing, at the follicular level, the IgE switch, and the development of 
allergen- specific IgE- producing plasmablasts migrating into the 
bone marrow.127 Then, IgE bind the FcεRI expressed by MCs and 
basophils.

After the primary response, few memory Th2- lymphocytes, 
IgE+B cells, and IgE- producing plasma cells persist.1 At a subsequent 
exposure, the allergen binds IgE fixed on MC, thus triggering three 

F I G U R E  3  Features of innate and adaptive immune cells involved in the three main immune responses. The characteristics of terminally 
differentiated cells of type 1, type 2, or type 3 immune responses of both innate (ILCs/NK) and adaptive (Th/Tc) arms of immunity are 
depicted together with main regulators and cytokines promoting cell differentiation. The picture also synthesizes cytokine production, 
activity on terminal effector cells, protection toward different pathogens, and associated pathological conditions of each type of immune 
response. ILCs, innate lymphoid cells; LTi, lymphoid tissue- inducer cells; Tc, T cytotoxic cells; Th, T helper cells; TSLP, thymic stromal 
lymphopoietin
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different pathways, PKC, PLA2, and MAP- kinases followed by the 
release of preformed (histamine, kinins, serotonin, and so on) and 
newly synthesized mediators such as eicosanoids (leukotrienes, 
prostaglandins- PG- , and thromboxanes) in addition to several cyto-
kines responsible for immediate reactions and symptoms flare- up.128

The persistence of inflammation is due to cells recruited into 
tissues and their ongoing activation. The first event is the local ac-
tivation of endothelial cells by different cytokines (IL- 1β, IL- 4, IL- 13, 
TNF- α, and IFN- α) upregulating the expression of adhesion mole-
cules. The recruitment of blood cells is promoted by chemokines, 
cytokines, and mediators (histamine and leukotrienes) released from 
T lymphocytes, MCs, and other resident cells; notably, IL- 5, IL- 3, 
GM- CSF, and platelet- activating factor are responsible for eosino-
phil homing.129- 131

The expansion of long- lived memory Th2 cells characterizes this 
phase. Both IL- 4 and IL- 13 act as IgE- switching factors, while IL- 13 
induces inflammatory cytokines, hyperplasia of mucus- secreting 
cells, AHR, and fibrosis. IL- 5 is the major chemotactic factor for eo-
sinophil precursors and promotes their amplification and survival, 
whereas IL- 3, IL- 4, IL- 9, and IL- 13 are involved in MC recruitment. 
Finally, IL- 9, IL- 13, and IL- 31 further induce epithelium damage con-
tributing to worsening AHR.9 Chronic bronchial inflammation leads 
to airways remodeling which combines goblet cell hyperplasia, ep-
ithelial damage, subepithelial collagen deposition, airway smooth 
muscle hyperplasia, and increased angiogenesis132,133

Th2 cells are not homogeneous effector cells. A Th2 subset 
specifically recognizing allergens has been identified in allergic in-
dividuals exclusively.134,135 Such pathogenic cells, called Th2A, are 
terminally differentiated CD27− CD45RB− CD4+ T cells with high 
expression of CRTH2, CD49d, CD161, and alarmin receptors and 
strong production of both IL- 5 and IL- 9.136 Transcriptome analysis of 
Th2A cells revealed a distinct pathway during the initial response to 
allergens. Importantly, reduction in Th2A- cells is a marker of clinical 
response following allergen immunotherapy (AIT) for pollens or oral 
immunotherapy for peanuts.137- 139

The type 2 response, however, cannot fully explain the whole 
features of allergic inflammation and other cells play a not ancillary 
role in this process.

3.2  |  Th17 cells

Th17 are the new actors involved in some asthma phenotypes. They 
belong to a lineage different from Th1 and Th2 cells, and usually 
favor neutrophilic inflammation.140 The development of Th17 cells 
from naive T lymphocytes is induced in mice by transforming growth 
factor beta (TGF- β) and IL- 6, whereas IL- 21, IL- 22, and IL- 23 are re-
sponsible for their amplification and stabilization. In humans, the 
induction of Th17 cells mainly depends on IL- 1β and IL- 23 which are 
highly produced following inflammasome activation.116,141 In vitro 
Th17 cells are poorly sensitive to regulation from Foxp3+Treg cells 
or soluble TGF- β,117 suggesting complex crosstalk between Th17 
and regulatory cells. Th17 cells are devoted to the recognition of 

fungal or extracellular bacteria, and, usually, eliminate pathogens not 
adequately controlled by type 1 or 2 responses.113,142,143 When acti-
vated, Th17 cells produce IL- 17A/F, IL- 22, IL- 6, and TNF- α. IL- 17A/F 
trigger specific receptors (IL- 17RA and IL- 17RC) broadly expressed 
on many cell types (fibroblasts, epithelial and endothelial cells, 
smooth muscle cells, and eosinophils) of the inflamed environment. 
This favors the release of proinflammatory cytokines (TNF- α, IL- 6, 
G- CSF, and IL- 1β) and chemokines (CXCL1, CXCL8, CCL4, and oth-
ers) promoting neutrophil homing and increased in situ granulopoie-
sis. These molecules, IL- 6 in particular, would be further evaluated 
as potential biomarkers of the T2 low endotype of asthma. Th17 
cells may move into the skin and bronchial mucosa through recep-
tors such as CCR4 and CCR6 which recognize CCL17 and CCL20, re-
spectively. Th17 cells are associated with several different diseases 
such as infections, autoimmune disorders, and tumors. In asthmatic 
patients, IL- 17A is increased in the lung, induced sputum, bronchoal-
veolar lavage fluid (BALF), and serum after allergenic challenge. In 
addition, the severity of unspecific bronchoreactivity and obstruc-
tion correlates with IL- 17A levels in BALF, whereas polymorphisms of 
IL- 17F correlate with protection from allergic asthma.144

