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Introduction

The visual reconstruction problems have often an ill-posed nature. In this thesis we deal with

analyzing and solving three kinds of visual reconstruction problems: Blind Source Separation,

Demosaicing and Deblurring.

The demosaicing problem is related to the acquisition of RGB color images by means of CCD

digital cameras. In the RGB model, each pixel of a digital color image is associated to a triple

of numbers, which indicate the light intensity of the red, green and blue channel, respectively.

However, most cameras use a single sensor, associated with a color filter that allows only the

measure at each pixel of the reflectance of the scene at one of the three colors, according to

a given scheme or pattern, called Color Filter Array (CFA). For this reason, at each pixel, the

other two missing colors should be estimated. Different CFA’s are proposed for the acquisition

(see also [13, 86, 92]). The most common is the Bayer pattern (see also [15]). In this scheme,

the numbers of pixels in which the green color is sampled are double with respect to those

associated with the red and blue channels, because of the higher sensibility of the human eye

to the green wavelengths. If we decompose the acquired image into three channels, we obtain

three downsampled grayscale images, so that demosaicing could be interpreted as interpolating

grayscale images from sparse data. In most cameras, demosaicing is a part of the processing

required to obtain a visible images. The camera’s built-in-firmware is substantially based on fast

local interpolation algorithms.

The heuristic approaches, which do not try to solve an optimization problem defined in math-

ematical terms, are widely used in the literature. These methods, in general, are very fast. Our

proposed technique is of heuristic kind. In general, the heuristic techniques consist of filtering

operations, which are formulated by means of suitable observations on color images. The non-
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adaptive algorithms, among which bilinear and bicubic interpolation, yield satisfactory results

in smooth regions of an image, but they can fail in textured or edge areas. Edge-directed in-

terpolation is an adaptive approach, where, by analyzing the area around each pixel, we choose

the possible interpolation direction. In practice, the interpolation direction is chosen to avoid

interpolating across the edges. In [89], for each pixel the horizontal and vertical gradients are

compared with a constant threshold. If the gradient in one direction is greater than the threshold,

then interpolation is not performed along this direction. Some other direct interpolation methods

use larger neighborhoods by examining different color channels. In [110], to determine the edges

of the green channels, the red and blue channels are employed. On the other hand, to determine

the edges of the red and blue channels, some discrete derivation operators of the second order

are used, while in [102], to determine the edges in the various channels, a suitable Jacobian op-

erator is applied. In [90], local homogeneity is used as an indicator to choose horizontally or

vertically interpolated intensities. Thanks to homogeneity-directed interpolation, the luminance

and chrominance values have to be similar in a suitable neighborhood. In demosaicing it is often

assumed that the differences or the ratios of the intensity values in different channels are locally

constant (see also [2, 89, 108, 110, 137, 150, 161]). In [108] the probability of having an edge

in a certain direction is determined and used to find the weights relative to the weighted average

employed as an interpolation operator. In this algorithm, the color channels are updated itera-

tively according to the constant color ratio condition. In [115] a similar algorithm is proposed,

where 7-size neighborhoods are employed to find the edges of the green channel, and 5×5-size

neighborhoods are used to determine the edges of the red and blue channels. An analogous al-

gorithm is defined in [165], where the interpolation can be done also in the diagonal direction,

while in [158] the weighted directional interpolation is used by means of a fuzzy membership

assignment. In [3] a second order operator is employed as a correction term.

To have more accurate results, several techniques, which use iterative methods, are proposed.

However, they have a higher computational cost with respect to the heuristic techniques. One of

well-known techniques is the algorithm of Alternate Projections (AP) (see [78]), which uses the

strong correlation between the high frequences of the three colored components, by projecting

alternately the estimated image in a constraint of observation and in a constraint which imposes

similarity between the red and green edges and between the blue and green edges, until a fixed

5



Ill-Posed Problems in Computer Vision

point is found. Another widely used technique is regularization (see also [70, 124]). The algo-

rithm in [107] is based on interpolation in a residual domain. The residuals are the differences

between the observed and estimated pixel values which minimize a Laplacian energy.

The algorithm here presented consists of three steps. The first two ones are initialization

steps, while the third one is an iterative steps. In the first one, the missing valued in the green

component are determined, in particular a weighted average-type technique is used. The weights

are determined in an edge-directed approach, in which we consider also the possible edges in the

red and blue components. In the second step, we determine the missing values in the red and

blue components. In this case we use two alternative techniques, according to the position of

the involved pixel in the Bayer pattern. In the first technique, the missing value is determined

by imposing that the second derivative of the intensity value of the red/blue channel is equal

to the second derivative of the intensity values of the green channel. This is done according to

the proposed approaches in the AP algorithm and the regularization algorithm given in [70]. In

particular, in [70] a constraint is imposed, to get the derivatives of all channels similar as soon

as possible. At the third step, all values of the three channels are recursively updated, by means

of a constant-hue-based technique. In particular, we assume the constant color difference. The

technique we propose at this step is similar to that used by W. T. Freeman in [65]. Indeed, even

here a median filter is employed, in order to correct small spurious imperfections. We repeat

iteratively the third step. However, to avoid increasing excessively the computational cost, we

experimentally estimate that only four iterations are necessary to obtain an accurate demosaicing.

We call our technique as Local Edge Preserving (LEP) algorithm. The results related to this

technique have been published in [31].

In this thesis, we also propose an algorithm for image demosaicing that does not work within

the framework of the regularization approaches and is suited, in a natural way, to deal with noisy

data. More precisely, we propose an algorithm for joint demosaicing and denoising. Regular-

ization requires the adoption of constraints for the solution. The constraints we consider are

intra-channel and inter-channel local correlation. With respect to the intra-channel correlation,

we assume the intensity of each channel to be locally regular, i.e. piecewise smooth, so that also

noise can be removed. We describe this constraint through stabilizers that are functions discour-

aging intensity discontinuities of first, second and third order in a selective way, so that those
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associated to truly edges in the scene are left to emerge. This allows to describe scenes even

very complex. Indeed, first order local smoothness characterizes images consisting of constant

patches, second order local smoothness describes patches whose pixels have values varying lin-

early, while third order local smoothness is used to represent images made up of quadratic-valued

patches. As per the inter-channel correlation, we enforce it in correspondence with the intensity

discontinuities, by means of constraints that promote their amplitude in the three channels to be

equal almost everywhere.

Note that all these constraints are by no means biased in favor of one of the three channels,

nor the geometry of the sampling pattern is in any way exploited. Thus, the method we propose

is completely independent of the CFA considered, although, in the experimental result section,

we present its application to images mosaiced through the Bayer CFA.

All the above constraints, including the data fidelity term, are merged in a non-convex en-

ergy function, whose minimizer is taken as our desired solution. The optimization is performed

through an iterative deterministic algorithm entailing the minimization in a sequence of a family

of approximating functions that, starting with a first componentwise convex function, gradually

converges to the original energy, as suggested in [24].

Our regularization approach can produce image solutions that exhibit reliable discontinuities

of both the intensity and the gradients, despite the necessary smoothness constraints. There-

fore, we propose an edge-preserving regularization approach, which means that the significant

discontinuities in the reconstructed image are geometrically consistent. In the very first works

proposing edge-preserving regularization, the image discontinuities were often represented by

means of extra, explicit variables, the so-called “line processes” (see [66]). In that way, it was

relatively easy to formulate in terms of constraints the various properties required by significant

discontinuities. Nevertheless, the use of explicit line variables entails large computational costs.

Thus, so-called “duality theorems” were derived (see, e.g., [33, 34]) to demonstrate the edge-

preserving properties of suitable stabilizers, without introducing extra variables. In particular,

we developed duality theorems to determine the properties required for a stabilizer to implicitly

manage lines with the desired regularity features. In this work, we choose a suitable family of

approximations with the peculiarity that each function satisfies the conditions required for an im-

plicit treatment of geometrically significant edges, as expressed in the duality theorems proposed
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in [33]. This allows a better adherence of the approximations to the ideal energy function, with a

consequent better coherence with the properties required for the desired solution.

In this thesis we also study a Blind Source Separation (BSS) problem. These topics have been

widely investigated since the end of the last century, and have various applications.

In particular, we analyze the digital reconstruction of degraded documents. We observe that

weathering, powder, humidity, seeping of ink, mold and light transmission can determine the

degradation of the paper and the ink of written text. Some of the consequences in damaged

documents are, for instance, stains, noise, transparency of writing on the verso side and on the

close pages, unfocused or overlapping characters, and so on. Historically, the first techniques

of restoration for degraded documents were manual, and they led to a material restoration. Re-

cently, thanks to the diffusion of scanners and software for reconstruction of images, videos,

texts, photographs and films, several new techniques were used in the recovery and restoration

of deteriorated material, like for instance digital or virtual restoration. Digital imaging for doc-

uments is very important, because it allows to have digital achieves, to make always possible

the accessibility and the readability. The Digital Document Restoration consists of a set of pro-

cesses finalized to the visual and aesthetic improvement of a virtual reconstruction of a corrupted

document, without risk of deterioration.

We deal with show-through and bleed-through effects. The show-through is a front-to-back

interference, caused by the transparency of the paper and the scanning process, and by means of

which the text in the recto side of the document can appear also in the verso side, and conversely.

The bleed-through is an intrinsic front-to-back physical deterioration caused by ink seeping, and

its effect is similar to that of show-through. The physical model for the show-through distortion,

is very complex, because there are the spreading of light in the paper, the features of the paper, the

reflectance of the verso and the transmittance parameters. In [148], Sharma gave a mathematical

model was first analyzed and then further approximated so to become easier to handle. This

model describes the observed recto and verso images as mixtures of the two uncorrupted texts.

Locally, we consider a classical linear and stationary recto-verso model (see also [49, 98, 97,

99, 156]) developed for this purpose, and are concerned with the problem of estimating both the

ideal source images of the recto and the verso of the document and the mixture matrix producing

the bleed-through or show-through effects. This problem is ill-posed in the sense of Hadamard
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(see also [75]). In fact, as the estimated mixture matrix varies, the corresponding estimated

sources are in general different, and thus infinitely many solutions exist. Many techniques to

solve this ill-posed inverse problem have been proposed in the literature. Among them, the

Independent Component Analysis (ICA) methods are based on the assumption that the sources

are mutually independent (see also [52]). The best-known ICA technique is the so-called FastICA

(see also [98, 97, 99, 105, 118]), which by means of a fixed point iteration finds an orthogonal

rotation of the prewhitened data that maximizes a measure of non-Gaussianity of the rotated

components. The FastICA algorithm is a parameter-free and extremely fast procedure, but ICA

is not a viable approach in our setting, as for the problem we consider there is a clear correlation

among the sources. On the other hand, several techniques for ill-posed inverse problems require

that the estimated sources are only mutually uncorrelated. In this case, the estimated sources

are determined via a linear transformation of the data, which is obtained by imposing either an

orthogonality condition, as in Principal Component Analysis (PCA) (see also [49, 155, 156]),

or an orthonormality condition, as in Whitening (W) and Symmetric Whitening (SW) techniques

(see also [49, 155, 156]). These approaches all require only a single and very fast processing step.

In [49, 156] it is observed that the results obtained by means of the SW method are substantially

equivalent to those produced by an ICA technique in the symmetric mixing case.

Here we assume that the sum of all rows of the mixing matrix is equal to one, since we expect

the color of the background of the source to be the same as that of the data. In our setting, we

change the variables of the data so that high and low light intensities correspond to presence

and absence of text in the document, respectively, and we impose a nonnegativity constraint on

the estimated sources (see also [42, 50, 74, 134]). We define the overlapping matrix of both

the observed data and the ideal sources, a quantity related to the cross-correlation between the

signals. From the overlapping matrix we can deduce the overlapping level, which measures the

similarity between the front and the back of the document.

In order to obtain an accurate estimate of the sources, it is necessary to determine a correct

source overlapping level. To this aim, we propose the following iterative procedure. At each it-

eration, given the current source overlapping level, we estimate the mixture matrix that produces

the sources with the lowest possible source overlapping level among those having light intensity

in the desired range. This mixture matrix is computed by means of a suitable symmetric factor-
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ization of the data overlapping matrix. We then use the estimated sources to update the source

overlapping level, and iterate the procedure until a fixed point is reached. At the fixed point,

the corresponding source overlapping level is the smallest one that allows to estimate the ideal

recto and verso sides with the desired properties. We consider this level as an adequate estimate

of the ideal source overlapping level. Thus, by means of this technique, we can estimate not

only the ideal sources and the mixture matrix, but also the source overlapping level, a value that

indicates the correlation between the ideal sources. Therefore, our method can be classified as

a Correlated Component Analysis (CCA) technique (see also [14, 139, 152, 153]). We refer to

this method as the Minimum Amount of Text Overlapping in Document Separation (MATODS)

algorithm. Similarly to the FastICA technique, the MATODS algorithm is a parameter-free and

extremely fast procedure. We use the MATODS algorithm to solve the non-stationary and locally

linear model we propose, and in particular we present an extension of this technique that fits this

model, which we call the Not Invariant for Translation MATODS (NIT-MATODS) algorithm.

The related results have been published in [27].

In this thesis we modify the MATODS algorithm to deal with the derivatives of the images of

the original sources. In this case, we assume that the overlapping level is equal to zero. By means

of our experimental results, we show that the proposed technique improves the results obtained

by MATODS in terms both of accuracy of the estimates and of computational costs. We refer

to this method as the Zero Edge Overlapping in Document Separation (ZEODS) algorithm. The

obtained results are published in [32].

In [148], Sharma gave a mathematical model was first analyzed and then further approxi-

mated so to become easier to handle. This model describes the observed recto and verso images

as mixtures of the two uncorrupted texts. A nonlinear modified Sharma model is proposed in

[119, 132, 133, 145]. Some nonlinear models which assume that the interference levels depend

on the location are presented in [71, 104, 157]. So, the model turns to be non-stationary, that is not

translation invariant. The algorithms in [71, 157] for the resolution of the related inverse problem

are fast heuristics. In [27], a non-stationary model is proposed. However, in order to obtain more

precise results, a computationally more expensive regularized problem has been sketched in [69]

and [155]). Now we analyze in detail the iterative technique to solve such a model, in which the

sources, the blur operators and the interference level are computed separately at every step, until
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a fixed point is found. In this work, in particular, we deal with determining the interference level,

by fixing the blur operators and the ideal sources. To this aim, we use a GNC-type technique

(see, e.g., [18, 24, 25, 33, 34, 87, 127, 129, 130, 131, 140]). In forthcoming papers, the steps

about finding the blur operators and the ideal sources will be treated. The results concerning such

a technique have been published in [29].

The problem of restoring images consists of estimating the original image, starting from the

observed image and the supposed blur. In our model, we suppose to know the blur mask. In

general, this problem is ill–conditioned and/or ill–posed in the Hadamard sense (see also [84]).

Thanks to known regularization techniques (see, e.g., [17, 55, 67]), it is possible to reduce this

problem to a well–posed problem, whose solution is the minimum of the so-called primal energy

function, which consists of the sum of two terms. The former indicates the faithfulness of the

solution to the data, and the latter is in connection with the regularity properties of the solution

(see also [55, 66]). In order to obtain more realistic restored images, the discontinuities in the

intensity field is considered (see also [66]). Indeed, in images of real scenes, there are some dis-

continuities in correspondence with edges of several objects. To deal with such discontinuities,

we consider some line variables (see also [66]). It is possible to minimize a priori the primal

energy function in these variables, to determine a dual energy function (see, e.g., [34, 46, 67]),

which treats implicitly discontinuities. Indeed, minimizing the dual energy function is more

computationally efficient than minimizing directly the primal energy function. In general, the

dual energy function has a quadratic term, related to the faithfulness with the data, and a not

necessarily convex addend, the regularization term. In order to link these two kinds of energy

functions, some suitable duality theorems are used (see, e.g., [10, 17, 18, 23, 24, 33, 34, 67]).

In order to improve the quality of the reconstructed images, it is possible to consider a dual

energy function which implicitly treats Boolean line variables. The proposed duality theorems

can be used even with such a function. However, the related dual energy function is not neces-

sarily convex. So, to minimize it, we use a GNC-type technique, which considers as first convex

approximation the proposed convex dual energy function (see also [18, 34, 127, 129, 130, 131,

140]).

It is possible to verify experimentally that the more expensive minimization is the first one,

because the other ones just start with a good approximation of the solution. Hence, when we
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minimize the first convex approximation, we will approximate every block of the blur operator

by matrices whose product can be computed by a suitable fast discrete transform. As every block

is a symmetric Toeplitz matrix, we deal with determining a class of matrices easy to handle from

the computational point of view, which yield a good approximation of the Toeplitz matrices.

Toeplitz-type linear systems arise from numerical approximation of differential equations.

Moreover, in restoration of blurred images, it is often dealt with Toeplitz matrices. (see, e.g.,

[33, 34, 59]). Thus, in this thesis we investigate a particular class, which is a sum of two families

of simultaneously diagonalizable real matrices, whose elements we call β -matrices. Such a class

includes both circulant and reverse circulant matrices. Symmetric circulant matrices have several

applications to ordinary and partial differential equations (see, e.g., [60, 73, 81, 82]), images and

signal restoration (see, e.g., [41, 88]), graph theory (see, e.g., [51, 58, 66, 68, 79, 80]). Reverse

circulant matrices have different applications, for instance in exponential data fitting and signal

processing (see, e.g., [7, 11, 57, 136, 138]). The obtained results have been published in [30].

The thesis is structured as follows. In Chapter 1 we deal with the demosaicing problem,

proposing a fast technique which locally estimates the edges. In Chapter 2 we treat the same

problem, by giving a regularization technique for solving it. In Chapter 3 we consider the BSS

problem for ancient documents, proposing a technique which uses symmetric factorizations. In

Chapter 4 we modify the technique illustrated in the previous chapter, by introducing disconti-

nuities. In Chapter 5 we deal with the BSS problem, by giving a regularization technique, and

in particular we study the estimates of the interference levels. In Chapter 6 we treat the prob-

lem of image deblurring, and in particular we analyze how symmetric Toeplitz operators can be

approximated in the proposed GNC technique.

The structure of the thesis, in terms of the addressed problems and the used techniques can

be summarized in the Table 1.
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Problem Local Technique Regularization

Demosaicing Chapter 1 Chapter 2

BSS Chapter 3 and Chapter 4 Chapter 5

Deblurring Chapter 6

Table 1: Structure of the thesis

13



Chapter 1

A fast algorithm for the

demosaicing problem

This chapter is structured as follows. In Section 2 we give a mathematical formulation of the de-

mosaicing problem. In Section 3 we describe the initialization of the proposed algorithm, which

consists of the two first steps aforementioned. In Section 4 we give the third iterative step of our

algorithm, highlighting the differences with the Freeman filter. In Section 5 our experimental

results are presented. This section consists of two parts. In the first one, we determine the best

detection function which can be used in order to evaluate the edges. In the second one, we com-

pare our algorithm with some other techniques recently proposed in the literature and we show

how the LEP method gives in mean more accurate reconstructions than the other considered

algorithms.

1.1 The demosaicing problem

An RGB (red-green-blue) color image with height n and width m is a vector of the type

x =


x(r)

x(g)

x(b)

 ∈ R3n·m

14
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where x(r), x(g), x(b) ∈ Rn·m are the red, green and blue channels according to the lexicographic

order, respectively. We consider the problem of acquisition of data from a digital camera, and

call it mosaicing problem. Given an ideal image x ∈ R3n·m, the acquired or mosaiced image is

defined by

y =


y(r)

y(g)

y(b)

= Mx

where y ∈ R3n·m and M ∈ R(3n·m)×(3n·m) is a linear operator defined by setting

M =


M(r) O O

O M(g) O

O O M(b)


O ∈ R(n·m)×(n·m) is the null matrix, and M(r),M(g),M(b) ∈ R(n·m)×(n·m) are diagonal matrices

whose principal entries, if we use the Bayer pattern (see Figure 1.1), are given by

m(r)
(i, j),(i, j) =


1, if i≡2 0 and j ≡2 0

0, otherwise

m(g)
(i, j),(i, j) =


1, if i 6≡2 j

0, otherwise

m(b)
(i, j),(i, j) =


1, if i≡2 1 and j ≡2 1

0, otherwise

where the symbol i≡2 j indicates that i− j is even.

Figure 1.1: Bayer Pattern.

The corresponding demosaicing problem is the associated inverse problem, that is to deter-

mine the ideal color image x, knowing the mosaiced image y and the linear operator M. An

15
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inverse problem is said to be well-posed (in the sense of Hadamard) if and only if the solution

exists, is unique and stable with respect to data variation. A not well-posed problem is said to be

ill-posed (see also [83, 84]). Note that the demosaicing problem is ill-posed, since the matrix M

in (1.1) is singular, as is readily seen, and so there are infinitely many solutions.

1.2 The initialization of the proposed algorithm

In the initialization phase we proceed as follows: first we initialize the green channel, since in

this channel we have more data than in the other ones, and successively we update the other two.

1.2.1 The initialization of the green channel

We refer to a clique as a pair of adjacent pixels. Every missing value of the green channel is

initialized by a weighted mean of the known green values in its neighborhood. The weights of

the considered mean take into account possible discontinuities in a set of adjacent cliques. We

consider cliques both in the blue and in the red channel, since it is well-known that there is a

correlation between the discontinuities in the various channels related to edges, such as object

borders and textures (see e.g. [70]).

Here we distinguish three cases: the first one is when we have the value of the green light

intensity on a pixel; the second one is when we the blue value of the involved pixel is known,

that is when i and j are both odd; the third one is when the red value on the considered pixel is

known, namely when i and j are both even.

The first approximation x(g,0) of the green ideal image x(g) is given by

x(g,0)
(i, j) =



y(g)
(i, j) if i 6≡2 j

t1y(g)
(i−1, j)+ t2y(g)

(i+1, j)+ t3y(g)
(i, j−1)+ t4y(g)

(i, j+1)

t1 + t2 + t3 + t4
if i≡2 1 and j ≡2 1

t5y(g)
(i−1, j)+ t6y(g)

(i+1, j)+ t7y(g)
(i, j−1)+ t8y(g)

(i, j+1)

t5 + t6 + t7 + t8
if i≡2 0 and j ≡2 0

Note that, in the first case, we keep the value we already have. In the second case, we do

a weighted mean of the intensity values taken on the adjacent pixels where the green value is

16
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known. The weights t1, t2, t3, t4 of the mean are computed by using the green and the blue

channels. We define

e =



e1 = (i−1, j)

e2 = (i+1, j)

e3 = (i, j−1)

e4 = (i, j+1)


f =



f1 = (i, j−1)

f2 = (i, j−1)

f3 = (i−1, j)

f4 = (i−1, j)


(1.1)

p =



p1 = (i, j+1)

p2 = (i, j+1)

p3 = (i+1, j)

p4 = (i+1, j)


q =



q1 = (i−2, j)

q2 = (i+2, j)

q3 = (i, j−2)

q4 = (i, j+2)


In particular, we get

tk = φ(τk) (1.2)

where k = 1,2,3,4, φ is a suitable positive decreasing detection function and τk is defined by

τk = |y
(g)
ek − y(g)fk

|+ |y(g)ek − y(g)pk |+ |y
(b)
(i, j)− y(b)qk |

where the pixels ek, fk, pk and qk are as in (1.1). When the differences between the green values

on the pixels ek and fk (see the yellow arc in Figure 1.2 for k = 1), ek and pk (see the cyan arc in

Figure 1.2 for k = 1), and between the blue values on the pixels (i, j) and qk (see the brown arc

in Figure 1.2 for k = 1) are small enough, then we can assume that there are no discontinuities

between the pixels ek and (i, j) (see the red line in Figure 1.2 for k = 1). So, in the calculus of

the green value on the pixel (i, j), we give a large weight t1 to the green value in the position

ek. Thus, when the value τk is small, the probability of having a discontinuity between the pixels

(i, j) and ek in the green channel is large, and vice versa. The computation of τ1 is illustrated

in Figure 1.2. For k = 1,2,3 the computation of τk can be described by an appropriately rotated

similar figure.

Even in the third case, we compute the weighted mean of the intensity values taken on the

adjacent pixels where the green value is known. The weights t4+k, k = 1,2,3,4 of the mean are

computed by using the green and the red channels.

In particular, t4+k = φ(τ4+k), where

τ4+k = |y
(g)
ek − y(g)fk

|+ |y(g)ek − y(g)pk |+ |y
(r)
(i, j)− y(r)qk |
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Figure 1.2: Computation of τk for k = 1.

where ek, fk, pk and qk are as in (1.1).

We argue analogously as in the computation of the weight tk, k = 1,2,3,4, where the role of

the blue channel is played by the red component.

1.2.2 The initialization of the red values

Here we distinguish four cases: the first one is when we already know the red value of a pixel;

the second one is when we know the red values in the two adjacent pixels in the same column,

that is i is odd and j is even (see Figure 1.3 (a)); the third one is when we know the red values

in the two adjacent pixels in the same row, namely i is even and j is odd (see Figure 1.3 (b)); the

fourth one is when we know the red values of the pixels adjacent in the corners of the involved

pixel, that is i and j are both odd (see Figure 1.3 (c)). In the second and in the third case we

equalize the second derivatives of the red and the green channels previously computed. In the

last case we use the computed values of the red channel to determine the weights of a suitable

mean. So, we define the initial estimate x(r,0) of the red ideal image x(r) by

(a) Second case. (b) Third case. (c) Fourth case.

Figure 1.3: Different cases in the initialization of the red channel.
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x(r,0)
(i, j) =



y(r)
(i, j) if i≡2 0 and j ≡2 0

y(r)
(i−1, j)+ y(r)

(i+1, j)− x(g,0)
(i−1, j)+2y(g)

(i, j)− x(g,0)
(i+1, j)

2
if i≡2 1 and j ≡2 0

y(r)
(i, j−1)+ y(r)

(i, j+1)− x(g,0)
(i, j−1)+2y(g)

(i, j)− x(g,0)
(i, j+1)

2
if i≡2 0 and j ≡2 1

t9 x(r,0)
(i−1, j)+ t10 x(r,0)

(i+1, j)+ t11 x(r,0)
(i, j−1)+ t12 x(r,0)

(i, j+1)

t9 + t10 + t11 + t12
if i≡2 1 and j ≡2 1

Note that, in the first case, we keep the value which we already have. In the second case, we pose

that the finite difference of the second order in the vertical direction of the red channel coincides

with that of the green channel, which we have already initialized, namely

y(r)
(i−1, j)−2x(r,0)

(i, j) + y(r)
(i+1, j) = x(g,0)

(i−1, j)−2y(g)
(i, j)+ x(g,0)

(i+1, j) (1.3)

Since we know x(g,0), y(g) and y(r), we can deduce the value of x(r,0)
(i, j) from (1.3).

In the third case, we impose that the finite difference of the second order in the horizontal

direction of the red channel coincides with that of the green channel, just already initialized, that

is

y(r)
(i, j−1)−2x(r,0)

(i, j) + y(r)
(i, j+1) = x(g,0)

(i, j−1)−2y(g)
(i, j)+ x(g,0)

(i, j+1) (1.4)

By proceeding analogously as above, we obtain the value of x(r,0)
(i, j) from (1.4).

In the fourth case, we do a weighted mean of the intensity values taken on the adjacent pixels

where the red value has just been computed. The weights t8+k, k = 1,2,3,4, of the mean are

calculated by using the just initialized red channel and the observed blue channel. In particular,

t8+k is given by φ(τ8+k), k = 1,2,3,4, where φ is the detection function used in initializing the

green channel, and

τ8+k = |x
(r,0)
ek − x(r,0)fk

|+ |x(r,0)ek − x(r,0)pk |+ |y
(b)
(i, j))− y(b)qk |

where ek, fk, pk and qk are as in (1.1). When the differences between the red values on the pixels

ek and fk, ek and pk, and between the blue values on the pixels (i, j) and qk, are sufficiently small,
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then we can suppose that there are no edges between the pixels (i, j) and ek. So, in the calculus

of the red value on the pixel (i, j), we have a large weight t8+k, k = 1,2,3,4, in correspondence

with the red value in the position ek.

1.2.3 The initialization of the blue values

Also in this setting, we distinguish four cases: the first one is given when we know the blue value

of a pixel; the second one is when we know the blue values in the two adjacent pixels in the same

column, that is i is even and j is odd (see Figure 1.4 (a)); the third one is when we know the blue

values in the two adjacent pixels in the same row, namely i is odd and j is even (see Figure 1.4

(b)); the fourth one is when we know the blue values of the pixels adjacent in the corners of the

involved pixel, that is i and j are both even (see Figure 1.4 (c)). In the second and third cases we

equalize the second derivatives of the blue and the green channels previously calculated. In the

last case we use the computed values of the blue channel to determine the weights of a suitable

mean.

(a) Second case. (b) Third case. (c) Fourth case.

Figure 1.4: Different cases in the initialization of the blue channel.

Thus, we define the estimate x(b,0) of the blue ideal image x(b) by

x(b,0)
(i, j) =



y(b)
(i, j) if i≡2 1 and j ≡2 1

y(b)
(i−1, j)+ y(b)

(i+1, j)− x(g,0)
(i−1, j)+2y(g)

(i, j)− x(g,0)
(i+1, j)

2
if i≡2 0 and j ≡2 1

y(b)
(i, j−1)+ y(b)

(i, j+1)− x(g,0)
(i, j−1)+2y(g)

(i, j)− x(g,0)
(i, j+1)

2
if i≡2 1 and j ≡2 0

t13 x(b,0)
(i−1, j)+ t14 x(b,0)

(i+1, j)+ t15 x(b,0)
(i, j−1)+ t16 x(b,0)

(i, j+1)

t13 + t14 + t15 + t16
if i≡2 0 and j ≡2 0
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Note that, in the first case, we keep the value which we already have.

In the second case, analogously as before, we impose

y(b)
(i−1, j)−2x(b,0)

(i, j) + y(b)
(i+1, j) = x(g,0)

(i−1, j)−2y(g)
(i, j)+ x(g,0)

(i+1, j) (1.5)

As we know x(g,0), y(g) and y(b), we derive the value of x(g,0)
(i, j) from (1.5).

In the third case, similarly as above, we get

y(b)
(i, j−1)−2x(b,0)

(i, j) + y(b)
(i, j+1) = g(0)

(i, j−1)−2y(g)
(i, j)+g(0)

(i, j+1) (1.6)

By arguing as in the previous section, we deduce the value of b(0)
(i, j) from (1.6).

In the fourth case, we do a weighted mean of the intensity values of the adjacent pixels where

the blue value has just been computed. The weights t12+k, k = 1,2,3,4, of the mean are calculated

by using the observed red channel and the just initialized blue channel.

Analogously as before, we obtain t12+k = φ(τ12+k), where

τ12+k = |x
(b,0)
ek − x(b,0)fk

|+ |x(b,0)ek − x(b,0)pk |+ |y
(r)
(i, j)− y(r)qk |,

where ek, fk, pk and qk are as in (1.1).

1.3 The iterative phase of the proposed algorithm

A classical filter, often used to solve the demosaicing problem, is the Freeman filter (see also

[65]). The phase described in this section is a suitable modification of this filter. The Freeman

filter performes the initialization phase by means of the bilinear filter, which works as follows.

When the value of a certain color of a pixel is not available, such a value is computed by the

arithmetic mean of the values of that color, which are assumed in the neighborhood of this pixel,

that is the bilinear estimation x̃ = (r̃, g̃, b̃) is given as

g̃(i, j) =



y(g)
(i, j) if i 6≡2 j

y(g)
(i−1, j)+ y(g)

(i+1, j)+ y(g)
(i, j−1)+ y(g)

(i, j+1)

4
otherwise
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r̃(i, j) =



y(r)
(i, j) if i≡2 0 and j ≡2 0

y(r)
(i, j−1)+ y(r)

(i, j+1)

2
if i≡2 0 and j ≡2 1

y(r)
(i−1, j)+ y(r)

(i+1, j)

2
if i≡2 1 and j ≡2 0

y(r)
(i−1, j−1)+ y(r)

(i+1, j−1)+ y(r)
(i−1, j+1)+ y(r)

(i+1, j+1)

4
if i≡2 1 and j ≡2 1

b̃(i, j) =



y(b)
(i, j) if i≡2 1 and j ≡2 1

y(b)
(i, j−1)+ y(b)

(i, j+1)

2
if i≡2 1 and j ≡2 0

y(b)
(i−1, j)+ y(b)

(i+1, j)

2
if i≡2 0 and j ≡2 1

y(b)
(i−1, j−1)+ y(b)

(i+1, j−1)+ y(b)
(i−1, j+1)+ y(b)

(i+1, j+1)

4
if i≡2 0 and j ≡2 0

Moreover, in [65] the following values are defined, by means of the median of the color

differences of the channels red-green and blue-green:

r̃ g(i, j) = median{r̃(k,l)− g̃(k,l) : (k, l) ∈ B∞((i, j), t)},

b̃g(i, j) = median{b̃(k,l)− g̃(k,l) : (k, l) ∈ B∞((i, j), t)},

where

B∞((i, j), t) := {(k, l) ∈ N×N : ‖(i, j)− (k, l)‖∞ ≤ t}, (1.7)

with ‖(a,b)‖∞ = max{|a|, |b|}. The median turns out to be very useul to correctly preserve the

edges which are in the images. Indeed, the median filter is often used to restore images corrupted

by salt-and-pepper noise, namely by the noise present only in a few pixels not adjacent each

other.

In the Freeman filter it is assumed that the color differences are constant in a suitable subarea.
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Thus, the Freeman estimation x̂ = (r̂T , ĝT , b̂)T is defined as follows:

ĝ(i, j) =



y(g)
(i, j) if i 6≡2 j

(
r̃(i, j)− r̃g(i, j)

)
+
(

b̃(i, j)− b̃g(i, j)
)

2
otherwise

r̂(i, j) =



y(r)
(i, j) if i≡2 0 and j ≡2 0

y(g)
(i, j)+ r̃g(i, j) otherwise

b̂(i, j) =


y(b)
(i, j) if i≡2 1 and j ≡2 1

y(g)
(i, j)+ b̃g(i, j) otherwise

In this work we modify the Freeman filter as follows.

From the initial estimation x(0) = (x(r,0)T
,x(g,0)T

,x(g,0)T
)T we define the following variables:

r g(s)
(i, j) = median{x(r,s)

(k,l)− x(g,s)
(k,l) : (k, l) ∈ B∞((i, j), t)}

bg(s)
(i, j) = median{x(b,s)

(k,l) − x(g,s)
(k,l) : (k, l) ∈ B∞((i, j), t)}

r b(s)
(i, j) = median{x(r,s)

(k,l)− x(b,s)
(k,l) : (k, l) ∈ B∞((i, j), t)}

where s ∈ N∪{0}. So, we define the estimates x(s) = (x(r,s)T
,x(g,s)T

,x(b,s)T
)T for s = 1,2, . . . as
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follows:

x(g,s)
(i, j) =



y(g)
(i, j) if i 6≡2 j

(
x(r,s−1)
(i, j) − rg(s−1)

(i, j)

)
+
(

x(b,s−1)
(i, j) −bg(s−1)

(i, j)

)
2

otherwise

x(r,s)
(i, j) =



y(r)
(i, j) if i≡2 0 and j ≡2 0

y(b)
(i, j)+ rb(s−1) if i≡2 1 and j ≡2 1

y(g)
(i, j)+ rg(s−1) otherwise

x(b,s)
(i, j) =



y(b)
(i, j) if i≡2 1 and j ≡2 1

y(r)
(i, j)− rb(s−1)

(i, j) if i≡2 0 and j ≡2 0

y(g)
(i, j)+bg(s−1)

(i, j) otherwise

We pose our final estimate as

x̆ = lim
s→+∞

x(s)

We saw experimentally that a good approximation is given by x̆ = x(4). We call the technique

associated to this estimate as Local Edge Preserving (LEP) algorithm.

1.4 Experimental results and discussion

In this section we present the experimental results obtained from the implementation of the pro-

posed algorithm, which was tested for the Bayer CFA on the set of 24 Kodak sample images

[109], of size 512× 768, shown in Figure 1.5. This dataset represents the typical benchmark

images used in the literature to compare the various demosaicing algorithms. These high quality

images have been acquired as raw images, in order to minimize the compression. We have imple-

mented our algorithm in the C language on an Ubuntu operating system by means of a computer

having a processor of speed 3.40 GHz.

To define a specific LEP method, we assume that the radius t of the neighborhood of the
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median filter in the equation (1.7) is equal to 1, and we experimentally choose the detection

function φ : R+
0 → R+ in (1.2). In particular, the tested functions are

φ1(t) =


2− t if 0≤ t ≤ 1

1
t if t ≥ 1

φ2(t) =


3−2e
e−1 t +2 if 0≤ t ≤ 1

1
et−1 if t ≥ 1

φ3(t) =


(log2−2)t +2 if 0≤ t ≤ 1

1
log(t+1) if t ≥ 1

φ4(t) =


2− t if 0≤ t ≤ 1

1
t13/10 if t ≥ 1

φ5(t) =


2− t if 0≤ t ≤ 1

1
t7/5 if t ≥ 1

φ6(t) =


2− t if 0≤ t ≤ 1

1
t3/2 if t ≥ 1

Observe that the detection functions φ j, j = 1, . . . ,6 are decreasing and continuous. Moreover,

we get

φ j(0) = 2 and lim
t→+∞

φ j(t) = 0

In Table 1.1 there are the errors of the LEP algorithm in terms of Mean Square Error (MSE,

see also [94]) in reconstructing the images of the Kodak set as the detection function varies.

The values in bold are related to the best reconstruction of a specific image. In the last line

there are the means of the MSE obtained in the reconstruction of the Kodak sample images, as

the detection function varies. Note that the best result can be obtained by different detection

functions, but, if one takes the means, the minimal error corresponds to the detection function

φ4. To evaluate whether the function φ4 is actually the best detection function, we proceed as

follows. For each sample image we give five points to the detection function which allows to

obtain an estimate with the minimal error; four points to the detection function which obtain the

second best minimal error; three points in correspondence with the third minimal error, and so

on. In Table 1.2 there are the results obtained by the all detection functions on the single images,
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(a) Image 01. (b) Image 02. (c) Image 03. (d) Image 04.

(e) Image 05. (f) Image 06. (g) Image 07. (h) Image 08.

(i) Image 09. (j) Image 10. (k) Image 11. (l) Image 12.

(m) Image 13. (n) Image 14. (o) Image 15. (p) Image 16.

(q) Image 17. (r) Image 18. (s) Image 19. (t) Image 20.

(u) Image 21. (v) Image 22. (w) Image 23.

Figure 1.5: Kodak image set.
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and in the last line there is the global score. Observe that, even in this case, the highest score is

obtained by the detection function φ4.

From now on, we use the detection fuction φ4 in the LEP algorithm. In Figure 1.6 (a) the

reconstruction of Image 02 is shown. If we evaluate the results visually, it is very difficult to

perceive the errors present during the reconstruction. Thus, in Figure 1.6 (b) we present the

image of errors, which is given by

x̆−x+128e

where x̆ is the estimate obtained by the LEP algorithm, x is the ideal image and e is the column

vector belonging to Rn·m, whose entries are equal to one. Again, it is difficult to note visually the

errors of the algorithm. So, in Figure 1.6 (c) we show the image of the enlarged errors, that is

5(x̆−x)+128e

where it is possible to see in detail the errors of the algorithm.

(a) LEP result. (b) LEP error image.

(c) Enlarged LEP error image.

Figure 1.6: LEP reconstruction of Figure 02.

Since most algorithms existing in the literature do not allow to see easily the errors related to
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the reconstructions, because they seem to be perfect, then, to compare our algorithm with some

of those proposed in the literature, we use the table of the errors in the reconstruction of the

Kodak dataset. In Tables 3 and 4, we compare the LEP method with the original Freeman filter

(see [65]) and with some other recently published algorithms (see also [40, 64, 78, 85, 90, 107,

112, 116, 128, 137, 144, 166]). Although the proposed algorithm gives the best reconstruction

of two images, the total mean of the errors obtained with the LEP algorithm is the smallest of the

selected methods.

In the literature there exist several other algorithms, for instance the one proposed in [70],

which is one of the best performed algorithms, obtaining a MSE mean equal to 6.11. However, in

order to reach this goal, the needed mean computation time is equal to 27 minutes and 4 seconds,

while the mean computation time for the LEP algorithm is equal to 0.16 seconds. The aim of the

LEP algorithm is to obtain good results in a very short period of time. This method can be used

as an initialization algorithm for the technique proposed in [70], obtaining meaningful reductions

of its computational cost.

In Figure 1.7 (a) the reconstruction of Image 08 by LEP is presented. Its MSE, between the

original Image 08 is about 19.99, obtained in a computational time of 0.16 seconds. The relative

enlarged error image is presented in In Figure 1.7 (b). In Figure 1.7 (c) the reconstruction of

Image 08 by the algorithm proposend in [70] is illustrated. Its MSE between the original Image

08 is about 12.33, obtained in a computational time of 27 minutes and 54.74 seconds. The relative

enlarged error image is given in In Figure 1.7 (d). From the enlarged error images it is possible

to notice how the algorithm proposed in [70] specially refines the reconstruction of the buildings

on the left part of the image, however it does not allow an immediate processing of the image.
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(a) LEP result. (b) Enlarged LEP error image.

(c) Result of the algorithm proposed in [70]. (d) Enlarged error image of the algorithm proposed in [70].

Figure 1.7: Reconstruction of Image 08.
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riptsize

Image φ1 φ2 φ3 φ4 φ5 φ6

01 10.02 16.86 13.68 9.77 9.75 9.75

02 6.96 8.66 7.63 6.90 6.91 6.92

03 4.22 6.01 4.95 4.14 4.13 4.12

04 6.16 9.15 6.66 6.17 6.18 6.21

05 13.41 22.46 15.05 13.36 13.39 13.44

06 9.29 13.12 11.76 9.10 9.09 9.08

07 5.05 8.10 5.77 5.04 5.05 5.07

08 20.63 26.39 27.39 19.99 19.87 19.83

09 4.60 7.28 5.68 4.63 4.66 4.69

10 4.82 6.94 5.82 4.79 4.80 4.81

11 7.79 11.17 8.99 7.70 7.70 7.71

12 3.88 5.81 5.41 3.83 3.84 3.85

13 19.05 29.38 20.47 19.11 19.19 19.27

14 15.96 22.12 17.59 15.79 15.77 15.77

15 8.77 11.77 10.29 8.68 8.69 8.71

16 4.26 5.36 5.32 4.11 4.08 4.06

17 5.50 7.83 6.00 5.52 5.54 5.57

18 14.88 21.30 15.36 15.00 15.04 15.09

19 8.68 11.36 11.24 8.48 8.47 8.46

20 6.71 8.24 8.75 6.43 6.39 6.36

21 8.14 12.32 9.41 8.06 8.07 8.08

22 12.12 16.09 12.93 12.09 12.11 12.13

23 3.82 6.17 4.02 3.85 3.87 3.89

mean 8.9002 12.7781 10.4428 8.8074 8.8080 8.8203

Table 1.1: MSE of the LEP reconstructions of the Kodak set as the detection function varies.
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riptsize

Image φ1 φ2 φ3 φ4 φ5 φ6

01 2 0 1 3 4 5

02 2 0 1 4 5 3

03 2 0 1 3 4 5

04 5 0 1 4 3 2

05 3 0 1 5 4 2

06 2 0 1 3 4 5

07 4 0 1 5 3 2

08 2 1 0 4 3 5

09 5 0 1 4 3 2

10 2 0 1 5 4 3

11 2 0 1 4 5 3

12 2 0 1 5 4 3

13 5 0 1 4 3 2

14 2 0 1 3 5 4

15 2 0 1 5 4 3

16 2 0 1 3 4 5

17 5 0 1 4 3 2

18 5 0 1 4 3 2

19 2 0 1 3 4 5

20 2 1 0 3 4 5

21 2 0 1 5 4 3

22 3 0 1 5 4 2

23 5 0 1 4 3 2

total 68 2 21 92 87 75

Table 1.2: Points of the LEP reconstructions of the Kodak set as the detection function varies.
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riptsize

Image [128] [112] [144] [85] [137] [166] [116]

01 22.24 9.57 155.63 28.45 27.04 14.90 16.64

02 7.78 6.58 32.00 8.19 8.42 7.02 6.97

03 4.96 4.96 23.34 5.80 5.32 4.33 5.17

04 9.06 7.21 29.31 9.19 7.41 7.25 7.06

05 19.41 14.62 145.24 21.58 19.23 12.48 15.78

06 10.62 8.04 111.45 21.58 20.80 8.45 13.15

07 4.72 4.60 29.86 5.36 5.74 4.62 5.13

08 51.18 16.83 297.91 40.65 57.69 23.18 30.14

09 4.85 4.16 39.54 6.28 7.21 4.11 5.50

10 5.94 4.30 37.59 6.75 6.07 4.35 5.01

11 11.78 8.34 82.62 16.45 15.46 9.04 10.09

12 3.83 3.77 30.63 5.76 6.47 3.57 5.01

13 50.71 20.99 271.69 70.48 47.87 33.74 28.12

14 17.99 22.97 80.92 18.62 18.62 18.58 18.24

15 10.87 8.24 32.29 11.27 8.30 8.32 8.02

16 4.28 4.50 50.13 9.55 10.52 3.47 6.30

17 8.07 5.20 42.96 9.66 7.71 5.81 5.88

18 19.28 12.19 96.18 23.72 17.14 15.07 12.94

19 10.16 6.56 106.93 12.19 19.23 7.23 11.86

20 8.09 5.79 45.93 9.23 8.77 6.43 6.37

21 15.53 8.32 94.42 19.96 17.42 11.94 11.25

22 14.59 11.12 62.96 15.74 14.73 12.80 12.74

23 4.78 4.31 21.38 4.40 4.42 3.96 4.48

mean 13.9441 8.8330 83.5177 16.5586 15.7222 10.0269 10.9497

Table 1.3: MSE of the reconstructions of the Kodak set by the algorithms in [85, 112, 116, 128, 137, 144,

166]
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riptsize

Image [126] [90] [40] [85] [64] [107] [78] LEP

01 10.77 19.77 35.65 53.34 17.74 15.31 11.04 9.77

02 8.96 7.57 36.48 11.69 14.69 6.14 7.81 6.91

03 12.16 4.58 37.25 8.57 12.25 3.52 4.64 4.13

04 5.11 8.43 36.74 10.04 13.78 4.93 6.59 6.17

05 10.52 17.50 35.49 39.02 18.54 11.94 11.49 13.36

06 8.77 11.43 36.40 37.33 14.93 8.77 10.69 9.10

07 4.51 5.32 37.08 10.05 12.77 3.61 4.54 5.04

08 22.81 27.11 34.60 96.56 22.60 22.80 19.99 19.99

09 7.74 5.05 37.42 13.06 11.67 4.05 4.30 4.63

10 3.86 5.45 37.25 12.29 12.22 4.05 4.34 4.79

11 7.78 11.62 36.40 24.57 14.86 8.26 7.59 7.70

12 2.91 4.29 37.59 12.90 11.41 3.36 4.80 3.83

13 24.78 47.00 33.66 77.41 27.87 35.90 24.38 19.11

14 15.35 18.33 35.08 26.53 20.23 11.33 16.42 15.79

15 7.64 10.26 36.23 16.74 15.53 8.38 8.72 8.68

16 3.53 4.74 37.50 16.61 11.48 3.59 4.23 4.11

17 4.99 7.73 41.12 13.28 5.06 5.31 4.90 5.52

18 12.83 19.64 35.98 34.73 16.41 16.79 13.24 15.00

19 6.28 9.31 40.19 34.55 6.21 7.20 6.83 8.48

20 5.51 7.76 32.52 22.11 3.67 6.10 5.80 6.43

21 9.23 14.36 36.48 29.09 14.66 10.74 8.37 8.06

22 9.40 14.69 37.33 21.57 12.05 9.42 10.33 12.09

23 8.67 4.22 39.45 6.97 7.38 3.06 4.07 3.85

mean 9.13 12.4412 36.6901 26.9135 15.2602 9.32 8.9175 8.8074

Table 1.4: MSE of the reconstructions of the Kodak set by the algorithms in [40, 64, 78, 85, 90, 107, 126]

and by the LEP method.
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Chapter 2

An edge-preserving regularization

model for the demosaicing of noisy

color images

This chapter is organized as follows. In Section 2.1, the state-of-the-art in the field of color im-

age demosaicing is surveyed, the problem is formulated, and the principles of the regularization

approach are stated. Section 2.2 is devoted to problem formulation, the principle of the regular-

ization approach are stated, and the specific edge-preserving regularization strategy we adopt is

described. In Section 2.3, the solution algorithm is described in detail. Section 2.4 is devoted to

the quantitative comparison between the results obtained with our method and those of some of

the most performing algorithms proposed in the recent literature, using both the Kodak 24-image

dataset [109] and the McMaster 18-image dataset [169] as benchmark sets, and with specific ref-

erence to the Bayer CFA. Finally, in Sections 2.6–2.8, some mathematical aspects are developed

in detail.