3.3  |  Unconventional T cells

Among unconventional T cells, γδT cells are likely involved in some 
pathogenic aspects of allergic inflammation. While Vγ1+ γδT cells 
favor AHR by secreting type 2 cytokines, Vγ4+ γδT cells decrease 
AHR via the IFN- γ production.145,146 In asthmatic patients, airway 
epithelial γδT cells are prevalently type 2- oriented,147 whereas in 
murine models of asthma lung infiltrating γδT cells mainly express 
the type 3 profile of cytokine production.146,148

Similarly, specific invariant NKT (iNKT) cells with a type 2 profile 
are increased in the blood and BALF of severe asthmatic patients. 
They express alarmin receptors which, if triggered, favor the secre-
tion of IL- 4 and IL- 13.149- 152

Mucosal- associated invariant T cells (MAIT) are resident cells 
able to recognize microbial- derived riboflavin metabolites restricted 
to invariant MHC- class I molecule MR1. MAIT quickly responds to 
endogenous bacterial stimuli or environmental signals by producing 
type 2 and type 3 cytokines. Recent data in adult and pediatric asth-
matic patients indicate that the proportion of MAIT cells in periph-
eral blood and sputum inversely correlates with the severity of the 
disease.153- 155

3.4  |  Regulatory T cells

Effector cells of allergic inflammation are under the control of 
regulatory cells and cytokines, contributing to the expression of 
different endotypes.156- 158 Memory Foxp3+Treg cells, IL- 10-  or IL- 
35- producing T regulatory (Tr1 or Tr35) cells as well as the Breg and 
Breg35 cells inhibit Th2-  (or their subsets) and, to a minor extent, 
Th17- mediated responses. Similarly, regulatory molecules (IDO 
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and PGE2) and cytokines (TGF- β, IL- 10, IL- 35, IL- 37, and IL- 38) have 
a strong inhibitory activity on Th2-  but mild on Th17 cells.159,160 
Increased proportions of regulatory cells and molecules have been 
also found after AIT or desensitization procedures to biologics in 
patients suffering from IgE- mediated drug adverse reactions.161- 165 
The excess of regulatory mechanisms may be in turn responsible for 
the exhaustion and depletion of effector cells as observed in the 
pauci- leucocytic asthmatic phenotype.166

Based on the prevalence of the two major types of effector T 
cells, endotypes of BA have been distinguished into “type 2” (or T2 
high) and “non- type 2” (or T2 low) asthma.13,17,167,168 Type 2 high 
(type 3 low) endotype is commonly, but not exclusively, induced by 
allergic inflammation, characterized by the presence of eosinophils 
in the lung. However, type- 2 eosinophilic asthma may also exist in 
the absence of allergic sensitization, such as, for example, in late- 
onset eosinophilic asthma.139 The type 2 low (type 3 high) endotype 
includes heterogeneous conditions which share the feature to be 
unrelated to allergic and/or eosinophilic inflammation, as found in 
neutrophilic asthma and pauci- granulocytic asthma.169 The latter 
types are mainly sustained by type 1 and type 3 immune responses, 
with high-  or low neutrophils. Finally, in the mixed granulocytic en-
dotypes of asthma (neutrophilic plus eosinophilic), both type 2 and 
type 3 immune responses are involved. Even though these patterns 
generally develop independently, they can coexist in the same pa-
tient, mainly because of the time length of the disease and the plas-
ticity of immune cells.170

4  |  EPITHELIAL BARRIER , 
ENVIRONMENTAL ,  AND INNATE LYMPHOID 
CELL S CONDITION THE T YPE AND 
SE VERIT Y OF INFL AMMATION

The analysis of candidate genes for different asthma endotypes 
indicates that innate immunity-  and steroid resistance- associated 
genes are linked to the more severe disease with a parallel decrease 
in the expression of genes related to adaptive immunity.171 Indeed, 
factors released from damaged epithelia like alarmins and damage- 
associated molecular patterns (DAMPs) trigger macrophages, innate 
lymphoid cells (ILCs), and other environmental cells and induce a T- 
cell independent inflammation resembling adaptive immunity.171

4.1  |  Epithelial barrier

The airway epithelium is a physical barrier that, when activated by 
external agents, releases molecules active on submucosal cells.172,173 
The bronchial epithelium is exposed to a cascade of materials174 and 
its dysfunction is a common feature of asthma, due to the increased 
exposure of tissues to inhaled allergens and air pollutants.175- 177 
The high sensitivity/permeability of epithelium to environmen-
tal triggers and oxidative stress signals reduces the threshold of 

epithelial damage,178 further promotes allergic sensitization, affects 
immunological responses, and modifies the diversity of asthmatic 
microbiota.179- 182

Dysfunctional epithelium may lead to airway remodeling through 
a mechanism of impaired wound repair and excessive proliferation. 
Damaged epithelium secretes IL- 13, TGF- β,183,184 vascular endothe-
lial growth factor, metalloproteinases, and osteopontin,185,186 which, 
in turn, activate and transform the underlying mesenchymal cells 
into fibroblasts.187 This epithelium- fibroblast signaling pathway, 
called epithelial- mesenchymal trophic unit, may explain the dissoci-
ation between inflammation and airway remodeling.188 IL- 4, IL- 17A, 
and amphiregulin from ILCs, Trm cells, MC, and eosinophils in addi-
tion to TGF- β from macrophages and DCs induce the collagen syn-
thesis by fibroblasts favoring the airway remodeling and basement 
membrane thickening.189

Epithelial cells may be pre- committed to T2 high (so- called E2)-  
or T2 low (so- called E1)- like phenotypes by different airway stimuli 
(allergens or pollutants, as example). The molecules differently syn-
thesized by E2 and E1 cells affect the immune responses at the mu-
cosal level as favoring the development and the expansion of Th2/
ILC2 or Th17/ILC3 cells, respectively (Figure 4).

E2 cell activation by allergens or pathogen- associated molecu-
lar patterns (PAMPs) induces the release of pro- inflammatory mol-
ecules favoring type 2 inflammation. The production of alarmins 
TSLP, IL- 25, IL- 31, and IL- 33 contributes to the local expansion of 
Trm2 and ILC2, while chemokines, such as CCL2, CCL5, CCL7, CCL8, 
CCL11, CCL24, and CCL26 favor the recruitment of eosinophils and 
other inflammatory cells.189,190

E1 epithelial cells can be triggered by several signals like smoke, 
pollutants, oxidants, endotoxins, drugs, hypoxia, DAMPs and 
PAMPs, fungi, and viruses. After that, they release chemokines 
(CXCL2, CXCL8, CCL17, and CCL20) and cytokines (IL- 1β, IL- 12, and 
IL- 23) recruiting and amplifying DCs, ILC3, Th17, Th1, and unconven-
tional T cells (γδΤ, MAIT, iNKT with type 3 profiles). Some cytokines 
with antiviral activity (IFN- γ, IL- 2, IL- 17A/F, TNF- α, IL- 12, IL- 18, and 
IL- 36) induce resistance in not- infected phagocytic cells. Neutrophils 
are recruited by CXCL8 produced by the majority of IL- 17- triggered 
resident cells, and when activated by IL- 12 and IFN- γ, can release 
pro- inflammatory cytokines contributing to infection containment, 
hyperthermia, and recruitment of further phagocytic cells.190 The 
history of allergen-  or pathogen- derived stimuli can leave some kind 
of memory in neutrophils, now known as “trained immunity”.191,192

In addition to E1-  or E2- priming signals from epithelial cells, 
other mechanisms may contribute to the local shift toward a type 3 
(Th17/Tc17/ILC3) response from an original type 2- oriented (Th2/
Tc2/ILC2) inflammation of the lung. As an example, the hyperpro-
duction of PGE2 inhibits type 2- response while improving type 3.192 
Secondly, the airway microbiota shifts eosinophilic vs neutrophilic 
endotype.193,194 Finally, the excess of eosinophils induces Charcot- 
Leyden crystals (formed by galectin 10) able to activate inflam-
masome whose cytokines amplify the type 3-  at the expense of the 
type 2 response.195
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4.2  |  Innate lymphoid cells

ILCs are newly described, predominantly hematopoietic, tissue- 
resident effector cells. They are involved in lymphoid tissue forma-
tion, tissue remodeling after damage, homeostasis of stromal cells, 
and protection from pathogens.196 Based on the expression of their 
specific transcription factors, surface markers, and cytokine secre-
tion, helper ILCs are classified into four groups (ILC1, ILC2, ILC3, and 
lymphoid tissue- inducer cells - LTi) mirroring the functional profiles 
of adaptive CD4+ Th1/Th2/Th17 cells. ILC2 and ILC3 are involved in 
asthma pathogenesis, ILC2 favoring eosinophil and ILC3 neutrophilic 
prevalence197,198 (Figure 3).

Alarmins play a pivotal role in ILC2 activation starting allergic in-
flammation.198,199 Activated ILC2 express GATA3/cMaf and produce 
IL- 5 and IL- 13 with low IL- 4. However, atopic patients display circu-
lating ILC2 producing a higher level of IL- 4 and IL- 13 than healthy 
donors.200 ILC2 also releases amphiregulin, a member of the EGF 
family, favoring fibroblasts activation and airway remodeling.201 
When activated, human ILC2 expresses CD154 for a long time and 
secrete IL- 4/IL- 13 favoring polyclonal IgE production by B cells.200 
A high proportion of ILC2 has been found in tissues of patients with 
all atopic disorders.202- 205 The number of ILC2 is two logs higher 
in nasal polyps than in the bloodstream.200 Increased proportions 
of ILC2 have been detected in blood and sputum of patients with 
severe-  compared to mild asthma.206- 208 IL- 5/IL- 13- producing ILC2 
are expanded in severe eosinophilic asthma and following allergen 
challenge,209 suggesting bidirectional crosstalk between ILC2 and 
other cells as DC and Th cells, which amplify type 2 response.210- 212 
Lung ILC2, which expresses the IL- 4Rα chain, can be triggered by 
Th2- derived IL- 4/IL- 13 followed by the activation of the STAT6 

signaling pathway.213- 216 IL- 4 secreted by basophils may also in-
duce the recruitment/proliferation of ILC2 in murine inflamed tis-
sues.215,216 Notably, not controlled- asthma is associated with higher 
ILC2 proportions than well- controlled disease, suggesting a relation-
ship between ILC2 and disease severity.217,218

There are limited reports on ILC3 and LTi cells in asthma so far. 
The ILC3- mediated production of IL- 17A may contribute to explain 
some different alterations: (i) IL- 17- associated severe asthma, (ii) 
neutrophilic asthma, and (iii) asthma exacerbations and airway re-
modeling mainly due to neutrophil infiltration.219 Although fewer in 
number, ILC3 are high producers of type 3 cytokines (IL- 17A, IL- 22, 
and GM- CSF).220 Furthermore, the development of AHR and inflam-
masome activation in obesity- related asthma in mice is related to 
IL- 17A- producing ILC3.221 A high proportion of IL- 17A+ILC3 cells has 
been found in the sputum and BALF of severe asthma.221,222 Along 
with this, ILC3 gene signatures are enriched in total RNA from pa-
tients with adult- onset non- eosinophilic asthma.223

In conclusion, ILCs are relevant partners in an inflammatory en-
vironment that promotes chronic respiratory diseases, potentiating 
both type 2 and type 3 responses (Figure 3).