2.1 Related work

A major problem of demosaicing is to avoid oversmoothing of the edges, so that the fundamental

feature of any method is its ability to perform interpolation along and not across the edges. Some
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methods perform directional interpolation after locating the image discontinuities through edge-

detectors [85], or analyzing the variance of the color differences [47]. For example, the work

in [12] proposes high-order interpolation and Sobel operators to compute the gradients, and in

[64] a level set method is used to minimize an energy function that gives the direction of the

edges. In [48] the interpolation direction is chosen by exploiting an edge-sensing parameter

called integrated gradient, which simultaneously takes into account for both color intensity and

color difference. As an alternative to color difference interpolation, the algorithm in [107] is

based on interpolation in a residual domain. The residuals are differences between observed and

tentatively estimated pixel values which minimize a Laplacian energy.

Some authors exploit known properties of the human visual system, to design linear, adaptive

filters applied to the luminance component of the sampled color values (see [5, 113]), or to esti-

mate every missing sample as a weighted sum of its neighboring pixels, assuming that the hue of

an image does not change abruptly [116]. In this latter algorithm, in order to reduce interpolation

across boundaries, the weights are calculated on the basis of an edge-sensing mechanism. In [93]

the model above is enhanced by making the weights depend not only on the colors of the pixels

but also on their location within the neighborhood.

In other methods, the best reconstruction of the missing data, first estimated by interpolating

along horizontal and vertical directions, is chosen ([90, 120, 166]), or the two reconstructions

are fused ([121, 168]). In particular, [90] proposes an algorithm based on the Laplacian filter, by

selecting the interpolation directions having the least level of color artifacts. In [169], multiple

local directional estimates of a missing color sample are computed and fused according to local

gradients. Then, the image non-local redundancy is exploited to improve the local color repro-

duction. This allows the final reconstruction to be performed at the structural level as opposed to

the pixel level. On this line, the method in [40] infers the missing colors by taking into account

the local image geometry through the image self-similarity.

In [76, 78, 112] the strong correlation existing between the high frequencies of the three color

components is directly exploited. In particular, [76] proposes reconstructing the high frequen-

cies of the red and blue channels by replacing them with those of the green channel, which has

the highest sampling rate. Based on a similar principle, the algorithm presented in [78] forces

similarity between the high frequencies of the red and the green, and of the blue and the green.
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This algorithm is called Alternating Projections (AP) algorithm, since it alternately projects the

estimated image into an observation constraint set (faithfulness with the data) and a detail con-

straint set (similarity of the high–frequency components), until a fixed point is found. A faster

version of the AP algorithm appeared in [114].

The sparse nature of color images has also been exploited for demosaicing. A suitable dictio-

nary is designed and applied with the iterative K-SVD algorithm (specificare a parole che cosa

vuol dire SVD) in [117], whereas in [126] the dictionary is constructed on the basis of a clear

distinction between the inter-channel and intra-channel correlations of natural images, and the

sparse representation of the image is found through compressed sensing. In [4] a locally adaptive

approach is used for demosaicing dual-tree complex wavelet coefficients.

Regularization approaches to demosaicing have also been explored. The total-variation prin-

ciple is used in [143], while [123] proposes first a general quadratic smoothness regularizer and

then an adaptive filter, in order to improve the reconstruction near the edges of the first estimate.

The methods surveyed above have been mainly designed for noise-free data. An abundant

literature has also been devoted to joint demosaicing and denoising, which is the problem con-

sidered in this work. Indeed, while the availability of noiseless data is an unrealistic assumption,

performing denoising as a pre- or a post-processing has significant drawbacks. In the first case,

denoising must be separately performed on the individual channels, and hence the full image

resolution cannot be exploited. On the other hand, noisy images make more complicate the edge

detection step that is often preliminary to demosaicing. Furthermore, demosaicing alters the char-

acteristics of the noise, thus making more complex the subsequent denoising process. In [170]

demosaicing and denoising is performed in two steps. First, the full resolution green component

is recovered from the difference signals of the color channels. These are estimated by a MMSE

technique that exploits both spectral and spatial correlations to simultaneously suppress sensor

noise and interpolation error. Second, the CFA channel-dependent noise is removed from the re-

constructed green channel with a wavelet-based approach. Finally, also the red and blue channels

are estimated and denoised. The method in [135], specifically designed for signal-dependent (e.g.

Poissonian) noise, is based on local polynomial approximation and the intersection of confidence

intervals. These concepts, simultaneously utilizing the three color channels, are exploited to de-

sign and adaptively select the length of directional filters, then used to denoise and interpolate the
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samples via convolution. In [53] the luminance and chrominance channels of a noisy mosaiced

image are first reconstructed, by exploiting a frequency analysis of the sampling pattern induced

by the Bayer CFA. Wiener filters are then designed to denoise the chrominances, whereas the

luminance is linearly filtered as a grayscale image. An extended variant of this approach is also

proposed, in which the demoisaiced image is mosaiced again and then demosaiced using the

method in [168].

One of the advantages of regularization is that it provides a natural framework to couple de-

mosaicing with other typical problems in image reconstruction and restoration. For instance, in

[63] a regularization method combines demosaicing and super-resolution, and in [167] demo-

saicing is augmented with color de-crosstalk. Regularization is thus an ideal setting to approach

joint demosaicing and denoising. The work [91] presents an algorithm that uses a modified to-

tal least squared estimation technique, to estimate an ideal demosaicing filter able to deal with

the noise affecting the base vectors. In [122], the authors evaluate the statistical characteristics

of the noise resulting from the demosaicing process performed through the space-varying filters

designed in their previous work [123]. Then, they design an ad hoc post-processing denoising

strategy.

2.2 Formulation of the demosaicing problem and its regular-

ization

2.2.1 The data generation model

A color image of size n×m can be represented as a vector x∈R3nm, x=
(
(x(r))T (x(g))T (x(b))T

)T
,

where x(r),x(g),x(b) ∈ Rnm are the red, green and blue channels expressed in the lexicographic

notation, respectively. The mosaicing problem is formulated as

y = M (x+n), (2.1)

where x ∈ [0,255]3nm, y ∈ [0,255]3nm, and n ∈ [0,255]3nm denote the ideal color image, the

mosaiced image, and the additive noise, respectively. We assume the noise to be independent,

Gaussian, with null mean and variance σ2. The matrix M, M ∈ {0,1}3nm×3nm, is a linear operator
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associated to the acquisition pattern, consisting of the following block diagonal matrix:

M =


M(r) O O

O M(g) O

O O M(b)

 , (2.2)

where O ∈Rnm×nm is the null matrix, and M(r), M(g), M(b) are diagonal matrices in Rnm×nm. For

the Bayer pattern, the diagonal elements of these matrices are given by

m(r)
(i, j),(i, j) =


1, i≡2 j ≡2 0,

0, otherwise,

m(g)
(i, j),(i, j) =


1, i≡2/ j,

0, otherwise,
(2.3)

m(b)
(i, j),(i, j) =


1, i≡2 j ≡2 1,

0, otherwise,

where (i, j) is the generic pixel index. The demosaicing problem is the inverse problem associ-

Figure 2.1: The Bayer pattern

ated to the direct problem formulated in (2.1), and consists of finding an estimate x̃ of the ideal

image, given the mosaiced image y and the operator M. Since M is singular, the demosaicing

problem is ill-posed in the Hadamard sense (see [83, 84]), because in general it does not admit

a unique solution. Given y, there are infinitely many feasible solutions, since at each pixel the

values of the two unmeasured channels do not contribute to the data. Therefore, regularization

techniques are necessary to reduce the number of solutions.

38



Ill-Posed Problems in Computer Vision

2.2.2 The regularization model

We define our regularized solution x̃ as an argument of the minimum of the following energy

function:

E(x) = ‖M(x− y)‖2
2 +

3

∑
k=1

∑
c∈Ck

ϕ

(
Nk

c x,Nk
pk(c)

x
)
+

3

∑
k=1

∑
c∈Ck

ϕ

(
V k

c x,V k
pk(c)

x
)
, (2.4)

where ‖·‖2 denotes the Euclidean norm, and the first term of the right hand of (2.4) expresses a

data fidelity constraint, which is identically null in the noiseless case.

The second term in the right hand of (2.4) regulates the intra-channel smoothness of the

involved image. The third term imposes a correlation between the different channels, i.e. an

inter-channel smoothness. Intra-channel and inter-channel smoothness are measured through the

operators Nk
c and V k

c , respectively, and ϕ is a stabilizer that weights the degree of smoothness

required and relaxes it when a discontinuity is expected.

Let us start by analyzing the form of the operator Nk
c , given by

Nk
c x =

∥∥∥(Dk
cx(r),Dk

cx(g),Dk
cx(b)

)∥∥∥
2
, (2.5)

where Dk
c is a finite difference operator of order k applied to a suitable set c of adjacent pixels,

called clique of order k. Therefore, from (2.5) it appears that Nk
c is the norm of the vector of the

finite differences of the intensities of the red, green and blue channel computed on the clique c

of order k. All cliques of order k are collected in the set Ck. Each of such cliques is uniquely

associated with a discontinuity, of order k as well, which, in turn, is labeled by a hidden line

element.

To reconstruct the finest details in the images, we consider finite differences, and then dis-

continuities, of first, second and third order, that is k = 1,2,3. The geometry of the associated

cliques is described in Section 2.5.

The edges of the first order separate homogeneous patches in the image, the edges of the sec-

ond order mark the slope of linearly varying areas, and the edges of the third order are associated

with the intensity discontinuities in regions where intensity varies quadratically.

As the inter-channel correlation has the aim to maintain the clue of the objects in the image,

the finite difference operators should have the same behavior in all three channels. So we define

the operator V k
c as follows:
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V k
c x =

∥∥∥(Dk
cx(r)−Dk

cx(g),Dk
cx(r)−Dk

cx(b),Dk
cx(g)−Dk

cx(b)
)∥∥∥

2
, (2.6)

which is the norm of the vector of the inter-channel differences of the intra-channel k-order

derivatives. Again, a hidden line variable is implicitly associated with the clique c for each order

k = 1,2,3. These further sets of hidden line variables mark the discontinuities between areas

having homogeneous clues.

In (2.4), Nk
c and V k

c are weighted by suitable stabilizers. These stabilizers should regulate the

degree of smoothness required in the two cases, and relax it when discontinuities are expected,

and also in dependence of their amplitude. In (2.4) we adopted the same parametric stabilizer ϕ

for both the operators Nk
c and V k

c , and let its parameters possibly vary in the two terms (see also

[33]).

To have a more accurate reconstruction, it is important that edges are not thick, or, equiva-

lently, that the object contours are not blurred. To this aim it is advisable to inhibit the creation

of discontinuities at two adjacent cliques. Specifically, to prevent double edges of order k, si-

multaneous discontinuities at the cliques c and at the previous one pk(c) should be inhibited (see

Section 2.5 for the definition of adjacent cliques).

When pk(c) is not defined, that is for the mixed cliques and for the cliques on the border of

the image, we automatically assume that the adjacent discontinuity is null.

Having in mind the above described properties to be featured by the stabilizer, we define a

bivariate function ϕ : R×R→ R, having the following form:

ϕ(t1, t2) =



g1(t1), if |t2| ≤ s,

(
1− 2(|t2|− s)2

(ζ − s)2

)
g1(t1)+

2(|t2|− s)2

(ζ − s)2 g2(t1), if s < |t2| ≤
ζ + s

2
,

2(|t2|−ζ )2

(ζ − s)2 f1(t1)+
(

1− 2(|t2|−ζ )2

(ζ − s)2

)
f2(t1), if

ζ + s
2

< |t2|< ζ ,

g2(t1), if |t2| ≥ ζ ,

(2.7)
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where ζ − s is a positive and sufficiently small quantity, and for i = 1,2 it is

gi(t1) =



λ 2t2
1 , if |t1|< qi,

αi−
τ

2
(|t1|− ri)

2, if qi ≤ |t1| ≤ ri,

αi, if |t1|> ri,

(2.8)

αi =


α, if i = 1,

α + ε, if i = 2,

(2.9)

qi =

√
αi

λ 2

(
2
τ
+

1
λ 2

)−1/2

, (2.10)

τ is a large enough real constant, and

ri =
αi

λ 2 qi
, i = 1,2. (2.11)

In general, the analytical form of the stabilizer determines the amplitude of the discontinu-

ities in the reconstructed image, by promoting on-off discontinuities of large amplitude above a

given threshold, or more slowly varying discontinuities of graded amplitudes. In the primal-dual

formalism, the stabilizers of the first type are said to implicitly address “hard”, Boolean line

elements, while the second type addresses hidden “soft” line elements, ideally valued in [0,1].

We recall that the functions gi, i = 1,2, defined in (2.8), are approximations of class C1 of the

classical truncated parabola defined in [24] (see also [25, 33, 34]) that, when used as a stabilizer,

implicitly addresses a Boolean line process. In the bivariate case, the function ϕ defined in (2.7)

possesses the same characteristic when τ tends to +∞ and ζ is very close to s. The actual form

we propose is an approximation of such a function, with the property of being of class C1, which

is essential for the convergence of the minimization algorithm.

We observe that the function ϕ defined in (2.7), as a function of two variables, is not convex,

and hence neither is the energy function E(x), defined in (2.4) as a function of 3nm variables.

Thus, to minimize E, we determine a finite family of approximating functions {E(p)}p, where

E(0) is componentwise convex, and E(2) is the original energy function E. The initial point
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to minimize the componentwise convex approximation is found by means of the Local Edge

Preserving (LEP) algorithm presented in Chapter 1. The LEP is a very fast algorithm, consisting

of two phases. In the first phase, the missing components are determined by a weighted mean,

which guarantees to preserve the edges. In the second phase, the differences between the colors

of the channels are imposed to be constant within homogeneous areas. Our algorithm is called

Graduated Componentwise Non-Convexity (GCNC), and can be summarized as follows:

initialize x by LEP; set p = 0;

repeat

• find the minimum of the function E(p)

starting from the initial point x;

• set x to the reached minimizer;

• update the parameter p; until p = 2

Note that our algorithm can be seen as a variant of the GNC algorithm (see, e.g., [19, 34,

127, 129, 130, 131, 140]).

To construct the first componentwise convex approximation E(0), it is sufficient to find a

componentwise convex approximation for the stabilizers in (2.7), since the data term in (2.4) is

globally convex. Such componentwise convex approximations can be constructed on the basis

of a componentwise convex approximation of the bivariate function ϕ , as shown in Section 2.8.

To do this, we proceed as follows. First of all, we approximate the functions gi(t1) with the

following convex approximations given by

gi(t1) =


λ 2 t2

1 , if |t1| ≤ qi,

λ 2 (2qi|t1|−q2
i ), if |t1| ≥ qi, i = 1,2

(2.12)

(see also [129]). Moreover, we find an approximation, convex with respect to the variable t2, of

the function ϕ defined in (2.7), in tthe following way:

ϕ(t1, t2) =
t2− t2

2

t2 g1(t1)+
t2
2

t2 g2(t1) = g1(t1)+
t2
2

t2 (g2(t1)−g1(t1)), (2.13)

where t is the maximum value that a finite difference operator can assume (t = 2k ·
√

2 · 255,

k = 1,2,3), for light intensity of the images in the range [0,255]. It is not difficult to check that

g2−g1 is convex, since 0 < q1 < q2.
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We recall that t1 = Nk
c x, t2 = Nk

pk(c)
x in the second term of the right hand of (2.4), and

t1 = V k
c x, t2 = V k

pk(c)
x in the third term of the right hand of (2.4). Let us fix k ∈ {1,2,3} and

c ∈Ck, and choose Ξk
c ∈ {Nk

c ,V
k
c }. So, t1 is a function of x, and t1(x) = Ξk

c(x). In particular, t1

depends only on the variables involved in the clique c. Analogously, t2(x) = Ξk
pk(c)

(x) depends

only on the variables involved in the clique pk(c). Note that the function ϕ defined in (2.13)

is componentwise convex, but the function Φ(x) = ϕ(t1(x), t2(x)) is not componentwise convex

with respect to the components of the vector x ∈ R3nm. This is due to the fact that c∩ pk(c) 6= /0.

However, if we choose t2(x) = Ξk
πk(c)

(x) instead of Ξk
pk(c)

(x), then the function t2 is componen-

twise convex with respect to x, as shown in Section 2.8, since c∩πk(c) = /0. Thus, in order to

define the family of the approximations for the algorithm GCNC, we proceed as follows.

If p ∈ [0,1], put

E(p)(x) = ‖M(x− y)‖2
2 +

3

∑
k=1

∑
c∈Ck

ϕ

(
Nk

c x, pNk
pk(c)

x+(1− p)Nk
πk(c)

x
)
+ (2.14)

+
3

∑
k=1

∑
c∈Ck

ϕ

(
V k

c x, pV k
pk(c)

x+(1− p)V k
πk(c)

x
)
.

When p ∈ [1,2], set

E(p)(x) = ‖M(x− y)‖2
2 +

3

∑
k=1

∑
c∈Ck

ϕ
(p)
(

Nk
c x,Nk

pk(c)
x
)
+

3

∑
k=1

∑
c∈Ck

ϕ
(p)
(

V k
c x,V k

pk(c)
x
)
, (2.15)

where

ϕ
(p)(t1, t2) = (2− p)ϕ(t1, t2)+(p−1)ϕ(t1, t2). (2.16)

In Section we will prove that, for each p ∈ [1,2], ϕ(p) satisfies the duality conditions that guar-

antee the edge-preserving properties and the inhibition of double edges (see [33]). Note that,

for p ∈ [0,1], the stabilizer ϕ(t1, t2) is equal to ϕ(t1, t2), and hence fulfils the same properties.

Furthermore, in [27] it is proved that the associated line process is non-Boolean. In fact, the

hidden line elements tend to become Boolean as far as p tends to 2. However, we experimentally

observed that, in real images, graded discontinuities can be useful to prevent the aliasing effect.

Thus, in the experiments, we stop the minimization algorithm at a suitable value of p different

from 2, as explained in Section 2.4.
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2.3 The NL-SOR algorithm

To minimize each approssimation E(p), we use a Non-Linear Successive Over Relaxation (NL-

SOR) algorithm, which is widely used in the literature (see also [19, 24, 38]). The NL-SOR

algorithm is defined as follows:

l = 1;

while ‖∇E(p)(x)‖> ε

for i = 1,2, . . . ,nm

for e = r,g,b

(x(e)i )
(l+1)

= (x(e)i )
(l)
− ω

T
∂E(p)(x(l))

∂x(e)i

;

end for

end for

l = l +1;

end while

where ε > 0 is a fixed threshold, ω > 0 is the accelerator parameter,

T > max
i=1,2,...,nm,e=r,g,b

max
x

{
∂ 2
+E(p)(x)

(∂x(e)i )2
,

∂ 2
−E(p)(x)

(∂x(e)i )2

}
,

and the symbols ∂ 2
+ and ∂ 2

− denote the right and left second partial derivatives, respectively. In

[38, Theorem 2] the convergence of the algorithm is proved when E(p) is strictly convex and of

class C2. However, such a theorem cannot be applied to our setting, since our first approximation

is componentwise convex and C1, but neither strictly convex nor C2. Thus, in SectionNLSOR

we propose an extension of [38, Theorem 2], in order to prove that in our case, when p = 0, the

algorithm stops in correspondence with a stationary point.

2.4 Experimental results

The algorithm proposed in this work has been tested for the Bayer CFA on the set of 24 Kodak

sample images (see [109]) of size 512× 768, shown in Figure 2.2. This dataset represents the

typical benchmark images used in the literature to compare the different demosaicing algorithms.

These high quality images have been acquired as raw images, in such a way to minimize the

effects of compression. We will refer to these images as ImageK, 1,2, . . . ,24, listed from top to

44



Ill-Posed Problems in Computer Vision

bottom and from left to right in Figure 2.2. More recently, another dataset of images has started

Figure 2.2: Set of Kodak images (from: http://r0k.us/graphics/kodak)

to be used as a benchmark, namely, the McMaster, or IMAX, dataset first proposed in [169].

Indeed, it has been noticed that the statistics of the Kodak images are very different from those of

other natural images, since they have very high spectral correlation, are smooth in the chromatic

gradient and have low saturation. Conversely, the McMaster images are more saturated and have

many sharp structures with abrupt color transitions. To generate this dataset, 8 high resolution

color images of size 2310× 1814 were originally captured by Kodak films, digitized, and then

cropped in 18 sub-images, each of which of size 500× 500. We will refer to these images as

ImageM, 1,2, . . . ,18, listed from top to bottom and from left to right in Figure 2.3.

Many demosaicing methods assume that the color differences change smoothly. As this

assumption holds for the Kodak images, they are ideal to test these algorithms. Conversely, in

[169], it has been shown that this assumption may not hold for the images in the McMaster

dataset. Thus, the McMaster images are, in some sense, more suitable to test our algorithm,

since, as said, it assumes that the changes in the color differences are only locally smooth. This

conjecture, in fact, seems to be reflected in the experimental results below.

The free parameters appearing in the energy function have been calibrated on the images of

the Kodak dataset, and then used for the images of the McMaster dataset as well. We employed

a trial-and-error strategy to look for the set of parameters that give the best average Color Peak
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Figure 2.3: Set of McMaster images (from http://www4.comp.polyu.edu.hk/∼cslzhang/CDM_Dataset.htm)

Signal-to-Noise Ratio (CPSNR) on all 24 images. The CPSNR quality index is defined as

CPSNR = 10log10

(
2552

MSE

)
, (2.17)

where MSE is the mean square error between the original image and the demosaiced one that, for

color images, is defined as the arithmetic average of the mean square errors on the three channels.

The algorithm has been applied to both noiseless and noisy images.

In the noiseless case, and for the Kodak dataset, we compared the proposed method with

some of the most popular and/or best performing methods in the literature, namely the algorithms

proposed in [4, 12, 40, 48, 64, 78, 90, 107, 117, 123, 126]. For the noiseless McMaster dataset,

a comparison has been made with the algorithms in [40, 78, 90, 107, 169], respectively. In

particular, to collect the results of the algorithm in [78] we used the original MATLAB code

provided by the authors, and for the results of the algorithm in [107] we used the source code

available in the authors’s web page.

In the noisy case, we compared our method with the algorithms in [78] and [91], by using

the original MATLAB code provided by the authors, and with the algorithms in [53, 122, 170],

by using the source codes available in the authors’s web pages.

We chose to decrease p with a step of 0.01; for each sample image and for each value of p,

we computed the RMSE between the ideal image and the minimizer of the approximated energy

function, indicated as η j(p), j = 1, . . . ,24. Then, the value p̄ to which to stop the algorithm has
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been determined based on the Kodak dataset as

p̄ = argmin
p

{
24

∑
j=1

η j(p)

}
. (2.18)

2.4.1 Noiseless images

The best free parameters of the energy, used for the noiseless mosaiced images, are reported in

Table 2.1.

Table 2.1: Parameters used for the noiseless case

derivative order

k = 1 k = 2 k = 3

λ N 0.01 0.04 0.04

κN 30 8.66 7.07

λV 0.25 0.078 0.078

κV 3.46 6.19 6.19

For the given free parameters, we found p̄ = 1.40. For each test image, the reconstruction

obtained with this value of p has then been taken as the optimal reconstruction provided by our

algorithm.

The results obtained on the Kodak dataset are reported in Table 2.2, last column. As usual

with the Kodak images, to compute the errors we removed the three pixels wide external frame.

It is apparent that our method exhibit the highest CPSNR in more images than the other methods

do (for each image, the highest CPSNR is highlighted in boldface).

The results obtained on the McMaster dataset are reported in Table 2.3, with a percentage of

highest CPNR of 61%. These results seem to confirm that our method, for its edge-preserving

property, is particularly suitable for images exhibiting sharp boundaries and fine details, as the

McMaster images do.
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Table 2.2: CPSNRs for noiseless Kodak images

ImageK [78] [90] [117] [123] [64] [40] [48] [4] [12] [126] [107] proposed

1 37.70 35.17 39.37 38.22 35.64 32.61 39.96 37.31 39.86 37.81 36.28 40.66

2 39.57 39.34 40.71 38.18 36.46 32.51 40.99 38.90 40.99 38.61 40.25 40.86

3 41.45 41.52 43.19 42.04 37.25 32.42 43.26 41.76 42.86 37.28 42.66 43.31

4 40.03 38.87 41.29 40.04 36.74 32.48 40.56 40.40 41.25 41.05 41.20 41.84

5 37.46 35.70 38.70 38.04 35.45 32.63 38.31 37.44 38.41 37.91 37.36 38.94

6 38.50 37.55 40.05 39.70 36.39 32.52 41.00 39.59 40.31 39.34 38.70 40.20

7 41.77 40.87 42.83 42.10 37.07 32.44 42.64 41.85 42.94 41.59 42.55 43.62

8 35.08 33.80 36.42 36.08 34.59 32.74 37.35 34.58 37.05 35.49 34.55 37.22

9 41.72 41.10 43.28 42.15 37.46 32.40 43.42 41.77 43.44 42.40 42.06 43.29

10 42.02 40.77 42.70 42.15 37.26 32.42 42.83 41.80 43.12 42.27 42.06 42.70

11 39.14 37.48 40.22 39.78 36.41 32.52 40.66 39.09 40.92 39.22 38.96 40.51

12 42.51 41.81 43.53 42.94 37.56 32.38 44.13 43.01 44.01 43.49 42.86 44.40

13 34.30 31.41 35.29 34.94 33.68 32.86 36.03 34.97 35.94 34.19 32.61 36.24

14 35.60 35.50 37.95 36.34 35.07 32.68 37.10 35.79 36.99 36.27 37.59 38.26

15 39.35 38.02 40.21 39.15 36.22 32.54 39.84 39.39 40.03 39.30 38.90 40.35

16 41.76 41.37 43.62 43.27 37.53 32.39 44.47 43.62 43.74 42.65 42.58 43.75

17 41.11 39.25 42.01 41.83 41.09 31.99 41.77 41.17 42.24 41.15 40.88 41.54

18 37.45 35.20 37.47 37.13 35.98 32.57 37.96 37.12 37.89 37.05 35.88 37.43

19 39.46 38.44 41.27 40.15 40.20 32.09 41.79 39.78 41.46 40.15 39.56 41.10

20 40.66 39.23 41.00 40.39 32.49 33.01 41.71 40.46 41.85 40.72 40.28 41.59

21 38.66 36.56 39.74 39.27 36.47 32.51 39.99 38.57 40.37 38.48 37.82 40.20

22 37.55 36.46 38.87 38.25 37.32 32.41 38.48 37.33 38.69 38.40 38.39 38.48

23 41.88 41.88 42.41 40.40 39.45 32.17 43.20 42.00 43.04 38.75 43.28 43.89

24 34.78 33.42 35.63 35.37 34.32 32.78 35.39 34.52 35.21 35.37 34.33 34.78

2.4.2 Noisy images

In a second set of experiments, we considered noisy images corrupted by independent, Gaussian

noise, with zero mean and different values of the standard deviation σ . This time, the best free

parameters for all 24 Kodak images, then used also for the 18 McMaster images, have been

empirically found to be dependent on the noise standard deviation according to Table 2.4.

As done for the noiseless images, for each value of the noise variance, the suitable value p̄ for

stopping the algorithm has been determined according to the criterion in (2.18). The following

empirical law that relates p̄ to σ has also been found:

p̄(σ) =
3
40

σ +
4
5
. (2.19)

The CPSNR values computed for the case σ = 16 on the Kodak dataset are shown in Table 2.5.

Although the performance of our method is still satisfactory, this time the method in [53] is

slightly superior.

We then computed another quality index, sometimes used in the demosaicing problem, i.e.,

the S-CIELAB metric. This metric indicates the percentage of color distortion between two

48



Ill-Posed Problems in Computer Vision

Table 2.3: CPSNRs for McMaster noiseless images

ImageM [78] [90] [40] [169] [107] proposed

1 25.59 26.63 27.69 29.56 29.41 30.02

2 32.46 33.64 34.47 35.67 35.35 35.51

3 31.63 31.42 32.93 33.29 34.05 34.17

4 33.23 33.63 36.28 36.63 38.00 38.48

5 29.98 31.01 32.00 34.79 34.43 35.52

6 31.98 33.87 35.55 39.26 38.83 39.81

7 37.82 35.99 36.87 36.00 37.04 39.81

8 36.62 36.46 37.47 37.76 37.30 38.93

9 33.28 34.51 36.21 37.84 36.84 38.18

10 34.97 36.01 37.56 39.24 39.12 39.57

11 35.97 36.73 38.39 40.02 40.21 39.81

12 35.78 36.64 37.39 39.15 39.84 39.27

13 37.47 38.76 40.34 41.60 40.66 41.63

14 36.25 37.43 38.53 39.45 39.11 39.26

15 36.35 37.33 38.29 39.54 39.25 39.44

16 29.02 30.05 31.17 34.03 35.42 34.36

17 27.99 28.63 30.41 33.56 33.19 35.20

18 32.49 33.30 34.20 35.38 36.41 35.10

Table 2.4: Parameters used for the noisy case

derivative order

k = 1 k = 2 k = 3

λ N 0.1σ 0.05σ 0.05σ

κN

√
10
σ

5

√
10
σ

5

√
10
σ

λV 0.1σ 0.05σ 0.05σ

κV

√
10
σ

5

√
10
σ

5

√
10
σ
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Table 2.5: CPSNRs for noisy Kodak images, σ = 16.

ImageK bilinear [78] [91] [170] [122] [53] [53] variant proposed

1 23.38 24.24 22.35 27.63 27.71 28.18 28.14 28.11

2 25.86 24.50 23.55 28.75 30.86 31.01 28.98 31.47

3 25.98 24.47 23.84 31.51 31.81 32.58 32.67 32.71

4 25.84 24.38 23.48 30.10 30.82 31.34 30.69 31.36

5 23.68 24.42 22.85 27.70 28.02 28.51 28.60 28.27

6 24.09 24.40 23.09 28.84 28.87 29.51 29.40 29.01

7 25.78 24.43 23.47 30.67 31.24 32.29 31.96 32.03

8 21.89 24.18 22.18 27.19 27.37 28.40 28.32 27.66

9 25.57 24.36 23.66 31.42 31.51 32.61 32.83 32.53

10 25.58 24.38 22.85 31.11 31.38 32.58 32.60 32.21

11 24.78 24.45 23.28 29.36 29.62 30.20 30.17 30.02

12 25.69 24.44 23.72 31.13 31.44 32.27 32.19 32.34

13 22.03 24.12 21.99 26.51 26.43 26.78 26.63 26.67

14 24.76 24.25 22.96 28.35 28.44 27.99 28.65 29.01

15 25.64 24.79 23.94 30.14 30.85 31.21 30.76 31.30

16 25.31 24.36 23.44 30.52 30.50 31.33 31.37 30.85

17 25.70 24.68 23.79 30.90 31.02 31.97 32.05 31.81

18 24.29 24.39 23.01 28.01 28.56 28.99 28.35 28.83

19 24.30 24.35 22.93 29.59 29.78 30.74 30.56 30.21

20 26.00 25.44 24.80 29.95 30.45 30.82 30.77 30.93

21 24.43 24.32 23.21 29.06 29.40 30.07 29.76 30.00

22 25.13 24.28 23.16 29.22 29.55 29.87 29.69 29.91

23 26.07 24.47 23.96 31.02 32.48 33.10 31.65 33.31

24 26.98 25.26 25.50 27.98 28.20 28.81 28.64 28.48
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images, and accounts for the spatial-color sensitivity of the human eye (see [101, 172]). Since

it returns a pixel-by-pixel matrix of errors, we assumed as the representative error index for

the entire image the mean of the S-cielab matrix coefficients. The results obtained for the case

σ = 16 on the Kodak dataset, along with the results of the most performing among the methods

used for comparison, are shown in Table 2.6.

The results in this case are very good. The situation is even better when the noisy mosaiced

MacMaster images are processed. The CPSNR results obtained for the same amount of noise

(σ = 16), along with the results of the most performing methods used for comparison on the

Kodak dataset, are shown in Table 2.7.

It is apparent that, this time, our method overcomes the other, with much higher values of

CPSNR, which are only slightly lower than those we obtained in the noiseless case, for the same

dataset. This excellent performance can be ascribed once again to our very fine modeling of

natural images, in terms of local variations inside and between the color channels.

2.5 Geometry of the cliques and expression of the associated

finite differences

The stabilizers used in this work are functions of the finite differences Dk
c of order k applied to

sets c consisting of adjacent pixels. We call clique of order k the set of pixels on which the finite

difference of order k is well-defined. We take k = 1,2,3 in order to reconstruct the finest details

in images. Figures 2.4, 2.5 and 2.6 show the geometry of the sets c for the three orders of finite

differences, respectively. As we can see, the cliques can be classified as vertical (Figures 2.4 (a),

2.5 (a), 2.6 (a) ), horizontal (Figures 2.4 (b), 2.5 (c), 2.6 (d) ), and mixed (Figures 2.5 (b), 2.6 (b)

and (c) ). The vertical cliques consist of the following pixels:

c = {(i, j),(i+1, j), . . . ,(i+ k, j)}, i = 1, . . . ,n− k, j = 1, . . . ,m, k = 1,2,3, (2.20)

while the horizontal cliques have the form

c = {(i, j),(i, j+1), . . . ,(i, j+ k)}, i = 1, . . . ,n, j = 1, . . . ,m− k, k = 1,2,3. (2.21)
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Table 2.6: S-Cielab errors for noisy Kodak images, σ = 16.

ImageK [170] [122] [53] [53] variant proposed

1 4.11 4.22 3.82 3.82 3.41

2 3.34 2.81 2.74 3.19 2.64

3 3.28 3.24 2.97 2.89 2.52

4 3.44 3.32 3.16 3.23 2.89

5 4.20 4.07 4.02 3.92 3.81

6 3.86 3.83 3.47 3.48 3.23

7 3.54 3.43 3.14 3.21 2.82

8 4.48 4.57 4.08 4.02 3.96

9 3.10 3.19 2.85 2.72 2.38

10 3.16 3.21 2.81 2.73 2.54

11 3.26 3.31 3.02 2.98 2.79

12 3.10 3.00 2.75 2.74 2.30

13 4.65 4.78 4.42 4.47 4.30

14 3.87 3.97 3.93 3.67 3.39

15 3.09 2.82 2.82 2.79 2.56

16 3.23 3.36 2.97 2.89 2.68

17 2.67 2.81 2.46 2.32 2.24

18 4.28 3.90 3.80 4.14 3.62

19 3.69 3.66 3.32 3.37 3.02

20 3.85 3.36 3.26 3.30 3.09

21 3.67 3.63 3.26 3.30 2.90

22 4.14 3.92 3.77 3.92 3.59

23 3.22 2.94 2.76 2.99 2.58

24 4.28 4.10 3.72 3.81 3.58
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Table 2.7: CPSNRs for noisy McMaster images, σ = 16.

ImageM [170] [122] [53] [53] variant proposed

1 24.01 24.59 22.62 24.12 29.36

2 27.86 28.99 28.74 28.07 34.85

3 26.94 27.34 27.51 27.63 33.53

4 28.49 29.23 28.76 29.74 37.44

5 27.18 27.96 26.79 27.46 34.55

6 28.16 29.25 27.77 28.38 39.12

7 29.12 29.03 29.61 29.66 36.04

8 30.01 30.27 30.65 30.88 38.47

9 28.24 29.54 29.00 28.43 37.65

10 28.37 30.38 29.90 28.55 39.09

11 29.01 30.97 30.59 29.15 39.79

12 28.41 30.91 31.39 29.10 38.98

13 29.96 32.44 33.31 30.82 40.94

14 28.86 31.56 32.04 29.18 38.52

15 29.51 31.62 31.86 29.94 39.08

16 25.24 26.77 25.71 25.17 34.24

17 25.94 26.86 24.26 25.42 34.69

18 27.43 28.52 28.46 27.71 35.00

g
g
(a)

g g
(b)

Figure 2.4: Geometry of the sets c for k = 1.
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g
g
g
(a)

g g
g g

(b)

g g g
(c)

Figure 2.5: Geometry of the sets c for k = 2.

g
g
g
g
(a)

g g g
g g g

(b)

g g
g g
g g

(c)

g g g g
(d)

Figure 2.6: Geometry of the sets c for k = 3.

Let us now describe how finite differences are computed at a generic clique c for a generic

color channel x(e), e∈ {r,g,b}. When k = 1, as is seen in Figure 2.4, we have two different kinds

of finite difference operators, associated with a horizontal and a vertical finite difference, given

by

D1
cx(e) =


x(e)
(i, j)−x(e)

(i+1, j) in case (a) of Figure 2.4;

x(e)
(i, j)−x(e)

(i, j+1) in case (b) of Figure 2.4,
(2.22)

respectively. When k = 2, we have three different kinds of finite difference operators, expressed

by

D2
cx(e) =


x(e)
(i, j)−2x(e)

(i+1, j)+x(e)
(i+2, j) in case (a) of Figure 2.5;

x(e)
(i, j)−2x(e)

(i, j+1)+x(e)
(i, j+2) in case (b) of Figure 2.5;

x(e)
(i, j)−x(e)

(i+1, j)−x(e)
(i, j+1)+x(e)

(i+1, j+1) in case (c) of Figure 2.5.

(2.23)

When k = 3, we get four different kinds of finite difference operators, given by

D3
cx(e) =



x(e)
(i, j)−3x(e)

(i+1, j)+3x(e)
(i+2, j)−x(e)

(i+3, j) in case (a) of Figure 2.6;

x(e)
(i, j)−3x(e)

(i, j+1)+3x(e)
(i, j+2)−x(e)

(i, j+3) in case (b) of Figure 2.6;

x(e)
(i, j)−2x(e)

(i+1, j)+x(e)
(i+2, j)−x(e)

(i, j+1)+2x(e)
(i+1, j+1)−x(e)

(i+2, j+1) in case (c) of Figure 2.6;

x(e)
(i, j)−2x(e)

(i, j+1)+x(e)
(i, j+2)−x(e)

(i+1, j)+2x(e)
(i+1, j+1)−x(e)

(i+1, j+2) in case (d) of Figure 2.6.

(2.24)
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Let us introduce the concept of adjacent clique of order k, which is used to define the non-

parallelism constraint. Given a vertical clique c = {(i, j),(i + 1, j), . . . ,(i + k, j)}, i = k +

1, . . . ,n− k, j = 1, . . . ,m, k = 1,2,3, we define its preceding clique pk(c) as follows:

pk(c) = {(i− k, j),(i− k+1, j), . . . ,(i, j)}.

When i = k + 2, . . . ,n− k, j = 1, . . . ,m, k = 1,2,3, a good approximation of pk(c) used to

construct our approximating functions is given by

πk(c) = {(i− k−1, j),(i− k, j), . . . ,(i−1, j)}.

We define πk(c) in such a way that c∩ πk(c) = /0. This will be useful to find the family of

approximations of the energy function in Subsection 2.2.2.

If c is a horizontal clique, c= {(i, j),(i, j+1), . . . ,(i, j+k)}, i= 1, . . . ,n, j = k+1, . . . ,m−

k, k = 1,2,3, then its preceding clique pk(c) is defined by

pk(c) = {(i, j− k),(i, j− k+1), . . . ,(i, j)}.

When i = 1, . . . ,n, j = k+2, . . . ,m− k, k = 1,2,3, a good approximation of pk(c) is

πk(c) = {(i, j− k−1),(i, j− k), . . . ,(i, j−1)}.

For mixed cliques and cliques on the board of the image, pk(c) and πk(c) are considered not to

be defined.

2.6 Duality conditions on the stabilizer

In order that a stabilizer ϕ is edge-preserving and that the non-parallelism constraint on the

implicit line process is satisfied, we require that the hypotheses of the following theorem are

satisfied (see [33]):

Theorem 2.6.1. For every p ∈ [1,2], let

ϕ
(p)(t1, t2) = (2− p)ϕ(t1, t2)+(p−1)ϕ(t1, t2), t1 ∈ R, t2 ∈ [−t, t], (2.25)

where t = 2k ·
√

2 · 255, k = 1,2,3, for light intensity of the images in the range [0,255], is the

maximum value which the variable t2 can assume, ϕ and ϕ are as in (2.13) and (2.7), respectively.

Then ϕ(p) satisfies the following conditions:
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H1) for every t2 ∈ [−t, t], the function ϕt2 : R→R∪{−∞} defined by ϕt2(t1) = ϕ(t1, t2) is upper

semicontinuous and even on R, and ϕt2(0) ∈ R;

H2) for each t2 ∈ [−t, t], the function ψt2 : R→ R∪{−∞} defined by

ψt2(t1) =


ϕ(
√

t1, t2), if t1 ≥ 0,

−∞, if t1 < 0,

is concave on R+
0 ;

H3) ϕt2 is non-decreasing on R+
0 for every t2 ∈ [−t, t];

H4) lim
t1→+∞

ψt2(t1)
t1

= 0 for each t2 ∈ [−t, t],

H5) there exists at least a real number t1 such that the function ϕt1(t2) = ϕ(t1, t2) is not constant

on [−t, t], and ϕt1 is even on [−t, t] and non-decreasing on [0, t] for every t1 ∈ R+
0 .

Proof. We begin with proving that the function ϕ defined in (2.13) satisfies conditions H1), ...,

H4).

It is readily seen that ϕ fulfils H1).

Now we prove H2). For i = 1,2 and t1 ∈ R+
0 , set

fi(t1) = gi(
√

t1) =


λ 2 t1, if 0≤ t1 ≤ q2

i ,

λ 2 (2qi
√

t1−q2
i ), if t1 ≥ q2

i .

(2.26)

We have

ϕ t2(
√

t1) = ψ t2(t1) =
t2− t2

2

t2 f1(t1)+
t2
2

t2 f2(t1),

and hence

fi
′
(t1) =


λ 2, if 0≤ t1 ≤ q2

i ,

λ 2 qi t1−1/2, if t1 ≥ q2
i ;

fi
′′
(t1) =


0, if 0≤ t1 < q2

i ,

−1
2

λ
2 qi t1−3/2, if t1 > q2

i .

Let γt2 =
t2− t2

2

t2 . Then, 1− γt2 =
t2
2

t2 . It is not difficult to check that 0 ≤ γt2 ≤ 1, since |t2| ≤ t.