Figure 5 details the phenotype and function of the different sub-
sets of innate and adaptive effector and regulatory cells contribut-
ing to the T2 high-  and T2 low-  endotypes of asthma and allergic 
disorders.

4.3  |  Other environmental effector cells

Resident cells are immune cells with a circulating counterpart (such 
as Trm, MAIT, γδT, and iNKT cells) with tissue tropism, whereas 

F I G U R E  4  E2-  and E1- mediated epithelium signals conditioning type 2 or type 3 tissue immune responses in respiratory allergy. Epithelial 
cells are primed by two distinct groups of airway stimuli able to induce the development and the maintenance of T2 high-  or T2 low- 
phenotypes. A cascade of two different sets of molecules (including cytokines, chemokines, other growth factors, defensins, and others) is 
synthesized by E2 or E1 cells with the effect to influence mucosal immune cells and direct toward type 2 or type 3 responses, respectively. 
DAMPS, damage- associated molecular patterns; EOS, eosinophils; ILCs, innate lymphoid cells; MAIT, Mucosal- associated T cells; NEU, 
neutrophils; NKT, Natural Killer T cells; PAMPS, pathogen- associated molecular patterns; Th, T helper cells; TSLP, thymic stromal lymphopoietin
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environmental cells are tissue non- immune cells such as epithelial, 
endothelial, smooth muscle and muciparous cells, fibroblasts, and 
others. The environmental compartment is a privileged target of 
type 2 or type 3 cytokines produced by Th-  and ILC subsets, and 
in turn, stimulates the release of pro- inflammatory cytokines and 
chemokines. For instance, smooth muscle cell hyperplasia and hy-
pertrophy, described in severe asthma, are due to the chronic stim-
ulation exerted by LTs, PGD2 TGF- β1, IL- 1, IL- 6, CCL2, and CCL3 
secreted from environmental cells.133,224

Goblet cells hyperplasia and mucus hypersecretion induced by 
MUC5AC and MUC5B gene activation are the effects of this chronic 
cascade of stimuli.225 IL- 13, which is the major inducer of mucus pro-
duction, maintains inflammation also stimulating exhaled nitric oxide 
(FeNO) release from epithelial cells.226

Tissue eosinophils establish a vicious circle directly or indirectly 
enhancing type 2 responses through cytokines, chemokines, and the 
release of granule proteins. For instance, eosinophil- derived neu-
rotoxin promotes DC migration/activation which further amplifies 
memory of Th2 cells.227 In parallel, eosinophils damage the airway 
mucosa through the release of basic proteins, oxygen free radicals, 
and lipid mediators. Chemokines like CCL2, CCL5, CCL7, CCL11, 
and CCL26 produced by the damaged epithelium recruit eosinophils 

through CCR3, a receptor also shared by basophils and Th2 cells.228 
The activated epithelium, through the overproduction of IL- 33 and 
TSLP, favors the formation of eosinophil extracellular traps which 
may indirectly activate lung ILC2227 and whose number is high in 
severe inflammation.227- 231 A similar vicious circle is maintained by 
neutrophils in T2 low asthma where they release proteases, con-
tribute to oxidative stress, and release neutrophil extracellular traps 
(NETs) which, in turn, induce local inflammasome activation, Th17/
ILC3 expansion, and further promote neutrophil recruitment.232

5  |  THE FLE XIBILIT Y OF TISSUE 
EFFEC TOR CELL S AFFEC TS THE T YPES OF 
ALLERGIC INFL AMMATION

Thirty years ago we showed for the first time that not only naïve 
but also fully polarized memory T cells in humans display high flex-
ibility in response to external signals.233 Based on a huge of con-
firming results,234- 236 we now know that Th2 or Th17 cells cannot 
be considered terminal lineages but rather flexible cells with a high 
degree of plasticity (Figure 6). For instance, molecules such as IL- 12 
can epigenetically modulate both Th2 and Th17 responses toward 

F I G U R E  5  Effector and regulatory ILCs and T cell subsets involved in allergic inflammation. The figure synthesizes the complex network 
of cells and molecules conditioning the development of T2- high and T2- low endotypes. Allergic inflammation is essentially due to the 
activity of innate and adaptive effector cells and of unconventional T cells (such as MAIT, NKT, and γδT cells) counterbalanced by a large 
panel of lymphocytes with regulatory function (iTreg, nTreg, ICOS+Treg, CD8+Treg, IL- 17+Treg, iTr1, iTr35, Breg, Breg35, and ILC- reg) 
producing suppressive cytokines. Breg, B regulatory cells; Breg35, IL- 35- producing Breg cells; ILC- reg, regulatory ILCs; iTr1, inducible T 
regulatory 1 cells; iTr35, IL- 35- producing inducible T regulatory cells; iTreg, inducible regulatory T cells; MAIT, mucosal- associated invariant T 
cells; ncTh1, non- conventional Th1 cells; NKT, natural killer T cells; nTreg, natural regulatory T cells; Tfh, follicular helper T cells; Th, T helper 
cells; Trm, resident memory T cells
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a pro- Th1 direction, even though the progeny can maintain some 
features of the original cells.116,117,237,238,239,240 Th17- derived Th1 
cells have been defined as “non- classical Th1” or, alternatively, “Th1 
stars.” These cells were found in the BALF of children with severe 
asthma and the Th1 signature was associated with both the pres-
ence of IFN- γ+IL- 17+ and IFN- γ−IL- 17+ T cells and high serum levels 
of IL- 23, this latter cytokine being crucial for the differentiation and 
proliferation of Th17 cells.241 Th1 cells may seldom associate with a 
T2 high endotype upon treatment with biologicals shifting type 2-  
into type 1 profile.242 Importantly IL- 4 itself can induce in vitro the 
expression of type 2 cytokines by clonal Th17 cells.243 Such a new 
subset of memory Th2/Th17 effector cells exerts a strong patho-
genic effect on the lung by promoting the exacerbation of chronic 
asthma in mouse models.244 Increased dual memory Th2/Th17 cells 
have been found in the periphery and in the BALF of a proportion of 
severe asthmatic patients.245

Moreover, in the presence of TGF- β, Th2 cells, can lose their abil-
ity to produce IL- 4 or IL- 5 but maintain IL- 9 and IL- 10, giving rise to 
new functional Th9 cells exhibiting strong pro- inflammatory proper-
ties.246 In addition, IL- 9 itself is able to induce the synthesis of IL- 17A 
by T and non- T cells.247 Some reports indicate that both Th9 and 
Th17 cells play an essential role in the chronicity of IgE-  or non- IgE- 
mediated asthma and in tissue remodeling. In particular, Th17 cells 
are prone to expand into chronically inflamed tissue, because they 
do not require IL- 2 for their differentiation and are poorly affected 
by down- regulating signals provided by Treg cells, regulatory cyto-
kines (TGF- β), and membrane PD- L1.248 Further, both Th2/Th17 and 
Th9 cells would be resistant to steroid effects because of the up-
regulation of the transcription factor MEK1, thus resulting as more 
pathogenic.245,249

Finally, the presence of IL- 12 plus IL- 27 and the interaction 
Notch1L- Notch1 makes the IL- 10 gene suitable for activation in all 
polarized Th subsets.250 Indeed, IL- 10- producing Th1 cells are fre-
quently observed upon antigen hyperstimulation which is responsi-
ble for the exhaustion of T cell functions, as it can be observed in AIT, 
in chronic administration of biologics, and in cancer251- 255 (Figure 6).

The same plasticity of memory Th cells is also found in other 
tissue- resident cells such as Trm- , Tfh- , γδT, NKT, MAIT, and Treg 
cells.256,257 ILCs are highly plastic upon environmental signals, and 
this could be likely due to the abundance of cytokine receptors on 
their surface able to mediate switching effects from each other ILC 
subset.258,259 Actually, steroid- resistant ILC3/ILC2 dual cells, as well 
as IL- 10- producing ILC2 (so- called ILC2- reg) would play a role in 
steroid- resistant asthma and in AIT.163,260,261

6  |  PL A STICIT Y OF EFFEC TOR CELL S AND 
ENVIRONMENTAL SIGNAL S AFFEC T THE 
DIFFERENT ENDOT YPES AND THE REL ATED 
A STHMA PHENOT YPES

The type and strength of signals from inflamed tissue, which may 
vary over time, are able to activate innate and adaptive cells, thus 
favoring their reciprocal cross- talk and plasticity.262- 264 The patho-
genic effector cells of allergic inflammation are highly flexible in re-
sponse to molecules from the inflamed tissue and may shift to more 
heterogeneous and aggressive profiles. Taking into account both 
the flexibility of effector cells and the chronicity (usually years) of 
the airway inflammation, a crucial question is whether they both 
are responsible for the different phenotypes described in allergic 
disorders.

As discussed so far, at least three main variables may condition 
the immunological scenarios of chronic inflammation in asthma: (i) 
signals deriving from the mucosal barrier and submucosal DCs; (ii) 
strength of regulatory signals exerted by cells and molecules, and (iii) 
activity of signals from environmental non- lymphoid cells. All these 
variables may be responsible for at least four scenarios characteriz-
ing asthma endotypes as depicted in Figure 7.

When the mucosal barrier and the related DCs are exclusively 
stimulated by E2- priming signals, and intact regulatory mechanisms 
with poor or no tissue cytokines are present, effector cells will be 
oriented towards the type 2 response as seen in the T2 high (type 