Thus, for every t1 ∈ R+
0 and t1 6= q2

1, t1 6= q2
2, t2 ∈ [−t, t], we have

ψ t2
′(t1) = γt2 f1

′
(t1)+(1− γt2) f2

′
(t1)≥ 0. (2.27)
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ψ t2
′′(t1) = γt2 f1

′′
(t1)+(1− γt2) f2

′′
(t1)≤ 0.

Observe that the inequality in (2.27) will be useful to prove H3). Since ψ t2 is of class C1 on its

domain (indeed, it is a composition of C1 functions), then it is concave on R+
0 for all t2 ∈ [−t, t].

So, ϕ satisfies condition H2).

Now we prove H3). From (2.27) it follows that ψ t2 is non-decreasing on R+
0 , and hence so is

ϕ t2 . Thus we get

ϕ t2
′(t1) = γt2 g1

′(t1)+(1− γt2)g2
′(t1)≥ 0

for each t1 ∈ R+
0 . Thus, H3) holds.

Now we show that ϕ fulfils H4). Indeed, we have

lim
t1→+∞

fi(t1)
t1

= lim
t1→+∞

λ 2 (2qi
√

t1−q2
i )

t1
= 0 (i = 1,2),

and hence

lim
t1→+∞

ψ t2(t1)
t1

= 0 for every t2 ∈ [−t, t].

Finally, we prove that ϕ satisfies H5).

Take t1 = q2. For each t2 ∈ [−t, t], it is

ϕ(q2, t2) =
t2− t2

2

t2 λ
2 (2q1 q2−q2

1)+
t2
2

t2 λ
2 q2

2,

and hence ϕ(q2,0) = λ 2 (2q1 q2− q2
1), ϕ(q2, t) = λ 2 q2

2. We claim that ϕ(q2,0) 6= ϕ(q2, t). If

not, then we would have 2q1 q2−q2
1 = q2

2, and hence 0 = q2
2−2q1 q2 +q2

1 = (q1−q2)
2, that is

q1 = q2, which is absurd, since we know that 0 < q1 < q2. Therefore, the function t2 7→ ϕ(q2, t2)

is not constant, and hence the first property of H5) is satisfied.

Moreover, it is easy to see that ϕ t1 is even on R for each t1 ∈ R.

From (2.12) it is not difficult to deduce that g2(t1)−g1(t1)≥ 0 for all t1 ≥ 0. We get

dϕ t1
dt2

(t2) =−
2 t2
t2 g1(t1)+

2 t2
t2 g2(t1) =

2 t2
t2 (g2(t1)−g1(t1))≥ 0 (2.28)

for any t1 ∈ R+
0 . Hence, the function ϕ t1 is non-decreasing on R+

0 for every t1 ∈ R+
0 . Thus, H5)

is proved.

Now we prove that for i = 1,2 the function ϕ defined in (2.7) satisfies conditions Hj), j =

1, . . . ,4.
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It is not difficult to see that, by construction, H1) holds.

We now prove H2). We begin with the case when |t2| ≤ s or t2 ≥ ζ in (2.7). For i = 1,2, set

fi(t1) = gi(
√

t1) =



λ 2t1, if 0≤ t1 ≤ q2
i ,

αi−
τ

2
(
√

t1− ri)
2, if q2

i ≤ t1 ≤ r2
i ,

αi, if t1 ≥ r2
i .

(2.29)

We have

ϕ(
√

t1, t2) = ψt2(t1) =



f1(t1), if |t2| ≤ s,

(
1− 2(|t2|− s)2

(ζ − s)2

)
f1(t1)+

2(|t2|− s)2

(ζ − s)2 f2(t1), if s < |t2| ≤
ζ + s

2
,

2(|t2|−ζ )2

(ζ − s)2 f1(t1)+
(

1− 2(|t2|−ζ )2

(ζ − s)2

)
f2(t1), if

ζ + s
2

< |t2|< ζ ,

f2(t1), if |t2| ≥ ζ .

(2.30)

We claim that fi is non-decreasing and concave on R+
0 .We get

fi
′(t1) =



λ 2, if 0≤ t1 ≤ q2
i ,

αi−
τ

2

(
1− ri√

t1

)
, if q2

i ≤ t1 ≤ r2
i ,

0, if t1 ≥ r2
i .

(2.31)

Note that fi is C1, since it is a composition of functions of class C1. Moreover, we have

fi
′′(t1) =



0, if 0≤ t1 < q2
i ,

− τ ri

4
√

t3
1

, if q2
i < t1 < r2

i ,

0, if t1 > r2
i .

(2.32)
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From this we deduce that ϕ fulfils H2), at least when |t2| ≤ s or |t2| ≥ ζ .

Now we examine the case

s < |t2| ≤
ζ + s

2
. (2.33)

We have

ψ
′
t2(t1) =

(
1− 2(|t2|− s)2

(ζ − s)2

)
f ′1(t1)+

2(|t2|− s)2

(ζ − s)2 f ′2(t1), (2.34)

ψ
′′
t2(t1) =

(
1− 2(|t2|− s)2

(ζ − s)2

)
f ′′1 (t1)+

2(|t2|− s)2

(ζ − s)2 f ′′2 (t1). (2.35)

Observe that
2(|t2|− s)2

(ζ − s)2 ≥ 0. Now we claim that
2(|t2|− s)2

(ζ − s)2 ≤ 1. Indeed, since s< |t2| ≤
ζ + s

2
,

then 0 < |t2|− s≤ ζ − s
2

<
ζ − s√

2
, and hence (|t2|− s)2 ≤ (ζ − s)2

2
, getting the claim. Therefore,

1− 2(|t2|− s)2

(ζ − s)2 ≥ 0. From this, since f ′i (t1) ≥ 0 for every t1 ≥ 0 and f ′′i (t1) ≤ 0 for each t1R+
0 ,

t1 6= q1, t1 6= q2, in the case (2.33) we obtain

ψ
′
t2(t1)≥ 0 for every t1 ∈ R+

0 , (2.36)

ψ
′′
t2(t1)≤ 0 for any t1 ∈ R+

0 , t1 6= q1, t1 6= q2. (2.37)

Note that the inequality in (2.36) will be useful to prove H3).

From (2.37), taking into account the continuity of ψt2 , we deduce that ϕ satisfies H2) also in

the case (2.33).

Now we consider the case

ζ + s
2

< |t2|< ζ . (2.38)

We get

ψ
′
t2(t1) =

2(|t2|−ζ )2

(ζ − s)2 f ′1(t1)+
(

1− 2(|t2|−ζ )2

(ζ − s)2

)
f ′2(t1), (2.39)

ψ
′′
t2(t1) =

2(|t2|−ζ )2

(ζ − s)2 f ′′1 (t1)+
(

1− 2(|t2|−ζ )2

(ζ − s)2

)
f ′′2 (t1). (2.40)
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Note that
2(|t2|−ζ )2

(ζ − s)2 ≥ 0. Now we claim that
2(|t2|−ζ )2

(ζ − s)2 ≤ 1. Indeed, as
ζ + s

2
< |t2| <

ζ , then 0 < ζ − |t2| ≤
ζ − s

2
<

ζ − s√
2

, and so (|t2| − ζ )2 ≤ (ζ − s)2

2
, getting the claim. Thus,

1− 2(|t2|−ζ )2

(ζ − s)2 ≥ 0. From this, in the case (2.38), analogously as in the case (2.33), we obtain

ψ
′
t2(t1)≥ 0 for every t1 ∈ R+

0 , (2.41)

ψ
′′
t2(t1)≤ 0 for any t1 ∈ R+

0 , t1 6= q1, t1 6= q2. (2.42)

From (2.42) and thanks to the continuity of ψt2 , it follows that ϕ satisfies H2) also in the case

(2.38).

Now we prove that ϕ satisfies H3).

First, when |t2| ≤ s or |t2| ≥ ζ , observe that it is readily seen that gi is non-decreasing on R+
0

for i = 1,2. Hence, ψt2 is non-decreasing on R+
0 , and thus H3) holds.

Moreover, when t2 satisfies the case (2.33) or the case (2.38), from (2.36) and (2.41) it follows

that ψt2 is non-decreasing on R+
0 , and hence ϕt2 is too. Thus, ϕ fulfils H3).

Now we prove H4). Let That ϕ satisfies H4) is a consequence of the fact that lim
t1→+∞

fi(t1)
t1

= 0.

Now we prove H5). Let

a(t1) = 2
g2(t1)−g1(t1)

(ζ − s)2 , t1 ∈ R.

First of all, observe that ϕ(r2,s) = g1(r2) = α , ϕ(r2,ζ ) = g2(r2) = α + ε 6= ϕ(r2,s). Thus, the

function t2 7→ ϕ(r2, t2) is not constant. Moreover, it is easy to see that the function ϕt1(t2) is even

on [−t, t] for every t1 ∈ R+
0 , since it depends on |t2|. Furthermore, it is not difficult to check that

g2(t1)≥ g1(t1) for every t1 ∈ R+
0 . (2.43)

Let t2 ∈ [0, t]. We get

ϕt1
′(t2) =−

2(t2− s)2

(ζ − s)2 g1(t1)+
2(t2− s)2

(ζ − s)2 g2(t1) (2.44)

in the case (2.33), and

ϕt1
′(t2) =−

2(t2−ζ )2

(ζ − s)2 g1(t1)−
2(t2−ζ )2

(ζ − s)2 g2(t1) (2.45)

in the case (2.38). From (2.43), (2.44) and (2.45) it follows that ϕ ′t1(t2) ≥ 0 for each t2 ∈ [0, t].

By arbitrariness of t1 ∈ R+
0 , we deduce that ϕ satisfies H5).

60



Ill-Posed Problems in Computer Vision

Now, we observe that the functions ϕ(p), p ∈ [0,2], satisfy conditions Hj), j = 1, . . . ,4, since

they are non-negative linear combinations of functions satisfying Hj), j = 1, . . . ,4. Since ϕ t1 and

ϕt1 are non-decreasing for each t1 ∈R+
0 , ϕ t2 and ϕt2 are non-decreasing for every t2 ∈ [−t, t], and

the functions t2 7→ ϕ(q2, t2), t2 7→ ϕ(r2, t2) are not constant, it follows that for every p ∈ [0,2]

there exists at least a t1 ∈ R+
0 such that the function t2 7→ ϕ(p)(t1, t2) is not constant. The other

properties of H5) hold, because the ϕ(p)’s are non-negative linear combinations of functions

satisfying H5).

2.7 Convergence of the NL-SOR algorithm

To minimize each approximation E(p), p ∈ [0,2], we use the NL-SOR algorithm.

We will prove the existence of suitable limit points, which are stationary points of E(0) (in

general, they are not minimum points of E(0)). In [38, Theorem 2] the convergence of the

algorithm is proved when E(0) is strictly convex and of class C2. Such assumptions are too

strong for the componentwise convex approximation of the regularization term in our setting,

because we deal with functions of class C1. So, we give an extension of the theorem under these

weaker hypotheses.

First, we state the following technical lemma.

Lemma 2.7.1. Let φ : [x0,x]→ R be convex, of class C1, having both left and right second

derivative on [x0,x]. Suppose that φ is second differentiable on [x0,x] \P, where P = {x j : j =

1, . . . ,N}, with x0 < x1 < .. . < xN < x.

Then, for every x ∈ [x0,x] there exist ξ ∈]x0,x[ and µ ≥ 0, such that

µ ∈ Iξ = [min{φ ′′−(ξ ),φ ′′+(ξ )},max{φ ′′−(ξ ),φ ′′+(ξ )}] (2.46)

and

φ(x) = φ(x0)+(x− x0)φ
′(x0)+

(x− x0)
2

2
µ. (2.47)

Proof. If g = f ′, then g is continuous and non-decreasing in [x0,x]. Define h : [x0,x]→ R by

h(y) = g(x0)+
g(x)−g(x0)

x− x0
(y− x0). (2.48)
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Note that h is the equation of the line passing through the points (x0,g(x0)) and (x,g(x)). Let

µ =
g(x)−g(x0)

x− x0
be its angular coefficient. We first treat the case

g′(x0)< µ < g′(x), (2.49)

and begin with considering the interval [x0,x1]. If

min{g′(x0),g′−(x1)} ≤ µ ≤max{g′(x0),g′−(x1)},

then by the Darboux theorem there is ξ ∈]x0,x1[ with µ = g′(ξ ), and in particular µ ∈ Iξ . More-

over, observe that, if

min{g′−(x1),g′+(x1)} ≤ µ ≤max{g′−(x1),g′+(x1)},

then of course µ ∈ Ix1 . From this it follows that, if

min{g′(x0),g′−(x1),g′+(x1)} ≤ µ ≤max{g′(x0),g′−(x1),g′+(x1)},

then there exists ξ ∈]x0,x1] such that µ ∈ Iξ .

By considering the interval ]x0,x2], proceeding analogously as above, it is possible to check

that, if

min{g′(x0),g′−(x1),g′+(x1),g′−(x2),g′+(x2)}≤ µ ≤max{g′(x0),g′−(x1),g′+(x1),g′−(x2),g′+(x2)},

then there is ξ ∈]x0,x2] with µ ∈ Iξ . Similarly, taking the interval ]x0,x[, we can prove that, if

min{g′(x0),g′−(x1),g′+(x1), . . . ,g′−(xN),g′+(xN),g′(x)} ≤ µ ≤

≤ max{g′(x0),g′−(x1),g′+(x1), . . . ,g′−(xN),g′+(xN),g′(x)}, (2.50)

then there exists ξ ∈]x0,x[ such that µ ∈ Iξ . Therefore, this property holds in the case (2.49),

since (2.49) implies (2.50). Analogously, it is possible to show that, even when

g′(x)< µ < g′(x0),

there exists ξ ∈]x0,x1] with µ ∈ Iξ .

Now we consider the case

g′(x)> µ and g′(x0)> µ. (2.51)
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Now we claim that there exists at least a point c ∈]x0,x[ with

g(c) = h(c). (2.52)

Indeed, it is not difficult to check that there exist two positive real numbers ε1 and ε2 such that

g(x0 + ε1)> h(x0 + ε1) and g(x− ε2)< h(x− ε2).

Set h0(y) = g(y)−h(y), y∈ [x0,x]. We get that h0 is continuous, h0(x0+ε1)> 0 and h0(x−ε2)<

0. Thus there exists c ∈]x0 + ε1,x− ε2[ with h0(c) = 0, getting the claim. Let c1 be the smallest

point satisfying (2.52). Since (g− h)(c1) = 0 and (g− h)(x) > 0 for every x < c1, we obtain

(g− h)′−(c1) < 0, and hence g′(c1) < µ . Now, arguing analogously as in the case (2.49) and

taking the interval ]x0,c1[ instead of ]x0,x[, we get the existence of an element ξ ∈]x0,c1[ such

that µ ∈ Iξ . This result can be proved even when

g′(x)< µ and g′(x0)< µ,

by arguing analogously as in the case (2.51). Then we get

g(x) = g(x0)+(x− x0)µ. (2.53)

By integrating between x0 and x both members of (2.53), we obtain

f (x) = f (x0)+(x− x0) f ′(x0)+
(x− x0)

2

2
µ.

This ends the proof.

Observe that the NL-SOR algorithm, when p = 0, can be formulated as follows:

given the initial vector x(0,mn,b)

for l = 1,2, . . .

for i = 1,2, . . . ,nm

for e = r,g,b

set the vector x(l,i,e) ∈ R3mn as in Eq. (2.54)

end for

end for

end for
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At the iterate l ∈ N, fixed i ∈ 1,2, . . . ,3m and e ∈ {r,g,b}, the vector x(l,i,e) is defined by

(x(l,i,e))(q)j =



(xprec(l,i,e))
(q)
j if i 6= j or q 6= e,

(xprec(l,i,e))
(q)
j −

ω

T
∂E(0)(xprec(l,i,e))

∂x(e)i

if i = j and q = e,

(2.54)

where

xprec(l,i,e) =



x(l,i,e−1) if e 6= r;

x(l,i−1,b) if i 6= 1,e = r;

x(l−1,nm,b) if i = 1,e = r.

The formulated algorithm allows to denote the image vectors actually defined at each iterate

l, at every pixel i and at each color e. We observe that the algorithm here proposed is a particular

case of that given in Section 2.7, and has been suitably modified in order to give a rigorous

definition of the image vector x at every iterate l, at every pixel i and at each color e.

Moreover, fixed the step (l, i,e), let x(l,i,e) \ (x(l,i,e))(e)i ∈R3nm−1 be the vector whose elements

are those of x(l,i,e) except (x(l,i,e)))
(e)
i . The value of this pixel (x(l,i,e)))

(e)
i is an unknown variable,

which we call z. For each fixed value of x(l,i,e) \ (x(l,i,e)))(e)i , let us define the following energy

function E(l,i,e) : R→ R by

E(l,i,e)
(z) = E(0)(x(l,i,e) \ (x(l,i,e)))(e)i ,z). (2.55)

Theorem 2.7.2. Let E(0) : R3nm→ R be a function of class C1 and coercive, that is

lim
‖x‖→+∞

E(0)(x) = +∞ ; (2.56)

fix x(0,nm,b) ∈R3nm, and let {x(l,i,e)}, l ∈N, i = 1,2, . . . ,3m,e ∈ {r,g,b}, be the sequence defined

iteratively in (2.54).

where 0 < ω < 2 and

T > max
i=1,2,...,nm,e=r,g,b

max
x

{
∂ 2
+E(0)(x)

(∂x(e)i )2
,

∂ 2
−E(0)(x)

(∂x(e)i )2

}
. (2.57)
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Let E(l,i,e) : R→R be the function defined as in (2.55). Assume that E(l,i,e) is convex, admits

both left and right derivative on R and is not second differentiable (at most) at a finite number of

points.

Then, lim
(l,i,e)

∇E(0)(x(l,i,e)) = 0.

Proof. We begin with proving that, during the updating of (x(l,i,e)))
(e)
i , the function E(0) is non-

increasing. If

E(l,i,e)′
((xprec(l,i,e)))

(e)
i ) = 0, (2.58)

then, since in (2.54) it is (xprec(l,i,e)))
(e)
i =

∂E(0)(xprec(l,i,e))
∂x(e)i

, we get

(x(l,i,e))(e)i = (xprec(l,i,e))
(e)
i (2.59)

and hence x(l,i,e) = xprec(l,i,e), and the value of the energy function does not change.

Now we treat the case when

(xprec(l,i,e)))
(e)
i 6= 0. (2.60)

Note that, by (2.56), we get

lim
z→+∞

E(l,i,e)
(z) = lim

z→−∞
E(l,i,e)

(z) = +∞, (2.61)

that is the function E(l,i,e) is coercive on R. Since E(l,i,e) is also continuous, then, by [16, Theorem

2.32], E(l,i,e) assumes the minimum value, say (t∗)
(l,i,e).

We get that, for any t > (t∗)
(l,i,e), the level set Lt = {z ∈ R : E(l,i,e)

(z) = t} has exactly two

points, and E(l,i,e)
(z) < t whenever z is in the interior of the interval whose endpoints are the

elements of Lt Now we claim that, for every t > (t∗)
(l,i,e), the level set Lt = {z ∈ R : E(l,i,e)

(z) =

t(l,i,e)} has exactly two points.

Since E(l,i,e) is convex and differentiable, we get that E(l,i,e)
(z) = (t∗)

(l,i,e) if and only if

E(l,i,e)′
(z) = 0. From the continuity of E(l,i,e) and (2.56) it follows that E(l,i,e) assumes all values

t ∈ [(t∗)
(l,i,e),+∞[. Since E(l,i,e)′ is non-decreasing, then E(l,i,e)′ is positive (resp. negative), and

hence E(l,i,e) is strictly increasing (resp. decreasing) at all points which are greater (resp. smaller)

than the minimum points of E(l,i,e). Thus, E(l,i,e) assumes each value t > (t∗)
(l,i,e) exactly two

times, getting the claim.
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Now, set t(l,i,e)=E(l,i,e)
((xprec(l,i,e)))

(e)
i ), and Lt(l,i,e) = {(x

prec(l,i,e)))
(e)
i ,z(l,i,e)}, where E(l,i,e)

(z(l,i,e))=

t(l,i,e).

Without loss of generality, let us consider the case z(l,i,e) < (xprec(l,i,e)))
(e)
i . Note that, in this

case, E(l,i,e)′
(z(l,i,e))< 0, while E(l,i,e)′

((xprec(l,i,e)))
(e)
i )> 0.

By hypothesis, taking into account that E(l,i,e) is of class C1, from Lemma 2.7.1 applied to

the interval [z(l,i,e),(xprec(l,i,e)))
(e)
i ] we find ξ ∈]z(l,i,e),(xprec(l,i,e)))

(e)
i [ and µ ≥ 0, such that

min{E(l,i,e)′′
−(ξ ),E

(l,i,e)′′
+(ξ )} ≤ µ ≤max{E(l,i,e)′′

−(ξ ),E
(l,i,e)′′

+(ξ )} (2.62)

and

E(l,i,e)
(z(l,i,e)) = E(l,i,e)

((xprec(l,i,e)))
(e)
i )+E(l,i,e)′

((xprec(l,i,e)))
(e)
i )(z(l,i,e)− (xprec(l,i,e)))

(e)
i )

+
1
2

µ (z(l,i,e)− (xprec(l,i,e)))
(e)
i )2.

Since E(l,i,e)
((xprec(l,i,e)))

(e)
i ) = E(l,i,e)

(z(l,i,e)), then we have

E(l,i,e)′
((xprec(l,i,e)))

(e)
i )(z(l,i,e)− (xprec(l,i,e)))

(e)
i )+

1
2

µ (z(l,i,e)− (xprec(l,i,e)))
(e)
i )2 = 0. (2.63)

Note that from (2.62) and (2.57) we get

µ ≤ T. (2.64)

Now we claim that µ > 0. Indeed, if µ = 0, then from (2.63) we get

E(l,i,e)′
((xprec(l,i,e)))

(e)
i )(z(l,i,e)− (xprec(l,i,e)))

(e)
i ) = 0,

and hence z(l,i,e) = (xprec(l,i,e)))
(e)
i , because E(l,i,e)′

((xprec(l,i,e)))
(e)
i ) > 0. This is absurd, because

z(l,i,e) < (xprec(l,i,e))(e)
i . Therefore, we get the claim. From (2.63) we obtain

(xprec(l,i,e)))
(e)
i − z(l,i,e) =

2
µ

E(l,i,e)′
((xprec(l,i,e)))

(e)
i ). (2.65)

We recall that, by (2.54), it is

(x(l,i,e)))
(e)
i = (xprec(l,i,e)))

(e)
i −

ω

T
E(l,i,e)′

((xprec(l,i,e)))
(e)
i ). (2.66)

Since 0 < ω < 2, from (2.64), (2.65) and (2.66) we have

0 < (x(l,i,e)))
(e)
i − xprec(l,i,e))

(e)
i = (x(l,i,e)))

(e)
i =

ω

T
E(l,i,e)′

((xprec(l,i,e)))
(e)
i )< (2.67)

<
2
T

E(l,i,e)′
(xprec(l,i,e))(e)

i )≤ 2
µ

E(l,i,e)′
(xprec(l,i,e)))

(e)
i = (xprec(l,i,e)))

(e)
i − z(l,i,e).
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From (2.67) it follows that

z(l,i,e) < (x(l,i,e)))
(e)
i < (xprec(l,i,e)))

(e)
i when z(l,i,e) < (xprec(l,i,e)))

(e)
i . (2.68)

Analogously, it is possible to prove that

z(l,i,e) > (x(l,i,e)))
(e)
i > (xprec(l,i,e)))

(e)
i when z(l,i,e) > (xprec(l,i,e)))

(e)
i . (2.69)

Thus, in the case (2.60), we get E(l,i,e)
((x(l,i,e)))

(e)
i )< E(l,i,e)

((xprec(l,i,e)))
(e)
i ). Therefore, in both

cases (2.58) and (2.60), the sequence {E(l,i,e)
((x(l,i,e)))

(e)
i )}, l ∈ N, i = 1,2, . . . ,nm, e ∈ {r,g,b},

is non-increasing. Since E(0) is bounded from below, then the sequence {E(l,i,e)
((x(l,i,e)))

(e)
i )},

l ∈ N, i = 1,2, . . . ,nm, e ∈ {r,g,b}, is non-increasing, and hence it is convergent.

Now we claim that the sequence {(x(l,i,e)))(e)i − (xprec(l,i,e)))
(e)
i }, l ∈ N, i = 1,2, . . . ,nm, e ∈

{r,g,b}, converges to 0.

Fix l ∈N, i = 1,2, . . . ,nm, e ∈ {r,g,b}. If E(l,i,e)′
((xprec(l,i,e)))

(e)
i ) = 0, then, as seen in (2.59),

we get (x(l,i,e)))
(e)
i = (xprec(l,i,e)))

(e)
i . Now we consider the case when E(l,i,e)′

((xprec(l,i,e)))
(e)
i ) 6= 0.

By an argument similar to that used in the proof of [38, Theorem 2], from Lemma 2.7.1 applied

to the interval whose endpoints are (x(l,i,e)))
(e)
i and (xprec(l,i,e)))

(e)
i , we find a non-negative real

number µ with

E(l,i,e)
((xprec(l,i,e)))

(e)
i )−E(l,i,e)

((x(l,i,e)))
(e)
i ) = E(l,i,e)′

((xprec(l,i,e)))
(e)
i )((xprec(l,i,e)))

(e)
i − (x(l,i,e)))

(e)
i )

− µ

2
((x(l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2. (2.70)

From (2.66) we get

(x(l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i = ((x(l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2 T

ω E(l,i,e)′
((xprec(l,i,e)))

(e)
i )

. (2.71)

From (2.70) and (2.71) we obtain

0 < E(l,i,e)
((xprec(l,i,e)))

(e)
i )−E(l,i,e)

((x(l,i,e)))
(e)
i ) =

T
ω

((x(l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i )2

− µ

2
((x(l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2 = (2.72)

=

(
T
ω
− µ

2

)
((x(l,i,e)))

(e)
i − (xprec(l,i,e)))

(e)
i )2.

As 0 < ω < 2 and 0≤ µ < T , we get

T
ω
− µ

2
≥ T

(
1
ω
− 1

2

)
> 0. (2.73)

67



Ill-Posed Problems in Computer Vision

From (2.72) and (2.73) we obtain

0≤ ((x(l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i )2 ≤ 2ω

T (2−ω)
(E(l,i,e)

((xprec(l,i,e)))
(e)
i )−E(l,i,e)

((x(l,i,e)))
(e)
i )).(2.74)

Note that (2.74) holds also when E(l,i,e)′
((xprec(l,i,e)))

(e)
i ) = 0. Thus, in both cases (2.58) and

(2.60), from (2.74) and the convergence of the sequence {E(l,i,e)
((x(l,i,e)))

(e)
i )}, l ∈N, i= 1,2, . . . ,nm,

e ∈ {r,g,b}, it follows that the sequence {(E(l,i,e)
((xprec(l,i,e)))

(e)
i )−E(l,i,e)

((x(l,i,e)))
(e)
i ))}, l ∈N,

i = 1,2, . . . ,nm, e ∈ {r,g,b}, converges to 0. From this it follows that

lim
(l,i,e)

((x(l,i,e)))
(e)
i − (xprec(l,i,e)))

(e)
i ) = 0, (2.75)

getting the claim.

By (2.54), we get

(x(l,i,e))(q)j − (xprec(l,i,e))
(q)
j =−ω

T
∂E(0)(xprec(l,i,e))

∂x(e)i

. (2.76)

By arbitrariness of i ∈ {1,2, . . . ,nm} and e ∈ {r,g,b}, from (2.75) and (2.76) we deduce that

lim
(l,i,e)

∇E(0)(x(l,i,e)) = 0, that is the assertion.

2.8 Componentwise convexity of the first approximation

Now we prove that the first approximation is componentwise convex.

Theorem 2.8.1. When p = 0, the function E(p) in (2.14) is componentwise convex.

Proof. We recall that ϕ is componentwise convex on R2 with respect to t1 and t2. Fix k∈{1,2,3}

and c ∈ Ck, and choose Ξk
c ∈ {Nk

c ,V
k
c }. Now we claim that the function x 7→ ϕ(Ξk

cx,Ξπk(c)x)

is componentwise convex with respect to the components of x ∈ R3nm. Indeed, fix x(e)i, j with

i ∈ {1,2, . . . ,n}, j ∈ {1,2, . . . ,m} and e ∈ {r,g,b}.

Now we prove the convexity of ϕ with respect to the variable x(e)i, j , in the following three

cases:

I) (i, j) 6∈ c∪πk(c);

II) (i, j) ∈ c;

III) (i, j) ∈ πk(c).
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We observe that it is impossible that (i, j) ∈ c∩πk(c), thanks to our definition of πk(c).

Fix arbitrarily u,w ∈ R and t ∈ [0,1].

In case I), note that Ξk
cx and Ξk

πk(c)
x are independent of the value of the variable x(e)i, j . So, we

get the function ϕ evaluated in Ξk
c, where all pixels are fixed except x(e)i, j .

Fixed an image x, let x\ x(e)i, j ∈ R3nm−1 be the vector whose elements are those of x with the

exception of x(e)i, j . Observe that the value of this pixel x(e)i, j is an unknown variable. We have:

ϕ(Ξk
c(x\ x(e)i, j ,x

(e)
i, j = tu+(1− t)w),Ξk

πk(c)
(x\ x(e)i, j ,x

(e)
i, j = tu+(1− t)w)) =

= t ϕ(Ξk
c(x\ x(e)i, j ,x

(e)
i, j = u),Ξk

πk(c)
(x\ x(e)i, j ,x

(e)
i, j = u))

+ (1− t)ϕ(Ξk
c(x\ x(e)i, j ,x

(e)
i, j = w),Ξk

πk(c)
(x\ x(e)i, j ,x

(e)
i, j = w)),

since

Ξ
k
c(x\ x(e)i, j ,x

(e)
i, j = a) = Ξ

k
c(x\ x(e)i, j ,x

(e)
i, j = b) and (2.77)

Ξ
k
πk(c)

(x\ x(e)i, j ,x
(e)
i, j = a) = Ξ

k
πk(c)

(x\ x(e)i, j ,x
(e)
i, j = b) (2.78)

for each a,b ∈ R.

Now we deal with the case II).

It is not difficult to see that, since the finite difference operators Dk
c are linear and the norm

‖ · ‖2 is a convex function, the operators Ξk
c and Ξπk(c) are convex on their domain. We get

ϕ(Ξk
c(x\ x(e)i, j ,x

(e)
i, j = tu+(1− t)w),Ξk

πk(c)
(x\ x(e)i, j ,x

(e)
i, j = tu+(1− t)w))≤

≤ ϕ(t Ξ
k
c(x\ x(e)i, j ,x

(e)
i, j = u)+(1− t)Ξk

c(x\ x(e)i, j ,x
(e)
i, j = w),Ξk

πk(c)
(x\ x(e)i, j ,x

(e)
i, j = tu+(1− t)w))≤

≤ t ϕ(Ξk
c(x\ x(e)i, j ,x

(e)
i, j = u),Ξk

πk(c)
(x\ x(e)i, j ,x

(e)
i, j = u)) (2.79)

+ (1− t)ϕ(Ξk
c(x\ x(e)i, j ,x

(e)
i, j = w),Ξk

πk(c)
(x\ x(e)i, j ,x

(e)
i, j = w)).

The first inequality in (2.79) holds, since Ξk
c is (globally) convex. Note that ϕ is increasing in

the first component. Furthermore, the third inequality in (2.79) follows from (2.78), since the

function (t1, t2) 7→ ϕ(t1, t2) is componentwise convex with respect to the variables t1 and t2, and

since (i, j) 6∈ πk(c).

The case III) is analogous to the case II). Thus, the assertion follows.
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Chapter 3

A blind source separation technique

for document restoration

In Section 3.1 we present the features of the physical problem and in Section 3.2 we describe

some of the approximated mathematical models proposed in the literature. In particular, in

Subsection 3.2.1 we present the non-stationary and locally linear model we consider. In Sec-

tion 3.3 we analyze the nature of this new model and formulate some constraints to reduce its

ill-posedness. In Section 3.4 we develop the MATODS algorithm to deal with the local lin-

ear problem, and in Section 3.6 we discuss the NIT-MATODS algorithm for working with the

new model. In Section 3.7 we compare experimentally the MATODS algorithm with other fast

and unsupervised methods existing in the literature, and show how the NIT-MATODS algorithm

performs in restoring real ancient documents.

3.1 The physical problem

The bleed-through is a complex physical phenomenon that involves several parameters, such as,

for instance, the properties of the paper, the distribution of the paper fibers, and the quality and

thickness of the ink. From a physical point of view, the bleed-through phenomenon is a diffusion

process of ink through paper [95, 171]. Many similar phenomena, like the seepage of water or

oil through soil, are usually described by diffusion models [141, 160]. In general, to consider
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a model at micro scale is computationally unfeasible, because of the sheer number of variables

that are involved, thus one typically considers an equivalent model at macroscopic scale, which

describes with a good approximation the average behavior of the micro-scale phenomenon in

question.

Various authors have proposed different mathematical models to approximate the physical

phenomena of bleed-through and show-through when both the images of the recto and verso side

of the document are available. The variational model proposed in [62] works with an estimated

background, that is, the gray level of unprinted/unwritten paper. An anisotropic diffusion model

is given in [61], and an invertible nonlinear model that considers the halftoning process of the

printers, is considered in [6]. Other methods use just a single side observation and reduce the

problem to a segmentation one (see also [164]). In [148], a physical analysis of the show-through

effect produced by a scanner in a digital image of a document is performed, and a model which

takes into account the reflection, transmission, and scattering parameters of the paper is devel-

oped. Although extremely simplified with respect to the physical phenomenon, this model is

still quite complex, so much so that some approximations are needed to make it tractable. A

generalized version of this model for bleed-through removal is discussed in [119, 145]. When

the character of the side under examination is sufficiently dark, it does not change, independently

of the degradation coming from the opposite side.

3.2 Approximated mathematical models

We represent a gray level image as a vector belonging to Rn2
, whose elements are the light inten-

sity (which varies between 0 and 255) of the pixels, taken in lexicographic order. We consider

a document as a pair of images that represent its sides, the front (recto) and the back (verso).

In particular, we denote by x̂r ∈ [0,255]n
2

the front image of the observed document, and by

x̂v ∈ [0,255]n
2

the associated back image. Here, we assume that the recto data x̂r and the verso

data x̂v are already spatially registered, that is, the pixel positions of the recto and of the verso of

the document correspond, if we do a horizontal flip of the verso. However, the problem of reg-

istration of documents is an open and challenging issue (see for instance [21, 56, 77, 146, 173]).

We denote the observed document by x̂=
[

x̂r x̂v

]
∈ [0,255]n

2×2, and the source ideal document
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by ŝ =
[

ŝr ŝv

]
∈ [0,255]n

2×2. The blind separation problem in document restoration amounts

to estimating the ideal document from the observed document, without knowing the parameters

underlying the back-to-front and front-to-back interference related to the model.

The nonlinear model proposed in [119, 132, 133, 145] is

x̂r(i) = ŝr(i)eqv(1−ŝv(i)), (3.1)

x̂v(i) = ŝv(i)eqr(1−ŝr(i)), i = 1, . . . ,n2,

where qv,qb ∈ R+ are the interference levels that affect the intensity values from the recto to

the verso and vice versa, respectively. Some nonlinear models that assume that the interference

levels depend on the location are proposed in [71, 104, 157]. This assumption makes the model

non-stationary, that is, not translation invariant. In particular the nonlinear model proposed in

[157] is

x̂r(i) = ŝr(i)
(

ŝv(i))
255

)qv(i)

, (3.2)

x̂v(i) = ŝv(i)
(

ŝr(i))
255

)qr(i)

, i = 1, . . . ,n2.

The hypothesis of non-stationarity is significant, as in real ancient documents the level of in-

terference varies highly from pixel to pixel. Figure 3.1 shows a detail of an ancient document,

where the verso has been horizontally mirrored for the reader’s convenience. From this figure it

is evident that an ink infiltration law independent of the position cannot be determined in general.

The algorithms proposed in [71, 157] for the resolution of the related inverse problem are fast

Figure 3.1: Detail of the document in Figure 3.19 with a horizontally flipped verso.

heuristics. In order to obtain more precise results, a computationally more expensive regularized

problem should be investigated (see also [69, 155]).
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3.2.1 A non-stationary locally linear model

In this work, in order to obtain an accurate algorithm with low computational cost, we propose a

new non-stationary and locally linear model. Namely, we partition the domain of the document,

a set of pixels of size n×n, into (n/ν)2 disjoint subdomains of size ν×ν . On each subdomain

we approximate the problem by means of the the classical linear model (see also [49, 98, 97, 99,

154, 156])

x̂T = AŝT , (3.3)

where the symbol ·T denotes the transpose operator of a matrix, x̂ ∈ [0,255]ν
2

is the observed

document in the involved subdomain, ŝ ∈ [0,255]ν
2

is the ideal document, and A ∈ R2×2 is

called mixture matrix. We assume that the entries of the matrix A vary smoothly with respect

to the corresponding entries in the mixture matrices in the adjacent subdomains. The size of

the subdomains should be chosen taking into account both the accuracy of the model (for small

subdomain dimensions) and the computational cost for its resolution (for large dimensions).

In the next sections we focus on the linear problem related to the equation (3.3), while in

Section 3.6 we use the results obtained for the resolution of the linear problem to solve the non-

stationary model proposed here.

3.3 Analysis of the linear problem

In this section we discuss the problem of estimating both the ideal sources and the mixture

matrix from the observed data using the linear equation (3.3), which is a BSS problem (see also

[49, 155]). If we have an invertible estimate Ã of A, then an estimate of s is

s̃T = Ã−1x̂T . (3.4)

Since there are infinitely many choices of Ã, our problem admits infinitely many solutions, and

is ill-posed in the sense of Hadamard. Even if we assume that Ã and s̃ are nonnegative matrices,

the problem is NP-hard (see [159]) and ill-posed (see [75]). To overcome this, it is necessary to

impose some constraints on the solutions.

Since the color of the paper is the same for each part of the document, we assume that the

value of the source background, that is the graylevel of unprinted/unwritten paper, is the same as
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the background of the data. This value corresponds to the light intensity of the paper on which

the document is written. In order to satisfy this requirement, we assume that A is a one row-sum

matrix, that is,

a11 +a12 = a21 +a22 = 1. (3.5)

In [26] we prove that if (Ã, s̃) is a solution to the linear model in equation (3.3), with Ã nonsingu-

lar and such that ã22 6= ã12 and ã11 6= ã21, then there exist t1, t2 6= 0 and a one row-sum matrix A,

such that (A,s) is a solution of (3.3), with s =
[

t1s̃r t2s̃v

]
. In other words, for a given estimation

of the solution, it is sufficient to multiply the estimated sources by some given nonzero parame-

ters in order to obtain a solution with a one row-sum estimated mixture matrix. It is easy to see

that if (Ã, s̃) is a solution to the linear model in equation (3.3), and Ã is singular, then there exists

t ∈R such that xv = txr. In Subsection 3.5.11 we show how to find a more realistic solution with

a one row-sum mixing matrix in this case. When (Ã, s̃) is a solution with ã11 = ã21 or ã12 = ã22.

If ã11 = ã21 or ã12 = ã22, then one of the estimated sources usually corresponds to the common

background of the recto and the verso, which is a pattern that is equally present on the two sides

of the document. An example of this case is shown in Figure 3.2. Therefore, requiring that the

mixture matrix is one row-sum is not a restriction.

(a) Observed document. (b) Solution with ã11 = ã21. (c) Solution with a one row-sum

mixture matrix.

Figure 3.2: One row-sum mixture matrix reconstruction.

A remarkable feature of our approach is that a high light intensity indicates the presence of

meaningful information (for example, a letter or a figure), whereas a low light intensity corre-

sponds to the absence thereof. Since the background is usually lighter in color while text or

figures are darker, we apply the change of variables

x = mE− x̂, s = mE− ŝ, (3.6)
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where E ∈ Rn2×2 is the matrix such that

ei, j = 1 for each i = 1,2, . . . ,n2 and j = 1,2, (3.7)

and m is the maximum between the light intensity on the two sides of the document. Note that,

since we deal with paper documents, we assume that this maximum is achieved on the back-

ground. In view of (3.6), the values of the light intensity corresponding to the background are

equal to 0, while the pixels containing information have positive light intensity values no greater

than m. Motivated by the physical interpretation of these values, we impose that the estimated

sources have to satisfy this property, as the values zero and m correspond to the background color

and the black color, respectively. Since A is a one row-sum matrix, we get

ET = AET , (3.8)

and hence from (3.3) and (3.8) we obtain

xT = mET −AŝT = mAET −AŝT = A(mET − ŝT ) = AsT . (3.9)

Here we define the following 2×2 data overlapping matrix of the observed data.

C =

c11 c12

c21 c22

= xT x =

xT
r · xr xT

r · xv

xT
v · xr xT

v · xv

 . (3.10)

This matrix, when xr and xv have zero mean, corresponds to the data covariance matrix. The

matrix C tells how much the text on the front overlaps with that on the back. Indeed in our case,

since x is nonnegative, the data overlapping matrix is always nonnegative, and is diagonal if and

only if there is no overlapping text from the recto to the verso of the document. In particular we

refer to the entries d = c12 = c21 as the data overlapping level.

The source overlapping matrix can be defined similarly as

P =

p11 p12

p21 p22

= sT s =

sT
r · sr sT

r · sv

sT
v · sr sT

v · sv

 .
It is easy to see that the matrices C and P are symmetric and positive semidefinite. We refer to

the value

k = p12 = p21 = sT
r · sv (3.11)

as the source overlapping level. Since we assume that the text of the recto of the document

partially overlaps with that on the verso, the estimation of the level k plays an important role in
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the design of the technique we propose. In fact, we claim that a correct estimation of k leads to

more accurate estimates of the original sources.

3.4 A new technique for solving the linear problem

We consider the two cases of singular and nonsingular data overlapping matrices separately. Now

we treat the latter, while the former will be dealt with in Subsection 3.5.11.

We would like to estimate not only the ideal sources sr and sv and the mixture matrix A,

but also the source overlapping level k. Since in our algorithm we impose a non-negativity

constraint on the estimated sources s̃r and s̃v, the corresponding value of k represents the level of

overlapping of the recto of the source document with its verso or, equivalently, the portion of text

of the estimated front source that is disjoint from that of the estimated back source. The value of

k is different from zero, in general, thus the method we propose can be classified as a Correlated

Component Analysis (CCA) technique (see also [14, 139, 152, 153]).

We define a symmetric factorization of a symmetric and positive definite matrix H ∈ Rn×n

as an identity of the type H = ZZT , where Z ∈ Rn×n. Observe that, given an orthogonal matrix

Q∈Rn×n and a symmetric factorization of the type H = ZZT , then ZQ(ZQ)T is also a symmetric

factorization of H. Moreover, if we consider any two symmetric factorizations H = Z1ZT
1 and

H = Z2ZT
2 , then there is an orthogonal matrix Q ∈ Rn×n such that Z1 = Z2Q.

In the 2×2 case, the set of the orthogonal matrices is the union of all rotations and reflections

in R2, which are expressed as

Q1(θ) =

sinθ −cosθ

cosθ sinθ

 and Q−1(θ) =

sinθ cosθ

cosθ −sinθ

 , (3.12)

respectively, as θ varies in ]0,2π]. As C =C1/2(C1/2)T =C1/2C1/2 is a symmetric factorization

of C, then all possible factorizations of C are given by

Z(ι)(θ) =C1/2Q(ι)(θ) =

ρ11 ρ12

ρ21 ρ22

Q(ι)(θ) =

z(ι)11 (θ) z(ι)12 (θ)

z(ι)21 (θ) z(ι)22 (θ)

 , (3.13)

where θ ∈]0,2π] and ι ∈ {−1,1}. In particular, we have that

z(1)11 (θ) = z(−1)
11 (θ), z(1)12 (θ) =−z(−1)

12 (θ), z(1)21 (θ) = z(−1)
21 (θ), z(1)22 (θ) =−z(−1)

22 (θ).

(3.14)
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In order to obtain a joint estimation of the mixture matrix, the source matrices, and the source

overlapping level, we use an iterative algorithm. At the lth step we assume that

C = xT x = AsT sAT = AP̃AT , (3.15)

where P̃ is a symmetric and positive definite estimate of the source overlapping matrix P. In P̃

we set

p̃12 = p̃21 = k(l), (3.16)

where k(l) is the estimate of the source overlapping level obtained at the (l−1)th step (we assume

that k(0) = 0). Note that for the moment we do not assign a value to p̃11 and p̃22, as they will be

determined later by imposing that the estimated mixture matrix is one row-sum. Let

P̃ = YY T (3.17)

be a symmetric factorization, where Y is a nonsingular matrix that by (4.12) satisfies

y11 y21 + y12 y22 = k(l). (3.18)

By virtue of (4.11) and (4.13), it holds that

C = AYY T AT = AY (AY )T ,

that is, AY realizes a factorization of C. For any given choice of θ ∈]0,2π] and ι ∈ {−1,1}, we

define an estimate Ã(ι)(θ) of the mixture matrix A as a matrix such that Ã(ι)(θ) = Z(ι)(θ)Y−1,

where Z(ι)(θ) is as in (4.9). We get that

a(ι)11 (θ) =
z(ι)11 (θ)y22− z(ι)12 (θ)y21

y11 y22− y21 y12
, a(ι)12 (θ) =

z(ι)12 (θ)y11− z(ι)11 (θ)y12

y11 y22− y21 y12
, (3.19)

a(ι)21 (θ) =
z(ι)21 (θ)y22− z(ι)22 (θ)y21

y11 y22− y21 y12
, a(ι)22 (θ) =

z(ι)22 (θ)y11− z(ι)21 (θ)y12

y11 y22− y21 y12
,

and by imposing that Ã(ι)(θ) satisfies the one row-sum condition in equation (3.5), we have that

z(ι)11 (θ)y22− z(ι)12 (θ)y21 + z(ι)12 (θ)y11− z(ι)11 (θ)y12 = y11 y22− y21 y12, (3.20)

z(ι)21 (θ)y22− z(ι)22 (θ)y21 + z(ι)22 (θ)y11− z(ι)21 (θ)y12 = y11 y22− y21 y12.