F I G U R E  6  In vitro plasticity of 
polarized mature Th cells upon signals 
from inflamed lung tissue. The cytokines 
prevalently produced by APC (with 
the possible contribution of contact 
signals) condition the final phenotype of 
effector or regulatory T cells. Terminally 
differentiated T cells, as well as ILCs, are 
particularly susceptible to such external 
signals which can shift phenotype and 
function of the original cells toward new 
and unconventional cellular profiles. iTr1, 
inducible T regulatory 1 cells; ncTh1, 
nonconventional Th1 cells; Th, T helper 
cells
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3 low) endotype. Vice versa but similarly, when the mucosal bar-
rier and the related APCs are exclusively stimulated by E1- priming 
molecules and normal regulatory mechanisms and few or no envi-
ronmental cytokines are present, the effector cells will be oriented 
towards the type 3 response mirrored by the T2 low (type 3 high) 
endotype. As a fact, such type 2-  and type 3- oriented profiles are 
really rare, especially in long- lasting diseases. Actually, the so- called 
mixed endotype (type 2 and 3 high) is far more common and es-
tablished when mixed E1-  plus E2- priming signals associate with 
intact regulatory mechanisms and high cytokine production from 
the microenvironment, thus conditioning the presence of several 
different effector cells: Th17/Th2, not classical Th1, Th9, ILC1, 
ILC2/3, and others. Finally, when ongoing E1-  and E2- signals are 
followed by overactivation and exhaustion of most of the effector 
cells and regulatory mechanisms are efficiently active, effector cells 
are replaced by few regulatory cells (i.e., iTreg, Breg, Tr1, Tr35, and 
ILCreg) such as in the pauci- granulocytic (types 2/3 low) endotype 
(Figure 7). These four endotypes reflect the clinical phenotypes of 
inflammatory airway diseases proposed by Barnes PJ et al11; within 
each endotype, the different proportions of effector cells may con-
dition further subclinical patterns18 (Figure 3). In the T2- high en-
dotype, for instance, the prevalence of Th2 on ILC2 cells features 

a distinct pattern with high IgE levels, pluri- sensitivities, few eo-
sinophils in the blood and sputum, mild severity observed in the 
“early onset allergic asthma.” Vice versa, when ILC2 predominates 
on Th2 cells, high numbers of eosinophils in the blood/sputum, nor-
mal IgE levels, and high severity characterize the different types of 
“adult- onset eosinophilic asthma”.265- 268 The pure T2- low endotype 
is always counterbalanced by a high number of neutrophils in BALF 
and sputum, together with normal eosinophil counts, normal to low 
IgE levels, and high clinical severity as seen in “non- eosinophilic 
neutrophilic asthma”, “obesity- associated asthma,” or “late onset 
non- allergic asthma of the elderly”.269,270 Furthermore, in the mixed 
endotype a spectrum of different phenotypes can be hypothesized, 
as based on the expansion of a defined subset of effector cells with 
respect to the others. The type 1 predominance, involving Th1 cells 
or non- classic Th17- derived Th1 lymphocytes, Tc1 or ILC1 cells, is 
observed in “virus- induced asthma” and in “smoking/pollutants as-
sociated asthma.271 On the other hand, unusual effectors such as 
Th9, dual Th2/Th17 or ILC2/3 cells associate with “severe steroid- 
resistant asthma.” Finally, the pauci- granulocytic endotype may 
be frequently coupled with some “children's idiopathic asthma,” 
“brittle asthma,” “exercise- mediated asthma,” and other rare phe-
notypes266 (Figure 8).

F I G U R E  7  Mechanisms involved in the modulation of resident effector ILCs and T cells into the main functional profiles characterizing 
asthma endotypes. At least three variables may affect the immunological responses in asthma chronic inflammation: (A) signals deriving 
from the mucosal barrier and submucosal DCs, (B) strength of regulatory signals exerted by cells and molecules, and (C) effects of signals 
from non- lymphoid cell compartments. These variables, differently associated, may generate at least four scenarios of inflammation defining 
asthma endotypes: T2 high (or type 3 low). T2- low (or type 3 high), mixed (type 1, 2, 3 high), and pauci- granulocytic (type 1, 2, 3 low). 
Therapeutic regimens or intercurrent environment modifications may favor reciprocal interchanges in endotypes. Moreover, a particular 
endotype may remain unaltered since the beginning of the disease or may progress toward differently oriented responses on the influence 
of local signals. Breg, B regulatory cells; ILC- reg, regulatory ILCs; iTr1, inducible T regulatory 1 cells; iTr35, IL- 35- producing inducible T 
regulatory cells; ncTh1, non- conventional Th1 cells; Th, T helper cells; Treg, regulatory T cells
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It is indeed possible that, as a long- lasting disease, therapeutic 
regimens themselves or intercurrent modified environment condi-
tions might favor reciprocal interchanges in endotypes. And, finally, 
it is questionable whether a particular endotype is present since the 
beginning of the disease or, instead, is progressively and differently 
oriented by local signals. Both scenarios are equally probable be-
cause of the high plasticity of effector cells.

Importantly, several recent studies, clearly indicate that asthma 
endotypes/sub- endotypes are also shared by other allergic dis-
eases.22,272,273,274 T2- high inflammation is a major feature of AR 
and CRSwNP. Penetration of allergens through the nasal mucosa 
triggers a T2- dominant inflammatory cascade with eosinophilia and 
IgE production.275,276 A T2- low inflammation, mainly characterized 
by the presence of neutrophils in the nasal mucosa277- 279 can be 
triggered by infections or chronic irritation; these latter events 
can dysregulate innate immunity, activate the IL- 17 pathway, and 
recruit neutrophils,280- 285 Notably, CRSwNP are usually pheno-
typed as eosinophilic-  and CRSsNP as neutrophilic disorders, re-
spectively.286 On the basis of cytokines, eosinophils, and IgE levels, 
CRS can be endotyped as non- type T2 (or T2- low), moderate T2 
(mixed), and severe T2 (T2- high).273,287,288 According to geograph-
ical location (so- called “region- types”), the eosinophil- dominant 
T2- high endotype is more frequent in Western- countries whereas 

the neutrophilic endotype prevails in Asians. CRSsNP usually rec-
ognizes non- eosinophilic mechanisms with prevalent ILC3/Th17 
cells.289,290 Notably, the response to fungi and extracellular bacte-
ria infections, frequently associated with CRSsNP, is a prerogative 
of Th17 cells.291

All the same, AD is characterized by a highly heterogenous endo-
type repertoire with the activation of the diverse T cell phenotypes 
(Th1, Th2, Th17, and/or Th22 cells) together with the compromise 
of the epidermal barrier and lipid and tight junction abnormali-
ties.292,293 A T2- high vs a T2- low inflammation was suggested for 
AD endotyping,21,22 even though several other sub- endotypes en-
compass children vs adults, ethnic origin and region- types, disease 
stage (chronic vs acute), IgE levels, and filaggrin expression have 
been proposed.272

Even though more heterogeneous, some FA can display endo-
types similarly to other allergic disorders.294 Four endotypes are 
described: (i) Alpha- gal-  and red meat allergies which display a clas-
sical T2- high profile.295,296 (ii) Oral allergy syndrome due to cross- 
reactivity between some foods and pollens exerting a T2- high 
response.297 (iii) Food protein- induced gastrointestinal endotype (as 
in food protein- induced enterocolitis syndrome)298,299 related to a 
type 3/type 1 (T2- low) immune response.300 (iv) EoE with a typi-
cal eosinophilic endotype,301 although displaying phenotypic and 

F I G U R E  8  The tight association of each pathogenic endotype/sub- endotype with a defined phenotype of asthma. The four endotypes 
reported in Figure 7 reflect the clinical phenotypes of inflammatory airway diseases as proposed by Barnes et al.11 Inside each endotype, 
the different proportions of effector cells may result in further subclinical patterns (as for instance, in the T2- high endotype). Each endotype 
(or sub- endotype) is linked to eosinophil or neutrophil prevalence in BALF or sputum, the degree of disease severity, or additional clinical 
features. Thus, all the conceivable endotypes or sub- endotypes can be related to the majority of the known asthma phenotypes. BALF, 
bronchoalveolar lavage fluid; Breg, B regulatory cells; ILC- reg, regulatory ILCs; iTr1, inducible T regulatory 1 cells; iTr35, IL- 35- producing 
inducible T regulatory cells; ncTh1, non- conventional Th1 cells; Th, T helper cells; Treg, regulatory T cells
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endotypic heterogeneity.302- 305 As a fact, a T2- low endotype also 
exists306 in a limited number of EoE patients sharing symptoms with 
the classical disease, strong familial aggregation but the absence of 
eosinophilic infiltration.307,308 Based on the prevalent T2- high/T2- 
low inflammation, Shoda and coworkers309 have proposed three po-
tential endotypes of EoE.310

The features of endotypes and phenotypes in AR, CRS, AD, FA, 
and EoE are summarized in Table 5.

Based on the previous immunopathologic view of allergic inflam-
mation, the next challenges will be the suitable biomarkers and novel 
therapeutic targets for each endotype.

Several biomarkers have been studied in allergic diseases, but 
only a few are readily available for clinical use in T2- high profile 
asthma and indicated to choose the most suitable therapy, as cir-
culating/sputum/BALF eosinophils, FeNO, serum IgE, and periostin 
levels. Following several posthoc analyses of the clinical trials of bio-
logicals targeting type 2 inflammation,311- 314 the European Academy 
of Allergy and Clinical Immunology (EAACI) recently reviewed all the 
currently available biologic therapies together with the required bio-
markers to better identify the target patient.315

For instance, blood eosinophils count is a reliable marker of re-
sponse to the anti- IL- 4R α- chain monoclonal antibody dupilumab 

TA B L E  5  Endotypes and related phenotypes of allergic diseases

Allergic disease Phenotype Endotype

Tissue immune response

ReferencesType- 1 Type- 2 Type- 3 Th22

Allergic rhinitis Allergic/local rhinitis T2 – ++++ – NA 275- 285

Infectious rhinitis Non- T2 ++ – +++ NA

Idiopathic rhinitis Non- T2 – – – NA

Other rhinites Mixed ++ +++ +++ NA

Chronic 
rhino- sinusitis

CRSwNP T2 +/– +++ +/– NA 273,286,287,288

CRSsNP Non- T2 ++ +/– +++ NA

CRSw/sNP Mixed ++ +++ +++ NA

CRSwNP (North America) T2 + ++++ + NA 289- 291

CRSwNP (Europe) T2 + ++++ +/– NA

CRSwNP (Asian/China) Mixed ++ ++ ++ NA

CRSwNP (Australia) Mixed + +++ ++ NA

Atopic dermatitis Extrinsic T2 – +++ - +++ 21,22,272,292

Intrinsic Non- T2 ++ - +++ – 

Early phase T2 – ++++ – – 

Late phase Non- T2 ++ ++ ++ ++

AD in infancy Mixed – +++ +++ ++

AD in elderly Non- T2 – – +++ +++

Extrinsic AD in Europeans T2 + +++ + +++

Extrinsic AD in Asians Mixed +/− +++ +++ ++++

Extrinsic AD in 
Afro- Americans

T2 – +++ – ++

Food allergy α- Gal allergy T2 – +++ – NA 294- 301

Food- pollen and oral 
allergy

T2 – +++ – NA

Food protein- induced 
enterocolitis

Non- T2 ++ +/– +++ NA

Other food allergies Mixed ++ +++ +++ NA

Eosinophilic 
esophagitis

EoE 1 (atopy, steroid 
sensitivity, and normal 
endoscopy)