Thus, the matrix Y has to satisfy the conditions in equations (4.14) and (4.16). The nonlinear

system given by the equations (4.14) and (4.16) has infinitely many solutions. For the sake of
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convenience, we choose the solution

y11 =
detC− k(l)(z(ι)11 (θ)− z(ι)21 (θ))

2

(z(ι)22 (θ)− z(ι)12 (θ))detZ(ι)(θ)
, y12 = k(l)

z(ι)11 (θ)− z(ι)21 (θ)

detZ(ι)(θ)
, (3.21)

y21 = 0, y22 =
detZ(ι)(θ)

z(ι)11 (θ)− z(ι)21 (θ)
.

This choice has several desirable consequences. First, from equations (4.10) and (4.15) we get

that Ã(1)(θ) = Ã(−1)(θ) for all θ ∈]0,2π]. Moreover, from equations (4.8) and (4.9) we deduce

that Z(θ) = −Z(θ +π), for θ ∈]0,π], thus from equations (4.15) and (4.17) we can conclude

that

Ã(θ) = Ã(θ +π), (3.22)

for all θ ∈]0,π].

Therefore, in the reminder we consider only the case ι = 1, pose Ã(θ) = Ã(1)(θ) and Z(θ) =

Z(1)(θ) for all θ ∈]0,π], and in general consider only the values of θ belonging to the interval

]0,π].

Recall that Y must be non-singular, as Y realizes a symmetric factorization of the non-singular

matrix P. It is not difficult to see that, if

k(l) < ksup =
detC

(ρ11−ρ21)2 +(ρ12−ρ22)2 , (3.23)

where ρi, j, for i, j = 1,2, are the entries of the matrix C1/2 in the equation (4.9), then Y is non-

singular for all θ ∈]0,π]. We refer to ksup in the equation (3.23) as the source overlapping level

upper bound.

Moreover, the equations in (4.17) are well defined if z11(θ) 6= z21(θ) and z12(θ) 6= z22(θ).

It easy to see that z11(θ) = z21(θ) or z12(θ) = z22(θ) when θ assumes the values ϕ + t π

2 , with

t ∈ Z and

ϕ =


arctan

(
ρ22−ρ12

ρ11−ρ21

)
, if ρ11 6= ρ21,

π

2
, if ρ11 = ρ21

. (3.24)

In Subsection 3.5.2, in formulating the minimization algorithm, we show how to avoid these

values.

For any θ ∈]ϕ,ϕ + π

2 [∪]ϕ + π

2 ,ϕ +π[, from equation (3.9) we deduce that an estimate of the

ideal sources s is given by

s̃(θ)T =

[
s̃r(θ) s̃v(θ)

]T

= Ã−1(θ)xT , (3.25)
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which combined with the fact that Ã−1(θ) = Ã1(θ) = Z(1)(θ)Y−1 and (4.16), gives

s̃r(θ) =

(
z22(θ)

detC− k(l)(z11(θ)− z21(θ))
2

(z22(θ)− z12(θ))detC
− z21(θ)

k(l)(z11(θ)− z21(θ))

detC

)
xr +(

−z12(θ)
detC− k(l)(z11(θ)− z21(θ))

2

(z22(θ)− z12(θ))detC
+ z11(θ)

k(l)(z11(θ)− z21(θ))

detC

)
xv,(3.26)

s̃v(θ) = − z21(θ)

z11(θ)− z21(θ)
xr +

z11(θ)

z11(θ)− z21(θ)
xv.

As we assumed that our estimated sources have intensity values between 0 and m, we take the

orthogonal projection of the estimate s(l)ι (θ) on the space [0,m]ν
2×2 with respect to the Frobenius

norm. Namely, we apply to the estimate of the sources the function that maps a vector s ∈ Rν2

to the ν2-dimensional vector τ(s), whose elements are

(τ(s))i =


0, if si ≤ 0,

si, if 0 < si ≤ m,

m, if si > m,

i = 1, . . . ,ν2. (3.27)

By this transformation, the projections of the estimated source images τ(s̃(l)r,ι (θ)) and τ(s̃(l)v,ι (θ))

are guaranteed to be nonnegative (see also [42, 50, 74, 134]). From now on, we consider the

projections above as the new source estimates. Thus, the estimated source overlapping level is

a nonnegative value, and it is zero if and only if there is no overlapping text from the recto to

the verso of the estimated source document. Hence, among the possible values of θ in ]ϕ,ϕ +

π

2 [∪]ϕ + π

2 ,ϕ +π[, we find a value θ̃ that minimizes the objective function

g(k(l),θ ,C) = τ(s̃r(θ))
T · τ(s̃v(θ)). (3.28)

Note that, from equations (4.18) and (4.20), it follows that the function g is periodic in the

variable θ with period π . Then we set

k(l+1) = g(k(l), θ̃ ,C), (3.29)

and we repeat this process until we find an index l such that k(l+1) = k(l). It easy to see that if

τ(s̃r(θ̃)) = s̃r(θ̃) and τ(s̃v(θ̃)) = s̃v(θ̃), (3.30)

then the condition (3.29) holds. In this case the estimated solution s̃(θ̃) belongs to the space

[0,m]ν
2×2, as required. We note that in all the experiments we performed, when a fixed point

was reached the condition (3.30) was always satisfied.
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The steps of the algorithm described in this section can be summarized as follows.

function MATODS(x̂)

Determine the maximum value m of x̂;

x = mE− x̂;

C = xT x;

k(−1) =−2ε;

k(0) = 0;

l = 0;

while (|k(l)− k(l−1)| ≥ ε) do

θ̃ = argmin(function g(k(l), ·,C));

k(l+1) = g(k(l), θ̃ ,C);

l = l +1;

end while

Z(θ̃) =C1/2Q1(θ̃);

Compute s̃r(θ̃) and s̃v(θ̃) as in (4.21);

return mE− τ(s̃(θ̃))

Here ε is a fixed positive real number that represents a suitable tolerance threshold, while the

function g(·, ·, ·) is computed as follows.

function g(k,θ ,C)

Z(θ) =C1/2Q1(θ);

Compute s̃r(θ) and s̃v(θ) as in (4.21);

return (τ(s̃r(θ)))
T · τ(s̃v(θ))

In the next subsection we describe the procedure we use to minimize the objective function

g with respect to the variable θ . We refer to this method as the MATODS algorithm, which is a

parameter-free, and thus unsupervised, technique.
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3.5 The objective function minimization algorithms

In this section we study the problem of finding the minimum of the objective function g(k, ·, ι ,C)

(see (3.28) ), for ι ∈ {1,−1} and for a positive definite matrix C ∈R2×2. We minimize the func-

tions g(k, ·,1,C) and g(k, ·,−1,C), and pose ι(l) = 1 if min
θ∈[0,2π]

g(k, ·,1,C)≤ min
θ∈[0,2π]

g(k, ·,−1,C),

and ι(l) = −1 otherwise. We start by analyzing a stochastic technique that assures the conver-

gence to the minimum in probability.

3.5.1 Local quasi-convexity of the objective function

Here we analyze experimentally the trend of the objective function g(k, ·, ι ,C) to be minimized,

for fixed k ≥ 0, ι ∈ {1,−1} and C ∈ R2×2 definite positive matrix. First, we observe that

g(k, ·, ι ,C) is a periodic function with period π . Indeed, from (4.8) we have Qι(θ +π)=−Qι(θ),

ι ∈ {1,−1}. Then, from (4.9) we get ZR,ι(θ +π) =−ZR,ι(θ), ι ∈ {1,−1}. Finally, from (4.21),

we obtain that the equation related to the estimated sources s̃(l)R,ι(θ + π) = s̃(l)R,ι(θ) holds for

ι ∈ {1,−1} and for every positive definite matrix CR ∈ R2×2. In Figures 3.4–3.9 we present

some examples of graphs of the function g(k, ·, ι ,C). In order to obtain such graphs, we take the

following mixing matrices

AR =

 0.6 0.4

0.4 0.6

 , AG =

 0.6 0.4

0.4 0.6

 , AB =

 0.6 0.4

0.4 0.6

 ,

and consider as original sources the images in Figures 3.15–3.16. Then, by (3.3) we construct the

observed data and the related overlapping matrix CR, CG, and CB. Recalling that the value of k

is estimated independently on each of the three channels, we saw experimentally that, during the

execution of the MATODS algorithm, the value of k is always increasing, as is shown in Figure

3.3.
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(a) Document in Figure 3.15 (a), ι = 1. (b) Document in Figure 3.15 (b), ι = 1.

(c) Document in Figure 3.15 (b), ι = 1. (d) Document in Figure 3.15 (b), ι =−1.

(e) Document in Figure 3.15 (c), ι = 1. (f) Document in Figure 3.15 (d), ι = 1.

Figure 3.3: Trend of k(l)R , k(l)G and k(l)B during the execution of MATODS

In Figure 3.4, we deal with the document in Figure 3.15 (a), where ι = 1 is fixed. We recall

that, in order to assume that the system (4.17) is well-defined, we have to impose that (see (3.23))

k ≥ det(CR)(
c̄R

11− c̄R
21

)2
+
(
c̄R

12− c̄R
22

)2 = kR
sup,

k ≥ det(CG)(
c̄G

11− c̄G
21

)2
+
(
c̄G

12− c̄G
22

)2 = kG
sup,

k ≥ det(CB)(
c̄B

11− c̄B
21

)2
+
(
c̄B

12− c̄B
22

)2 = kB
sup.

In Figure 3.3 (a) we see that k, in the three RGB channels, converges monotonically to the source

overlapping levels kR, kG and kB, respectively. In this case, we have kR = 9855291 < kR
sup =

132751132.62, kG = 7753236 < kG
sup = 105650226.17, kB = 834224 < kB

sup = 11122735.89.
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Indeed, the values source overlapping level upper bounds kR
sup, kG

sup and kB
sup are much closer to

data overlapping levels dR = 139503525.96, dG = 108090739.20, dB = 11444930.24. Since the

source overlapping levels are in general much smaller than the respective data overlapping levels,

we can assume that, during the execution of the MATODS algorithm in the three channels, the

value of k is always smaller than kR
sup, kG

sup or kB
sup, respectively.

(a) k = 0. (b) k = 9000000.

(c) k = 10000000. (d) k = 50000000.

Figure 3.4: Graphs of the objective functions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB) in correspondence

with the document in Figure 3.15 (a).

In Figure 3.4 the values of k are the following: k = 0, that is the MATODS source overlapping

level initial value for all three channels; k = 9000000, which is near to the red ideal source

overlapping level kR; k = 10000000, which is close but smaller than the green source overlapping

level upper bound kG
sup; k = 50000000, which is greater than all source overlapping level upper

bounds.

We observe that, in this case, the points of discontinuity of the objective functions

g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB), for all k smaller than their source overlapping level

upper bounds, are ϕ
(1)
R = 0.53873315, ϕ

(2)
R = 3.68032580, ϕ

(5)
R = 5.25112213 and ϕ

(6)
R = 2.10952948,

for the red channel, ϕ
(1)
G = 0.57955014, ϕ

(2)
G = 3.72114279, ϕ

(5)
G = 5.29193912 and ϕ

(6)
G =

2.15034646, for the green channel, ϕ
(1)
B = 0.57021981, ϕ

(2)
B = 3.71181247, ϕ

(5)
B = 5.28260880
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and ϕ
(6)
B = 2.14101614, for the blue channel. In Figures 3.4 we note that, when k is smaller

than the source overlapping level upper bounds then for all three channels the objective func-

tions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB) turn to be quasi-convex in the intervals included

between any two successive points of discontinuity. We recall that a function f : [a,b]→ R is

quasi-convex iff

f ((1−α)θ1 +α θ2)≤max{ f (θ1), f (θ2)},

for each α ∈ [0,1] and θ1, θ2 ∈ [a,b] with θ1 6= θ2. A function f : [a,b] ⊂ R→ R is said to be

weakly unimodal iff there exists a value θ̂ , for which it is weakly monotonically increasing for

θ ∈ [a, θ̂ ] and weakly monotonically decreasing for θ ∈ [θ̂ ,b]. A function f : [a,b] ⊂ R→ R

is quasi-convex in the convex and compact set [a,b] ⊂ S iff it is weakly unimodal. When f :

S ⊂ Rn → R, similar definitions can be done. In this case quasi-convex functions are weakly

unimodal functions, but not all the weakly unimodal functions are quasi-convex (see also [8,

103]).

Concerning Figure 3.5, we consider again the document in Figure 3.15 (a), choose ι = −1

and take the same values of k. In this case, the values of the points of discontinuity of the objec-

tive functions g(k, ·,−1,CR), g(k, ·,−1,CG) and g(k, ·,−1,CB) are given by ϕ
(3)
R = 1.03206318,

ϕ
(4)
R = 4.17365583, ϕ

(7)
R = 5.74445216 and ϕ

(8)
R = 2.60285950 for the red channel, ϕ

(3)
G =

0.99124619, ϕ
(4)
G = 4.13283884, ϕ

(7)
G = 5.70363517 and ϕ

(8)
G = 2.56204252 for the green chan-

nel, ϕ
(3)
B = 1.00057651, ϕ

(4)
B = 4.14216917, ϕ

(7)
B = 5.71296549 and ϕ

(8)
B = 2.57137284 for the

blue channel. Such values are the unique ones which differ from those of the previous case.

In Figure 3.5 we note that, when k is smaller than the upper bounds, the objective functions

g(k, ·,−1,CR), g(k, ·,−1,CG) and g(k, ·,−1,CB) are quasi-convex on each interval which lies

between any two successive points of discontinuity.
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(a) k = 0. (b) k = 9000000.

(c) k = 10000000. (d) k = 50000000.

Figure 3.5: Graphs of the objective functions g(k, ·,−1,CR), g(k, ·,−1,CG) and g(k, ·,−1,CB) in correspon-

dence with the document in Figure 3.15 (a).

In Figure 3.6, we take the document in Figure 3.15 (b) and choose ι = 1. Also in this case, it

is

kR = 34612679 < kR
sup = 131593024.23 < dR = 136166103.08,

kG = 31495751 < kG
sup = 130553408.73 < dG = 141445576.28,

kB = 44013514 < kB
sup = 157271106.68 < dB = 172518952.96.

The discontinuity of the objective functions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB) are given

by ϕ
(1)
R = 0.56948411, ϕ

(2)
R = 3.71107676, ϕ

(5)
R = 5.28187309 and ϕ

(6)
R = 2.14028043 for the

red channel, ϕ
(1)
G = 0.50318323, ϕ

(2)
G = 3.64477588, ϕ

(5)
G = 5.215572207 and ϕ

(6)
G = 2.07397955,

for the green channel, and ϕ
(1)
B = 0.48885097, ϕ

(2)
B = 3.63044362, ϕ

(5)
B = 5.20123995 and

ϕ
(6)
B = 2.05964730 for the blue channel. We choose k = 0, because it is the MATODS initial

estimate, k = 40000000, since it is near to all ideal source overlapping levels, k = 100000000, as

it is close, but inferior, to all source overlapping level upper bounds, and k = 200000000, because

it is beyond these upper bounds. In Figure 3.6 we note that, when k is smaller than its source

overlapping level upper bound, the objective functions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB)

are quasi-convex on each interval which lies between any two successive points of discontinuity.
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(a) k = 0. (b) k = 40000000.

(c) k = 100000000. (d) k = 200000000.

Figure 3.6: Graphs of the objective functions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB) in correspondence

with the document in Figure 3.15 (b).

In Figure 3.7, we consider the document in Figure 3.15 (b) again, but we take ι = −1 and

use the same values of k. In this case, the values of the points of discontinuity of the objec-

tive functions g(k, ·,−1,CR), g(k, ·,−1,CG) and g(k, ·,−1,CB) are given by ϕ
(3)
R = 1.00131222,

ϕ
(4)
R = 4.14290487, ϕ

(7)
R = 5.71370120 and ϕ

(8)
R = 2.57210855, for the red channel, ϕ

(3)
G =

1.06761310, ϕ
(4)
G = 4.20920575, ϕ

(7)
G = 5.78000208 and ϕ

(8)
G = 2.63840943 for the green chan-

nel, ϕ
(3)
B = 1.08194536, ϕ

(4)
B = 4.22353801, ϕ

(7)
B = 5.79433434 and ϕ

(8)
B = 2.65274169, for the

blue channel. Note that, in Figure 3.7, when k is smaller than its upper bound, for all three chan-

nels the objective functions g(k, ·,−1,CR), g(k, ·,−1,CG) and g(k, ·,−1,CB) are quasi-convex on

each interval which lies between any two successive points of discontinuity.
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(a) k = 0. (b) k = 40000000.

(c) k = 100000000. (d) k = 200000000.

Figure 3.7: Graphs of the objective functions g(k, ·,−1,CR), g(k, ·,−1,CG) and g(k, ·,−1,CB) in correspon-

dence with the document in Figure 3.15 (b).

From now on, since the graphs obtained with ι = 1 and ι = −1 are very similar, we con-

sider only the case ι = 1. Concerning the graphs in Figure 3.8, we take the document in Figure

3.15 (c). In this case we have the inequalities kR = 32685410 < dR = 72365832.56 < kR
sup =

73936335.04, kG = 30815153 < dG = 68222469.08 < kG
sup = 69702847.74, kB = 33805612 <

dB = 74981471.44< kB
sup = 76611523.60. The discontinuity of the objective functions g(k, ·,1,CR),

g(k, ·,1,CG) and g(k, ·,1,CB) are ϕ
(1)
R = 0.81450982, ϕ

(2)
R = 3.95610247, ϕ

(5)
R = 5.52689880

and ϕ
(6)
R = 2.38530615, for the red channel, ϕ

(1)
G = 0.81453870, ϕ

(2)
G = 3.95613135, ϕ

(5)
G =

5.52692768 and ϕ
(6)
G = 2.38533503, for the green channel, ϕ

(1)
B = 0.81446681, ϕ

(2)
B = 3.95605946,

ϕ
(5)
B = 5.52685579 and ϕ

(6)
B = 2.38526314, for the blue channel. Here, we choose k = 0, that

is the initial value, k = 30000000 which is close to all ideal solutions, k = 65000000 which is

inferior but near to all upper bounds and k = 90000000 which is higher than all upper bounds.

Finally in Figure 3.8, when k is smaller than its upper bound, the objective functions g(k, ·,1,CR),

g(k, ·,1,CG) and g(k, ·,1,CB) are quasi-convex on each interval which lies between any two suc-

cessive points of discontinuity.
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(a) k = 0. (b) k = 30000000.

(c) k = 65000000. (d) k = 90000000.

Figure 3.8: Graphs of the objective functions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB) in correspondence

with the document in Figure 3.15 (c).

The Figure 3.9 is obtained by considering the document in Figure 3.16. Here we get kR =

15812614< kR
sup = 44683913.34< dR = 79303165.36, kG = 14928144< kG

sup = 64082928.34<

dG = 65712248.40, kB = 78431743 < dB = 144848191.56 < kB
sup = 147729606.55. Thus, we

choose to show the graphs for k = 0, k = 15000000, k = 40000000 and k = 70000000. The

points of discontinuity of the objective functions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB) are

ϕ
(1)
R = 1.41814710, ϕ

(2)
R = 4.55973976, ϕ

(5)
R = 6.13053609 and ϕ

(6)
R = 2.98894343 for the red

channel, ϕ
(1)
G = 0.98719285, ϕ

(2)
G = 4.12878550, ϕ

(5)
G = 5.69958183 and ϕ

(6)
G = 2.55798917

for the green channel, ϕ
(1)
B = 0.85077026, ϕ

(2)
B = 3.99236291, ϕ

(5)
B = 5.56315924 and ϕ

(6)
B =

2.42156658 for the blue channel. In Figure 3.9 we note again that, when k is smaller than its

upper bound, for all three channels the objective functions are quasi-convex on every interval

which lies between any two successive points of discontinuity.
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(a) k = 0. (b) k = 15000000.

(c) k = 40000000. (d) k = 70000000.

Figure 3.9: Graphs of the objective functions g(k, ·,1,CR), g(k, ·,1,CG) and g(k, ·,1,CB) in correspondence

with the document in Figure 3.16.

Thus, for all graphs in Figures 3.4–3.9, when k is smaller than its upper bound (which is al-

ways true during the execution of the MATODS algorithm) the objective functions g(k, ·, ι ,CR),

g(k, ·, ι ,CG) and g(k, ·, ι ,CB) are quasi-convex on each interval which lies between any two suc-

cessive points of discontinuity. Moreover the values of the local minima, on each interval where

an objective function is quasi-convex, are almost identical. Thus, to find the minimum of an

objective function, it is sufficient to minimize it in an interval which lies between any two suc-

cessive points of discontinuity, where the involved function is quasi-convex. In our experiments

similar results were obtained also by choosing any mixing matrix different from those chosen in

(4.24).

In the sequel we give some different algorithms, which can be used to find the minimum

in an interval in which the involved function is quasi-convex. Successively, we compare the

obtained results, to establish the algorithm to use. In order to compare the convergence speed

of such algorithms, we recall that the sequence {θ (h)}h converges to θ̂ with strong order p and

asymptotic costant γ > 0 if and only if

lim
h→+∞

|θ (h+1)− θ̂ |
|θ (h)− θ̂ |p

= γ.
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When p = 1, the asymptotic costant γ is also called convergence factor. We say that the sequence

{θ (h)}h converges to θ̂ with weak order p if and only if

liminf
h→+∞

(− ln |θ (h)− θ̂ |p)1/h = p.

Note that strong convergence implies weak convergence, but in general the converse does not

hold.

3.5.2 The objective function minimization algorithm

Consider the data document shown in Figure 3.10 (a), for which the source overlapping level

upper bound is ksup = 40374184.63 (see equation (3.23)) and the objective function g has dis-

continuities with respect to the variable θ at the points ϕ + t π

2 , with t ∈ Z and ϕ = 0.62377.

Figure 3.11 shows the graph of the function g(k,θ ,C) as θ varies. In the plots, we use the the

overlapping matrix of the document in Figure 3.10 (a), and test four values of k. The output of

the MATODS algorithm is presented in Figure 3.10 (b). The source overlapping level estimated

by MATODS is 29670911.87, which is smaller than ksup. It easy to show that if k = 0, then the

objective function g is periodic of period π

2 in the variable θ , but this property is not verified for

k > 0, as shown in Figures 3.11 (b)-(d).

(a) Observed document. (b) Document estimated by MATODS.

Figure 3.10: MATODS restoration.

Notice that, when k is smaller than the source overlapping level upper bound ksup, the ob-

jective function g is quasi-convex on each interval which lies between any two successive points

of discontinuity. Moreover, on each interval where the objective function is quasi-convex, the

local minima are almost identical. It easy to see that this behavior is typical among objective

functions obtained from the documents we considered in our experiments. we have also seen

that during the execution of the MATODS algorithm, the estimated source overlapping levels k(l)
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(a) k = 0. (b) k = 30000000.

(c) k = 40000000. (d) k = 100000000.

Figure 3.11: Graphs of the objective function g(k, ·,C), where C is the overlapping matrix given by the

document in Figure 3.10 (a).

have increasing values, and are always smaller than their source overlapping level upper bound

ksup. Thus, to find the minimum of the objective function, it is sufficient to find a minimum on an

interval that lies between any two successive points of discontinuity, where the objective function

is quasi-convex.

In order to minimize g on an interval where it is quasi-convex, we consider different algo-

rithms. Some of them are developed specifically for strictly quasi-convex functions and do not

rely on derivatives (see also [37, 100, 106]), whereas others are based on the gradient descent

and the Armijo Line Search (ALS) (see also [9, 33]).

3.5.3 The simulated annealing

The simulated annealing techniques have the aim to define a sequence, which converges to the

global minimum of a function, not necessarily convex (see also [66]). However, since it is dealt

with an asymptotic behavior, in general it is not possible to assure the convergence to the mini-
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mum after a finite number of steps.

To apply the annealing technique, for each temperature Th, where h∈N and lim
h→+∞

Th = 0, we

use the Metropolis Sampler, in order to update the variable θ (see also [125, 163]).

θ
(h)
j , j = 0, . . . ,Lh of estimates of θ is constructed.

Given θ
(h)
j , at the step j + 1 the proposed θ

(h)
j+1 is given by θ

(h)
j + ν , where ν is a random

variable, having uniform distribution in the interval (−δ ,δ ), with given δ ∈ R+. Hence at the

step j+1, as a new estimate of θ we choose either θ
(h)
j or θ

(h)
j+1.

Let ∆g = g(k,θ (h)
j ,C)−g(k,θ (h)

j+1,C). We accept θ
(h)
j+1 when ∆g > 0 or with probability e

∆g
Tk

when ∆g ≤ 0. By iterating, for every h ∈ N it is possible to construct a Markov chain θ
(h)
j ,

j = 0,1,2, . . ., convergent in L2 and in probability to an equilibrium state having probability

π
(h)(θ) =

e−
g(k,θ ,C)

Th∫ 2π

0
e−

g(k,θ ,C)
Th dθ

,

fixed k, ι and C, where the involved integral is intended in the discrete sense (see also [163,

Theorem 8.2.2 (a)]). As h tends to +∞, if

Th ≥
∆

lnh
, (3.31)

where ∆ denotes the maximal local increase of g(k, ·,C) (see also [163]), then the stationary

probability distribution of the Markov chain converges in probability to the set of the global

minima of g(k, ·,C) (see also [163, Theorem 8.2.3]).

In the practical cases, it is impossible to obtain asymptotic results, and furthermore the as-

sumption (3.31) it is not advisable in terms of computational times, and thus one has to establish:

an initial value of the temperature T0; the number of steps of the Metropolis technique, that is

the length Lh of the involved Markov chain; a suitable function which expresses the decay of the

temperature; a stop criterion.

The initial temperature T0 must be sufficiently high, in order to accept the variations of

configurations with high probability. In correspondence with the temperature T0, let χ(T0) =

A(T0)/P(T0), where A(T0) and P(T0) are the numbers of the accepted and proposed transitions,

respectively, at the temperature T0. Successively, we impose χ(T0) ' 1. Let n1 (resp. n2) the

number of the decreasing (resp. increasing) transitions in corrispondence with the temperature

T0. Observe that n1 + n2 = L0, where L0 is the length of the Markov chain associated with the
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temperature T0. Let us denote by 〈∆g〉+ the mean value of ∆g associated with the transition

which increases the energy. We assume the following approximation:

χ(T0) =
n1 +n2 e−

〈∆g〉+
T0

n1 +n2
,

obtaining

T0 =
〈∆g〉+

ln
( n2

n2 χ(T0)−n1(1−χ(T0))

) . (3.32)

In order to estimate T0 by means of (3.32), we can compute experimentally n1, n2 and 〈∆g〉+,

where χ(T0) is a suitable positive constant close to 1.

As mentioned before, to obtain convergence of the global minimum of the function g(k, ·,C),

it is necessary to have a logarithmic decay of the temperature. Anyway, to get good results, it is

possible to suppose to have a linear decay, namely Th+1 = γ Th, where γ is a suitable real constant,

which in general is taken between 0.95 and 0.99 (see also [1, 163]). At the last step, we establish

that the stop criterion is as follows: when the values of the estimated θ remain constant after a

complete Markov chain, then we stop.

The simulated annealing algorithm can be expressed as follows:

function SA(k,C)

h = 0;

θ
(0)
1 = 0;

θ
(−1)
1 = θ

(0)
1 +2ε;

while (|θ (h)
1 −θ

(h−1)
1 |> ε) do

for j=1 to Lh−1 do

θ
(h)
j+1 = θ

(h)
j + random(−δ ,δ );

∆g = g(k,θ (h)
j ,C)−g(k,θ (h)

j+1,C);

if ((∆g≤ 0) and (random(0,1)> e
∆g
Tk )) then

θ
(h)
j+1 = θ

(h)
j ;

end if

end for

θ
(h+1)
1 = θ

(h)
Lh

;
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Th+1 = γ Th;

h = h+1;

end while

return θ
(h)
1

where ε is a suitable tolerance threshold. We refer to this algorithm as Simulated Annealing

(SA).

3.5.4 The three point search

In this section we describe an algorithm to minimize the objective function g(k, ·,C) in one of

the intervals in which it is supposed to be quasi-convex. Given a generic step of length ph, we

consider the vector

ψ
(h) =

[
θ (h)− ph θ (h) θ (h)+ ph

]
.

We now denote the corresponding values of the objective function by

ξ
(h) =

[
g(k,ψ(h)

1 ,C) g(k,ψ(h)
2 ,C) g(k,ψ(h)

3 ,C)

]
.

Supposed that in the interval [a,b] the function g(k, ·,C) is quasi-convex, we apply the following

algorithm.

function TPS(k,CR,a,b)

h = 0;

ψ(0) = [a (a+b)/2 b];

ξ (0) = [g(k,ψ(0)
1 ,C) g(k,ψ(0)

2 ,C) g(k,ψ(0)
3 ,C)];

p0 = (b−a)/2;

if (ξ (0)
1 < ξ

(0)
2 ) then

while ((ξ (0)
1 < ξ

(0)
2 ) and (ph > ε)) do

ψ
(0)
3 = ψ

(0)
2 ;

ξ
(0)
3 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 +ψ

(0)
3 )/2;

ξ
(0)
2 = g(k,ψ(0)

2 ,C);

p0 = p0/2;
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end while

else

while ((ξ (0)
3 < ξ

(0)
2 ) and (ph > ε)) do

ψ
(0)
1 = ψ

(0)
2 ;

ξ
(0)
1 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 +ψ

(0)
3 )/2;

ξ
(0)
2 = g(k,ψ(0)

2 ,C);

p0 = p0/2;

end while

end if

while (ph > ε) do

if ((ξ (h)
2 < ξ

(h)
1 ) and (ξ (h)

2 < ξ
(h)
3 )) then

if (ξ (h)
1 < ξ

(h)
3 ) then

ψ
(h+1)
3 = ψ

(h)
2 ;

ξ
(h+1)
3 = ξ

(h)
2 ;

else

ψ
(h+1)
1 = ψ

(h)
2 ;

ξ
(h+1)
1 = ξ

(h)
2 ;

end if

ψ
(h+1)
2 = (ψ

(h+1)
1 +ψ

(h+1)
3 )/2;

ξ
(h+1)
2 = g(k,ψ(h+1)

2 ,C);

ph+1 = ph/2;

else

if (ξ (h)
1 < ξ

(h)
3 ) then

ψ(h+1) = [ψ
(h)
1 − ph ψ

(h)
1 ψ

(h)
2 ];

ξ (h+1) = [g(k,ψ(h+1)
1 ,C) ξ

(h)
1 ξ

(h)
2 ];

else

ψ(h+1) = [ψ
(h)
2 ψ

(h)
3 ψ

(h)
3 + ph];

ξ (h+1) = [ξ
(h)
2 ξ

(h)
3 g(k,ψ(h+1)

3 ,C)];

end if
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ph+1 = ph;

end if

h = h+1;

end while

return ψ
(h)
2

where ε is a positive real number which indicates a suitable tolerance. Such algorithm is formed

by an if block and a while block. The if block is necessary to ensure that the conditions

ψ
(0)
1 ,ψ

(0)
2 ,ψ

(0)
3 ∈ [a,b], ξ

(0)
2 ≤ ξ

(0)
1 , ξ

(0)
2 ≤ ξ

(0)
3 (3.33)

hold. The main while body has three cases. In the first one, the value of the function at the

point ψ
(h)
2 is less than those evaluated at the other two nodes (see Figure 3.12 (a)). In this case,

the node which assumes the greater value is removed and the intermediate point between the

other two nodes is added, halving the size step p(h) (see Figure 3.12 (b)). In the second case,

the value of the function at the node ψ
(h)
1 is greater than or equal to the one at the node ψ

(h)
2 ,

which is greater than or equal to the one at the node ψ
(h)
3 (see Figure 3.12 (c)). In this case we

eliminate the node ψ
(h)
1 and add a node to the right of ψ

(h)
3 with distance p(h) (see Figure 3.12

(d)). Analogously, in the third case, the value of the function at the node ψ
(h)
3 is greater than or

equal to the one at the node ψ
(h)
2 , which is greater than or equal to the one at the node ψ

(h)
1 . So

we delete the node ψ
(h)
3 and add a node to the left of ψ

(h)
1 with distance p(h). Since the function

g(k; ·, ι ,C) is quasi-convex, there are no other possible cases.
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(a) First case. (b) Successive configuration to the first

case.

(c) Second case. (d) Successive configuration to the second

case.

Figure 3.12: Cases in the body of the while in the TPS algorithm.

Note that at each iteration it is necessary only one evaluation of the function g(k, ·,C). Fur-

thermore, observe that in the body of the while, at every step h at which the algorithm halves the

length ph, it is

ξ
(h)
2 ≤ ξ

(h)
1 , ξ

(h)
2 ≤ ξ

(h)
3 . (3.34)

Let θ̂ be a minimizer of the function g(k, ·,C). From (3.34), since g(k, ·,C) is quasi-convex, we

have

θ̂ ∈ [ξ
(h)
1 ,ξ

(h)
2 ], (3.35)

at every step h at which the algorithm halves the length of the step. Note that from (3.33) we

deduce that the property (3.35) holds also for h = 0. Furthermore, observe that by the conditions

(3.33), the algorithm halves the length of the step when h = 0.

Theorem 3.5.1. Suppose that at the step h−1 the algorithm halves the length of the step ph−1,

then the TPS algorithm halves again the length of the step not later than the step h+2. That is

ph+3 ≤
1
2

ph (3.36)
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holds.

Proof. We suppose that at the step h−1 we halve the length of the step so that p(h) = p(h−1)/2,

and we delete, let us say, the node ψ
(h−1)
1 . Let θ̂ be a minimizer of the functions g(k, ·,C).

Suppose first that ψ
(h−1)
2 = ψ

(h)
1 ≤ θ̂ , then we have two cases. The first is when ξ

(h)
2 < ξ

(h)
1 . In

this case, ξ
(h)
2 is the smallest value of the vector ξ (h), and hence the size of the step is halved

at the step h. The second case is when ξ
(h)
2 ≥ ξ

(h)
1 . In this case ψ

(h−1)
1 < ψ

(h+1)
1 < ψ

(h+1)
2 ,

ξ
(h+1)
1 < ξ

(h+1)
2 and ξ

(h+1)
2 = ξ

(h)
1 < ξ

(h+1)
3 = ξ

(h)
2 , hence the length step is halved at the step

h+1. Now we assume that ψ
(h−1)
2 = ψ

(h)
1 > θ̂ . Then, ξ

(h)
1 < ξ

(h)
2 < ξ

(h)
3 . So, ψ

(h+1)
1 = ψ

(h)
1 −

p(h) = ψ
(h−1)
1 + p(h). If the length step is not halved at the step h+ 1, then ξ

(h+2)
1 = ξ

(h−1)
1 >

ξ
(h+2)
3 = ξ

(h−1)
2 and ξ

(h+2)
2 = ξ

(h+1)
1 < ξ

(h+2)
1 = ξ

(h+1)
2 . So, at the step h+ 3 the length step is

halved. When we eliminate the node ψ
(h−1)
2 at the step h−1, we proceed similarly.

The relation (3.36) can be also obtained by imposing the condition

ph+1

ph
≤
(

1
2

) 1
3
' 0.7937,

so we obtain that the algorithm has a linear convergence with a factor of convergence of at least

0.7937. Note that, in the best cases, the length of the step can be halved at each step, and so

a convergence factor of 0.5 is obtained. Note that, if at the step h− 1 the algorithm halves the

length of the step and if at the step h+1 the length of the step is not yet halved, it has to be halved

at the next step. Moreover, at the h+2-th step, the value of the function g(k, ·,C) to be evaluated

is assumed exactly at the node deleted at the step h− 1. Thus, the steps h+ 1 and h+ 2 can be

unified using only one evaluation of the function g(k, ·,C), by means of the following algorithm.

function TPS(k,CR,a,b)

h = 0;

ψ(0) = [a (a+b)/2 b];

ξ (0) = [g(k,ψ(0)
1 ,C) g(k,ψ(0)

2 ,C) g(k,ψ(0)
3 ,C)];

p0 = (b−a)/2;

if (ξ (0)
1 < ξ

(0)
2 ) then

while ((ξ (0)
1 < ξ

(0)
2 ) and (ph > ε)) do

ψ
(0)
3 = ψ

(0)
2 ;
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ξ
(0)
3 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 +ψ

(0)
3 )/2;

ξ
(0)
2 = g(k,ψ(0)

2 ,C);

p0 = p0/2;

end while

else

while ((ξ (0)
3 < ξ

(0)
2 ) and (ph > ε)) do

ψ
(0)
1 = ψ

(0)
2 ;

ξ
(0)
1 = ξ

(0)
2 ;

ψ
(0)
2 = (ψ

(0)
1 +ψ

(0)
3 )/2;

ξ
(0)
2 = g(k,ψ(0)

2 ,C);

p0 = p0/2;

end while

end if

while (ph > ε) do

if ((ξ (h)
2 < ξ

(h)
1 ) and (ξ (h)

2 < ξ
(h)
3 )) then

if (ξ (h)
1 < ξ

(h)
3 ) then

aux = ξ
(h)
3 ;

ψ
(h+1)
3 = ψ

(h)
2 ;

ξ
(h+1)
3 = ξ

(h)
2 ;

v = 0;

else

aux = ξ
(h)
1 ;

ψ
(h+1)
1 = ψ

(h)
2 ;

ξ
(h+1)
1 = ξ

(h)
2 ;

v = 0;

end if

ψ
(h+1)
2 = (ψ

(h+1)
1 +ψ

(h+1)
3 )/2;

ξ
(h+1)
2 = g(k,ψ(h+1)

2 ,C);

ph+1 = ph/2;
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else

if (ξ (h)
1 < ξ

(h)
3 ) then

if (v 6= 1) then

ψ(h+1) = [ψ
(h)
1 − ph ψ

(h)
1 ψ

(h)
2 ];

ξ (h+1) = [g(k,ψ(h+1)
1 ,C) ξ

(h)
1 ξ

(h)
2 ];

ph+1 = ph;

v = 1;

else

ph+1 = ph/2;

v = 0;

if (aux < ξ
(h)
2 ) then

ψ(h+1) = [ψ
(h)
1 −2ph ψ

(h)
1 − ph ψ

(h)
1 ];

ξ (h+1) = [aux g(k,ψ(h+1)
2 ,C) ξ

(h)
1 ];

aux = ξ
(h)
2 ;

else

ψ(h+1) = [ψ
(h)
1 ψ

(h)
2 − ph ψ

(h)
2 ];

ξ (h+1) = [ξ
(h)
1 g(k,ψ(h+1)

2 ,C) ξ
(h)
2 ];

end if

end if

else

if (v 6= 1) then

ψ(h+1) = [ψ
(h)
2 ψ

(h)
3 ψ

(h)
3 + ph];

ξ (h+1) = [ξ
(h)
2 ξ

(h)
3 g(k,ψ(h+1)

3 ,C)];

ph+1 = ph;

v = 1;

else

ph+1 = ph/2;

v = 0;

if (aux < ξ
(h)
2 ) then

ψ(h+1) = [ψ
(h)
3 ψ

(h)
3 + ph ψ

(h)
3 +2ph];
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ξ (h+1) = [ξ
(h)
3 g(k,ψ(h+1)

2 ,C) aux];

aux = ξ
(h)
2 ;

else

ψ(h+1) = [ψ
(h)
2 ψ

(h)
2 + ph ψ

(h)
3 ];

ξ (h+1) = [ξ
(h)
2 g(k,ψ(h+1)

2 ,C) ξ
(h)
3 ];

end if

end if

end if

end if

h = h+1;

end while

return ψ
(h)
2 .

Thus, asymptotically we have the relation

ph+2 ≤
1
2

ph.

This relation can be also obtained by imposing the condition

ph+1

ph
≤
(

1
2

) 1
2
' 0.70711,

so the algorithm has a linear convergence with a factor of convergence smaller than or equal to

0.70711. We refer to this algorithm as Three Point Search (TPS).

3.5.5 The Golden Section Search (GSS)

In this section we present an algorithm in which the uncertainty interval is reduced by a constant

factor by means of one valuation of the function g(k, ·,C) (see also [106]). Here we consider the

vector

ψ
(h) =

[
ψ

(h)
1 ψ

(h)
2 ψ

(h)
3 ψ

(h)
4

]
. (3.37)

Let (a,b) be the initial uncertainty interval, containing the minimum of the function g(k, ·,C), and

let φ = (
√

5+1)/2 be the golden ratio or golden section, then we apply the following algorithm:

function GSS(k,CR,a,b)
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h = 0;

ψ
(0)
1 = a;

ψ
(0)
4 = b;

ψ
(0)
2 = ψ

(0)
4 − (ψ

(0)
4 −ψ

(0)
1 )/φ ;

ψ
(0)
3 = ψ

(0)
1 +(ψ

(0)
4 −ψ

(0)
1 )/φ ;

while ((|ψ(h)
4 −ψ

(h)
1 |> ε) do

if (g(k,ψ(h)
2 ,C)< g(k,ψ(h)

3 ,C)) then

ψ(h+1) = [ψ
(h)
1 ψ

(h+1)
4 − (ψ

(h+1)
4 −ψ

(h+1)
1 )/φ ψ

(h+1)
1 +(ψ

(h+1)
4 −ψ

(h+1)
1 )/φ ψ

(h)
3 ];

else

ψ(h+1) = [ψ
(h)
2 ψ

(h+1)
4 − (ψ

(h+1)
4 −ψ

(h+1)
1 )/φ ψ

(h+1)
1 +(ψ

(h+1)
4 −ψ

(h+1)
1 )/φ ψ

(h)
4 ];

end if

h = h+1;

end while

return ψ
(h)
2

where ε is a suitable tolerance threshold. In the body of the while we have two cases. In the

first one, g(k,ψ(h)
2 ,C) < g(k,ψ(h)

3 ,C) (see Figure 3.13 (a) and (b)). So the minimizer θ̂ of the

functions g(k, ·,C) lies between ψ
(h)
1 and ψ

(h)
3 , thus the new uncertainty interval is [ψ(h)

1 ,ψ
(h)
3 ].

In the second one, g(k,ψ(h)
2 ,C)≥ g(k,ψ(h)

3 ,C) (see Figure 3.13 (c) and (d)). Thus θ̂ lies between

ψ
(h)
2 and ψ

(h)
4 , so the new uncertainty interval is [ψ(h)

1 ,ψ
(h)
3 ].
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(a) First case. (b) Alternative first case.

(c) Second case. (d) Alternative second case.

Figure 3.13: Cases in the body of the while of the GSS algorithm.

In both cases it is

ψ
(h)
2 = ψ

(h)
4 −

ψ
(h)
4 −ψ

(h)
1

φ
(3.38)

and

ψ
(h)
3 = ψ

(h)
1 +

ψ
(h)
4 −ψ

(h)
1

φ
. (3.39)

Let `(h+1) = ψ
(h+1)
4 −ψ

(h+1)
1 be the length of the uncertainty interval at the step h + 1. If

g(k,ψ(h)
2 , ι ,C)< g(k,ψ(h)

3 , ι ,C), then from the equation (3.39) we have

`(h+1) = ψ
(h)
3 −ψ

(h)
1 = ψ

(h)
1 +

ψ
(h)
4 −ψ

(h)
1

φ
−ψ

(h)
1 =

ψ
(h)
4 −ψ

(h)
1

φ
, (3.40)

while, if g(k,ψ(h)
2 ,C)≥ g(k,ψ(h)

3 ,C), then from the equation (3.38) we get

`(h+1) = ψ
(h)
4 −ψ

(h)
2 = ψ

(h)
4 −ψ

(h)
4 +

ψ
(h)
4 −ψ

(h)
1

φ
=

ψ
(h)
4 −ψ

(h)
1

φ
. (3.41)

Thus, we obtain

`(h+1) = ψ
(h+1)
4 −ψ

(h+1)
1 =

ψ
(h)
4 −ψ

(h)
1

φ
=

`(h)

φ
. (3.42)

So, in any case, the uncertainty interval is reduced at each step by a constant factor. Now, in

order to compute the factor of convergence of the method, first we have to show that at each step

just one valuation of the function g(k, ·,C) is necessary.
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To prove this, we observe that the golden section has the following property:

1
φ 2 =

(√
5−1
2

)2

=
3−
√

5
2

= 1−
√

5−1
2

= 1− 1
φ
.

From this, if g(k,ψ(h)
2 ,C)< g(k,ψ(h)

3 ,C) then from the equations (3.38), (3.39) and (3.40) we get

ψ
(h+1)
3 = ψ

(h+1)
1 +

ψ
(h+1)
4 −ψ

(h+1)
1

φ
= ψ

(h)
1 +

ψ
(h)
3 −ψ

(h)
1

φ

= ψ
(h)
1 +

ψ
(h)
4 −ψ

(h)
1

φ

φ
=

(
1− 1

φ 2

)
ψ

(h)
1 +

1
φ 2 ψ

(h)
4

=
1
φ

ψ
(h)
1 +

(
1− 1

φ

)
ψ

(h)
4 = ψ

(h)
4 −

ψ
(h)
4 −ψ

(h)
1

φ

= ψ
(h)
2 ,

while, if g(k,ψ(h)
2 ,C)≥ g(k,ψ(h)

3 ,C), from the equations (3.38), (3.39) and (3.41) we have

ψ
(h+1)
2 = ψ

(h+1)
4 −

ψ
(h+1)
4 −ψ

(h+1)
1

φ
= ψ

(h)
4 −

ψ
(h)
4 −ψ

(h)
2

φ

= ψ
(h)
4 −

ψ
(h)
4 −ψ

(h)
1

φ

φ
=

(
1− 1

φ 2

)
ψ

(h)
4 +

1
φ 2 ψ

(h)
1

=
1
φ

ψ
(h)
4 +

(
1− 1

φ

)
ψ

(h)
1 = ψ

(h)
1 +

ψ
(h)
4 −ψ

(h)
1

φ

= ψ
(h)
3 .