T2 – +++ +/− NA 302- 310

EoE2 (pediatric onset, 
steroid- refractory, and 
inflammatory)

Mixed + ++ ++ NA

EoE3 (non- atopy, adult 
onset, and fibrostenosis)

Non- T2 ++ – +++ NA

Abbreviation: NA, not applicable.
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in patients with severe eosinophilic-  or corticosteroid- dependent 
asthma even though a good response to the drug may also be ex-
pected in cases of low circulating eosinophil counts and high FeNO 
levels. Blood eosinophil counts ≥150/μl was recommended for anti- 
IL- 5 therapy with a good likelihood of response. Even if eosinophil 
counts ≥260/μl and FeNO levels ≥19.5 ppb were suggested for a 
good response, the anti- IgE therapy is not prescribed according to 
the levels of eosinophils and FeNO.316 Anyway, currently available 
biomarkers are of limited value for true precision medicine. Indeed, 
the T2- related biomarkers are commonly present in the majority of 
the previously described phenotypes of asthma,10,271,317 and thus, 
it is urgent to identify novel biomarkers inside the dominant in-
flammatory mediators driving disease pathogenesis. They must be 
easily detectable molecules related to the different effector cells 
which characterize the described endotypes/sub- endotypes. They 
must be sought among cytokines and chemokines, receptors, non- 
signaling surface molecules, transcription factors, miRNAs, or sig-
naling factors. Soluble and surface molecules favoring the plasticity 
of ILC or T cells and epithelium-  or monocyte/macrophages- derived 
cytokines, costimulatory proteins, and glycans might be additional 
factors useful to be evaluated. Furthermore, exosomes derived 

from activated ILC or T cell subsets should be studied as possibly 
carrying molecules and surface proteins favoring the plasticity of 
effector cells. EAACI position paper emphasizes the opportunity of 
a “multi- omic” (genomics, epigenomics, transcriptomics, proteom-
ics, metabolomics, and lipidomics) stratification as a tool to over-
come asthma complexity of adequate biomarker identification315 
(Figure 9).

As novel therapeutic targets, some molecules which are crucial 
for the effector cells of the previously defined endotypes may be 
suitable, exemplified by omics, activation signals, shifting mole-
cules, surface or cytosolic receptors, and signaling molecules. In this 
context, caution is needed and some immunological basic notions 
carefully revised: (i) the redundancy and pleiotropism of some cyto-
kines, (ii) the possible opposite effects elicited by signaling receptors 
shared by different cells, (iii) the decoy activity of some receptors, 
and (iv) the pathways redirecting to other (and opposite) pathogenic 
arms of inflammation, like from the type 2 to the type 3 response.

The most effective to quickly and adequately define new pre-
dictive biomarkers and therapeutic targets is the processing of big 
data coming from International Registries for mild as well as severe 
asthma.

F I G U R E  9  New potential biomarkers of asthma and allergic diseases based on the pathogenic mechanisms underlying T2- high and T2- low 
endotypes
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7  |  CONCLUSIONS

New pathogenic mechanisms suggest that allergic inflammation is 
due to complex interactions involving effector cells with type- 2 and 
type- 3 profiles. A huge amount of different stimuli activate the mu-
cosal epithelium which, in turn, releases molecules impacting the 
function of the resident immune and environmental cells. These 
variable conditions modify tissue innate and adaptive cells, providing 
selective homing of eosinophils or neutrophils. The high plasticity of 
resident ILCs and T cells is the prerequisite to fully explain the multi-
ple endotypes (or sub- endotypes) of asthma. The notion that effec-
tor cells are flexible and easily affected by external signals allowed 
the broad use of biologics interfering with pathogenic mechanisms 
of inflammation. The variable conditions with regards to the type 
of epithelial response, the tissue regulatory mechanisms, and the 
function of environmental cells allow hypothesizing different patho-
genic scenarios for the principal endotypes. The immune response 
as the base of each endotype corresponds to a precise phenotype of 
asthma. This unifying integrated pathogenic view may be also true 
for other allergic disorders displaying similar endotypes. The next 
challenges will consist of the definition of specific biomarker(s) for 

each endotype to reach an early diagnosis and establish the best 
target(s) for the most effective personalized therapy (Box 1). In con-
clusion, our proposal wants to overcome the concept of fixed en-
dotypes to move to a “patient endotype,” which takes into account 
also a series of clinical variables, including the history of the disease, 
the number of exacerbations, concomitant infections, and previous/
present therapeutic regimens.
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BOX 1 Conclusive bullet points

• In allergic inflammation, the pathogenic effector cells of 
innate and adaptive immunity exhibit type- 2 or type- 3 
profiles.

• External stimuli activate bronchial epithelium which in 
turn releases molecules with high impact on the func-
tion of tissue effector cells.

• The plasticity of resident effector cells in response to 
environmental signals is the prerequisite to explain 
the multiple endotypes of asthma and other allergic 
diseases.

• Variability in the epithelial response, tissue regulatory 
mechanisms, and activity of microenvironmental cells 
allows delineating four different pathogenic scenarios 
as responsible for the principal endotypes of bronchial 
asthma.

• Different types of the immune response characterize 
each one of these endotypes which, in turn, corresponds 
to an individual phenotype of asthma.

• This unifying view of the pathogenesis of bronchial 
asthma may also be extended to other allergic disorders 
displaying similar endotypes.

• The availability of highly effective personalized therapy 
for bronchial asthma and other allergic diseases urgently 
requires to define specific biomarkers for each endotype.

• Such a view overcomes the concept of fixed endotypes 
to move to the “patient endotype.”
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