Thus, if we define

ξ
(h) =

[
g(k,ψ(h)

1 ,C) g(k,ψ(h)
2 ,C) g(k,ψ(h)

3 ,C) g(k,ψ(h)
4 ,C)

]
,

the algorithm can be written as follows:

function GSS(k,CR,a,b)

h = 0;

ψ
(0)
1 = a;

ψ
(0)
4 = b;

ψ
(0)
2 = ψ

(0)
4 − (ψ

(0)
4 −ψ

(0)
1 )/φ ;

ψ
(0)
3 = ψ

(0)
1 +(ψ

(0)
4 −ψ

(0)
1 )/φ ;

ξ (0) = [g(k,ψ(0)
1 ,C) g(k,ψ(0)

2 ,C) g(k,ψ(0)
3 ,C) g(k,ψ(0)

4 ,C)];

while ((|ψ(h)
4 −ψ

(h)
1 |> ε) do

if (ξ (h)
2 < ξ

(h)
3 ) then
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ψ(h+1) = [ψ
(h)
1 ψ

(h+1)
4 − (ψ

(h+1)
4 −ψ

(h+1)
1 )/φ ψ

(h)
2 ψ

(h)
3 ];

ξ (h+1) = [ξ
(h)
1 g(k,ψ(h+1)

2 ,C) ξ
(h)
2 ξ

(h)
3 ];

else

ψ(h+1) = [ψ
(h)
2 ψ

(h)
3 ψ

(h+1)
1 +(ψ

(h+1)
4 −ψ

(h+1)
1 )/φ ψ

(h)
4 ];

ξ (h+1) = [ξ
(h)
2 ξ

(h)
3 g(k,ψ(h+1)

3 ,C) ξ
(h)
4 ];

end if

h = h+1;

end while

return ψ
(h)
2 .

During each iterate, in every case, the function g(k, ·,C) is evaluated only one time, so, from the

equation (3.42), the algorithm has a linear convergence with factor of convergence given by

l(h+1)

l(h)
=

ψ
(h+1)
4 −ψ

(h+1)
1

ψ
(h)
4 −ψ

(h)
1

=

ψ
(h)
4 −ψ

(h)
1

φ

ψ
(h)
4 −ψ

(h)
1

=
1
φ
=

√
5−1
2

' 0.61803.

3.5.6 Successive Parabolic Interpolation (SPI)

Given a finite sequence of approximations of the required minimum, the method introduced in

this section constructs a parabola which interpolates the objective function g(k, ·,C) in the last

three terms of the considered sequence and add a new term to the sequence, corresponding to

the argument of the minimum of the obtained parabola (see also [37, 100]). That is, given the

sequence θ (0), . . . ,θ (h+2), we call p2(θ) the interpolation polynomial of the function g(k, ·,C) at

the point θ (h), θ (h+1), θ (h+2), and choose θ (h+3) by posing

p′2(θ
(h+3)) = 0. (3.43)

We recall that the divided differences of the function g(k, ·,C) are

g[θ (h)] = g(k,θ (h), ι ,C), h = 0,1, . . . ,

and

g[θ (h),θ (h+1), . . . ,θ (h+k−1),θ (h+k)] =
g[θ (h+1),θ (h+2), ...,θ (h+k)]−g[θ (h),θ (h+1) . . . ,θ (h+k−1)]

θ (h+k)−θ (h)

h = 0,1, . . . ,k = 1,2, . . . .
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It is possible to prove that, if g(k, ·,C) ∈ C2([a,b]), where [a,b] contains the argument of the

minimum of g(k, ·,C), then the sequence {θ (h)}h∈N is well-defined (see also [37]). If

g[θ (h),θ (h+1),θ (h+2)] 6= 0,

then the unique solution of (3.43) is

θ
(h+3) =

1
2

(
θ
(h+1)+θ

(h+2)− g[θ (h+1),θ (h+2)]

g[θ (h),θ (h+1),θ (h+2)]

)
. (3.44)

Fix n ∈ N, a function f : [a,b]→ R is said to be of class LCn([a,b]) iff its n-th derivative

exists and is Lipschitz, namely iff there exists a positive real number M0 with

sup
x,y∈[a,b],|x−y|≤δ

| f (x)− f (y)| ≤M0 δ

for each δ > 0. The following result holds.

Theorem 3.5.2. (see also [37, Theorem 3.7.1]) Let g(k, ·,C) : [a,b]→ R be of class LC3([a,b]),

and θ̂ ∈]a,b[ be such that g′(k, θ̂ ,C) = 0 and g′′(k, θ̂ ,C) 6= 0. If θ (0), θ (1), θ (2) are distinct

and sufficiently close to θ̂ , then a sequence {θ (h)}h∈N is univoquely defined by (3.44), and

{θ (h)}h∈N either converges with strong order p ' 1.325, or converges with weak order p =

((3+
√

5)/2)1/3 ' 1.378.

Note that, if in the expression of g(k, ·,1,CR) we use the function τ̄ in (3.47) instead of τ in

(4.22), then, using classical results of Analysis, it is not difficult to check that g(k, ·,1,CR) is of

class LC3((ϕ
(1)
R +η ,ϕ

(6)
R −η)). So, Theorem 3.5.4 can be applied.

The relative algorithm is the following

function SPI(k,CR)

h = 0;

θ (0) = ϕ
(1)
R +η ;

θ (1) = ϕ
(6)
R −η ;

θ (2) = (θ (0)+θ (1))/2;

ξ (h) = g(k,θ (h),C);

ξ (h+1) = g(k,θ (h+1),C);

ξ (h+2) = g(k,θ (h+2),C);
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g[θ (h),θ (h+1)] = ξ (h+1)−ξ (h)

θ (h+1)−θ (h) ;

while (|θ (h+2)−θ (h+1)|> ε) do

g[θ (h+1),θ (h+2)] = ξ (h+2)−ξ (h+1)

θ (h+2)−θ (h+1) ;

g[θ (h),θ (h+1),θ (h+2)] = g[θ (h+1),θ (h+2)]−g[θ (h),θ (h+1)]

θ (h+2)−θ (h) ;

θ (h+3) = 1
2

(
θ (h+1)+θ (h+2)− g[θ (h+1),θ (h+2)]

g[θ (h),θ (h+1),θ (h+2)]

)
;

ξ (h+3) = g(k,θ (h+3),C);

h = h+1;

end while

return θ (h+2)

where ε is the tolerance threshold. To accelerate the order of convergence of the sequence

(θ (h)), we can pose

θ
(h+3) = Ξ

(h)−
(g[θ (h−1),θ (h),θ (h+1),θ (h+2)]

2g[θ (h),θ (h+1),θ (h+2)]

)
ϒ
(h), (3.45)

where

Ξ
(h) =

1
2

(
θ
(h+1)+θ

(h+2)− g[θ (h+1),θ (h+2)]

g[θ (h),θ (h+1),θ (h+2)]

)
and

ϒ
(h) = (θ (h)−Ξ

(h))(θ (h+1)−Ξ
(h))+(θ (h)−Ξ

(h))(θ (h+2)−Ξ
(h))

+ (θ (h+1)−Ξ
(h))(θ (h+2)−Ξ

(h)).

Indeed, we have the following

Theorem 3.5.3. (see also [37, Theorem 3.8.1]) Let g(k, ·,C) : [a,b]→ R be of class LC3([a,b]),

θ̂ ∈]a,b[ be such that g′(k, θ̂ ,C) = 0 and g′′(k, θ̂ ,C) 6= 0. If θ (0), θ (1), θ (2) are distinct and suf-

ficiently close to θ̂ , then the sequence {θ (h)}h∈N is univoquely defined by (3.45), and {θ (h)}h∈N

converges with weak order p' 1.465.

The relative algorithm is the following

function SPI(k,CR)

h = 0;

θ (0) = ϕ
(1)
R +η ;
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θ (1) = ϕ
(6)
R −η ;

θ (2) = (θ (0)+θ (1))/2;

ξ (h) = g(k,θ (h),C);

ξ (h+1) = g(k,θ (h+1),C);

ξ (h+2) = g(k,θ (h+2),C);

g[θ (h),θ (h+1)] = ξ (h+1)−ξ (h)

θ (h+1)−θ (h) ;

g[θ (h+1),θ (h+2)] = ξ (h+2)−ξ (h+1)

θ (h+2)−θ (h+1) ;

g[θ (h),θ (h+1),θ (h+2)] = g[θ (h+1),θ (h+2)]−g[θ (h),θ (h+1)]

θ (h+2)−θ (h) ;

θ (h+3) = 1
2

(
θ (h+1)+θ (h+2)− g[θ (h+1),θ (h+2)]

g[θ (h),θ (h+1),θ (h+2)]

)
;

ξ (h+3) = g(k,θ (h+3),C);

h = h+1;

while (|θ (h+2)−θ (h+1)|> ε) do

g[θ (h+1),θ (h+2)] = ξ (h+2)−ξ (h+1)

θ (h+2)−θ (h+1) ;

g[θ (h),θ (h+1),θ (h+2)] = g[θ (h+1),θ (h+2)]−g[θ (h),θ (h+1)]

θ (h+2)−θ (h) ;

Ξ(h) = 1
2

(
θ (h+1)+θ (h+2)− g[θ (h+1),θ (h+2)]

g[θ (h),θ (h+1),θ (h+2)]

)
;

ϒ(h) = (θ (h)−Ξ(h))(θ (h+1)−Ξ(h))+(θ (h)−Ξ(h))(θ (h+2)−Ξ(h))+(θ (h+1)−Ξ(h))(θ (h+2)−

Ξ(h));

g[θ (h−1),θ (h),θ (h+1),θ (h+2)] = g[θ (h),θ (h+1),θ (h+2)]−g[θ (h−1),θ (h),θ (h+1)]

θ (h+2)−θ (h−1) ;

θ (h+3) = Ξ(h)−
(

g[θ (h−1),θ (h),θ (h+1),θ (h+2)]

2g[θ (h),θ (h+1),θ (h+2)]

)
ϒ(h);

ξ (h+3) = g(k,θ (h+3),C);

h = h+1;

end while

return θ (h+2).

where ε is the tolerance threshold.

3.5.7 Hybrid SPI and GSS

In our case the SPI algorithm could not converge to the desired solutions, since the derivative of

the function g(k, ·,C), on each interval lying between any two successive points of discontinuity,

can vanish also in correspondence of the points which are not minimizers. Moreover, it is pos-
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sible that the updates of the solution do not belong to the initial uncertainty interval, that is the

interval in which the objective function is quasi-convex. We saw experimentally that, in general,

the SPI algorithm does not converge to the minimum of the function g(k, ·,C). To guarantee the

convergence to that minimum a hybrid Successive Parabolic Interpolation and Golden Section

Search technique is necessary (see also [37]).

This algorithm constructs a sequence {θ (h)}h∈N such that

g(k,θ (h),C)≥ g(k,θ (h+1),C) h = 0,1, . . . , (3.46)

while at the hth step we have an uncertainty interval [a(h),b(h)], and we now discuss it in detail.

Let φ = (
√

5+1)/2 be the golden ratio or golden section, let ϕ be as in the equation (4.19),

let η ∈ R+ be small enough, and let [a(0) = ϕ +η ,b(0) = ϕ + π

2 −η ] be the initial uncertainty

interval. The sequence is initialized as

θ
(0) = θ

(1) = θ
(2) = a(2)+

b(2)−a(2)

φ
,

which is equivalent to a golden section search step (see also [106]).

We will rely on the successive parabolic interpolation algorithm (see also [100]), which ex-

tends a finite sequence of approximations of the required minimum by adding the minimum of

the parabola that interpolates the objective function on the last three terms of that sequence. The

main step of the successive parabolic interpolation algorithm can be written as

θ
(h+3) = θ

(h+2)+
p
q
,

where

p = (θ (h+2)−θ (h))2(g(k,θ (h+2),C)−g(k,θ (h+1),C))

−(θ (h+2)−θ (h+1))2(g(k,θ (h+2),C)−g(k,θ (h),C))

and

q = 2(θ (h+2)−θ (h))(g(k,θ (h+2),C)−g(k,θ (h+1),C))

−2(θ (h+2)−θ (h+1))(g(k,θ (h+2),C)−g(k,(θ (h),C)).

If at any point any two of θ (h), θ (h+1), and θ (h+2) coincide, or the parabola degenerates to

a line (in which case, q = 0), or the successive parabolic interpolation update is outside the
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current uncertainty interval [a(h), b(h)], then the step is performed using the golden section search

technique. The pseudocode of this algorithm is as follows.

function SPI-GSS(k,C)

h = 0;

[a(0),b(0)] = [ϕ +η ,ϕ +π/2−η ];

θ (0) = θ (1) = θ (2) = a(2)+(b(2)−a(2))/φ ;

while (|θ (h+2)−θ (h+1)|> ε) do

p = (θ (h+2)−θ (h))2(g(k,θ (h+2),C)−g(k,θ (h+1),C));

p = p− (θ (h+2)−θ (h+1))2(g(k,θ (h+2),C)−g(k,θ (h),C));

q = 2(θ (h+2)−θ (h))(g(k,θ (h+2),C)−g(k,θ (h+1),C));

q = q−2(θ (h+2)−θ (h+1))(g(k,θ (h+2),C)−g(k,(θ (h),C));

if ((q 6= 0) and (θ (h+2)+ p/q ∈ [a(h),b(h)])) then

θ (h+3) = θ (h+2)+ p/q;

else

if (θ (h+2) < (a(h+2)+b(h+2))/2) then

θ (h+3) = θ (h+2)+(b(h+2)−θ (h+2))/r;

else

θ (h+3) = θ (h+2)+(a(h+2)−θ (h+2))/r;

end if

end if

Compute the new uncertainty interval [a(h+1),b(h+1)];

Order {θ (i)}i=h,...,h+3 in such a way that (3.46) holds;

h = h+1;

end while

return θ (h+2)

Here ε > 0 is a suitable tolerance threshold.

During the last iterations, the algorithm usually stops choosing the golden section search

steps, and performs only parabolic interpolation steps. Thus, the asymptotic convergence de-

pends only on the SPI algorithm. We recall that the sequence {θ (h)}h converges to θ̂ with strong
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order p and asymptotic constant γ > 0 if

lim
h→+∞

|θ (h+1)− θ̂ |
|θ (h)− θ̂ |p

= γ,

and with weak order p if

liminf
h→+∞

(− ln |θ (h)− θ̂ |p)1/h = p.

Note that strong convergence implies weak convergence, but in general the converse is not true.

Let n ∈ N. A function f : [a,b]→ R is of class LCn([a,b]) if its nth derivative exists and is

Lipschitz. that is, if there exists a positive real number M0 such that

sup
x,y∈[a,b],|x−y|≤δ

| f (n)(x)− f (n)(y)| ≤M0 δ

for each δ > 0. The following result holds.

Theorem 3.5.4 ([37, Theorem 3.7.1]). Let k≥ 0, ι ∈ {1,−1}, let C ∈R2×2 be a positive definite

matrix, and let g(k, ·,C) be a function of class LC3(N), where N is a neighborhood of its minimum

θ̂ , such that g′′(k, θ̂ ,C) > 0. Then the sequence {θ (h)}h obtained by the SPI algorithm either

converges in the neighborhood N with either strong order p ' 1.325 or weak order p = ((3+
√

5)/2)1/3 ' 1.378.

Note that the function τ defined in (4.22) is not of class C1, but can be approximated by the

function

(τ(s))i =



0, if si ≤ 0,

p7(si), if 0 < si ≤ 1,

si, if 1 < si ≤ m−1,

q7(si), if m−1 < si ≤ m

m, if si > m,

i = 1, . . . ,ν2, (3.47)

where

p7(x) = −10x7 +36x6−45x5 +20x4,

q7(x) = m− p7(m− x), x ∈ R,

which is of class LC3 on Rn2
. If in (3.28) we replace the mapping τ in (4.22) with the function

τ in (3.47), then we obtain that g(k, ·,C) is of class LC3((ϕ(1)+η ,ϕ(2)+π −η)). Therefore,
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we are under the hypothesis of Theorem 3.5.4 and the minimization method has superlinear

convergence.

3.5.8 The Newton method

To find the minimum of the function g(k, ·,C), it is possible to apply the classical Newton method

to its derivative, that is the following algorithm is performed:

function Newton(k,C)

h = 0;

θ (1) = (ϕ +ϕ +π/2)/2;

θ (0) = θ (1)+2ε;

while (|θ (h+1)−θ (h)|> ε) do

h = h+1;

θ (h+1) = θ (h)− g′(k,θ (h),C)

g′′(k,θ (h),C)
;

end while

return θ (h+1)

where ε is the tolerance threshold, and

g(k(l),θ ,C) = f (l)(θ ,C) = (τ(s̃(l)r (θ)))T · τ(s̃(l)v (θ))

=
n2

∑
i=1

(τ(s̃(l)r (θ)))i(τ(s̃
(l)
v (θ))i,

and τ is as in (4.22). Note that

∂ (τ(·)i)

∂ s j
=


0, if s j > 0,

δi, j, if 0 < s j < m,

0, if s j > m,

i, j = 1, . . . ,n2, (3.48)

where δi, j denotes the Kronecker delta. When the following quantities make sense, we get

d
dθ

f (l)(θ ,C) =
n2

∑
i=1

(
τ(s̃(l)v, (θ))i

( d
dθ

(τ(s̃(l)r, (θ))i

)
+(τ(s̃(l)r (θ))i

( d
dθ

(τ(s̃(l)v (θ))i

))
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where for each i = 1,2, . . . ,n2 it is

d
dθ

(τ(s̃(l)r (θ))i =
n2

∑
j=1

∂ (τ(·)i)

∂ s j
((s̃(l)r (θ)) j) · ((s̃(l)r (θ)) j)

′ =

=
∂ (τ(·)i)

∂ si
((s̃(l)r (θ))i) · ((s̃(l)r (θ))i)

′ =

=


((s̃(l)r (θ))i)

′, if 0 < (s̃(l)r (θ))i < m,

0, otherwise
;

d
dθ

(τ(s̃(l)v (θ))i =
n2

∑
j=1

∂ (τ(·)i)

∂ s j
((s̃(l)v (θ)) j) · ((s̃(l)v (θ)) j)

′ =

=
∂ (τ(·)i)

∂ si
((s̃(l)v,ι (θ))i) · ((s̃(l)v (θ))i)

′

=


((s̃(l)v (θ))i)

′, if 0 < (s̃(l)v (θ))i < m,

0, otherwise

Moreover, we have:

d2

dθ 2 f (l)(θ ,C) =
n2

∑
i=1

(
τ(s̃(l)v (θ))i

( d2

dθ 2 (τ(s̃
(l)
r (θ))i

)
+(τ(s̃(l)r (θ))i

( d2

dθ 2 (τ(s̃
(l)
v (θ))i

))
+

+ 2
( d

dθ
(τ(s̃(l)r (θ))i

)( d
dθ

(τ(s̃(l)v (θ))i

)
,

where

d2

dθ 2 (τ(s̃
(l)
r (θ))i =


((s̃(l)r (θ))i)

′′, if 0 < (s̃(l)r (θ))i < m,

0, otherwise
;

d2

dθ 2 (τ(s̃
(l)
v (θ))i =


((s̃(l)v (θ))i)

′′, if 0 < (s̃(l)v (θ))i < m,

0, otherwise
.

For every i = 1,2, . . . ,n2, we get:

(s̃(l)r (θ))i = y(l)11 (θ)(xr)i + y(l)12 (θ)(xv)i,

(s̃(l)v (θ))i = y(l)21 (θ)(xr)i + y(l)22 (θ)(xv)i,

((s̃(l)r (θ))i)
′ = (y(l)11 )

′(θ)(xr)i +(y(l)12 )
′(θ)(xv)i,

((s̃(l)v (θ))i)
′ = (y(l)21 )

′(θ)(xr)i +(y(l)22 )
′(θ)(xv)i,
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((s̃(l)r (θ))i)
′′ = (y(l)11 )

′′(θ)(xr)i +(y(l)12 )
′′(θ)(xv)i,

((s̃(l)v (θ))i)
′′ = (y(l)21 )

′′(θ)(xr)i +(y(l)22 )
′′(θ)(xv)i,

where

y(l)11 (θ) =
z22(θ)(det(C)− k(l)R (z11(θ)− z21(θ))

2)

(z22(θ)− z12(θ))det(C)
− z21(θ)

k(l)(z11(θ)− z21(θ))

det(C)
,

y(l)12 (θ) = − z12(θ)(det(C)− k(l)(z11(θ)− z21(θ))
2)

(z22(θ)− z12(θ))det(C)
+ z11(θ)

k(l)(z11(θ)− z21(θ))

det(C)
,

y(l)21 (θ) = − z21(θ)

z11(θ)− z21(θ)
,

y(l)22 (θ) =
z(11θ)

z11(θ)− z21(θ)
.

We have

(y(l)11 )
′(θ) = − z22(θ)((z′22(θ)− (z12)

′(θ)))(det(C)− k(l)(z11(θ)− z21(θ))
2)

(z22(θ)− z12(θ))2 det(C)
+

+
(z22)

′(θ)(det(C)− k(l)(z11(θ)− z21(θ))
2)

(z22(θ)− z12(θ))det(C)
−

− k(l)(z21)
′(θ)(z11(θ)− z21(θ))

det(C)
−

− −2
k(l)z22(θ)(z11(θ))− z21(θ))((z11)

′(θ)− (z21)
′(θ)

(z22(θ)− z12(θ))det(C)
−

− k(l)z21(θ)((z11)
′(θ)− (z21)

′(θ))

det(C)
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Therefore,

(y(l)11 )
′′(θ) = − z22(θ)((z22)

′′(θ)− (z12)
′′(θ))(det(C)− k(l)(z11(θ)− z21(θ))

2)

(z22(θ)− z12(θ))2 det(C)
+

+
(z22)

′′(θ)(det(C)− k(l)(z11(θ)− z21(θ))
2)

(z22(θ)− z12(θ))det(C)
+

+ 2
z22(θ)((z22)

′(θ)− (z12)
′(θ))2(det(C)− k(l)(z11(θ)− z21(θ))

2)

(z22(θ)− z12(θ))3 det(C)
−

− 2
(z22)

′(θ)((z22)
′(θ)− (z12)

′(θ))(det(C)− k(l)(z11(θ)− z21(θ))
2)

(z22(θ)− z12(θ))2 det(C)
+

+ 4
k(l)z22(θ)(z11(θ)− z21(θ))((z11)

′(θ)− (z21)
′(θ))((z22)

′(θ)− (z12)
′(θ))

(z22(θ)− z12(θ))2 det(C)
−

− 4
k(l)z′22(θ)((z11)

′(θ)− (z21)
′(θ))(z11(θ)− z21(θ))

(z22(θ)− z12(θ))det(C)
−

− k(l)(z11(θ)− z21(θ))(z21)
′′(θ)

det(C)
−

− 2
k(l)z22(θ)(z11(θ)− z21(θ))((z11)

′′(θ)− (z21)
′′(θ))

(z22(θ)− z12(θ))det(C)
−

− k(l)(z′′11(θ)− z′′21(θ))z21(θ)

det(C)
−

− 2
k(l)z′21(θ)(z

′
11(θ)− z′21(θ))

(det(C)
−

− 2
k(l)z22(θ)(z′11(θ)− z′21(θ))

(z22(θ)− z12(θ))det(C)
,
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and hence

(y(l)12 )
′′(θ) =

z12(θ)((z22)
′′(θ)− (z12)

′′(θ))(det(C)− k(l)(z(11θ)− z21(θ))
2)

(z22(θ)− ((z12(θ)))2 det(C)
−

− (z12)
′′(θ)(det(C)− k(l)(z11(θ)− (z21(θ)))

2)

(z22(θ)− z12(θ))det(C)
−

− 2
z12(θ)((z22)

′(θ)− ((z12)
′(θ)))2(det(C)− k(l)(z11(θ)− z21(θ))

2)

(z22(θ)− z12(θ))3 det(C)
+

+ 2
(z12)

′(θ)((z22)
′(θ)− (z12)

′(θ))(det(C)− k(l)(z11(θ)− z21(θ))
2)

(z22(θ)− z12(θ))2 det(C)
−

− 4
k(l)z12(θ)(z11(θ)− z21(θ))((z11)

′(θ)− (z21)
′(θ))((z22)

′(θ)− (z12)
′(θ))

(z22(θ)− z12(θ))2 det(C)
+

+ 4
k(l)(z12)

′(θ)((z11)
′(θ)− (z21)

′(θ))(z11(θ)− z21(θ))

(z22(θ)− z12(θ))det(C)
+

+
k(l)(z11(θ)− z21(θ))(z11)

′′(θ)

det(C)
+

+ 2
k(l)z12(θ)(z11(θ)− z21(θ))((z11)

′′(θ)− (z21)
′′(θ))

(z22(θ)− z12(θ))det(C)
+

+
k(l)((z11)

′′(θ)− (z21)
′′(θ))z11(θ)

det(C)
+

+ 2
k(l)(z11)

′(θ)((z11)
′(θ)− (z21)

′(θ))

(det(C)
+

+ 2
k(l)z12(θ)((z11)

′(θ)− (z′21(θ))

(z22(θ)− z12(θ))det(C)
.

Moreover, we get

(y(l)21 )
′(θ) =

z21(θ)((z11)
′(θ)− (z21)

′(θ))

(z11(θ)− z21(θ))2 − (z21)
′(θ)

z11(θ)− z21(θ)
,

(y(l)21 )
′′(θ) =

z21(θ)((z11)
′′(θ)− (z21)

′′(θ))

(z11)(θ)− z21(θ))2 − (z21)
′′(θ)

z11(θ)− z21(θ)
+

+
2(z21)

′(θ)((z11)
′(θ)− (z21)

′(θ))

(z11(θ)− z21(θ))2 − 2z21(θ)((z11)
′(θ)− (z′21(θ))

2

(z11(θ)− z21(θ))3 ,

(y(l)22 )
′(θ) =

z11(θ)((z11)
′(θ)− (z21)

′(θ))

(z11(θ)− z21(θ))2 +
(z11)

′(θ)

z11(θ)− z21(θ)
,

(y(l)22 )
′′(θ) = − z11(θ)((z11)

′′(θ)− (z21)
′′(θ))

(z11(θ)− z21(θ))2 +
(z11)

′(θ)

z11(θ)− z21(θ)
−

− 2(z11)
′(θ)((z11)

′(θ)− (z21)
′(θ))

(z11(θ)− z21(θ))2 +
2z11(θ)((z11)

′(θ)− (z21)
′(θ))2

(z11(θ)− z21(θ))3 .

Let θ̂ be a minimizer of the function g(k, ·,C). If g′′(k, θ̂ ,C) 6= 0, then the Newton method is

locally convergent with order 2. Anyway, we experimentally check that in our case the Newton

method does not converge to a minimizer of the function g(k, ·,C).
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3.5.9 The Armijo Line Search (ALS)

Another method based on the derivative of the function g(k, ·,C) is the ALS. The relative algo-

rithm is the following

function ALS(k,C)

h = 0;

θ (1) = (ϕ +ϕ +π/2)/2;

θ (0) = θ (1)+2ε;

while (|θ (h+1)−θ (h)|> ε) do

h = h+1;

θ (h+1) = θ (h);

ξ (h+1) = g(k,θ (h));

der = g′(k,θ (h),C);

i = 0;

θ
(i)

= θ (h)−der;

while (θ
(i)

/∈ [ϕ +η ,ϕ +π/2−η ]) do

i = i+1;

θ
(i)

= θ (h)−der/2i;

end while

ξ
(i)

= g(k,θ
(i)
,C);

while (ξ
(i)

> ξ (h+1)−|der|/2i+1) do

if (ξ
(i)

< ξ (h+1)) then

θ (h+1) = θ
(i)

;

ξ (h+1) = ξ
(i)

;

end if

i = i+1;

θ
(i)

= θ (h)−der/2i;

ξ
(i)

= g(k,θ
(i)
,C);

end while

if (ξ
(i)

< ξ (h+1)) then
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θ (h+1) = θ
(i)

;

ξ (h+1) = ξ
(i)

;

end if

end while

return θ (h+1)

where ε is a suitable threshold tolerance.

The following result holds.

Theorem 3.5.5. (see also [33, Theorem 11], [149, Theorem 5.4.1.8]) Let g(k, ·,C) : [a,b]→ R+
0

and θ (0) ∈ [a,b] be such that the set K = {θ ∈ [a,b] : g(k,θ ,C)≤ g(k,θ (0),C)} is compact and

g(k, ·,C) ∈C1(A), where K ⊂ A and A ⊂ [a,b] is open. Then every sequence {θ (h)}h∈N defined

by the ALS method has at least a limit point θ ∈ K, and every limit point is a stationary point for

h.

3.5.10 Comparison of the results

We initially compared the results of methods which do not use derivatives, like the SA, TPS,

GSS, SPI-GSS algorithms. We tested them in restoring the documents of the Figures (3.15)-

(3.16), which were mixed with the mixture matrix (4.24). In Tables 3.1 and 3.2 there are the

calculation times and the mean square errors, indicated with MSE, with respect to the ideal

documents of the four previously presented algorithms. From these tables we deduce that the

algorithm SPI-GSS is the most efficent in terms of computational costs, among the considered

ones. Moreover, we tested the SPI-GSS algorithm. The related results are presented in Table

3.3. We observe that the errors in terms of MSE are similar to those found in Table 3.2 where ι

was not fixed, while the computational costs are substantially halved. Successively we compare

the SPI-GSS technique with the Armijo algorithm. The results are shown in Table 3.3, in which

we deduce that the SPI-GSS algorithm is more efficient, and thus we choose it for minimizing

functions with MATODS techniques.
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Ideal SA TPS

Document Time MSE recto MSE verso Time MSE recto MSE verso

Figure 3.15 (a) 32.78s 1.15 ·10−6 2.24 ·10−8 0.50s 1.09 ·10−10 2.94 ·10−11

Figure 3.15 (b) 47.08s 3.01 ·10−7 8.36 ·10−8 0.67s 4.16 ·10−9 6.54 ·10−10

Figure 3.15 (c) 41.55s 7.40 ·10−8 1.02 ·10−7 0.71s 6.74 ·10−8 9.44 ·10−8

Figure 3.15 (d) 515.80s 0.63 5.35 7.24s 0.63 5.35

Table 3.1: Results obtained by algorithms SA and TPS.

Ideal GSS SPI-GSS

Docment Time MSE recto MSE verso Time MSE recto MSE verso

Figure 3.15 (a) 0.42s 2.75 ·10−10 3.00 ·10−12 0.40s 1.47 ·10−10 1.71 ·10−11

Figure 3.15 (b) 0.64s 5.30 ·10−9 7.51 ·10−10 0.61s 5.62 ·10−9 9.02 ·10−10

Figure 3.15 (c) 0.59s 6.96 ·10−8 9.74 ·10−8 0.56s 6.92 ·10−8 9.68 ·10−8

Figure 3.15 (d) 7.64s 0.63 5.35 5.37s 0.63 5.35

Table 3.2: Results obtained by algorithms GSS and SPI-GSS.

3.5.11 The empty page case

Now we consider the case detC = 0. Since xr and xv are nonnegative vectors, from (4.6) and

the Cauchy-Schwartz inequality it follows that there exists ζ > 0 with xr = ζ xv. An example is

shown in Figure 3.14 (a).

(a) Observed document. (b) Symmetric reconstruction of the document.

Figure 3.14: Document whose recto is a multiple of the verso.

In this case, it is natural to assume that either s̃r, the estimate of sr, or s̃v, the estimate of sv,

are zero, that is, that either the recto or the verso of the ideal source document is an empty page.

When ζ ≥ 1, we assume that s̃v = 0e, and we get that xr = ã11, s̃r, xv = ã21 s̃r and ζ = ã11
ã21

, where
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Ideal SPI-GSS ALS

Document Time MSE recto MSE verso Time MSE recto MSE verso

Figure 3.15 (a) 0.20s 1.34 ·10−10 4.26 ·10−11 0.47s 3.78 ·10−10 1.28 ·10−15

Figure 3.15 (b) 0.30s 3.69 ·10−9 6.27 ·10−10 0.95s 6.05 ·10−9 9.12 ·10−10

Figure 3.15 (c) 0.27s 6.88 ·10−8 9.63 ·10−8 1.27s 7.02 ·10−8 9.81 ·10−8

Figure 3.15 (d) 3.28s 0.63 5.35 6.71s 0.63 5.35

Table 3.3: Results obtained by algorithms SPI-GSS, NL-SOR and ALS by fixing ι = 1.

ã11 and ã21 are estimates of a11 and a21, respectively. Therefore we obtain

s̃r =
1

ã11
xr, s̃v = 0 Ã =

 ã11 1− ã11

1
ζ

ã11 1− 1
ζ

ã11

 ,
where ã11 is arbitrarily chosen in ]0,1] and Ã is an estimate of the mixing matrix A. If we impose

that the matrix Ã is symmetric, then we have that ã11 =
ζ

ζ+1 . In Figure 3.14 (b) we present a

symmetric reconstruction of the document shown in Figure 3.14 (a).

If 0 < ζ < 1, then we set s̃r = 0e and get that xv = ã12 s̃v, xr = ã22 s̃v, and ζ = ã12
ã22

, where ã12

and ã22 are estimates of a12 and a22, respectively. Therefore we obtain

s̃v = 0, s̃v =
1

ã22
xv, Ã =

1−ζ ã22 ζ ã22

1− ã22 ã22

 ,
where ã22 is arbitrarily chosen in ]0,1], and by requiring that the the estimated mixing matrix Ã

is symmetric, we obtain that ã22 =
1

ζ+1 .

Note that, since we consider a locally linear model, it may happen that in a given subdomain

at least one of the original documents is empty.

3.5.12 Color image case

An n×n color image is usually encoded in the RGB space, where R, G, and B indicate the red,

green, and blue color, respectively. We consider every color component of a document as a pair

of images, the recto and the verso, and we denote the red, green, and blue data components as

x̂R =

[
x̂rR x̂vR

]
, x̂G =

[
x̂rG x̂vG

]
, x̂B =

[
x̂rB x̂vB

]
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respectively, where x̂rR, x̂rG, x̂rB, x̂vR, x̂vG, x̂vB ∈ [0,255]ν
2
. We write the observed color document

as

x̂ =
[

x̂rR x̂vR x̂rG x̂vG x̂rB x̂vB

]
,

which belongs to [0,255]ν
2×6. The source ideal document is given by the matrix

ŝ =
[

ŝrR ŝvR ŝrG ŝvG ŝrB ŝvB

]
,

where ŝ ∈ [0,255]ν
2×6, and we set

ŝR =

[
ŝrR ŝvR

]
, ŝG =

[
ŝrG ŝvG

]
, ŝB =

[
ŝrB ŝvB

]
.

The linear model for a color image is x̂T = AŝT . In this case the mixture matrix A ∈ R6×6 is the

block matrix

A =


AR O O

O AG O

O O AB

 , with AR =

aR
11 aR

12

aR
21 aR

22

 , AG =

aG
11 aG

12

aG
21 aG

22

 , AB =

aB
11 aB

12

aB
21 aB

22

 ,

where O ∈ R2×2 is the zero matrix. Thus, we get

x̂T
R = AR ŝT

R , x̂T
G = AG ŝT

R , x̂T
B = AB ŝT

R .

According to our model, every observed channel is formed by a linear combination of com-

ponents related to the same channel of the front and the back of the ideal source document, and

we can solve the problem independently on each channel with the technique proposed for gray

level images.

3.6 A new technique for solving the non-stationary problem

In this section we discuss how to use the MATODS algorithm to solve the non-stationary model

proposed in Subsection 3.2.1. Given a document defined on a domain of dimension n×n, in each

non-overlapping subdomain of dimension ν × ν we model the problem by means of a linear

operator, and assume that these linear operators vary smoothly between adjacent subdomains.

For this purpose we solve the problem on an overlapping subimage of size n× n, with n > ν ,

using the MATODS algorithm, and then we average the results obtained in each subdomain.
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In other words, if n and n are multiples of ν , then we consider the subimages x(p,q), for

p,q = 1, . . . , n−n
ν

, which have fixed size n× n, and solve the linear problem on each subimage.

The domain of these subimages is obtained by shifting by ν pixels a window of ν × ν pixels

either horizontally or vertically. Finally, we set the light intensity value of every pixel of the

estimated source s̃ to the arithmetic mean of the light intensity value of the estimated subsources

to which the pixel belongs.

By this procedure, all pixels lying in a subdomain of dimension ν × ν belong to the same

subimage, and on each subdomain the result is obtained by averaging the
( n

ν

)2 linear operators.

Note that the resulting average is a linear operator, being a linear combination of linear operators.

In adjacent subdomains, the reconstruction is the average of linear operators which are almost

coincident. Thus, the resulting operators on adjacent domains turn out to be similar, as required.

We now give the pseudocode of the approach discussed thus far.

function NIT-MATODS(x)

Initialize s̃ as a null matrix;

for p = 1 to n−n with step ν do

for q = 1 to n−n with step ν do

for i = 1 to n do

for j = 1 to n do

x(p,q)
r i, j = xr i+p, j+q;

x(p,q)
v i, j = xv i+p, j+q;

end for

end for

s(p,q)=MATODS(x(p,q))

dimy = min{n/ν ,d(i+ p)/νe ,d(n+1− i− p)/νe};

dimx = min{n/ν ,d( j+q)/νe ,d(n+1− j−q)/νe};

for i = 1 to n do

for j = 1 to n do

s̃r i+p, j+q = s̃r i+p, j+q + s(p,q)
r i, j /(dimx ·dimy);

s̃v i+p, j+q = s̃v i+p, j+q + s(p,q)
v i, j /(dimx ·dimy);
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end for

end for

end for

end for

return s̃

We refer to this method as the Not Invariant for Translation MATODS (NIT-MATODS) algo-

rithm. A correct selection of the parameters ν and n can improve the quality of the reconstruc-

tion. Clearly, a smaller subdomains size ν corresponds to a more precise reconstruction at the

price of an increase of the overall computational cost of the algorithm. The choice of the subim-

age size n is more complex, since as n increases, the total number of subimages decreases, while

the degree of smoothness between subdomains increases.

3.7 Experimental results

We implemented both the MATODS and NIT-MATODS algorithms in the C language, and the

experiments were run on a linux machine equipped with a 2.80GHz processor. First we compared

the MATODS algorithm with existing methods for the linear problem, and then we assessed how

the NIT-MATODS algorithm performs real ancient documents, comparing it with fast algorithms

that were developed by considering other approximated mathematical models.

For restoring color image documents of dimension ν = 256, in most cases the MATODS al-

gorithms requires less than one second, thus we compare it with fast and unsupervised methods,

like the FastICA (see also [98, 97, 99, 105, 118]) and the Symmetric Whitening (SW) (see also

[49, 155, 156]) algorithms. We proceeded as follows. First, we generated a synthetic document

from a by applying a given mixing matrix to an uncorrupted source document, using the linear

model in equation (3.3). Then we compared the estimated sources with the given source docu-

ment by means of the Mean Squared Error (MSE). In order to compare the FastICA and the SW

techniques with our algorithm, at the end of the execution of the FastICA and SW algorithms we

transformed the estimated mixture matrices in equivalent one row-sum matrices, as described in

Section 3, and then we applied an orthogonal projection operator, so that all the results are in the

space [0,255]ν
2×6. As source documents we considered the 256×256 images in Figure 3.15.
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(a) Document 1. (b) Document 2.

(c) Document 3. (d) Document 4.

(e) Document 5. (f) Document 6.

Figure 3.15: Ideal sources.

First, we mixed our documents using the mixture matrices

AR = AG = AB =

 0.7 0.3

0.3 0.7

 . (3.49)

In Table 3.4 we report the MSE of the MATODS, FastICA, and SW algorithms with respect to

the original documents. Here,

MSE(sρ , s̃ρ) =
‖sρ − s̃ρ‖2

F

3ν2 ,

where ‖ · ‖F denotes the Frobenius norm, ρ ∈ {r,v} the recto or the verso of the document,

respectively, sρ is the ideal recto or verso, and s̃ρ is an estimate produced by one of the three

algorithms we consider. Figure 3.16 (a) shows the mixtures obtained by applying the mask

(4.25) to Document 4, and Figure 3.16 (b)-(d) present the result of the MATODS, FastICA, and

SW algorithms, respectively. Note that, in Table 3.4, the MATODS algorithm always obtains an

error smaller than that of other methods, and in most cases its MSE is negligibly small.
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Ideal MATODS FastICA SW

Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso

1 1.54 ·10−10 4.15 ·10−11 53.27 1.45 0.95 27.79

2 3.56 ·10−9 6.21 ·10−10 17.71 12.14 25.74 15.75

3 6.93 ·10−8 9.69 ·10−8 171.23 30.92 3.69 6.25

4 1.09 6.99 20.62 25.67 8.57 58.14

5 1.25 ·10−5 5.04 ·10−12 4.46 1.78 5.55 3.44

6 1.13 ·10−9 4.54 ·10−11 130.81 24.84 159.96 67.11

Table 3.4: MSE of the MATODS, FastICA, and SW algorithms using the mixture matrices in (4.25).

(a) Observed document. (b) Document estimated by MATODS.

(c) Document estimated by FastICA. (d) Document estimated by SW.

Figure 3.16: Results for Document 4 mixed using the matrices in (4.25).
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Now we consider the mixture matrices

AR = AG = AB =

 0.55 0.45

0.45 0.55

 . (3.50)

The mixtures obtained with these matrices will have the recto very similar to the verso, and the

problem becomes more difficult to solve, since the matrices in (3.50) are more ill-conditioned

than those in (4.25). The MSEs for the three algorithms are given in Table 3.5, Figure 3.17

(a) reports the mixtures obtained by applying the mask (4.25) to Document 6, while Figures

3.17 (b)-(d) present the reconstructions obtained by the MATODS, FastICA, and SW algorithms,

respectively.

(a) Observed document. (b) Document estimated by MATODS.

(c) Document estimated by FastICA. (d) Document estimated by SW.

Figure 3.17: Results for Document 6 mixed using the matrices in (3.50).

Again we note that in several cases the reconstructions obtained with MATODS substantially

correspond to the ideal document. In this case the data documents have higher overlapping levels,

thus the approach of FastICA and SW, which force the estimated source overlapping levels to be

zero, give results too far from the desired ones. On the other hand, the MATODS algorithm is

not affected by the high data overlapping levels, which it estimates correctly. Recall that the

MATODS stopping criterion is based on the estimated source overlapping level, whose correct

computation requires, in this case, even more accurate source estimates.

Now we consider the case of non-symmetric and partially non-homogeneous mixture ma-

trices, that is, we assume that AR, AG, and AB are non-symmetric matrices and do not always
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Ideal MATODS FastICA SW

Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso

1 5.76 ·10−11 5.88 ·10−11 97.82 27.61 19.33 56.60

2 4.49 ·10−9 8.52 ·10−10 192.34 105.86 79.44 49.67

3 6.95 ·10−8 9.71 ·10−8 381.62 331.93 2.88 7.52

4 0.44 4.61 198.80 243.44 28.71 241.31

5 1.24 ·10−5 3.67 ·10−12 49.58 26.03 19.01 10.96

6 4.44 ·10−10 2.50 ·10−11 951.51 807.94 628.37 155.55

Table 3.5: MSE of the MATODS, FastICA, and SW algorithms using the mixture matrices in (3.50).

coincide. Let us take

AR = AB =

 0.7 0.3

0.4 0.6

 , AG =

 0.6 0.4

0.3 0.7

 . (3.51)

The MSE of the algorithms we consider is presented in Table 3.6. In this case, the results

obtained using the SW algorithm are not optimal, because the algorithm imposes a symmetry

constraint on the estimated mixture matrices. On the other hand, the FastICA algorithm gives

better results than in the previous case, because the condition numbers of the matrices in (3.51)

are smaller.

Ideal MATODS FastICA SW

Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso

1 1.28 ·10−10 4.56 ·10−11 43.71 2.27 43.79 54.42

2 3.51 ·10−9 6.07 ·10−10 19.90 17.64 84.33 50.01

3 6.95 ·10−8 9.71 ·10−8 175.96 68.05 24.94 16.33

4 0.78 5.93 18.94 33.65 18.37 60.96

5 1.24 ·10−5 3.90 ·10−12 3.33 2.91 28.21 17.33

6 1.43 ·10−10 1.76 ·10−11 258.04 96.14 509.88 129.25

Table 3.6: MSE of the MATODS, FastICA, and SW algorithms using the mixture matrices in (3.51).
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Now we illustrate the non-symmetric and non-homogeneous case by using the matrices

AR =

 0.6 0.4

0.3 0.7

 , AG =

 0.7 0.3

0.4 0.6

 , AB =

 0.55 0.45

0.4 0.6

 . (3.52)

The MSE for the three algorithms is reported in Table 3.7.

Ideal MATODS FastICA SW

Document MSE recto MSE verso MSE recto MSE verso MSE recto MSE verso

1 1.22 ·10−10 4.27 ·10−11 28.98 0.29 35.03 39.82

2 3.54 ·10−9 6.16 ·10−10 38.76 18.77 53.57 37.16

3 6.94 ·10−8 9.71 ·10−8 212.02 89.25 12.08 25.74

4 0.63 5.35 33.75 60.95 25.14 169.47

5 1.24 ·10−5 5.10 ·10−12 7.05 1.88 10.78 9.01

6 6.76 ·10−10 4.87 ·10−11 470.29 181.33 202.20 94.64

Table 3.7: MSE of the MATODS, FastICA, and SW algorithms using the mixture matrices in (3.52).

Note that, in general, the results obtained by the SW and FastICA algorithms are very similar,

which confirms what observed in [156]. Moreover, the estimation of the source overlapping level

is very useful for a correct reconstruction of the original sources. In all the cases we examine,

the MATODS algorithm obtains the best results.

The MATODS algorithm has been developed to separate linearly mixed components, and

does not remove deterioration phenomena, like noise in the data. In noisy document the brightest

value does not necessarily coincide with that of the background, and in order to handle noisy

data the MATODS algorithm, instead of computing the maximum value of the light intensity,

uses the statistical mode of the noisy document, to which it subtracts 4σ2, in order to exclude

noise tails. In Figure 3.18 (a) we present Document 1 mixed with the mixture matrices in (4.25)

and corrupted with additive white independent Gaussian noise with variance σ2 = 4 and mean

zero. In Figure 3.18 (b) we show the result of MATODS, while in Figures 3.18 (c) and (d) we

present those of FastICA and SW. Note that the MATODS algorithm separates the sources better

than FastICA and SW, but does not reduce the noise disturbance.

Now we illustrate how the NIT-MATODS algorithm restores real ancient documents. In this

case, we take some practical measures: we compare the maximum light intensity of the recto
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(a) Observed document. (b) Document estimated by MATODS (recto MSE

9.60, verso MSE 8.06).

(c) Document estimated by FastICA (recto MSE

60.29, verso MSE 8.88).

(d) Document estimated by SW (recto MSE 9.73,

verso MSE 37.85).

Figure 3.18: Results for Document 1 mixed using the mixture matrices in (4.25) and corrupted with noise

with variance σ2 = 4.

with that of the verso, and if the two values do not coincide, we add a constant to the light

intensities of the darker image, in order to reduce the difference between the background color

of the two sides. This is justified by the fact that the color of the paper has to be the same on

both sides of the paper. Since images of real documents present noise degradation phenomena,

we compute the statistical mode of the document instead of the maximum. We assume that the

determinant of the overlapping matrix of the observed data, C, which corresponds to each channel

of every involved subimage, is zero when det(C)/‖C‖∞ ≤ ε , where ε is an accuracy threshold

and ‖ · ‖∞ is the infinity norm. In the following experiments we deal with documents of size

n = 512, and we set the subimage dimension n to 128, while the dimension of the subdomains

is fixed to ν = 16 pixels. These values were chosen empirically in order to obtain a reasonable

trade-off between the quality of the result and the required computational time. Experimentally

we noticed that, as ν increases, both the execution time and the quality of the result decrease,

whereas as n increases, while remaining below n/4, both the execution time and the quality of

the result increase. Although the choice of the values of ν and n is tricky for the data in exam,

we experimentally found some values that give good results in the general case.

A more exhaustive analysis of the choice of these parameters would be of interest. In the
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examples presented here, the average execution time of the the NIT-MATODS algorithm is 59.72

seconds.

The reconstructions obtained by the NIT-MATODS algorithm are compared with those ob-

tained considering the stationary linear model, the nonlinear stationary model in (3.1), and the

non-stationary nonlinear model in (3.2). In particular, for the reconstructions based on the sta-

tionary linear model we use the MATODS algorithm, to treat the stationary nonlinear model we

use the algorithm proposed in [119], and for the non-stationary nonlinear model we consider

the algorithm in [157]. From the initials of the authors, we refer to the algorithm in [119] as

the MSGT algorithm, and to that in [157] as the TSS algorithm. These methods were chosen

because their computational cost is similar to that of the NIT-MATODS algorithm.

The data documents in Figures 3.19–3.21 (a) are taken from the database created as part of

the Irish Script on Screen (ISOS) project of the School of Celtic Studies of the Dublin Institute

for Advanced Studies, in conjunction with the SIGMEDIA group of the Department of Electrical

and Electronic Engineering at Trinity College Dublin (see [142]). This database contains ancient

documents affected by bleed-through. The results of MATODS are presented in Figures 3.19–

3.21 (b), those of MSGT in Figures 3.19–3.21 (c), and those of TSS in Figures 3.19–3.21 (d). In

Figures 3.19–3.21 (e) we present the reconstruction of the NIT-MATODS algorithm with ν = 4

and n = 32, in order to show how NIT-MATODS works using non-optimal parameters. Finally,

the results obtained by NIT-MATODS using the optimal parameters ν = 16 and n = 128 are

presented in Figures 3.19–3.21 (f).

We note that NIT-MATODS improves upon the results of the MSGT and TSS algorithms.

This is due to the fact that MSGT and TSS, in order to lower their computational cost, reduce

the quality of the reconstructions. In order to obtain more accurate reconstructions from a non-

stationary and nonlinear model, more expensive regularization technique may be adopted (see

also [69, 155]).
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(a) Observed document. (b) Document estimated by MATODS.

(c) Document estimated by MSGT. (d) Document estimated by TSS.

(e) Document estimated by NIT-MATODS (ν =

4, n = 32).

(f) Document estimated by NIT-MATODS (ν =

16, n = 128).

Figure 3.19: First ISOS document.
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(a) Observed document. (b) Document estimated by MATODS.

(c) Document estimated by MSGT. (d) Document estimated by TSS.

(e) Document estimated by NIT-MATODS (ν =

4, n = 32).

(f) Document estimated by NIT-MATODS (ν =

16, n = 128).

Figure 3.20: Second ISOS document.
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(a) Observed document. (b) Document estimated by MATODS.

(c) Document estimated by MSGT. (d) Document estimated by TSS.

(e) Document estimated by NIT-MATODS (ν =

4, n = 32).

(f) Document estimated by NIT-MATODS (ν =

16, n = 128).

Figure 3.21: Third ISOS document.
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Chapter 4

Document restoration based on

edge estimation

In Section 4.1 we introduce the concept of discrete derivative in an image. In Section 4.2 we

develop the ZEODS algorithm to deal with the linear problem. In Section 4.3 we compare

experimentally the ZEODS algorithm with other fast and unsupervised methods existing in the

literature.

4.1 The discrete derivative in an image

We call clique the set of pixels on which the finite difference of first order is well-defined. The

vertical cliques are of the type

c = {(i, j),(i+1, j)}, (4.1)

while the horizontal cliques have the form

c = {(i, j),(i, j+1)}. (4.2)

We denote by C the set of all cliques. Note that |C| = 2nm−m−n, where C denotes the cardi-

nality of C.

Given a vertical clique c= {(i, j),(i+1, j)}, the finite difference operator on it is ∆cx̂= x̂i, j−

x̂i+1, j. Moreover, given a horizontal clique c = {(i, j),(i, j+1)}, the associated finite difference
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operator is let ∆cx̂ = x̂i, j − x̂i, j+1. We consider the linear operator D ∈ R|C|×nm. Note that, in

this matrix, every row index corresponds to a clique, while every column index corresponds to a

pixel. To every row it is possible to associate a vertical or horizontal clique. Then, if we consider

a vertical clique c = {(i, j),(i+1, j)}, we get

Dc,(l,k) =



1, if (l,k) = (i, j),

−1, if (l,k) = (i+1, j),

0, otherwise;

and, if c = {(i, j),(i, j+1)} is a horizontal clique, we have

Dc,(l,k) =



1, if (l,k) = (i, j),

−1, if (l,k) = (i, j+1),

0, otherwise.

Let x ∈ R|C|×2 be the data derivative document matrix defined by

x = Dx̂. (4.3)

Analogously, the source derivative matrix s ∈ R|C|×2 is defined by

s = Dŝ. (4.4)

Notice that the involved images contain letters. If we assume that the colors of the letters and

of the background are uniform, then the finite differences are null, while they are different from

zero in correspondence with the edges of the letters.

From (3.3), (4.3) and (4.4) we deduce

xT = x̂T DT = AŝT DT = AsT . (4.5)

Note that the linear model obtained by considering the data document derivative matrix and the

source derivative matrix is equal to that obtained by treating the data document and the source

document in (3.3).
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Analogously as in [27], here we define the following 2×2 data derivative overlapping matrix

of the observed data:

C =

c11 c12

c21 c22

= xT x =

xT
r · xr xT

r · xv

xT
v · xr xT

v · xv

 . (4.6)

The matrix C indicates how much the edges of the letters in the front overlap with those of the

back. Indeed, in our case, the data derivative overlapping matrix is always nonnegative, and is

diagonal if and only if there is no overlapping of the edges of text from the recto to the verso of the

document. In particular we refer to the entries d = c12 = c21 as the data derivative overlapping

level.

The source derivative overlapping matrix can be defined similarly as

P =

p11 p12

p21 p22

= sT s =

sT
r · sr sT

r · sv

sT
v · sr sT

v · sv

 .
It is not difficult to see that the matrices C and P are symmetric and positive semidefinite. We

refer to the value

k = p12 = p21 = sT
r · sv (4.7)

as the source derivative overlapping level. We assume that k = 0, that is the edges of the recto of

the document do not overlap with those of the verso.

4.2 A technique for solving the linear problem

As in [27], we define a symmetric factorization of a symmetric and positive-definite matrix

H ∈ Rn×n as an expression of the type H = ZZT , where Z ∈ Rn×n. Note that, given an or-

thogonal matrix Q ∈ Rn×n and a symmetric factorization of the type H = ZZT , then ZQ(ZQ)T

is a symmetric factorization of H too. Furthermore, if we pick any two symmetric factorizations

H = Z1ZT
1 and H = Z2ZT

2 , then there exists an orthogonal matrix Q ∈ Rn×n with Z1 = Z2Q (see,

e.g., [26]).

In the 2×2 case, the set of the orthogonal matrices is the union of all rotations and reflections

in R2, which are expressed as

Q1(θ) =

sinθ −cosθ

cosθ sinθ

 and Q−1(θ) =

sinθ cosθ

cosθ −sinθ

 , (4.8)
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respectively, as θ varies in ]0,2π]. Since C =C1/2(C1/2)T =C1/2C1/2 is a symmetric factoriza-

tion of C, then all factorizations of C are given by

Z(ι)(θ) =C1/2Q(ι)(θ) =

ρ11 ρ12

ρ21 ρ22

Q(ι)(θ) =

z(ι)11 (θ) z(ι)12 (θ)

z(ι)21 (θ) z(ι)22 (θ)

 , (4.9)

where θ ∈]0,2π] and ι ∈ {−1,1}. In particular, we get

z(1)11 (θ) = z(−1)
11 (θ), z(1)12 (θ) =−z(−1)

12 (θ), z(1)21 (θ) = z(−1)
21 (θ), z(1)22 (θ) =−z(−1)

22 (θ).

(4.10)

We assume that

C = xT x = AsT sAT = AP̃AT , (4.11)

where P̃ is a symmetric and positive-definite estimate of the source derivative overlapping matrix

P. In P̃ we put

p̃12 = p̃21 = 0. (4.12)

Observe that we do not assign a value to p̃11 and p̃22, as they will be determined later by imposing

that the estimated mixture matrix is one row-sum. Let

P̃ = YY T (4.13)

be a symmetric factorization, where Y is a nonsingular matrix that satisfies

y11 y21 + y12 y22 = 0, (4.14)

thanks to (4.12). From (4.11) and (4.13) we get

C = AYY T AT = AY (AY )T ,

that is, AY is a factorization of C. For every given choice of θ ∈]0,2π] and ι ∈ {−1,1}, we define

an estimate Ã(ι)(θ) of the mixture matrix A as a matrix such that Ã(ι)(θ) = Z(ι)(θ)Y−1, where

Z(ι)(θ) is as in (4.9). We have

a(ι)11 (θ) =
z(ι)11 (θ)y22− z(ι)12 (θ)y21

y11 y22− y21 y12
, a(ι)12 (θ) =

z(ι)12 (θ)y11− z(ι)11 (θ)y12

y11 y22− y21 y12
, (4.15)

a(ι)21 (θ) =
z(ι)21 (θ)y22− z(ι)22 (θ)y21

y11 y22− y21 y12
, a(ι)22 (θ) =

z(ι)22 (θ)y11− z(ι)21 (θ)y12

y11 y22− y21 y12
,
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and by imposing that Ã(ι)(θ) satisfies the one row-sum condition in (3.5), we get

z(ι)11 (θ)y22− z(ι)12 (θ)y21 + z(ι)12 (θ)y11− z(ι)11 (θ)y12 = y11 y22− y21 y12, (4.16)

z(ι)21 (θ)y22− z(ι)22 (θ)y21 + z(ι)22 (θ)y11− z(ι)21 (θ)y12 = y11 y22− y21 y12.

Thus, the matrix Y fulfils the conditions in equations (4.14) and (4.16). The nonlinear system

given by the equations (4.14) and (4.16) admits infinitely many solutions. For the sake of conve-

nience, we choose the solution

y11 =
detC

(z(ι)22 (θ)− z(ι)12 (θ))detZ(ι)(θ)
, y12 = 0, (4.17)

y21 = 0, y22 =
detZ(ι)(θ)

z(ι)11 (θ)− z(ι)21 (θ)
.

This choice has several consequences. First, from (4.10) and (4.15) we obtain that Ã(1)(θ) =

Ã(−1)(θ) for all θ ∈]0,2π]. Moreover, from equations (4.8) and (4.9) we get that Z(θ) =−Z(θ +

π), for θ ∈]0,π], and hence from (4.15) and (4.17) we deduce that

Ã(θ) = Ã(θ +π), (4.18)

for each θ ∈]0,π].

So, in the following we consider only the case ι = 1, we put Ã(θ) = Ã(1)(θ) and Z(θ) =

Z(1)(θ) for each θ ∈]0,π], and in general we consider only the values of θ belonging to ]0,π].

Recall that Y must be non-singular, since Y realizes a symmetric factorization of the non-

singular matrix P.

Moreover, the equations in (4.17) are well defined if z11(θ) 6= z21(θ) and z12(θ) 6= z22(θ). In

[26] we prove that z11(θ) = z21(θ) or z12(θ) = z22(θ) when θ assumes the values ϕ + t π

2 , with

t ∈ Z and

ϕ =


arctan

(
ρ22−ρ12

ρ11−ρ21

)
, if ρ11 6= ρ21,

π

2
, if ρ11 = ρ21,

(4.19)

where ρi, j, i, j = 1,2, are the entries of the matrix C1/2.

For any θ ∈]ϕ,ϕ + π

2 [∪]ϕ + π

2 ,ϕ +π[, we get that an estimate of the ideal sources s is given

by

s̃(θ)T =

[
s̃r(θ) s̃v(θ)

]T

= Ã−1(θ)xT , (4.20)
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which, together with the fact that Ã−1(θ) = Ã1(θ) = Z(1)(θ)Y−1 and (4.16), yields

s̃r(θ) = − z22(θ)

z12(θ)− z22(θ)
xr +

z12(θ)

z12(θ)− z22(θ)
xv; (4.21)

s̃v(θ) = − z21(θ)

z11(θ)− z21(θ)
xr +

z11(θ)

z11(θ)− z21(θ)
xv.

As we supposed that the derivatives of our estimated sources take values between 0 and 2m,

where m is the maximum value of the observed image, we take the orthogonal projection of the

estimate sι(θ) on the space [0,2m]nm×2 with respect to the Frobenius norm. Namely, we apply to

the estimate of the sources the function that maps a vector s ∈Rnm to the nm-dimensional vector

τ(s), whose elements are given by

(τ(s))i =


0, if si ≤ 0,

si, if 0 < si ≤ 2m,

2m, if si > 2m,

i = 1, . . . ,nm. (4.22)

By this transformation, the projections of the estimated source derivative images τ(s̃r,ι(θ)) and

τ(s̃v,ι(θ)) turn to be nonnegative (see also [42, 50, 74, 134]). From now on, we consider the

projections above as the new estimates of the derivatives of the sources. Thus, among the possible

values of θ in ]ϕ,ϕ + π

2 [∪]ϕ + π

2 ,ϕ +π[, we find a value θ̃ that minimizes the objective function

g(θ ,C) = τ(s̃r(θ))
T · τ(s̃v(θ)). (4.23)

Observe that from (4.18) and (4.20) it follows that the function g is periodic in the variable θ

with period π . The function g is minimized by means of the algorithm given in [27].

The steps of the algorithm described in this section are illustrated as follows.

function ZEODS(x̂)

determine the maximum value m of x̂;

x = Dx̂;

C = xT x;

θ̃ = argmin(function g(·,C));

Z(θ̃) =C1/2Q1(θ̃);

compute s̃r(θ̃) and s̃v(θ̃) as in (4.21);

return D−1τ(s̃(θ̃))
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The function g(·, ·) is computed as follows:

function g(θ ,C)

Z(θ) =C1/2Q1(θ);

compute s̃r(θ) and s̃v(θ) as in (4.21);

return (τ(s̃r(θ)))
T · τ(s̃v(θ))

We refer to this method as the ZEODS algorithm, which is a parameter-free technique, and

thus unsupervised.

4.3 Experimental results

We have used ideal images, from which the observed documents have been synthetically con-

structed from suitable mixture matrices. The ideal images used for the tests are represented in

Figures 4.1 and 4.2.

In our tests, we have used both symmetric and asymmetric mixture matrices. In the following

subsections, the obtained results are explained and compared with other techniques both compu-

tationally and from the visual point of view. We examined RGB color images. The channels R,

G and B were treated separately.

4.3.1 Case 1: First symmetric matrix

The first case we investigate is a symmetric mixture matrix. For each channel R, G and B, the

related matrices are

AR =

 0.6 0.4

0.4 0.6

 , AG =

 0.6 0.4

0.4 0.6

 , AB =

 0.6 0.4

0.4 0.6

 . (4.24)

Now we see the behavior of the presented algorithms. We consider the ideal images in Figure

4.3, and using the above indicated mixture matrices, we synthetically obtain the degraded images

in Figure 4.4.

By applying the algorithms we get, as estimates, the results in Figures 4.5-4.10.

In Table 4.1 we present the mean square errors with respect to the original documents ob-

tained by means of the aforementioned algorithms for estimating the recto and the verso of Figure
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(a) original recto (b) original verso

(c) original recto (d) original verso

(e) original recto (f) original verso

Figure 4.1: Ideal images
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(a) original recto (b) original verso

(c) original recto (d) original verso

(e) original recto (f) original verso

Figure 4.2: Ideal images

(a) original recto (b) original verso

Figure 4.3: Ideal images
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(a) degraded recto (b) degraded verso

Figure 4.4: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.5: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.6: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.7: Estimates by FastIca
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(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.8: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.9: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.10: Estimates by PCA
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4.3. Now we consider the following ideal images in Figure 4.11. Using the above indicated mix-

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 5.0766 0.6228 1.020 ·10−4

MATODS 12.5173 49.0506 0.0011

FASTICA 58.2382 212.8663 0.0546

Symmetric Whitening 428.0422 373.6753 0.00183

Whitening 7.7086 ·103 6.2362 ·103 0.3561

PCA 1.4943 ·104 5.2861 ·103 0.3770

Table 4.1: Errors of the algorithms by using the mixture matrix in (4.24).

(a) original recto (b) original verso

Figure 4.11: Ideal images

ture matrices, we synthetically obtain the degraded images in Figure 4.12.

By applying the algorithms we obtain, as estimates, the results in Figures 4.13-4.18.

In Table 4.2 we give the mean square errors with respect to the original documents obtained

by means of the above algorithms for the estimates of the recto and the verso of Figure 4.11.

We consider the ideal images in Figure 4.19.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.20.

By applying the algorithms we obtain, as estimates, the results in Figures 4.21-4.26.

In Table 4.3 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.19. We consider the ideal images in Figure 4.27.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in
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(a) degraded recto (b) degraded verso

Figure 4.12: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.13: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.14: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.15: Estimates by FastIca
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(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.16: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.17: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.18: Estimates by PCA

(a) original recto (b) original verso

Figure 4.19: Ideal images
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.7592 0.4784 5.4688 ·10−5

MATODS 25.6900 52.0605 1.2550 ·10−4

FASTICA 3.3840 3.4516 0.0095

Symmetric Whitening 74.7709 80.8914 0.0110

Whitening 8.4391 ·103 5.98950 ·103 0.4561

PCA 1.4068 ·104 3.9386 ·103 0.4225

Table 4.2: Errors of the algorithms by using the mixture matrix in (4.24).

(a) degraded recto (b) degraded verso

Figure 4.20: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.21: Estimates by ZEODS
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.22: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.23: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.24: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.25: Estimates by Whitening
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(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.26: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.8752 0.6474 4.4766 ·10−5

MATODS 172.146 180.0660 2.8565 ·10−4

FASTICA 12.1634 43.6463 0.0395

Symmetric Whitening 261.5776 259.4301 0.00168

Whitening 3.5723 ·103 1.5907 ·103 0.4596

PCA 5.9609 ·103 1.4281 ·103 0.4242

Table 4.3: Errors of the algorithms by using the mixture matrix in (4.24).

(a) original recto (b) original verso

Figure 4.27: Ideal images
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Figure 4.28.

(a) degraded recto (b) degraded verso

Figure 4.28: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 4.29-4.34.

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.29: Estimates by ZEODS

In Table 4.4 we indicate the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.27.

We consider the ideal images in Figure 4.35.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.36.

By applying the algorithms we obtain, as estimates, the results in Figures 4.37-4.42.

In Table 4.5 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.35.

As we can observe from the results of the previous subsection, the proposed and implemented

ZEODS method obtains better results than algorithms FastIca, PCA, Whitening and Symmetric
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.30: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.31: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.32: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.33: Estimates by Whitening
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(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.34: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.7829 0.5673 1.095 ·10−4

MATODS 0.9015 10.3131 0.0014

FASTICA 1.0849 0.6707 0.0136

Symmetric Whitening 8.5123 12.2799 0.0085

Whitening 1.9433 ·103 1.2006 ·103 0.4548

PCA 2.9914 ·103 716.5649 ·103 0.4234

Table 4.4: Errors of the algorithms by using the mixture matrix in (4.24).

(a) original recto (b) original verso

Figure 4.35: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.36: Degraded images
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(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.37: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.38: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.39: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.40: Estimates by Symmetric Whitening
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(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.41: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.42: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 4.7486 1.6165 1.4055 ·10−4

MATODS 136.7090 120.7570 0.0015

FASTICA 58.2382 212.8663 0.0546

Symmetric Whitening 428.0422 373.6753 0.0183

Whitening 7.7086 ·103 6.2362 ·103 0.3561

PCA 1.4943 ·104 5.2861 ·103 0.3770

Table 4.5: Errors of the algorithms by using the mixture matrix in (4.24).
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Whitening. However the MATODS algorithm obtains results close to those of the ZEODS algo-

rithm only in the image in Figure 4.27. To see this, we compare the execution time of the two

algorithms in the image in Figure 4.27. The results are presented in Table 4.14.

Used Technique Time

ZEODS 0.3320s

MATODS 754.1420s

Table 4.6: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.24)

on the image in Figure 4.27

To see a further demonstration of what we said before, we now make a further test on another

image, obtaining similar results by means of both algorithms obtaining similar results by means

of both algorithms ZEODS and MATODS.

We consider the ideal images in Figure 4.43.

(a) original recto (b) original verso

Figure 4.43: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.44.

In Table 4.7 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.43.

The algorithms MATODS and ZEODS obtain very similar results. By applying the algo-

rithms we obtain, as estimates, the results in Figures 4.45-4.46. Now we analyze the execution

time of the algorithms. As in the previous case, we see that the ZEODS method gives results in

a much shorter time than the MATODS method, as shown in Table 4.14.
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(a) degraded recto (b) degraded verso

Figure 4.44: Degraded images

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.0008 0.4494 1.6842 ·10−6

MATODS 0.0081 0.0019 1.29 ·10−4

FASTICA 42.7700 70.7900 0.0066

Symmetric Whitening 341.69 342.1863 0.0048

Whitening 245.8900 262.93 0.0086

PCA 9249 ·104 10330 ·103 0.038

Table 4.7: Errors of the algorithms by using the mixture matrix in (4.24).

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.45: Estimates by ZEODS

Used Technique Time

ZEODS 0.3410s

MATODS 750.6980s

Table 4.8: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.24)

on the image in Figure 4.43
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.46: Estimates by MATODS

These results given in terms of time are consistent with the previously obtained results.

4.3.2 Case 2: Second symmetric matrix

The second case we investigate is another symmetric mixture matrix. For every channel R, G

and B, the corresponding matrices are

AR =

 0.7 0.3

0.3 0.7

 , AG =

 0.7 0.3

0.3 0.7

 , AB =

 0.7 0.3

0.3 0.7

 . (4.25)

Now we see the behavior of the presented algorithms, in connection both with errors and with

the visual point of view.

We consider the ideal images in Figure 4.47.

(a) original recto (b) original verso

Figure 4.47: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.48.

By applying the algorithms we obtain, as estimates, the results in Figures 4.49-4.54. In
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(a) degraded recto (b) degraded verso

Figure 4.48: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.49: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.50: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.51: Estimates by FastIca
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(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.52: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.53: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.54: Estimates by PCA
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Table 4.9 we present the mean square errors with respect to the original documents obtained by

means of the above algorithms for the estimate of the recto and the verso of Figure 4.47.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.8547 4.9596 5.8836 ·10−5

MATODS 17.6269 50.6982 0.0004

FASTICA 37.5413 86.2744 0.0783

Symmetric Whitening 519.4615 288.9082 0.0352

Whitening 2.4090 ·103 400.2690 0.0352

PCA 7.7310 ·103 3.7087 ·103 0.3674

Table 4.9: Errors of the algorithms by using the mixture matrix in (4.25).

We consider the ideal images in Figure 4.55. Using the above mixture matrices, we syntheti-

(a) original recto (b) original verso

Figure 4.55: Ideal images

cally obtain the degraded images in Figure 4.56.

By applying the algorithms we obtain, as estimates, the results in Figures 4.57-4.62.

In Table 4.10 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.55.

We consider the ideal images in Figure 4.63.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.64.

By applying the algorithms we obtain, as estimates, the results in Figures 4.65-4.70.

In Table 4.11 we present the mean square errors with respect to the original documents ob-
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(a) degraded recto (b) degraded verso

Figure 4.56: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.57: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.58: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.59: Estimates by FastIca
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(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.60: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.61: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.62: Estimates by PCA

(a) original recto (b) original verso

Figure 4.63: Ideal images
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.0648 2.9075 1.3883 ·10−5

MATODS 125.8860 213.165 0.0035

FASTICA 14.2089 1.7185 0.0215

Symmetric Whitening 71.8710 75.6985 0.224

Whitening 1.1589 ·104 6.9410 ·103 0.4281

PCA 1.5428 ·104 5.3671 ·103 0.4305

Table 4.10: Errors of the algorithms by using the mixture matrix in (4.25).

(a) degraded recto (b) degraded verso

Figure 4.64: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.65: Estimates by ZEODS
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.66: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.67: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.68: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.69: Estimates by Whitening
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(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.70: Estimates by PCA

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.63. We consider the ideal images in Figure 4.71.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.7132 1.8467 2.1718 ·10−5

MATODS 12.4361 48.8206 0.021

FASTICA 12.2312 42.1443 0.0407

Symmetric Whitening 190.6356 174.7290 0.0326

Whitening 3.9342 ·103 1.5761 ·103 0.4392

PCA 5.7594 ·103 1.5845 ·103 0.4368

Table 4.11: Errors of the algorithms by using the mixture matrix in (4.25).

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.72.

By applying the algorithms we obtain, as estimates, the results in Figures 4.73-4.78.

In Table 4.12 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.71.

We consider the ideal images in Figure 4.79.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.80.

By applying the algorithms we obtain, as estimates, the results in Figures 4.81-4.86.

In Table 4.13 we present the mean square errors with respect to the original documents ob-
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(a) original recto (b) original verso

Figure 4.71: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.72: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.73: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.74: Estimates by MATODS
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(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.75: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.76: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.77: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.78: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.2304 1.9043 5.5429 ·10−5

MATODS 1.4521 3.5621 0.0010

FASTICA 0.8686 0.4879 0.0120

Symmetric Whitening 5.1557 10.1508 0.0159

Whitening 2.8938 ·103 1.5686 ·103 0.5148

PCA 3.5387 ·103 1.0885 ·103 0.4658

Table 4.12: Errors of the algorithms by using the mixture matrix in (4.25).

(a) original recto (b) original verso

Figure 4.79: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.80: Degraded images

169



Ill-Posed Problems in Computer Vision

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.81: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.82: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.83: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.84: Estimates by Symmetric Whitening
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(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.85: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.86: Estimates by PCA

tained by means of the above algorithms for the estimate of the recto and the verso of Figure 4.79

and the corresponding distance between the ideal and the estimated sources.

As we can note in the results of the previous subsection, the ZEODS methods, in terms of

errors, always obtains better results than the FastIca, PCA, Whitening and Symmetric Whitening

algorithms. However the MATODS algorithm obtains results close to those of the proposed

algorithm only in the image in Figure 4.71. But the execution time of the ZEODS algorithm is

much shorter than those of the MATODS algorithm. To see this, we compare the execution time

of the two algorithms in the image in Figure 4.71.

To see a further demonstration of what we said before, we now make a further test on another

image, obtaining similar results by means of both algorithms ZEODS e MATODS.

We consider the ideal images in Figure 4.87.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.88.

In Table 4.15 we present the mean square errors with respect to the original documents ob-
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.6564 4.5617 9.4655 ·10−5

MATODS 110.2154 85.9412 0.0015

FASTICA 19.2557 7.4678 0.0266

Symmetric Whitening 31.9505 84.1863 0.0220

Whitening 1.8337 ·104 8.4063 ·103 0.5216

PCA 2.2485 ·104 5.9284 ·103 0.4693

Table 4.13: Errors of the algorithms by using the mixture matrix in (4.25).

Used Technique Time

ZEODS 0.3150s

MATODS 687.3250s

Table 4.14: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.25)

on the image in Figure 4.71

(a) original recto (b) original verso

Figure 4.87: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.88: Degraded images

172



Ill-Posed Problems in Computer Vision

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.87. The algorithms MATODS and ZEODS obtain very similar results. We obtain, as estimates,

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 5.2751 4.1563 4.1236 ·10−5

MATODS 0.1501 0.1910 1.4301 ·10−5

FASTICA 42.7700 70.7900 0.0066

Symmetric Whitening 341.69 342.1863 0.0048

Whitening 245.8900 262.93 0.0086

PCA 9249 10330 0.038

Table 4.15: Errors of the algorithms by using the mixture matrix in (4.25).

the results in Figures 4.89-4.90. However, if we analyze the excution time of the algorithm, we

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.89: Estimates by ZEODS

see that the ZEODS method gives results in a much shorter time than the MATODS method, as

shown in Table 4.16.

Used Technique Time

ZEODS 0.3330s

MATODS 489.0880s

Table 4.16: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.25).
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.90: Estimates by MATODS

4.3.3 Case 3: First asymmetric matrix

The third case we deal with is an asymmetric mixture matrix. For every channel R, G and B, the

related matrices are

AR =

 0.7 0.3

0.3 0.7

 , AG =

 0.7 0.3

0.2 0.8

 , AB =

 0.6 0.4

0.3 0.7

 . (4.26)

Now we see the behavior of the presented algorithms, concerning both errors and the visual point

of view.

We consider the ideal images in Figure 4.91.

(a) original recto (b) original verso

Figure 4.91: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.92.

By applying the algorithms we obtain, as estimates, the results in Figures 4.93-4.98.

In Table 4.17 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.91. We consider the ideal images in Figure 4.99. Using the above indicated mixture matrices,
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(a) degraded recto (b) degraded verso

Figure 4.92: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.93: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.94: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.95: Estimates by FastIca
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(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.96: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.97: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.98: Estimates by PCA

(a) original recto (b) original verso

Figure 4.99: Ideal images
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.9539 3.8356 6.1210 ·10−5

MATODS 45.2314 49.0506 0.0011

FASTICA 29.2027 148.9813 0.0701

Symmetric Whitening 451.6652 419.6792 0.0373

Whitening 2.8741 ·103 352.5680 0.1792

PCA 8.0327 ·103 3.5478 ·103 0.3596

Table 4.17: Errors of the algorithms by using the mixture matrix in (4.26).

we synthetically obtain the degraded images in Figure 4.100.

(a) degraded recto (b) degraded verso

Figure 4.100: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 4.101-4.106.

In Table 4.18 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.99.

We consider the ideal images in Figure 4.107.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.108.

By applying the algorithms we obtain, as estimates, the results in Figures 4.109-4.114.

In Table 4.19 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.107. We consider the ideal images in Figure 4.115.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in
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(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.101: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.102: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.103: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.104: Estimates by Symmetric Whitening
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(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.105: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.106: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.2423 3.5365 2.044 ·10−5

MATODS 35.0330 51.3125 0.0002

FASTICA 4.4079 4.1418 0.0126

Symmetric Whitening 45.8355 117.4545 0.0305

Whitening 6.7961 ·103 3.7444 ·103 0.3297

PCA 1.1179 ·104 4.1416 ·103 0.3893

Table 4.18: Errors of the algorithms by using the mixture matrix in (4.26).
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(a) original recto (b) original verso

Figure 4.107: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.108: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.109: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.110: Estimates by MATODS
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(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.111: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.112: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.113: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.114: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.4521 1.3566 1.9913 ·10−5

MATODS 67.4521 75.6765 0.0007

FASTICA 14.8255 47.8983 0.0429

Symmetric Whitening 221.8945 190.5466 0.0377

Whitening 1.6127 ·103 421.6936 0.0377

PCA 3.7456 ·103 1.3281 ·103 0.3954

Table 4.19: Errors of the algorithms by using the mixture matrix in (4.26).

(a) original recto (b) original verso

Figure 4.115: Ideal images
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Figure 4.116.

(a) degraded recto (b) degraded verso

Figure 4.116: Degraded images

By applying the algorithms we obtain, as estimates, the results in Figures 4.117-4.122.

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.117: Estimates by ZEODS

In Table 4.20 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.115.

We consider the ideal images in Figure 4.123.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.124.

By applying the algorithms we obtain, as estimates, the results in Figures 4.125-4.130.

In Table 4.21 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.123.

As we observe in the previous results, the ZEODS methods, in terms of errors, always obtains

better results than the FastIca, PCA, Whitening and Symmetric Whitening algorithms. However,
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.118: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.119: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.120: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.121: Estimates by Whitening
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(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.122: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.1486 0.1950 6.2159 ·10−5

MATODS 1.9025 2.3132 2.1564 ·10−5

FASTICA 0.9037 0.5265 0.0117

Symmetric Whitening 3.8798 12.8583 0.0270

Whitening 1.7404 ·103 833.1407 0.3356

PCA 2.5707 ·103 795.5274 0.3916

Table 4.20: Errors of the algorithms by using the mixture matrix in (4.26).

(a) original recto (b) original verso

Figure 4.123: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.124: Degraded images
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(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.125: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.126: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.127: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.128: Estimates by Symmetric Whitening
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(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.129: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.130: Estimates by PCA

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.8024 5.2181 1.012 ·10−4

MATODS 20.7090 19.3665 0.0001

FASTICA 15.7847 3.3160 0.0223

Symmetric Whitening 7.2817 109.0196 0.0339

Whitening 1.7703 ·104 8.5767 ·103 0.0339

PCA 2.17489 ·104 5.9721 ·103 0.4655

Table 4.21: Errors of the algorithms by using the mixture matrix in (4.26).
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the MATODS algorithm gives results close to those of the proposed algorithm only in the image

in Figure 4.115. To see this, we compare the execution time of the two algorithms in the image

in Figure 4.115.

Used Technique Time

ZEODS 0.3510s

MATODS 956.3210s

Table 4.22: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.26)

on the image in Figure 4.115

To see a further demonstration of what we said before, we now make a further test on another

image, obtaining similar results by means of both algorithms ZEODS e MATODS.

We consider the ideal images in Figure 4.131.

(a) original recto (b) original verso

Figure 4.131: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.132.

(a) degraded recto (b) degraded verso

Figure 4.132: Degraded images
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In Table 4.23 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.131.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 11.1003 10.4289 3.7659 ·10−5

MATODS 4.0124 3.1247 2.2459 ·10−5

Table 4.23: Errors of the algorithms by using the mixture matrix in (4.26).

By applying the algorithms we obtain, as estimates, the results in Figures 4.133-4.134.

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.133: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.134: Estimates by MATODS

As we can note in the results of the previous subsection, the ZEODS method, in terms of er-

rors, always obtains better results than the other algorithms, and is even faster than the MATODS

method, as shown in Table 4.22.

These results given in terms of time are consistent with the previously obtained results.
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Used Technique Time

ZEODS 0.3440s

MATODS 910.1002s

Table 4.24: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.26)

on the image in Figure 4.131

4.3.4 Case 4: Second asymmetric matrix

In the fourth and last case we consider another asymmetric mixture matrix. For every channel R,

G and B, the corresponding matrices are

AR =

 0.7 0.3

0.2 0.8

 , AG =

 0.45 0.55

0.4 0.6

 , AB =

 0.7 0.3

0.51 0.49

 . (4.27)

Now we see the behavior of the presented algorithms, regarding both errors and the visual point

of view. We consider the ideal images in Figure 4.135.

(a) original recto (b) original verso

Figure 4.135: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.136.

By applying the algorithms we obtain, as estimates, the results in Figures 4.137-4.142.

In Table 4.25 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.135. We consider the ideal images in Figure 4.143. Using the above indicated mixture matri-

ces, we synthetically obtain the degraded images in Figure 4.144.

By applying the algorithms we obtain, as estimates, the results in Figures 4.145-4.150.
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(a) degraded recto (b) degraded verso

Figure 4.136: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.137: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.138: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.139: Estimates by FastIca
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(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.140: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.141: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.142: Estimates by PCA

(a) original recto (b) original verso

Figure 4.143: Ideal images
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 3.9507 4.9612 7.6397 ·10−5

MATODS 50.1485 41.1745 0.0098

FASTICA 615.3561 346.1334 0.0719

Symmetric Whitening 707.1949 631.6572 0.0520

Whitening 2.3355 ·103 938.1797 0.2227

PCA 6.5589 ·103 4.1706 ·103 0.3401

Table 4.25: Errors of the algorithms by using the mixture matrix in (4.27).

(a) degraded recto (b) degraded verso

Figure 4.144: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.145: Estimates by ZEODS
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.146: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.147: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.148: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.149: Estimates by Whitening
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(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.150: Estimates by PCA

In Table 4.26 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.143.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 1.2642 2.6337 2.2806 ·10−5

MATODS 62.2418 85.4395 0.0026

FASTICA 353.226 182.7357 0.0303

Symmetric Whitening 409.8490 495.5137 0.1435

Whitening 7.7216 ·103 3.5975 ·103 0.4449

PCA 1.2810 ·104 2.5195 ·103 0.4473

Table 4.26: Errors of the algorithms by using the mixture matrix in (4.27).

We consider the ideal images in Figure 4.151.

Using the above indicated mixture matrices, we synthetically obtain the images in Figure

4.152. By applying the algorithms we obtain, as estimates, the results in Figures 4.153-4.158.

In Table 4.27 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.151. We consider the ideal images in Figure 4.159.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.160.

By applying the algorithms we obtain, as estimates, the results in Figures 4.161-4.166.

In Table 4.28 we present the mean square errors with respect to the original documents ob-
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(a) original recto (b) original verso

Figure 4.151: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.152: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.153: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.154: Estimates by MATODS

196



Ill-Posed Problems in Computer Vision

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.155: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.156: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.157: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.158: Estimates by PCA
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.6289 1.3893 9.6560 ·10−6

MATODS 12.0247 30.8065 8.8984 ·10−4

FASTICA 166.6276 91.2465 0.0386

Symmetric Whitening 352.5150 410.2975 0.0579

Whitening 1.6118 ·103 830.0139 0.3584

PCA 3.0682 ·103 1.8473 ·103 0.3767

Table 4.27: Errors of the algorithms by using the mixture matrix in (4.27).

(a) original recto (b) original verso

Figure 4.159: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.160: Degraded images
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(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.161: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.162: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.163: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.164: Estimates by Symmetric Whitening
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(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.165: Estimates by Whitening

(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.166: Estimates by PCA

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.159.

We consider the following images in Figure 4.167.

(a) original recto (b) original verso

Figure 4.167: Ideal images

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.168.

By applying the algorithms we obtain, as estimates, the results in Figures 4.169-4.174.

In Table 4.29 we present the mean square errors with respect to the original documents ob-
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Used Technique MSE Recto MSE Verso MSE of A

ZEODS 0.3876 1.7862 6.7032 ·10−5

MATODS 3.1985 5.1475 0.0002

FASTICA 34.7680 15.8122 0.0228

Symmetric Whitening 8.8713 17.2117 0.0458

Whitening 2.2407 ·103 1.2194 ·103 0.4580

PCA 2.8462 ·103 941.9039 0.4180

Table 4.28: Errors of the algorithms by using the mixture matrix in (4.27).

(a) degraded recto (b) degraded verso

Figure 4.168: Degraded images

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.169: Estimates by ZEODS
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(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.170: Estimates by MATODS

(a) recto estimated by FastIca (b) verso estimated by FastIca

Figure 4.171: Estimates by FastIca

(a) recto estimated by Sym-

metric Whitening

(b) verso estimated by Sym-

metric Whitening

Figure 4.172: Estimates by Symmetric Whitening

(a) recto estimated by Whiten-

ing

(b) verso estimated by

Whitening

Figure 4.173: Estimates by Whitening
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(a) recto estimated by PCA (b) verso estimated by PCA

Figure 4.174: Estimates by PCA

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.167.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 3.2977 3.6252 1.090 ·10−4

MATODS 35.0124 42.8569 1.5041 ·10−4

FASTICA 232.7229 147.4355 0.0304

Symmetric Whitening 235.6894 607.9245 0.1441

Whitening 1.4669 ·104 6.6340 ·103 0.5272

PCA 1.9414 ·104 3.9348 ·103 0.4795

Table 4.29: Errors of the algorithms by using the mixture matrix in (4.27).

As we observe in the results of the previous subsection, the ZEODS methods, in terms of

errors, always obtains better results than the FastIca, PCA, Whitening and Symmetric Whitening

algorithms. However the MATODS algorithm obtains results close to those of the proposed

algorithm only in the image in Figure 4.159. But the execution time of the ZEODS algorithm is

much shorter than those of the MATODS algorithm. To see this, we compare the execution time

of the two algorithms in the image in Figure 4.159.

To see a further demonstration of what we said before, we now make a further test on another

image, obtaining similar results by means of both algorithms ZEODS e MATODS. We consider

the ideal images in Figure 4.175.

Using the above indicated mixture matrices, we synthetically obtain the degraded images in

Figure 4.176.
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Used Technique Time

ZEODS 0.3390s

MATODS 845.1618s

Table 4.30: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.27)

on the image in Figure 4.159

(a) original recto (b) original verso

Figure 4.175: Ideal images

(a) degraded recto (b) degraded verso

Figure 4.176: Degraded images
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In Table 4.31 we present the mean square errors with respect to the original documents ob-

tained by means of the above algorithms for the estimate of the recto and the verso of Figure

4.175.

Used Technique MSE Recto MSE Verso MSE of A

ZEODS 8.1003 7.4289 3.7659 ·10−5

MATODS 6.0247 5.1247 2.2459 ·10−5

Table 4.31: Errors of the algorithms by using the mixture matrix in (4.27).

The ZEODS algorithm obtains results very close to the MATODS algorithm. We get, as

estimates, the results in Figures 4.177-4.178. We analyze the execution time of algorithms. As

(a) recto estimated by ZEODS (b) verso estimated by

ZEODS

Figure 4.177: Estimates by ZEODS

(a) recto estimated by MA-

TODS

(b) verso estimated by MA-

TODS

Figure 4.178: Estimates by MATODS

in the previous case, we get that the ZEODS method gives results in a much shorter time than

the MATODS method, as we can see in Table 4.22.

These results given in terms of time are consistent with the previously obtained results.
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Used Technique Time

ZEODS 0.3510s

MATODS 812.1014s

Table 4.32: Execution time of the algorithms MATODS and ZEODS by using the mixture matrix in (4.26)

on the image in Figure 4.175

206



Chapter 5

Interference level estimation in

document restoration

This chapter is structured as follows. In Section 5.2 we deal with the regularization of the modi-

fied Sharma model. In Section 5.3 we describe the alternating iterative algorithm, used to find the

minimum of the energy function. In Section 5.4 we analyze the technique to determine the inter-

ference levels, given the blur operator and the ideal sources. In Section 5.5 we propose different

types of convex approximations. In Section 5.6 we present GNC-type alternative minimization

techniques. In Section 5.7 we compare the proposed technique by means of the experimental

results.

5.1 Regularization of the problem

In this work we consider a modified Sharma-type model related to the show-through phenomenon

in paper documents, as follows (see, e.g., [69, 155]):
f s(i, j) = f (i, j)eqr(i, j)

(
zr(i, j)

N −1
)

rs(i, j) = r(i, j)eq f (i, j)
( z f (i, j)

N −1
), (5.1)

where N is the maximum value of the light intensity, which is assumed to correspond with the

background of the analyzed document; q f (i, j) is the interference level which affects the light

intensity of interferences from the recto to the verso; qr(i, j) is the interference level which affects
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the light intensity of interferences from the verso to the recto; f s = [ f s(i, j)]i=1,...,n, j=1,...,m,rs =

[rs(i, j)]i=1,...,n, j=1,...,m ∈ Rnm are the vectors which represent the observed mixtures (expressed

in the lexicographic form); f = [ f (i, j)]i=1,...,n, j=1,...,m,r = [r(i, j)]i=1,...,n, j=1,...,m ∈ Rnm are the

vectors which represent the ideal images of the recto and the verso of the document (expressed in

the lexicographic form); z f = [z f (i, j)]i=1,...,n, j=1,...,m = A f ,zr = [zr(i, j)]i=1,...,n, j=1,...,m = Ar are

the blurred images of the recto and the verso, where A ∈ R(nm)×(nm) is the blur operator, which

in general has the form of a matrix with Toeplitz blocks.

The problem of the blind separations of components consists of finding an estimate of the

recto/verso pair of the source document, which is denoted by s = ( f ,r), of the interference level

q = (q f ,qr) and of the blur operator A, given in input the observed images of the recto and the

verso. This is an ill-posed problem in the Hadamard sense, because in general it can have no

solutions, or the solution can be not unique and/or not stable with respect to small variations of

the data.

To estimate the solution of the problem, some regularization techniques are used, which

substantially consist of finding the minimum of a function, called energy function, by imposing

some uniformity constraints on the solution.

The solution of the considered problem is

( f ∗,r∗,q∗,A∗) = arg min
( f ,r,q,A)

E( f ,r,q,A),

where

E( f ,r,q,A) = T ( f ,r,q,A)+ Ŝ( f )+ Ŝ(r)+S(q f )+S(qr)+Sc(q f ,qr) (5.2)

is the energy function, and

T ( f ,r,q,A) = Tf (qr)+Tr(q f ) =
n

∑
i=1

m

∑
j=1

(
f s(i, j)− f (i, j)e−qr(i, j)

(
1− zr(i, j)

N

))2

+

+
n

∑
i=1

m

∑
j=1

(
rs(i, j)− r(i, j)e−q f (i, j)

(
1−

z f (i, j)
N

))2

(5.3)

is the consistency term, which measures the faithfulness of the solution to the data, and Ŝ( f )+

Ŝ(r) is the regularization term, or smoothness term, which is chosen according to the properties

which the estimated source has to satisfy, and measures the faithfulness of the estimated source
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to a priori informations. Moreover, the last terms of (5.2) are given by

S(qv) =
n

∑
i=1

m

∑
j=1

λ
2
v

(
qv(i, j)−qv(i−1, j)

)2

+
n

∑
i=1

m

∑
j=1

λ
2
v

(
qv(i, j)−qv(i, j−1)

)2

,

where v ∈ { f ,r}, λv is the regularization parameter related to the interference level of the recto

(resp. verso), if v = f (resp., v = r), and

Sc(q f ,qr) =
n

∑
i=1

m

∑
j=1

λ
2
c (q f (i, j)−qr(i, j))2

is the joint smoothness term. The parameter λc is the regularization parameter between the

interference of the recto and the verso with respect to the same pixel.

5.2 Alternating techniques

To minimize the function in (5.2), we use a strategy of alternating minimization, which consists

of the estimation of the minimum of the function with respect to each single variable, fixing the

other ones. We proceed according the following scheme:

k = 0

initialize f0,r0,q0,A0

while a stationary point of E is not found

k = k+1

fk = argmin f E( f ,rk−1,qk−1,Ak−1)

rk = argminr E( fk−1,r,qk−1,Ak−1)

qk = argminq E( fk−1,rk−1,q,Ak−1)

Ak = argminA E( fk−1,rk−1,qk−1,A)

To solve the problem of minimization of the dual energy, which in general is not convex, a

technique introduced by Blake and Zisserman, called GNC, can be used (see, e.g., [18, 24, 25, 33,

34, 87, 127, 129, 130, 131, 140]). With such a technique, the energy function E, is approximated

by means of a finite family {E(p)} of functions, in such a way that the first one is convex and the

last one coincides with the given function. Moreover, we call x the variable with respect to which

we will compute the minimum of E. The minimization of each of the approximating functions

E(p) can be done by means of an algorithm called NL-SOR (see, e.g., [38]).
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5.3 Determining the interference levels

In this work, we deal with finding only the interference levels, fixed the recto, the verso and the

blur mask. The other steps of the alternating algorithm will be treated in forthcoming papers.

The energy function with respect to the interference level is given by

E( fk−1,rk−1,q,Ak−1) =
n

∑
i=1

m

∑
j=1

(
f s(i, j)− f (i, j)e−qr(i, j)

(
1− zr(i, j)

N

))2

+

+
n

∑
i=1

m

∑
j=1

(
rs(i, j)− r(i, j)e−q f (i, j)

(
1−

z f (i, j)
N

))2

+ (5.4)

+ S(q f )+S(qr)+Sc(q f ,qr)+ k,

where k is a constant depending on fk−1 and rk−1. Now, let

ψ( f ) = r, ψ(r) = f . (5.5)

Given v ∈ { f ,r} and fixed a pixel (k, t), the partial derivative of the regularization terms with

respect to qv(k, t) is

∂ (S(qv)+S(qψ(v))+Sc(qv,qψ(v)))

∂qv(k, t)
=

= 2λ
2
v

(
qv(k, t)−qv(k−1, t)+qv(k, t)−qv(k+1, t)+qv(k, t)−qv(k, t−1)+

+ qv(k, t)−qv(k, t +1)
)
+2λ

2
c

(
qv(k, t)−qψ(v)(k, t)

)
=

= 2λ
2
v

(
4qv(k, t)−qv(k−1, t)−qv(k+1, t)−qv(k, t−1)−qv(k, t +1)

)
+

+ 2λ
2
c

(
qv(k, t)−qψ(v)(k, t)

)
.

Now we consider the Hessian matrix H related to the function S(qv)+ S(qψ(v))+ Sc(qv,qψ(v)).

Fix v ∈ { f ,r} and a pixel (k, t), on the associated row of H, in correspondence with the principal

diagonal we have

∂ 2(S(qv)+S(qψ(v))+Sc(qv,qψ(v)))

∂q2
v(k, t)

= 8λ
2
v +2λ

2
c ,

and the non-null terms are given by

∂ 2(S(qv)+S(qψ(v))+Sc(qv,qψ(v)))

∂qv(k, t) ∂ η
=−2λ

2
v ,

where η ∈ {qv(k−1, t), qv(k+1, t), qv(k, t−1), qv(k, t +1)}, and

∂ 2(S(qv)+S(qψ(v))+Sc(qv,qψ(v)))

∂qv(k, t) ∂ qψ(v)(k, t)
=−2λ

2
c .
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Since λv and λc are different from zero, H is irreducible, and for k = 1 and t = 1 the variable

η assumes only two values, then by virtue of the Gerschgorin theorems (see, e.g., [72]) the matrix

H is positive-definite, and hence the sum of the smoothness terms is a convex function.

Now, fixed v∈{ f ,r} and a pixel (k, t), let us consider the consistency term T (q)=Tv(qψ(v))+

Tψ(v)(qv), related to the interference level of (5.4). We get:

∂T (q)
∂qv(k, t)

=

= 2
(
(ψ(v))s(k, t)−ψ(v)(k, t)e−qv(k,t)

(
1− zv(k,t)

N

))
ψ(v)(k, t)e−qv(k,t)

(
1− zv(k,t)

N

)(
1− zv(k, t)

N

)
=

= 2
(

1− zv(k, t)
N

)
ψ(v)(k, t)

(
ψ(v)s(k, t)e−qv(k,t)

(
1− zv(k,t)

N

)
−ψ(v)(k, t)e−2qv(k,t)

(
1− zv(k,t)

N

))
;

∂ 2T (q)
∂qv(k, t)2 = 2

(
1− zv(k, t)

N

)2

ψ(v)(k, t) (5.6)(
− (ψ(v))s(k, t)e−qv(k,t)

(
1− zv(k,t)

N

)
+2ψ(v)(k, t)e−2qv(k,t)

(
1− zv(k,t)

N

))
.

Since the second mixed derivatives are equal to zero, then the Hessian matrix is a diagonal matrix,

whose elements are given in (5.6). Such elements are positive if and only if

qv(k, t)<−
ln
(

(ψ(v))s(k,t)
2ψ(v)(k,t)

)
1− zv(k,t)

N

for all v ∈ { f ,r}, k ∈ {1, . . . ,n}, t ∈ {1, . . . ,m}.

Thus, the energy function related to the interference level is given by the sum of the terms of

data consistency, which are not necessarily convex, and the smoothness terms, which are convex.

Hence, in general the uniqueness of the global minimum is not guaranteed.

5.4 Convex approximation of the data consistency term

To approximate the term of faithfulness to the data, it is possible to approximate Tr and Tf

separately. Moreover, we can approximate each term of the sum in (5.3) separately too. Fixed

i∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and v∈ { f ,r}, let ψ be as in (5.5), and denoting by α =
ψ(v)(i, j)
ψ(vs)(i, j)

,
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γ =
zv(i, j)

N
−1, q = qv(i, j), the term related to the faithfulness to the data can be expressed as

T ( f ,r,q,A) = Tf (qr)+Tr(q f ) =
n

∑
i=1

m

∑
j=1

(
f s(i, j)− f (i, j)e−qr(i, j)

(
1− zr(i, j)

N

))2

+

+
n

∑
i=1

m

∑
j=1

(
rs(i, j)− r(i, j)e−q f (i, j)

(
1−

z f (i, j)
N

))2

= (5.7)

=
n

∑
i=1

m

∑
j=1

∑
v∈{ f ,r}

ψ(v)s(i, j)ϕi, j,v(q),

where

ϕi, j,v(q) =

(
1−α eqγ

)2

= 1−2α eqγ +α
2 e2qγ . (5.8)

Therefore, to make the function ϕi, j,v in (5.8) convex, we will proceed in several ways. In

particular, in this work we approximate the quantity

gi, j,v(q) = eqγ (5.9)

by a line of the type g̃(q) = Ãq+ B̃. So, the approximation of ϕi, j,v(q) is given by ϕ̃(q) =

(1−αÃq− B̃)2, which is a convex function, since ϕ̃ ′′(q) = 2α2 Ã2.

5.4.1 Interpolating approximation

Now we approximate gi, j,v(q) with the line p(1)i, j,v(q) interpolating at the points (3,e3γ) and (0,1).

To compute the interpolating polynomial, we use the Lagrange method, obtaining

p(1)i, j,v(q) = L0(q)ȳ0 +L1(q)ȳ1,

where L0(q), L1(q) are the Lagrange polynomial bases defined by

L0(q) =
q− x̄1

x̄0− x̄1
=

q
3

and

L1(q) =
q− x̄0

x̄1− x̄0
=−1

3
(q−3),

and so we get

p(1)i, j,v(q) = q
(

e3γ

3
− 1

3

)
+1.

Thus, the convex approximation of ϕi, j,v(q) is given by

ϕ
(1)
i, j,v(q) =

(
1−α q

e3γ −1
3
−α

)2

. (5.10)
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Figure 5.1: On the left side: Graph of gi, j,v(q) in blue and p(1)(q) in red. On the right side: Graph of

ϕi, j,v(q) in blue and ϕ(1)(q) in red (α = 100, γ = 0.1).

5.4.2 The best line approximation

Now we approximate gi, j,v(q) by the line p(2)i, j,v(q) of best approximation with respect to the 2-

norm in P1([0,3]) = {p : [0,3]→R| p is a polynomial of degree at most 1}. We begin with using

the Gram-Schmidt method to find an orthonormal basis {e1,e2} for P1([0,3]). We choose as

basis the following polynomials:

x1 = 1, x2 = q.

We normalize the first basis polynomial. We have

e1 =
x1

‖x1‖
=

1√
3
=

√
3

3
.

By applying the Gram-Schmidt algorithm, we get

z2 = x2−< x2,e1 > e1 = qr−
1
3

∫ 3

0
q dq = q− 1

3

[
q2

2

]3

0
= q− 3

2
.

By normalizing z2 we obtain

e2 =
z2

‖z2‖
=

2
3

(
q− 3

2

)
,

where

‖z2‖=

√∫ 3

0

(
q− 3

2

)2

dq =
3
2
.

So, we have constructed an orthonormal basis {e1,e2} of P1([0,3]). Thus, the best approximation

polynomial of gi, j,v(q) is given by

p(3)i, j,v(q) = c1e1 + c2e2,

where

c1 =< gi, j,v,e1 >=
∫ 3

0
gi, j,v(q)e1 dq =

√
3

3

∫ 3

0
eqγ dq =

√
3

3

[
eqγ

γ

]3

0
=

√
3

3
e3γ

γ
−
√

3
3

1
γ
,
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c2 =< g,e2 >=
∫ 3

0
g(q)e2 dq =

2
3

∫ 3

0
eqγ

(
q− 3

2

)
dq =

2
3

∫ 3

0
eqγ q dq−

∫ 3

0
eqγ dq =

=
2
3

{[
eqγ

γ
q
]3

0
−
∫ 3

0

eqγ

γ
dq
}
−
[

eqγ

γ

]3

0
=

=
2
3

{
3

e3γ

γ
−
[

eqγ

γ2

]3

0

}
− e3γ

γ
+

1
γ
= 2

e3γ

γ
− 2

3
e3γ

γ2 +
2
3

1
γ2 −

e3γ

γ
+

1
γ
.

Thus, we have

p(3)i, j,v(q) = c1 e1(q)+ c2 e2(q) =

=

√
3

3

(√
3

3
e3γ

γ
−
√

3
3

1
γ

)
+

2
3

(
q− 3

2

)(
2

e3γ

γ
− 2

3
e3γ

γ2 +
2
3

1
γ2 −

e3γ

γ
+

1
γ

)
=

=
1
3

e3γ

γ
− 1

3
1
γ
+

4
3

e3γ

γ
q− 4

9
e3γ

γ2 q+
4
9

1
γ2 q− 2

3
e3γ

γ
q+

2
3

1
γ

q−2
e3γ

γ
+

2
3

e3γ

γ2 −
2
3

1
γ2 +

e3γ

γ
− 1

γ
=

=
2
3

1
γ

(
2e3γ − 2

3
e3γ

γ
+

2
3

1
γ
− e3γ +1

)
− 5

3
e3γ

γ
− 4

3
1
γ
+

2
3

e3γ

γ2 −
2
3

1
γ2 +

e3γ

γ
,

and hence we obtain p(2)i, j,v(q) = A(2) q+B(2), where

A(2) =
2

3γ

(
2e3γ − 2(e3γ −1)

3γ
− e3γ +1

)
,

B(2) = −5e3γ

3γ
− 4

3γ
+

2e3γ

3γ2 −
2

3γ2 +
e3γ

γ
.

The convex approximation of ϕi, j,v(q) is

ϕ
(2)
i, j,v(q) =

(
1−α A(2) q−B(2)

)2
. (5.11)

Figure 5.2: On the left side: Graph of gi, j,v(q) in blue and p(2)(q) in red. On the right side: Graph of

ϕi, j,v(q) in blue and ϕ(2)(q) in red (α = 100, γ = 0.1).
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5.4.3 Hybrid best approximation and interpolation

Now we approximate gi, j,v(q) by means of the line p(5)i, j,v(q) of best approximation related to the

2-norm in P1([0,3]) = {p : [0,3]→R| p is a polynomial of degree at most 1}, which interpolates

gi, j,v(q) at a chosen point q̄.

Now we make a change of coordinates, in such a way that the "new" origin coincides with

(q̄,gi, j,v(q̄)). Let us define

g̃(q) = gi, j,v(q+ q̄)−gi, j,v(q̄). (5.12)

Note that g̃ is a translation of gi, j,v in the Cartesian plane. Now we determine the polynomial p̃(5)

of best approximation of g̃ with respect to the 2-norm in

P1([−q̄,3− q̄]) = {p : [−q̄,3− q̄]→ R | p is a polynomial of degree at most 1}

which interpolates g̃ at 0.

We use the Gram-Schmidt method to find an orthonormal basis {e1} of the space

{p ∈ P1([−q̄,3− q̄])| p(0) = 0}.

A basis for this space is given by x1 = q. By normalizing, we get

||x1|| =

√∫ 3−q̄

−q̄
q2 dq =

√
3(
√

q̄2−3q̄+3).

So, the normalized basis is given by

e1 =
x1

||x1||
=

q
√

3

3(
√

q̄2−3q̄+3)
.

The polynomial p̃(5)(q) of best approximation of g̃i, j,v(q) is

p̃(5)(q) = c1e1(q),

where

c1 = < g̃,e1 >=
∫ 3−q̄

−q̄
g̃(q)e1(q) dq =

= −
√

3

3(
√

q̄2−3q̄+3)
eq̄γ

(
(q̄−3)e(3−q̄)γ − q̄ e−q̄γ

γ
+

e(3−q̄)γ − e−q̄γ

γ2 +
9−6q̄

2

)
.

Therefore, we get

p̃(5)i, j,v(q) = − q
6(q̄2−3q̄+3)

eq̄γ

(
(2q̄−6)e(3−q̄)γ −2q̄ e−q̄γ

γ
+

+ 2
e(3−q̄)γ − e−q̄γ

γ2 +9−6q̄

)
.
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By taking the inverse translation, we obtain

p(5)i, j,v(q) = p̃(5)(q− q̄)+gi, j,v(q̄) = A(5)(q̄)q+B(5)(q̄),

where

A(5)(q̄) = − eq̄γ

6(q̄2−3q̄+3)

(
(2q̄−6)e(3−q̄)γ −2q̄ e−q̄γ

γ
+

+ 2
e(3−q̄)γ − e−q̄γ

γ2 +9−6q̄

)
,

B(5)(q̄) =
q̄ eq̄γ

6(q̄2−3q̄+3)

(
(2q̄−6)e(3−q̄)γ −2q̄ e−q̄γ

γ
+

+ 2
e(3−q̄)γ − e−q̄γ

γ2 +9−6q̄

)
+ eq̄γ .

In particular, for q̄ = 0 we get

A(3) = A(5)(0) =
1
18

(
6e3γ

γ
−2

e3γ −1
γ2 −9

)
,

B(3) = B(5)(0) =
1
18

e3γ

(
6e−3γ

γ
+2

e−3γ −1
γ2 +9

)
,

while for q̄=3 we have

A(4) = A(5)(3) =
1

18
e3γ

(
6e−3γ

γ
+2

e−3γ −1
γ2 +9

)
,

B(4) = B(5)(3) =
1
6

e3γ

(
6e−3γ

γ
+2

e−3γ −1
γ2 +9

)
+ e3γ .

From this it follows that two possible convex approximation of ϕi, j,v(q) are

ϕ
(κ)
i, j,v(q) =

(
1−α A(κ) q−α B(κ)

)2
, κ = 3,4. (5.13)

Figure 5.3: On the left side: Graph of gi, j,v(q) in blue and p(3)(q) in red. On the right side: Graph of

ϕi, j,v(q) in blue and ϕ(3)(q) in red (α = 100, γ = 0.1).
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Figure 5.4: On the left side: Graph of gi, j,v(q) in blue and p(4)(q) in red. On the right side: Graph of

ϕi, j,v(q) in blue and ϕ(4)(q) in red (α = 100, γ = 0.1).

5.5 The GNC approximation families

The first convex approximation of the consistency term of the energy function related to the

interference level of the verso is expressed by

T (κ)( f ,r,q,A) =
n

∑
i=1

m

∑
j=1

∑
v∈{ f ,r}

ψ(v)s(i, j)ϕ
(κ)
i, j,v(q), κ = 1,2,3,4. (5.14)

In this section, we define the following families of functions of convex approximations. Fixed

κ = 1,2,3,4, let

T (κ)
p = pT (κ)+(1− p)T.

For p = 1, we get the first convex approximation associated with κ , while for p = 0 we have the

original function T .

5.6 Experimental results

In this section we compare the experimental results, by using the four different GNC algorithms

proposed in the previous sections. We have assumed two different pairs of original images, given

in Figures 5.5 and 5.6. We have used a uniform blur mask of dimension 5× 5, and we have

considered the interference levels to be estimated given in the Figure 5.7. In this figure, if the

interference value of a single pixel is 0, that pixel is presented in black while, if the interference

value is 3 (that is very high), then that pixel is presented in white. The gray pixels represent

interference values between 0 and 3. Note that we have assumed that the ideal interference levels

of the recto and of the verso coincide. Considering the first pair of original sources given in

Figure 5.5 and the interference levels given by 5.7, we obtain the data mixtures given in Figure

5.8. We have tested the four GNC algorithms, assuming the following regularization parameters:
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(a) (b)

Figure 5.5: First pair of ideal sources

(a) (b)

Figure 5.6: Second pair of ideal sources

(a) (b) (c)

(d) (e)

Figure 5.7: Interference levels: (a) q(1)f = q(1)r ; (b) q(2)f = q(2)r ; (c) q(3)f = q(3)r ; (d) q(4)f = q(4)r ; (e) q(5)f = q(5)r .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.8: (a) Image in Figure 5.5 (a) with degraded by the interference level in Figure 5.7 (a); (b) image

in Figure 5.5 (b) with degraded by the interference level in Figure 5.7 (a); (c) image in Figure 5.5 (a)

with degraded by the interference level in Figure 5.7 (b); (d) image in Figure 5.5 (b) with degraded by the

interference level in Figure 5.7 (b); (e) image in Figure 5.5 (a) with degraded by the interference level in

Figure 5.7 (c); (f) image in Figure 5.5 (b) with degraded by the interference level in Figure 5.7 (c); (g)

image in Figure 5.5 (a) with degraded by the interference level in Figure 5.7 (d); (h) image in Figure 5.5

(b) with degraded by the interference level in Figure 5.7 (d); (i) image in Figure 5.5 (a) with degraded by

the interference level in Figure 5.7 (e); (j) image in Figure 5.5 (b) with degraded by the interference level in

Figure 5.7 (e)
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λ f = λr = 50, λc = 100.

We have compared the four proposed algorithms in terms of mean square error (MSE) between

the estimate of the obtained interference level and the ideal interference level given in Figure 5.7.

In Table 5.1 the errors in terms of MSE obtained by the proposed algorithms, by considering the

pair of original sources presented in Figure 5.5 and the interference levels q(i)f = q(i)r , i = 1, . . . ,5,

given in Figure 5.7. The effectiveness of the algorithm has been tested by using some images,

q(1)f q(1)r q(2)f q(2)r q(3)f q(3)r q(4)f q(4)r q(5)f q(5)r

κ = 1 0.05712 0.05332 0.07191 0.08313 0.07980 0.07843 0.08213 0.07920 0.10213 0.09871

κ = 2 0.03575 0.03741 0.03375 0.04121 0.04401 0.03979 0.03142 0.02673 0.03725 0.04165

κ = 3 0.03176 0.04002 0.03723 0.03937 0.04183 0.04272 0.02734 0.02639 0.04128 0.03984

κ = 4 0.02144 0.02347 0.02317 0.02242 0.03143 0.03031 0.00979 0.01127 0.03521 0.03878

Table 5.1: MSE of the proposed algorithms, using the original sources in Figure 5.5.

created to highlight the capacity of the algorithm to eliminate the degradations due to the effect

of show-through.

As we see in Table 5.1, the best algorithm for the first pair of images is that related to the

family of approximations with κ = 4. In Figure 5.9 there are the interference levels estimated by

the algorithm corresponding with κ = 4.

Considering the second pair of original sources given in Figure 5.6 and the interference lev-

els given by 5.7, and considering a uniform mask of type 5× 5, we obtain the data mixtures

given in Figure 5.10. We have tested the four GNC algorithms, using the previous regulariza-

tion parameters. In Table 5.2 the errors in terms of MSE obtained by the proposed algorithms,

by considering the pair of original sources presented in Figure 5.6 and the interference levels

q(i)f = q(i)r , i = 1, . . . ,5, given in Figure 5.7.

q(1)f q(1)r q(2)f q(2)r q(3)f q(3)r q(4)f q(4)r q(5)f q(5)r

κ = 1 0.05229 0.04973 0.06127 0.06712 0.09415 0.08174 0.12176 0.13746 0.11288 0.15672

κ = 2 0.03374 0.03019 0.03626 0.03372 0.04791 0.03277 0.03711 0.04424 0.03845 0.04064

κ = 3 0.03147 0.03133 0.03317 0.03533 0.03179 0.03375 0.04176 0.05727 0.03973 0.03927

κ = 4 0.02379 0.02517 0.02433 0.02536 0.01017 0.01752 0.02578 0.03225 0.03320 0.03584

Table 5.2: MSE of the proposed algorithms, using the original sources in Figure 5.6.

As we see in Table 5.2, the best algorithm for the first pair of images is again that related to

the family of approximations with κ = 4. In Figure 5.11 the interference levels estimated by the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.9: (a) estimation of q(1)f ; (b) estimation of q(1)r ; (c) estimation of q(2)f ; (d) estimation of q(2)r ; (e)

estimation of q(3)f ; (f) estimation of q(3)r ; (g) estimation of q(4)f ; (h) estimation of q(4)r ; (i) estimation of q(5)f ;

(j) estimation of q(5)r .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.10: (a) Image in Figure 5.6 (a) with degraded by the interference level in Figure 5.7 (a); (b) image

in Figure 5.6 (b) with degraded by the interference level in Figure 5.7 (a); (c) image in Figure 5.6 (a)

with degraded by the interference level in Figure 5.7 (b); (d) image in Figure 5.6 (b) with degraded by the

interference level in Figure 5.7 (b); (e) image in Figure 5.6 (a) with degraded by the interference level in

Figure 5.7 (c); (f) image in Figure 5.6 (b) with degraded by the interference level in Figure 5.7 (c); (g)

image in Figure 5.6 (a) with degraded by the interference level in Figure 5.7 (d); (h) image in Figure 5.6

(b) with degraded by the interference level in Figure 5.7 (d); (i) image in Figure 5.6 (a) with degraded by

the interference level in Figure 5.7 (e); (j) image in Figure 5.6 (b) with degraded by the interference level in

Figure 5.7 (e)
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algorithm corresponding with κ = 4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.11: (a) estimation of q(1)f ; (b) estimation of q(1)r ; (c) estimation of q(2)f ; (d) estimation of q(2)r ; (e)

estimation of q(3)f ; (f) estimation of q(3)r ; (g) estimation of q(4)f ; (h) estimation of q(4)r ; (i) estimation of q(5)f ;

(j) estimation of q(5)r .
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Chapter 6

The problem of image restoration

In Section 6.1 we present the problem of image deblurring and the related regularization tech-

nique; in Section 6.2 we present a GNC-type technique for the minimization of the energy func-

tion; in Section 6.3 we investigate spectral properties of β -matrices; in Section 6.4 we deal with

structural properties; in Section 6.5 we study the properties of the multiplications of our family

of matrices; in Section 6.6 we determine some conditions in order that a β -matrix is invertible;

in Section 6.7 we deal with the problem of approximating a real symmetric Toeplitz matrix by a

β -matrix.

6.1 Regularization of the problem

The problem of image restoration consists of reconstructing the original image from an image

blurred and/or corrupted by noise. In the sequel we will assume that all intensities of our involved

pixels are put into one column, with the rule that (i, j)< (i′, j′) if and only if i < i′ or i = i′ and

j < j′. The direct problem is formulated as follows:

y = Ax+n,

where the n2-dimensional vectors x, y are respectively the original and the observed image. In

particular, the elements of these vectors indicate the light intensity of pixels in the corresponding

image. The n2-dimensional vector n expresses the additive noise on the image, which we assume

to be independent and identically distributed (i.i.d.) Gaussian, with zero mean and known vari-
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ance. The n2× n2 matrix A is a linear operator, which represents the translation invariant blur

acting on the image. To obtain a blurred image, each pixel of original image turns to be equal

to a weighted average of its neighbors. Given a positive matrix M ∈ R(2h+1)×(2h+1), called blur

mask, the entries of matrix A are defined by

a(i, j),(i+w, j+v) =


mh+1+w,h+1+v, if |w|, |v| ≤ h,

0, otherwise.

Here, in lexicographic notation, the generic index ((i, j),(h, l)) of matrix A is supposed to be

equal to (( j−1)n+ i,(l−1)n+h). The matrix A turns to be a block Toeplitz matrix with

Toeplitz blocks. If we assume that the blur operator is uniform on each direction and is very

wide (that is, h∼ n), then the matrix A is symmetric.

The image restoration problem consists of finding an estimation x of the unknown original

image given the blurred image y, the matrix A and the variance of the noise σ2. This is an

ill–posed inverse problem in the Hadamard sense.

A clique c of order k is the subset of points of a square grid on which the k–th order finite

difference is defined. We denote by Ck the set of all cliques of order k. More precisely, we

consider, for k = 1,

C1 = {c = {(i, j),(h, l)} : i = h, j = l +1 or

i = h+1, j = l};

for k = 2,

C2 = {c = {(i, j),(h, l),(r,q)} :

i = h = r, j = l +1 = q+2, or

i = h+1 = r+2, j = l = q};

and for k = 3,

C3 = {c = {(i, j),(h, l),(r,q),(w,z)} :

i = h = r = w, j = l +1 = q+2 = z+3, or

i = h+1 = r+2 = w+3, j = l = q = z}.

We denote by Dk
cx the k–th order finite difference operator of the vector x associated with the

clique c, that is, if c = {(i, j),(h, l)} ∈C1, then

D1
cx = xi, j− xh,l ;
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if c = {(i, j),(h, l),(r,q)} ∈C2, then

D2
cx = xi, j−2xh,l + xr,q;

and if c = {(i, j),(h, l),(r,q),(w,z} ∈C3, then

D3
cx = xi, j−3xh,l +3xr,q− xw,q.

In [34] it has been shown that the use of second order difference operators allows to ob-

tain significantly better results than those obtained by first order difference operators. On the

other hand, in [34] it is noted that third order difference operators give slightly better results than

those obtained with second order difference operators to the detriment of an excessive increase in

computational costs. Therefore we will only use second order difference operators, and hence we

refer to C and Dc as C2 and D2
c . We associate with each clique c a non–negative weight bc, called

line variable, which has the role of dropping the regularity constraints, where discontinuities

could appear. In particular, the zero value is associated with a discontinuity of the considered

image in correspondence with the clique c. In our model, the original image is considered ideal-

istically as a pair (x,b), where x, b are the vectors of the grey intensity of pixels and of the set of

all line components bc, c ∈C, respectively.

A regularized solution of the investigated problem is the minimizer of the following function,

called primal energy function, defined by

E(x,b) = ‖y−Ax‖2 + ∑
c∈C

[
λ

2(Dcx)2bc +β (bc)
]
, (6.1)

where β is a suitable non-increasing function, called balancing function, and ‖·‖ is the Euclidean

norm. The first term in the right hand indicates the faithfulness of the solution to the data and

the last one is a regularization term, which is related to a smoothness condition on x. The scalar

parameter λ 2 is in connection with the confidence to the data and the degree of regularization of

the solutions. In particular, when λ 2 is close to zero, we represent a strong faithfulness to the

data, while when λ 2 is very large we have a confidence to the a priori information.

To find the minimum of the primal energy function (6.1), we first minimize with respect to b.

So, the dual energy function Ed(x) (see, e.g., [23, 24, 34, 67]) is given by

Ed(x) = inf
b∈B|C|

E(x,b), (6.2)
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where |C| is the cardinality of the set C. Observe that, by [35, Theorem 1], Ed is well-defined.

Observe that

Ed(x) = ‖y−Ax‖2 + ∑
c∈C

g(Dcx), (6.3)

where

g(t) = inf
b∈B

(λ 2bt2 +β (b)), (6.4)

is the potential function, which associates a cost with each value of the finite difference operator

and does not depend on the involved clique (see also [67]).

In general, to reduce computational costs, for reconstructing images, it is more advisable to

use the dual energy rather the primal energy, because a lower number of variables have to be de-

termined. Thus, some versions of the duality theorem were given in [33, 34] for energy functions

which do not include the constraint of avoiding parallel lines. For other versions existing in the

literature see, e.g., [10, 39, 46, 67].

6.2 GNC algorithm

In general, a function g satisfying duality theorems is not convex. So, neither is the dual energy

function in 6.3. Thus, to minimize such a function, we use a GNC algorithm (see also [18, 34,

127, 129, 130, 131, 140]). The solution of the algorithms for minimizing a non–convex function

depends on the choice of the initial point.

It is possible to verify experimentally that the more expensive minimization is the first one,

because the other ones just start with a good approximation of the solution. Hence, in this thesis,

when we minimize the first convex approximation, we propose to approximate every block of

the operator A by means of matrices whose product can be computed by means a suitable fast

discrete transform. Since every block of A is a symmetric Toeplitz matrix, we now deal with

determining a class of matrices easy to handle from the computational point of view, that give a

good approximation of the Toeplitz matrices.
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6.3 Spectral characterization of β -matrices

We begin with presenting a new class of simultaneously diagonalizable matrices, so we define

the following matrix. Let n be a fixed positive integer, and Qn = (q(n)k, j )k, j, k, j = 0, 1, . . . ,n−1,

where

q(n)k, j =


α j cos

(2π k j
n

)
if 0≤ j ≤ bn/2c,

α j sin
(2π k (n− j)

n

)
if bn/2c ≤ j ≤ n−1,

(6.5)

α j =



1√
n
= α if j = 0, or j = n/2 if n is even,

√
2
n
= α̃ otherwise,

(6.6)

and put

Qn =
(

q(0)
∣∣∣q(1)

∣∣∣ · · · ∣∣∣q(b n
2 c)
∣∣∣q(b n+1

2 c)
∣∣∣ · · · ∣∣∣q(n−2)

∣∣∣q(n−1)
)
, (6.7)

where

q(0) =
1√
n

(
1 1 · · · 1

)T
=

1√
n

u(0), (6.8)

q( j) =

√
2
n

(
1 cos

(
2π j

n

)
· · · cos

(
2π j(n−1)

n

))T

=

√
2
n

u( j),

q(n− j) =

√
2
n

(
0 sin

(
2π j

n

)
· · · sin

(
2π j(n−1)

n

))T

=

√
2
n

v( j), (6.9)

j = 1, 2, . . . ,b n−1
2 c. Moreover, when n is even, set

q(n/2) =
1√
n

(
1 −1 1 −1 · · · −1

)T
=

1√
n

u(n/2). (6.10)

In [111] it is proved that all columns of Qn are orthonormal, and thus Qn is an orthonormal

matrix.
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Now we define the following function. Given λλλ ∈ Cn, λλλ = (λ0 λ1 · · ·λn−1)
T , set

diag(λλλ ) = Λ =



λ0 0 0 . . . 0 0

0 λ1 0 . . . 0 0

0 0 λ2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . λn−2 0

0 0 0 . . . 0 λn−1


,

where Λ ∈ Cn×n is a diagonal matrix.

A vector λλλ ∈ Rn, λλλ = (λ0 λ1 · · ·λn−1)
T is said to be symmetric (resp., asymmetric) iff λ j =

λn− j (resp., λ j =−λn− j) ∈ R for every j = 0, 1, . . . ,bn/2c.

Let Qn be as in (6.7), and Gn be the space of the matrices simultaneously diagonalizable by

Qn, that is

Gn = sd(Qn) = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn}.

A matrix belonging to Gn, n ∈ N, is called γ-matrix. Moreover, we define the following

classes by

Cn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric}, (6.11)

Bn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is asymmetric},

Dn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric,

λ0 = 0,λn/2 = 0 if n is even},

En = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn,λ j = 0, j = 1, . . . ,n−1,

j 6= n/2 when n is even}.

Proposition 6.3.1. The class Gn is a matrix algebra of dimension n.

Proof. We prove that Gn is an algebra. Let In be the identity n×n-matrix. Since Qn is orthogonal,

then QnInQT
n = In. Hence, In ∈ Gn.

If C ∈ Gn, C is non-singular, C =QnΛQT
n and Λ is diagonal, then C−1 =QnΛ−1QT

n , and hence

C−1 ∈ Gn, since Λ−1 is diagonal.
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Moreover, if Cr ∈ Gn, αr ∈R, Cr = QnΛrQT
n and Λr is diagonal, r = 1,2, then α1C1+α2C2 =

Qn(α1Λ1+α2Λ2)QT
n ∈Gn, since α1Λ1+α2Λ2 is diagonal. Furthermore, C1C2 =QnΛ1QT

n QnΛ2QT
n =

QnΛ1Λ2QT
n , since Λ1Λ2 is diagonal. Therefore, Gn is an algebra.

Now we claim that dim(Gn) = dim(λλλ ) = n. By contradiction, let λλλ 111 6= λλλ 222 ∈ Rn be such

that Qndiag(λλλ 111)QT
n = Qndiag(λλλ 222)QT

n =C. Then, the elements of λλλ 222 are obtained by a suitable

permutation of those of λλλ 111. Since the order of the eigenvectors of C have been established, if a

component λ
(1)
j of λλλ 111 is equal to a component λ

(2)
k of λλλ 222, then q( j) and q(k) belong to the same

eigenspace, and hence λ
(1)
j = λ

(2)
j = λ

(1)
k = λ

(2)
k . This implies that λλλ 111 = λλλ 222, a contradiction.

This ends the proof.

Proposition 6.3.2. The class Cn is a subalgebra of Gn of dimension b n
2c+1.

Proof. Obviously, Cn ⊂ Gn. Now we claim that Cn is an algebra. First, note that In ∈ Cn, since

In = QnInQT
n and In =diag(1), where 1 = (1 1 · · ·1)T . So, In ∈ Cn, since 1 is symmetric.

If C ∈ Cn, C is non-singular, C = QnΛQT
n , Λ =diag(λλλ ), λλλ = (λ0 λ1 · · ·λn−1)

T is symmetric,

then C−1 = QnΛ−1QT
n , and so C−1 ∈ Cn, as Λ−1 =diag(λλλ ′), and λλλ

′ = (1/λ0 1/λ1 · · ·1/λn−1)
T

is symmetric too.

If Cr ∈ Cn, αr ∈R, Cr = QnΛrQT
n , Λr =diag(λλλ (r)), λλλ

(r) = (λ
(r)
0 λ

(r)
1 · · ·λ

(r)
n−1)

T is symmetric,

r = 1,2, then α1C1 +α2C2 = Qn(α1Λ1 +α2Λ2)QT
n ∈ Cn, since α1Λ1 +α2Λ2 =diag(λλλ ∗), and

λλλ
∗= (α1λ

(1)
0 +α2λ

(2)
0 · · · α1λ

(1)
n−1 +α2λ

(2)
n−1)

T is symmetric. Furthermore, C1C2 = QnΛ1Λ2QT
n ,

since Λ1Λ2 =diag(λλλ ∗), and λλλ ∗ = (λ
(1)
0 λ

(2)
0 · · · λ

(1)
n−1 λ

(2)
n−1)

T is symmetric. Therefore, Cn is an

algebra.

Now we prove that dim(Cn) = b n
2c+1. By the definition of Cn, it is possible to choose at most

b n
2c+1 elements of λλλ . The proof is analogous to that of the last part of Proposition 6.3.1.

Proposition 6.3.3. The class Bn is a linear subspace of Gn, and has dimension b n−1
2 c.

Proof. First, let us prove that Bn is a linear subspace of Gn. For r = 1,2, let Ar ∈Bn, αr ∈R, Λr =

diag(λλλ (r)), with λλλ
(r) asymmetric, and Cr = QnΛrQT

n . Then α1C1+α2C2 = Qn(α1Λ1+α2Λ2)QT
n

with α1Λ1+α2Λ2 =diag(λλλ ∗), and λλλ
∗= (α1λ

(1)
0 +α2λ

(2)
0 · · · α1λ

(1)
n−1+α2λ

(2)
n−1)

T is asymmetric.

Therefore, α1C1 +α2C2 ∈Bn. So, Bn is a linear subspace of Gn.
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Now we prove that dim(Bn) = b n−1
2 c. By the definition of Bn, it is possible to choose at

most b n−1
2 c elements of λλλ , because λ0 = 0 and λn/2 = 0 when n is even. The proof is analogous

to that of the last part of Proposition 6.3.1.

Similarly as in Propositions 6.3.1 and 6.3.2, it is possible to prove that Dn is a subalgebra of

Gn of dimension b n−1
2 c and En is a subalgebra of Gn of dimension 1 when n is odd and 2 when n

is even. Moreover, the following results hold.

Theorem 6.3.4. One has

Gn = Cn⊕Bn, (6.12)

where ⊕ is the orthogonal sum, and 〈·, ·〉 denotes the Frobenius product, defined by

〈G1,G2〉 = tr(GT
1 G2), G1,G2 ∈ Gn,

where tr(G) is the trace of the matrix G.

Proof. Observe that, to prove (6.12), it is enough to demonstrate the following properties:

6.3.4.1) Cn∩Bn = {On}, where On ∈ Rn×n is the matrix whose entries are equal to 0;

6.3.4.2) for any G ∈ Gn, there exist C ∈ Cn and B ∈Bn with G =C+B;

6.3.4.3) for any C ∈ Cn and B ∈Bn, it is C+B ∈ Gn;

6.3.4.4) 〈C,B〉= 0 for each C ∈ Cn and B ∈Bn.

6.3.4.1) Let G∈ Cn∩Bn. Then, G = QnΛ(G)QT
n , where Λ(G) = diag(λλλ (G)) and λλλ

(G) is both

symmetric and asymmetric. But this is possible if and only if λλλ
(G) = 000, where 000 is the vector

whose components are equal to 0. Thus, Λ(G) = On and hence G = On. This proves 6.3.4.1).

6.3.4.2) Let G ∈ Gn, Λ(G) ∈ Rn×n be such that G = QnΛ(G)QT
n , Λ(G) =diag(λλλ (G)) =

diag(λ (G)
0 λ

(G)
1 · · · λ (G)

n−1). For j ∈ {0, 1, . . . ,n−1}, set

λ
(C)
j =

λ
(G)
j +λ

(G)
(n− j) mod n

2
, λ

(B)
j =

λ
(G)
j −λ

(G)
(n− j) mod n

2
.

For r ∈ {C,B}, set Λ(r) = diag(λ (r)
0 λ

(r)
1 · · · λ

(r)
n−1), C = QnΛ(C)QT

n and B = QnΛ(B)QT
n . Observe

that λλλ
(G) = λλλ

(C)+λλλ
(B), where λλλ

(C) is symmetric and λλλ
(B) is asymmetric. Hence, C ∈ Cn and

B ∈Bn. This proves 6.3.4.2).
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6.3.4.3) Let C ∈ Cn and B ∈ Bn. For r ∈ {C,B}, set Λ(r) = diag(λ (r)
0 λ

(r)
1 · · · λ

(r)
n−1), C =

QnΛ(C)QT
n and B = QnΛ(B)QT

n . Note that λλλ
(C) is symmetric and λλλ

(B) is asymmetric. We have

C+B = Qn(Λ
(C)+Λ(B))QT

n ∈ Gn.

6.3.4.4) Choose arbitrarily C ∈ Cn and B ∈ Bn. For r ∈ {C,B}, put Λ(r) = diag(λ (r)
0

λ
(r)
1 · · · λ

(r)
n−1), C = QnΛ(C)QT

n and B = QnΛ(B)QT
n . Observe that λλλ

(C) is symmetric and λλλ
(B) is

asymmetric. In particular, λ
(B)
0 = 0 and λ

(B)
n/2 = 0 when n is even. Note that CT B=QnΛ(C)Λ(B)QT

n ,

where Λ(C)Λ(B) =diag (λ
(C)
0 λ

(B)
0 λ

(C)
1 λ

(B)
1 · · · λ

(C)
n−1λ

(B)
n−1). Thus, we obtain

〈C,B〉 = tr(CT B) =
n−1

∑
j=0

λ
(C)
j λ

(B)
j =

b(n−1)/2c

∑
j=1

(λ
(C)
j λ

(B)
j +λ

(C)
n− jλ

(B)
n− j) =

=
b(n−1)/2c

∑
j=1

(λ
(C)
j λ

(B)
j −λ

(C)
j λ

(B)
j ) = 0,

that is 6.3.4.4). This ends the proof.

Theorem 6.3.5. It is

Cn =Dn⊕En, (6.13)

where ⊕ is the orthogonal sum with respect to the Frobenius product.

Proof. Analogously as in Theorem 6.3.4, to get (6.13) it is sufficient to prove the following

properties:

6.3.5.1) Dn∩En = {On}, where On ∈ Rn×n is the matrix whose entries are equal to 0;

6.3.5.2) for any C ∈ Cn, there exist C1 ∈Dn and C2 ∈ En with C =C1 +C2;

6.3.5.3) for every C1 ∈Dn and C2 ∈ En, we get that C1 +C2 ∈ Cn.

6.3.5.4) 〈C1,C2〉= 0 for each C1 ∈Dn and C2 ∈ En.

6.3.5.1) Let C ∈ Dn ∩En. Then, C = QnΛQT
n , where Λ = diag(λλλ ), λλλ is symmetric and

such that λ0 = 0 and λn/2 = 0 when n is even, because C ∈Dn. Moreover, since C ∈ En, we get

that λ j = 0 for j = 1, . . . ,n−1, j 6= n/2 when n is even, that is λλλ = 000, Thus, Λ = On and hence

C = On. This proves 6.3.5.1).

6.3.5.2) Let C∈Cn, Λ∈Rn×n be such that C =QnΛQT
n , Λ=diag(λλλ )= diag(λ0 λ1 · · · λn−1).
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For j ∈ {0, 1, . . . ,n−1}, set

λ
(1)
j =


λ j if j 6= 0 and j 6= n/2,

0 otherwise,

λ
(2)
j =


λ j if j = 0 or j = n/2,

0 otherwise.

For r = 1,2, set Λr = diag(λ (r)
0 λ

(r)
1 · · · λ

(r)
n−1), and Cr = QnΛrQT

n . Note that λλλ = λλλ
(1)+ λλλ

(2),

where λλλ
(1) is symmetric. Hence, C1 ∈Dn and C2 ∈ En. This proves 6.3.5.2).

6.3.5.3) Let C1 ∈ Dn and C2 ∈ En. For r = 1,2 there is Λr =diag(λλλ (r))= diag(λ (r)
0

λ
(r)
1 · · · λ

(r)
n−1), such that Cr = QnΛrQT

n , λλλ
(1) is symmetric, λ

(1)
0 = 0 and λ

(1)
n/2 = 0 when n is

even, λ
(2)
j = 0, j = 1, . . . ,n− 1, j 6= n/2 when n is even. Thus, it is not difficult to check that

λλλ
(1)+λλλ

(2) is symmetric. So, C1 +C2 = Qn diag(λλλ (1)+λλλ
(2))QT

n ∈ Cn.

6.3.5.4) Pick C1 ∈Dn and C2 ∈ En. Then for r = 1,2 there exists Λr =diag(λλλ (r))= diag(λ (r)
0

λ
(r)
1 · · · λ

(r)
n−1), such that Cr = QnΛrQT

n , λλλ
(1) is symmetric, λ

(1)
0 = 0 and λ

(1)
n/2 = 0 when n is even.

Note that CT
1 C2 = QnΛ1Λ2QT

n , where

Λ1Λ2 = diag(λ (1)
0 ·λ

(2)
0 λ

(1)
1 ·λ

(2)
1 · · · λ

(1)
n−1 ·λ

(2)
n−1) = diag(0) = On.

Therefore, CT
1 C2 = On, and thus we get 〈C1,C2〉 =tr(CT

1 C2) = 0, that is 6.3.5.4). This ends the

proof.

Now we give a consequence of 6.3.4 and 6.3.5.

Corollary 6.3.5.1. The following result holds:

Gn =Bn⊕Dn⊕En.

We recall the definition of the classical Hartley matrix (see also [22] and the references

therein). If n is odd, we have

Hn =
1√
n

(
u(0) u(1)+v(1) . . . u(

n−1
2 ) +v(

n−1
2 ) u(

n−1
2 )−v(

n−1
2 ) . . . u(1)−v(1)

)
. (6.14)

When n is even we get

Hn =
1√
n

(
u(0) u(1)+v(1) . . .u(

n
2−1) +v(

n
2−1) u(

n
2 ) u(

n
2−1)−v(

n
2−1) . . .u(1)−v(1)

)
. (6.15)

It is not difficult to see that

Hn = Qn Yn, (6.16)
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where

y(n)k, j =



1 if k = j = 0,

1√
2

if k = j and 1≤ k ≤ n−1
2

,

1√
2

if k+ j = n and 1≤ k ≤ n−1,

− 1√
2

if k = j and
n+1

2
≤ k ≤ n−1,

0 otherwise

(6.17)

if n is odd, and

y(n)k, j =



1 if k = j = 0 or k = j =
n
2
,

1√
2

if k = j and 1≤ k ≤ n
2
−1,

1√
2

if k+ j = n and 1≤ k ≤ n−1,

− 1√
2

if k = j and
n
2
+1≤ k ≤ n−1,

0 otherwise

(6.18)

if n is even. Now, set

Hn = sd(Hn) = {HnΛHT
n : Λ = diag(λλλ ), λλλ ∈ Rn}. (6.19)

It is not difficult to see that

Cn = {QnΛQT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric}= (6.20)

= {HnΛHT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is symmetric}.

From (6.19) and (6.20) it follows that

Hn = Cn⊕Fn, (6.21)

235



Ill-Posed Problems in Computer Vision

where

Fn = {HnΛHT
n : Λ = diag(λλλ ), λλλ ∈ Rn, λλλ is asymmetric}.

If i is the imaginary unit and ωn = e
2πi
n , then the n-th roots of 1 are

ω
j

n = e
2π ji

n = cos
(2π j

n

)
+i sin

(2π j
n

)
, j = 0,1, . . . ,n−1.

The Fourier matrix of dimension n×n is defined by Fn = ( f (n)k,l )k,l , where

f (n)k,l =
1√
n

ω
kl
n , k, l = 0,1, . . . ,n−1.

Note that Fn is symmetric, and F−1
n = F∗n (see, e.g., [54]).

Let Wn be the space of all real matrices simultaneously diagonalizable by Fn, that is

Wn = sd(Fn) = {FnΛF∗n ∈ Rn×n : Λ = diag(λλλ ), λλλ ∈ Cn}.

It is not difficult to see that Wn is a commutative matrix algebra. Moreover, we define the

following class:

An = {FnΛF∗n : Λ = diag(λλλ ), λλλ ∈ (iR)n, λλλ is asymmetric}. (6.22)

So we define the β -matrices as the matrices belonging to the following set:

Vn = Cn⊕Bn⊕Fn⊕An. (6.23)

6.4 Structural characterizations of γ-matrices

In this section we show that Vn coincides with the direct sum of the sets of all real circulant

matrices and of all reverse circulant matrices.

We consider the set of families

Ln,k = {A ∈ Rn×n : there is a = (a0 a1 . . . an−1)
T ∈ Rn with al, j = a( j+kl) mod n},

Kn,k = {A ∈ Rn×n : there is a symmetric a = (a0 a1 . . . an−1)
T ∈ Rn

with al, j = a( j+kl) mod n},

Jn,k =
{

A ∈ Rn×n : there is a symmetric a = (a0 a1 . . . an−1)
T ∈ Rn with

n−1

∑
t=0

at = 0,
n−1

∑
t=0

(−1)tat = 0 when n is even, and al, j = a( j+kl) mod n

}
,
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where k ∈ {1,2, . . . ,n−1}.

When k = n−1, Ln,n−1 is the class of all real circulant matrices, that is the family of those

matrices C ∈Rn×n such that every row, after the first, has the elements of the previous one shifted

cyclically one place right (see, e.g., [54]).

Given a vector c ∈ Rn, c = (c0 c1 · · ·cn−1)
T , let us define

circ(c) =C =



c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1 . . . cn−3 cn−2

cn−2 cn−1 c0
. . . cn−4 cn−3

...
...

. . . . . . . . .
...

c2 c3 c4
. . . c0 c1

c1 c2 c3 . . . cn−1 c0


,

where C ∈ Ln,n−1.

Theorem 6.4.1. ([54, Theorems 3.2.2 and 3.2.3]) The following result holds:

Wn = Ln,n−1.

As a consequence of this theorem, we get that the n eigenvectors of every circulant matrix

C ∈ Rn×n are given by

w( j) = (1 ω
j

n ω
2 j
n · · · ω

(n−1) j
n )T ,

and the eigenvalues of a matrix C =circ(c) ∈ Fn are expressed by

λ j = cT w( j) =
n−1

∑
k=0

ckω
jk

n , j = 0,1, . . . ,n−1.

Now we present some results about symmetric circulant real matrices. Observe that, if

C =circ(c), with c ∈ Rn, then C is symmetric if and only if c is symmetric. Thus, the class

of all real symmetric circulant matrices coincides with Kn,n−1 and has dimension b n
2c+ 1 over

R.

Theorem 6.4.2. (see, e.g., [51, §4], [111, Lemma 3]) Let C ∈ Kn,n−1. Then, the set of all

eigenvectors of C can be expressed as {q(0), q(1), . . ., q(n−1)}, where q( j), j = 0, 1, . . . ,n−1, is

as in (6.8), (6.9) and (6.10).
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Note that from Theorem 6.4.2 it follows that the set of all real symmetric circulant matrices

is contained in Gn. The nest result holds.

Theorem 6.4.3. (see, e.g., [36, §1.2], [51, §4], [151, Theorem 1]) Let C = circ(c) ∈ Kn,n−1.

Then, the eigenvalues λ j of C, j = 0, 1, . . . ,b n
2c, are given by

λ j = cT u( j). (6.24)

Moreover, for j = 1, 2, . . . ,b n−1
2 c it is

λ j = λn− j.

From Theorem 6.4.3 it follows that, if C is a real symmetric circulant matrix and λλλ
(C) is the

set of its eigenvalues, then λλλ
(C) is symmetric, thanks to (6.24). Hence,

Kn,n−1 ⊂ Cn. (6.25)

Now we prove that Cn is contained in the class of all real symmetric circulant matrices Kn,n−1.

First, we give the following

Theorem 6.4.4. Every matrix C ∈ Cn is circulant, that is

Cn ⊂ Ln,n−1. (6.26)

Proof. Let C∈Cn, C =(ck,l)k.l and Λ(C)= diag(λ (C)
0 λ

(C)
1 · · · λ (C)

n−1) be such that λ
(C)
j = λ

(C)
(n− j) mod n

for every j ∈ {0, 1, . . . ,n−1}, and C = QnΛ(C)QT
n . We have

ck,l =
n−1

∑
j=0

q(n)k, j λ
(C)
j q(n)l, j .

From this we get, if n is even,

ck,l = λ
(C)
0 q(n)k,0q(n)l,0 +λ

(C)
n/2 q(n)k,n/2q(n)l,n/2 +

n/2−1

∑
j=1

λ
(C)
j (q(n)k, j q

(n)
l, j +q(n)k,n− jq

(n)
l,n− j), (6.27)

and, if n is odd,

ck,l = λ
(C)
0 q(n)k,0 q(n)l,0 +

(n−1)/2

∑
j=1

λ
(C)
j (q(n)k, j q

(n)
l, j +q(n)k,n− jq

(n)
l,n− j). (6.28)

When n is even, from (6.5) and (6.27) we deduce

ck,l =
λ
(C)
0
n

+(−1)k−l
λ
(C)
n/2

n
+

+
2
n

n/2−1

∑
j=1

λ
(C)
j ·

(
cos
(

2πk j
n

)
· cos

(
2πl j

n

)
+ sin

(
2πk j

n

)
· sin

(
2πl j

n

))
=

=
λ
(C)
0
n

+(−1)k−l
λ
(C)
n/2

n
+

2
n

n/2−1

∑
j=1

λ
(C)
j · cos

(
2π(k− l) j

n

)
.

238



Ill-Posed Problems in Computer Vision

Let c = (c0 c1 · · · cn−1)
T , where

ct =
λ
(C)
0
n

+(−1)t
λ
(C)
n/2

n
+

2
n

n/2−1

∑
j=1

λ
(C)
j · cos

(
2π t j

n

)
, t ∈ {0,1, . . . ,n−1}.

Then we get C =circ(c), since for any k, l ∈ {0, 1, . . . ,n−1} it is ck,l = c(k−l) mod n.

When n is odd, from (6.5) and (6.28) we obtain

ck,l =
λ
(C)
0
n

+
2
n

(n−1)/2

∑
j=1

λ
(C)
j ·

(
cos
(

2πk j
n

)
· cos

(
2πl j

n

)
+

+ sin
(

2πk j
n

)
· sin

(
2πl j

n

))
=

=
λ
(C)
0
n

+
2
n

(n−1)/2

∑
j=1

λ
(C)
j · cos

(
2π(k− l) j

n

)
.

Let c = (c0 c1 · · · cn−1)
T , where

ct =
λ
(C)
0
n

+
2
n

(n−1)/2

∑
j=1

λ
(C)
j · cos

(
2π t j

n

)
, t ∈ {0,1, . . . ,n−1}.

Hence, C =circ(c), because for each k, l ∈ {0, 1, . . . ,n− 1} it is ck,l = c(k−l) mod n. Therefore,

Cn ⊂ Ln,n−1.

A consequence of Theorem 6.4.4 is the following

Corollary 6.4.4.1. The class Cn is the set of all real symmetric circulant matrices, that is

Cn =Kn,n−1. (6.29)

Proof. Since every matrix belonging to Cn is symmetric, we get that (6.29) is a consequence of

(6.25) and (6.26).

If k = 1, then Ln,1 is the set of all real reverse circulant (or real anti-circulant) matri-

ces, that is the class of all matrices B ∈ Rn×n such that every row, after the first, has the el-

ements of the previous one shifted cyclically one place left (see, e.g., [54]). Given a vector

b = (b0 b1 · · ·bn−1)
T ∈ Rn, set

rcirc(b) = B =



b0 b1 b2 . . . bn−2 bn−1

b1 b2 b3 . . . bn−1 b0

b2 b3 b4 . . . b0 b1

...
...

... . . .
...

...

bn−2 bn−1 b0 . . . bn−4 bn−3

bn−1 b0 b1 . . . bn−3 bn−2


,
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with B ∈ Ln,1.

Observe that every matrix B∈Bn,1 is symmetric, and the set Ln,1 is a linear space over R, but

not an algebra. Note that, if B1, B2 ∈ Ln,1, then B1 B2, B2 B1 ∈ Ln,n−1 (see [54, Theorem 5.1.2]).

Now we give the next results.

Theorem 6.4.5. The following inclusion holds:

Bn ⊂ Ln,1.

Proof. Let B∈Bn, B=(bk,l)k.l and Λ(B)= diag(λ (B)
0 λ

(B)
1 · · · λ (B)

n−1) be such that λ
(B)
j =−λ

(B)
(n− j) mod n

for every j ∈ {0, 1, . . . ,n−1}, and B = QnΛ(B)QT
n . We have

bk,l =
n−1

∑
j=0

q(n)k, j λ
(B)
j q(n)l, j . (6.30)

Observe that λ
(B)
0 = 0 and λ

(B)
n/2 = 0, if n is even. From this and (6.30) we get

bk,l =
b(n−1)/2c

∑
j=1

λ
(B)
j ·

(
q(n)k, j q

(n)
l, j −q(n)k,n− jq

(n)
l,n− j

)
, (6.31)

both when n is even and when n is odd. From (6.5) and (6.31) we deduce

bk,l =
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j

(
cos
(

2πk j
n

)
cos
(

2πl j
n

)
− sin

(
2πk j

n

)
sin
(

2πl j
n

))
=

=
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j cos

(
2π(k+ l) j

n

)
.

Let b = (b0 b1 · · · bn−1)
T , where

bt =
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2πt j

n

)
, t ∈ {0,1, . . . ,n−1}. (6.32)

Thus, B =circ(b), because for each k, l ∈ {0, 1, . . . ,n−1} we have bk,l = b(k−l) mod n. For any k,

l ∈ {0, 1, . . . ,n−1} it is bk,l = b(k+l) mod n. Hence, Bn ⊂ Ln,1.

Theorem 6.4.6. One has

Bn ⊂Kn,1.

Proof. We recall that

Kn,1 =
{

B ∈ Rn×n : there is a symmetric b = (b0 b1 . . . bn−1)
T ∈ Rn

with bk, j = b( j+k) mod n

}
.
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By Theorem 6.4.5, we get Bn ⊂ Ln,1. Now we prove the symmetry of b.

Let B ∈ Bn be such that there exists Λ(B) ∈ Rn×n, Λ(B) = diag(λ (B)
0 λ

(B)
1 · · · λ (B)

n−1), such

that C = QnΛ(B)QT
n and λ

(B)
j = −λ

(B)
(n− j) mod n for all j ∈ {0, 1, . . . ,n− 1}. By Theorem 6.4.5,

bk, j = b( j+k) mod n. Moreover, by arguing as in Theorem 6.4.5, we get (6.32), and hence

bt =
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2πt j

n

)
=

2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2π j− 2πt j

n

)
=

=
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2π(n− t) j

n

)
= bn−t

for any t ∈ {0, 1, . . . ,n−1}. Thus, b is symmetric.

Theorem 6.4.7. Let B =rcirc(b) ∈Bn. Then, the eigenvalues λ
(B)
j of B, j = 0,1, . . . ,b n

2c, can be

expressed as

λ
(B)
j = bT u( j). (6.33)

Moreover, for j = 1, 2, . . .b n−1
2 c, we get

λ
(B)
n− j =−λ

(B)
j .

Furthermore, it is λ
(B)
0 = 0, and λ

(B)
n/2 = 0 if n is even.

Proof. Since u( j), j = 0,1, . . .bn/2c, is an eigenvector of B, then

Bu( j) = λ
(B)
j u( j),

that is every component of the vector Bu( j) is equal to the respective component of the vector

λ
(B)
j u( j). In particular, if we consider the first component, we obtain (6.33). The last part of the

assertion is a consequence of the asymmetry of the vector λλλ
(B).

For the general computation of the eigenvalues of reverse circulant matrices, see, e.g., [36,

§1.3 and Theorem 1.4.1], [147, Lemma 4.1].

Now we give the following

Theorem 6.4.8. The following result holds:

Bn = Jn,1.
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Proof. First of all, we recall that

Jn,1 =
{

B ∈ Rn×n : there is a symmetric b = (b0 b1 . . . bn−1)
T ∈ Rn with

n−1

∑
t=0

bt = 0,
n−1

∑
t=0

(−1)tbt = 0 when n is even, and bk, j = b( j+k) mod n

}
.

We begin with proving that Bn ⊂ Jn,1.

Let B ∈ Bn. In Theorem 6.4.8 we proved that B ∈ Kn,1, that is b is symmetric and bk, j =

b( j+k) mod n.

Now we prove that

n−1

∑
t=0

bt = 0. (6.34)

Since B ∈Bn, the vector

u(0) =
(

1 1 · · · 1
)T

is an eigenvector for the eigenvalue λ
(B)
0 = 0. Hence, the formula (6.34) is a consequence of

(6.33).

Again by (6.33), we get
n−1

∑
t=0

(−1)tbt = 0,

since the vector

u(n/2) =
(

1 −1 1 −1 · · · −1
)T

is an eigenvector for the eigenvalue λ
(B)
n/2 = 0 if n is even. Thus, Bn ⊂ Jn,1.

Now observe that Jn,1 is a linear space of dimension b(n−1)/2c. Thus, by Proposition 6.3.3,

Bn and Jn,1 have the same dimension. So, Bn = Jn,1. This ends the proof.

Theorem 6.4.9. The next result holds:

Dn = Jn,n−1.

Proof. We recall that

Jn,n−1 =
{

C ∈ Rn×n : there is a symmetric c = (c0 c1 . . . cn−1)
T ∈ Rn with

n−1

∑
t=0

ct = 0,
n−1

∑
t=0

(−1)tct = 0 when n is even, and ck, j = c( j−k) mod n

}
.
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We first prove that Dn ⊂ Jn,n−1. From Theorem 6.3.5 and (6.25) we deduce that Dn ⊂ Cn =

Kn,n−1. Therefore, if C =circ(c) ∈Dn, then c is symmetric.

Now we prove that

n−1

∑
t=0

ct = 0. (6.35)

Since C ∈ Cn, the vector

u(0) =
(

1 1 · · · 1
)T

is an eigenvector for the eigenvalue λ0 = 0. Hence, the formula (6.35) is a consequence of (6.24).

Again by (6.24), we get
n−1

∑
t=0

(−1)tct = 0,

since the vector

u(n/2) =
(

1 −1 1 −1 · · · −1
)T

is an eigenvector for the eigenvalue λn/2 = 0 if n is even. Thus, Dn ⊂ Jn,n−1.

Now observe that Jn,n−1 is a linear space of dimension b(n− 1)/2c. Thus, by Proposition

6.3.3, Dn and Jn,n−1 have the same dimension. So, Dn = Jn,n−1. This completes the proof.

Theorem 6.4.10. The next result holds:

En = Pn = Ln,n−1∩Ln,1,

where

Pn =



C ∈ Rn×n: there are k1,k2 with ci, j =


k1 if i+ j is even

k2 if i+ j is odd

 if n is even,

{C ∈ Rn×n: there is k with ci, j = k for all i, j = 0,1, . . . ,n−1} if n is odd.

Proof. We first claim that En = Pn.

We begin with the inclusion En ⊂ Pn. Let C ∈ En, C = (ck,l)k.l and Λ = diag(λ0 λ1 · · · λn−1)

be such that λ0 = 0 for every j ∈ {1,2, . . . ,n−1} except n/2 when n is even, and C = QnΛQT
n .

We have

ck,l =
n−1

∑
j=0

q(n)k, j λ j q(n)l, j .
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From this we get

ck,l =


λ0 q(n)k,0 q(n)l,0 +λn/2 q(n)k,n/2 q(n)l,n/2 if n is even,

λ0 q(n)k,0 q(n)l,0 if n is odd.

(6.36)

When n is even, from (6.5) and (6.36) we deduce

ck,l =
λ0

n
+(−1)k−l λn/2

n
.

Note that

ck,l =



λ0

n
+

λn/2

n
if k− l is even,

λ0

n
−

λn/2

n
if k− l is odd,

and thus C ∈ Pn.

When n is odd, from (6.5) and (6.36) we obtain

ck,l =
λ0

n

for k, l ∈ {0,1, . . . ,n−1}. Hence, C ∈ Pn.

Now we prove that Pn ⊂ En. First of all, note that Pn ⊂ Cn. Let C ∈ Pn. If n is even, then

rank(C) ≤ 2, and hence C has at least n− 2 eigenvalues equal to 0. By contradiction, suppose

that at least one of the eigenvalues different from λ0 and λn/2, say λ j, is different from 0. Thus,

λ0 = 0 or λn/2 = 0. If λ0 = 0, then

n−1

∑
t=0

ct = 0,

and hence k1 =−k2. Therefore, rank(C)≤ 1, and thus there is at most one non-zero eigenvalue.

This implies that λn/2 = 0, and hence

n−1

∑
t=0

(−1)tct = 0. (6.37)

From (6.37) it follows that k1 = k2 = 0. Thus we deduce that C = On, which obviously implies

that λ j = 0. This is absurd, and hence λ0 6= 0.

When λn/2 = 0, then (6.37) holds, and hence k1 = k2. Thus, rank(C)≤ 1, which implies that

λ0 = 0, because we know that λ j 6= 0. This yields a contradiction. Thus, Pn ⊂ En, at least when

n is even.
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Now we suppose that n is odd. If C ∈ Pn, then rank(C)≤ 1. This implies that C has at most a

non-zero eigenvalue. We claim that λ j = 0 for all j ∈ {1,2, . . . ,n−1}. By contradiction, suppose

that there exists q ∈ {1,2, . . . ,n−1} such that λq 6= 0. Hence, λ0 = 0, and thus

0 =
n−1

∑
t=0

ct = nk.

This implies that C = On. Hence, λq = 0, which is absurd. Therefore, Pn ⊂ En even when n is

odd.

Now we claim that Pn = Ln,n−1∩Ln,1.

Observe that, if C ∈ Pn, then C is both circulant and reverse circulant, and hence Pn ⊂

Ln,n−1∩Ln,1. Now we claim that Ln,n−1∩Ln,1⊂Pn. Let C∈Ln,n−1∩Ln,1. If c=(c0 c1 . . .cn−1)
T

is the first row of C, and C =circ(c) =rcirc(c), then we get

c1, j = c( j−1) mod n = c( j+1) mod n, j ∈ {0,1, . . . ,n−1}.

If n is even, then c2 j = c0 and c2 j+1 = c1 for j ∈ {0,1, . . . ,n/2−1}, while when n is odd we have

c j = c0 for j ∈ {0,1, . . . ,n−1}, getting the claim.

Theorem 6.4.11. The following result holds:

Kn,1 =Bn⊕En.

Proof. By Theorem 6.4.9, we know that

Bn = Jn,1 =
{

C ∈ Rn×n : there is a symmetric c = (c0 c1 . . . cn−1)
T ∈ Rn with

n−1

∑
t=0

ct = 0,
n−1

∑
t=0

(−1)tct = 0 if n is even, and ci, j = c( j+i) mod n

}
.

Moreover, by Theorem 6.4.10 we have

En =
{

C ∈ Rn×n : there is c = (c0 c1 . . . cn−1)
T ∈ Rn such that: there is k ∈ R with

ct = k, t = 0,1, . . . ,n−1 if n is even, and k1,k2 ∈ R with ct = k((−1)t+3)/2

if n is odd, t = 0,1, . . . ,n−1, ci, j = c( j+i) mod n

}
.

First, we show that

Kn,1 ⊃Bn⊕En. (6.38)
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Let C =rcirc(c) ∈ Bn⊕En. There are C =rcirc(c(r)), with C(1) ∈ Bn, C(2) ∈ En. r = 1,2, C =

C(1)+C(2), c = c(1)+ c(2). Note that c is symmetric, because both c(1) and c(2) are. Thus, (6.38)

is proved.

We now prove the converse inclusion. Let C =rcirc(c)∈Kn,1. Then, c is symmetric. Suppose

that n is odd and
n−1

∑
t=0

ct = τ.

Let c(2) = (τ/n τ/n . . .τ/n)T , c(1) = c−c(2), and C =rcirc(c(r)), r = 1,2. Then, C =C(1)+C(2).

Note that C(2) ∈ En. Moreover, c(1) is symmetric, and

n−1

∑
t=0

c(1)t =
n−1

∑
t=0

(ct − τ/n) = 0.

Therefore, C(1) ∈Bn.

Now assume that n is even. We get

n−1

∑
t=0

ct = τ =
n
2
(k1 + k2) (6.39)

and

n−1

∑
t=0

(−1)t ct = γ∗ =
n
2
(k1− k2). (6.40)

Then,

k1 = (τ + γ∗)/n, k2 = (τ− γ∗)/n. (6.41)

Let c(2) = (k1 k2 . . .k1 k2)
T , c(1) = c− c(2), and C =rcirc(c(r)), r = 1,2. Then, C = C(1)+C(2).

Note that C(2) ∈ En. Moreover, c(1) is symmetric, and from (6.39), (6.41) we obtain

n−1

∑
t=0

c(1)t =
n−1

∑
t=0

ct −
n
2
(k1 + k2) = τ− τ = 0.

Moreover, from (6.40), (6.41) we deduce

n−1

∑
t=0

(−1)t c(1)t =
n−1

∑
t=0

(−1)t ct −
n
2
(k1− k2) = γ∗− γ∗ = 0.

Thus, C(1) ∈Bn.

Moreover observe that, by Theorem 6.3.5, En ⊂ Cn, and thanks to Theorem 6.3.4, Cn and Bn

are orthogonal. This implies that En and Bn are orthogonal. This ends the proof.
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We note that

Fn = {A ∈ Ln,1 : there is an asymmetric a ∈ Rn with A = rcirc(a)} (6.42)

(see also [22]). Now we prove the following

Proposition 6.4.12. It is

An = {A ∈ Ln,n−1 : there is an asymmetric a ∈ Rn with A = circ(a)}. (6.43)

Proof. We begin with the inclusion ⊃. Let A ∈ An, A =circ(a), with a asymmetric. Since

A ∈ Ln,n−1, its eigenvectors are given by

w( j) = (1 ω
j

n ω
2 j
n · · · ω

(n−1) j
n )T ,

and the eigenvalues of A are expressed by

λ j = aT w( j), j = 0,1, . . . ,n−1.

Note that

w( j) = u( j)+ iv( j), (6.44)

if j = 0,1, . . . ,d n−1
2 e, and

w(n− j) = u( j)− iv( j), (6.45)

if j = 0,1, . . .b n−1
2 c. From (6.44) and (6.45) it follows that

λ j = aT (u( j)+ iv( j)) = iaT v( j) ∈ iR

for j = 0,1, . . . ,d n−1
2 e, and

λn− j = aT (u( j)− iv( j)) =−iaT v( j) =−λi ∈ iR

for j = 0,1, . . . ,b n−1
2 c.

Now we turn to the converse inclusion. Suppose that A = FnΛF∗n , where Λ = diag(λλλ ), λλλ ∈

(iR)n and λλλ is asymmetric. The element ak,l is given by

ak,l =
1
n

n−1

∑
j=0

ω
k j
n λ j ω

l j
n =

1
n

b(n−1)/2c

∑
j=1

λ j(ω
k j
n ω

l j
n −ω

k(n− j)
n ω

l(n− j)
n ) =

=
1
n

b(n−1)/2c

∑
j=1

λ j(ω
(k−l) j
n −ω

(k−l)(n− j)
n ) =

=
2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j(k− l)
n

)
.
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For l = 0, 1, . . . ,n−1, we get

a0,l =−
2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j l
n

)
∈ R.

Now we claim that the first row of A is asymmetric. Indeed, we have

a0,n−l = −2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j (n− l)
n

)
=

=
2i
n

b(n−1)/2c

∑
j=1

λ j sin
(

2π j l
n

)
=−a0,l ,

getting the claim.

From Proposition 6.4.12 it follows that

Ln,n−1 = Cn⊕An. (6.46)

Moreover, note that Bn⊕Fn⊕En = Ln,1. Since En ⊂ Ln,n−1, from (6.46) it follows that

Vn = Cn⊕Bn⊕Fn⊕An = Ln,1⊕Ln,n−1.

6.5 Multiplication between β -matrices

It is not difficult to see that Vn is closed under the operations of sum between matrices. Now we

recall that the eigenvalues λ
(C)
j of C =circ(c) ∈ Cn, j = 0,1, . . . ,b n

2c, are given by

λ
(C)
j = cT u( j). (6.47)

Moreover, for j = 1, 2, . . .b n−1
2 c, we have

λ
(C)
n− j = λ

(C)
j .

Furthermore, the eigenvalues λ
(B)
j of B =rcirc(b) ∈ Bn, j = 0,1, . . . ,b n

2c, can be expressed

as

λ
(B)
j = bT u( j), (6.48)

and for j = 1, 2, . . .b n−1
2 c, we have

λ
(B)
n− j =−λ

(B)
j .

Now we give the following
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Proposition 6.5.1. Let a = (a0 a1 · · ·an−1)
T , b = (b0 b1 · · ·bn−1)

T ∈ Rn be such that a is sym-

metric and b is asymmetric. Then, aT b = 0.

Proof. First of all, we observe that b0 = bn/2 = 0. So, we have

aT b =
n−1

∑
j=0

a j b j =
n−1

∑
j=1

a j b j =
n/2−1

∑
j=1

a j b j +an/2 bn/2 +
n

∑
j=n/2+1

a j b j =

=
n/2−1

∑
j=1

a j b j +
n/2−1

∑
j=1

an− j bn− j =
n/2−1

∑
j=1

a j b j−
n/2−1

∑
j=1

a j b j = 0.

Proposition 6.5.2. The eigenvalues λ
(F)
j of F =rcirc(f) ∈ Fn, j = 0,1, . . . ,b n

2c, are given by

λ
(F)
j = fT v( j), (6.49)

and for j = 1, 2, . . .b n−1
2 c, we get

λ
(F)
n− j =−λ

(F)
j .

Proof. We consider the following set of eigenvectors, whose first component is 1.

u( j)+v( j), j = 0,1, . . . ,d n−1
2 e;

u( j)−v( j), j = 1,2, . . .b n−1
2 c.

Hence, by Proposition 6.5.1, we obtain

λ
(F)
j = fT (u( j)+v( j)) = fT v( j), j = 0,1, . . . ,d n−1

2 e;

λ
(F)
n− j = fT (u( j)−v( j)) =−fT v( j), j = 1,2, . . .b n−1

2 c.

Proposition 6.5.3. The eigenvalues λ
(A)
j of A =circ(a) ∈An, j = 0,1, . . . ,b n

2c, are given by

λ
(A)
j = iaT v( j), (6.50)

and for j = 1, 2, . . .b n−1
2 c, we get

λ
(A)
n− j =−λ

(A)
j .
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Proof. We consider the following set of eigenvectors, whose first component is 1.

u( j)+ iv( j), j = 0,1, . . . ,d n−1
2 e;

u( j)− iv( j), j = 1,2, . . .b n−1
2 c.

Hence, by Proposition 6.5.1, we obtain

λ
(A)
j = aT (u( j)+ iv( j)) = iaT v( j), j = 0,1, . . . ,d n−1

2 e;

λ
(A)
n− j = aT (u( j)− iv( j)) =−iaT v( j), j = 1,2, . . .b n−1

2 c.

Now we give the following

Proposition 6.5.4. Given two γ-matrices G1, G2, then the following results hold.

6.5.4.1) If G1, G2 ∈ Cn, then G1 G2 ∈ Cn;

6.5.4.2) If G1, G2 ∈Bn, then G1 G2 ∈ Cn;

6.5.4.3) If G1 ∈ Cn and G2 ∈Bn, then G1 G2 = G2 G1 ∈Bn.

Proof. 6.5.4.1) It follows immediately from the fact that Gn is an algebra.

6.5.4.2) If G1 = QnΛ(G1)QT
n and G2 = QnΛ(G2)QT

n , then G1 G2 = QnΛ(G1) Λ(G2)QT
n , where

Λ(G1)Λ(G2) =diag (λ
(G1)
0 λ

(G2)
0 λ

(G1)
1 λ

(G2)
1 · · · λ

(G1)
n−1 λ

(G1)
n−1 ). Since the eigenvalues of G1 and G2

are asymmetric, we get that the eigenvalues of G1 G2 are symmetric. Hence, G1 G2 ∈ Cn.

6.5.4.3) We first note that, since Gn is an algebra, we get that G1 G2 = G2 G1. Since the

eigenvalues of G1 are symmetric and those of G2 are asymmetric, arguing analogously as in the

proof of 6.5.4.2) it is possible to check that the eigenvalues of G1 G2 are asymmetric. Therefore,

G1 G2 ∈Bn.

It is not difficult to see that, given C ∈ Cn and V ∈ Vn, the eigenvalues of CV are equal to

those of VC and are given by

λ
(CV )
j = λ

(VC)
j = λ

(C)
j λ

(V )
j , j = 0,1, . . . ,n−1.

Now we prove the following
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Theorem 6.5.5. Let B ∈ Bn, B =rcirc(b), and F ∈ Fn, F =rcirc(f). Then, BF ∈ An and the

eigenvalues of BF are expressed by

λ
(BF)
j = iλ

(B)
j λ

(F)
j , j = 0,1, . . . ,d n−1

2 e;

λ
(BF)
n− j =−λ

(BF)
j , j = 1,2, . . .b n−1

2 c.

Proof. Let A = BF . Since B,F ∈Ln,1, then A ∈Ln,n−1 (see, e.g., [54]). So, to prove that A ∈An

it is enough to show that the first row of the matrix A is asymmetric, that is a0,n− j = −a0, j,

j = 0,1, . . .d n−1
2 e. Indeed, if n is odd, we get

a0,n− j = b0 fn− j +
(n−1)/2

∑
l=1

bl ( f(n− j+l) (mod n)+ f(2n− j−l) (mod n)) =

= −b0 f j−
(n−1)/2

∑
l=1

bl ( f( j+l) (mod n)+ f(n+ j−l) (mod n)) =−a0, j,

and when n is even, we have

a0,n− j = b0 fn− j +bn/2 f(n/2− j) (mod n)+

+
n/2−1

∑
l=1

bl ( f(n− j+l) (mod n)+ f(2n− j−l) (mod n)) =

= −b0 f j−bn/2 f(n/2− j) (mod n)−

−
n/2−1

∑
l=1

bl ( f( j+l) (mod n)+ f(n+ j−l) (mod n)) =−a0, j.

Thus, A ∈An.

We consider the following set of eigenvectors, whose first component is 1:

u( j)+ iv( j), j = 0,1, . . . ,d n−1
2 e.

Hence, by Proposition 6.5.1, we obtain

λ
(A)
j = bT F(u( j)+ iv( j)) =

(
1− i

2

)
bT F(u( j)−v( j)+ i(u( j)+v( j))) =

=

(
1− i

2

)
bT (−λ

(F)
j (u( j)−v( j))+ iλ

(F)
j (u( j)+v( j))) =

=

(
1− i

2

)
(−λ

(F)
j λ

(B)
j + iλ

(F)
j λ

(B)
j ) = iλ

(B)
j λ

(F)
j

for j = 0,1, . . . ,d n−1
2 e;

λ
(A)
n− j =−λ

(A)
j =−iλ

(B)
j λ

(F)
j

for j = 1,2, . . .b n−1
2 c, since the eigenvalues of A ∈An are asymmetric.
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Now we demonstrate the following

Theorem 6.5.6. Let B ∈ Bn, B =rcirc(b), and F ∈ Fn, F =rcirc(f). Then, FB ∈ An and the

eigenvalues of FB are expressed by

λ
(FB)
j =−iλ

(B)
j λ

(F)
j , j = 0,1, . . . ,d n−1

2 e;

λ
(FB)
n− j =−λ

(FB)
j , j = 1,2, . . .b n−1

2 c.

Proof. Let A = FB. As B,F ∈ Ln,1, then A ∈ Ln,n−1 (see, e.g., [54]). So, to prove that A ∈ An

it is sufficient to show that the first row of the matrix A is asymmetric, that is a0,n− j = −a0, j,

j = 0,1, . . .d n−1
2 e. Indeed, we have

a0,n− j =
b(n−1)/2c

∑
l=1

fl (b(n− j+l) (mod n)−b(2n− j−l) (mod n)) =

= −
b(n−1)/2c

∑
l=1

fl (b( j+l) (mod n)−b(n+ j−l) (mod n)) =−a0, j

for j = 1,2, . . .b n−1
2 c. Therefore, A ∈An.

We consider the following set of eigenvectors, whose first component is 1:

u( j)+ iv( j), j = 0,1, . . . ,d n−1
2 e.

Hence, by Proposition 6.5.1, we obtain

λ
(A)
j = fT B(u( j)+ iv( j)) = fT (λ

(B)
j u( j)− iλ

(B)
j v( j)) =

= −iλ
(B)
j (fT v( j)) =−iλ

(F)
j λ

(B)
j

for j = 0,1, . . . ,d n−1
2 e;

λ
(A)
n− j =−λ

(A)
j = iλ

(F)
j λ

(B)
j

for j = 1,2, . . .b n−1
2 c, because the eigenvalues of A ∈An are asymmetric.

Observe that, given B ∈Bn and F ∈ Fn, we get that λ
(FB)
j =−λ

(BF)
j . Therefore, FB =−BF .

Now we prove the following

Theorem 6.5.7. Let A ∈ An, A =circ(a) and B ∈ Bn, B =rcirc(b). Then, AB ∈ Fn and the

eigenvalues of AB are expressed by

λ
(AB)
j =−iλ

(A)
j λ

(B)
j , j = 0,1, . . . ,d n−1

2 e;

λ
(AB)
n− j =−λ

(AB)
j , j = 1,2, . . .b n−1

2 c.
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Proof. Let F = AB. Since A ∈ Ln,n−1 and B ∈ Ln,1, then F ∈ Ln,1 (see, e.g., [54]). So, to

prove that F ∈ Fn it is enough to show that the first row of the matrix F is asymmetric, that is

f0,n− j =− f0, j, j = 0,1, . . .d n−1
2 e. Indeed, we have

f0,n− j =
b(n−1)/2c

∑
l=1

al (b(n− j+l) (mod n)−b(2n− j−l) (mod n)) =

= −
b(n−1)/2c

∑
l=1

al (b( j+l) (mod n)−b(n+ j−l) (mod n)) =− f0, j

for j = 1,2, . . .b n−1
2 c. Therefore, F ∈ Fn.

We consider the following set of eigenvectors, whose first component is 1:

u( j)+v( j), j = 0,1, . . . ,d n−1
2 e.

Hence, by Proposition 6.5.1, we obtain

λ
(F)
j = aT B(u( j)+v( j)) = aT (λ

(B)
j u( j)− λ

(B)
j v( j)) =

= −λ
(B)
j (aT v( j)) = iλ

(A)
j λ

(B)
j

for j = 0,1, . . . ,d n−1
2 e;

λ
(F)
n− j =−λ

(F)
j =−iλ

(A)
j λ

(B)
j

for j = 1,2, . . .b n−1
2 c, because the eigenvalues of F ∈ Fn are asymmetric.

Theorem 6.5.8. Let B ∈ Bn, B =rcirc(b), and A ∈ An, A =circ(a). Then, BA ∈ Fn and the

eigenvalues of BA are given by

λ
(BA)
j =−iλ

(B)
j λ

(A)
j , j = 0,1, . . . ,d n−1

2 e;

λ
(BA)
n− j =−λ

(BA)
j , j = 1,2, . . .b n−1

2 c.

Proof. Let F = BA. Since A ∈ Ln,n−1 and B ∈ Ln,1, then F ∈ Ln,1 (see, e.g., [54]). So, to

prove that F ∈ Fn it is enough to show that the first row of the matrix F is asymmetric, namely

f0,n− j =− f0, j, j = 0,1, . . .d n−1
2 e. Indeed, if n is odd, we get

f0,n− j = b0 an− j +
(n−1)/2

∑
l=1

bl (a(l−n+ j) (mod n)+a(l− j) (mod n)) =

= −b0 a j−
(n−1)/2

∑
l=1

bl (a( j−l) (mod n)+a(− j−l) (mod n)) =− f0, j,
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and when n is even, we have

f0,n− j = b0 an− j +bn/2 a(n/2− j) (mod n)+

+
n/2−1

∑
l=1

bl (a(l−n+ j) (mod n)+a(l− j) (mod n)) =

= −b0 a j−bn/2 a(n/2− j) (mod n)−

−
n/2−1

∑
l=1

bl (a( j−l) (mod n)+a(− j−l) (mod n)) =− f0, j.

Thus, F ∈ Fn.

We consider the following set of eigenvectors, whose first component is 1:

u( j)+ v( j), j = 0,1, . . . ,d n−1
2 e.

By Proposition 6.5.1, we have

λ
(F)
j = bT A(u( j)+v( j)) = bT A

((
1− i

2

)
(u( j)+ iv( j))+

(
1+ i

2

)
(u( j)− iv( j))

)
=

= bT
λ
(F)
j

(
1− i

2

)
(u( j)+ iv( j))−bT

λ
(F)
j

(
1+ i

2

)
(u( j)− iv( j)) =

=

(
1− i

2

)
λ
(B)
j λ

(A)
j −

(
1+ i

2

)
λ
(B)
j λ

(A)
j =−iλ

(B)
j λ

(A)
j

for j = 0,1, . . . ,d n−1
2 e;

λ
(F)
n− j =−λ

(F)
j = iλ (B)

j λ
(A)
j

for j = 1,2, . . .b n−1
2 c, since the eigenvalues of F ∈ Fn are asymmetric.

Note that, given A ∈An and B ∈Bn, we have that λ
(AB)
j =−λ

(BA)
j . Hence, AB =−BA.

Now we give the following

Theorem 6.5.9. Let A ∈ An, A =circ(a) and F ∈ Fn, F =rcirc(f). Then, AF ∈ Bn and the

eigenvalues of AF are expressed by

λ
(AF)
j =−iλ

(A)
j λ

(F)
j , j = 0,1, . . . ,d n−1

2 e;

λ
(AF)
n− j =−λ

(AF)
j , j = 1,2, . . .b n−1

2 c.

Proof. Let B = AF . Since A ∈ Ln,n−1 and F ∈ Ln,1, then B ∈ Ln,1 (see, e.g., [54]). Thus, to

prove that B ∈ Bn it is sufficient to demonstrate that the first row of the matrix B is asymmetric,
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that is b0,n− j =−b0, j, j = 0,1, . . .d n−1
2 e. Indeed, it is

b0,n− j =
b(n−1)/2c

∑
l=1

al ( f(n− j+l) (mod n)− f(2n− j−l) (mod n)) = (6.51)

= −
b(n−1)/2c

∑
l=1

al ( f( j+l) (mod n)− f(n+ j−l) (mod n)) =−b0, j

for j = 1,2, . . .b n−1
2 c. Therefore, B ∈Bn.

We consider the following set of eigenvectors, whose first component is 1:

u( j), j = 0,1, . . . ,d n−1
2 e.

Hence, by Proposition 6.5.1, we obtain

λ
(B)
j = aT F u( j) =

1
2

aT F(u( j)+v( j))− 1
2

aT F (u( j)−v( j)) =

=
1
2

aT
λ
(F)
j (u( j)+v( j))− 1

2
aT

λ
(F)
j (u( j)−v( j)) =−iλ

(A)
j λ

(F)
j

for j = 0,1, . . . ,d n−1
2 e;

λ
(B)
n− j =−λ

(B)
j = iλ

(A)
j λ

(F)
j

for j = 1,2, . . .b n−1
2 c, because the eigenvalues of B ∈Bn are asymmetric.

Now we prove the following

Theorem 6.5.10. Let A ∈ An, A =circ(a) and F ∈ Fn, F =rcirc(f). Then, FA ∈ Bn and the

eigenvalues of FA are given by

λ
(FA)
j =−iλ

(F)
j λ

(A)
j , j = 0,1, . . . ,d n−1

2 e;

λ
(FA)
n− j =−λ

(FA)
j , j = 1,2, . . .b n−1

2 c.

Proof. Let B = FA. Since A∈Ln,n−1 and F ∈Ln,1, then B∈Ln,1 (see, e.g., [54]). Thus, to prove

that B ∈Bn it is sufficient to demonstrate that the first row of the matrix B is asymmetric, that is

b0,n− j =−b0, j, j = 0,1, . . .d n−1
2 e. Indeed, we get

b0,n− j =
b(n−1)/2c

∑
l=1

fl (a(l−n+ j) (mod n)−a(l− j) (mod n)) = (6.52)

= −
b(n−1)/2c

∑
l=1

fl (a( j−l) (mod n)−a(− j−l) (mod n)) =−b0, j

for j = 1,2, . . .b n−1
2 c. Hence, B ∈Bn.
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We consider the following set of eigenvectors, whose first component is 1:

u( j), j = 0,1, . . . ,d n−1
2 e.

Hence, by Proposition 6.5.1, we obtain

λ
(B)
j = fT Au( j) =

1
2

fT A(u( j)+ iv( j))+
1
2

fT A(u( j)− iv( j)) =

=
1
2

fT
λ
(A)
j (u( j)+ iv( j))+

1
2

fT
λ
(A)
j (u( j)− iv( j)) = iλ

(F)
j λ

(A)
j

for j = 0,1, . . . ,d n−1
2 e;

λ
(B)
n− j =−λ

(B)
j =−iλ

(F)
j λ

(A)
j

for j = 1,2, . . .b n−1
2 c, since the eigenvalues of B ∈Bn are asymmetric.

Observe that, if A ∈An and F ∈ Fn, then λ
(AF)
j =−λ

(FA)
j . Hence, AF =−FA.

Moreover note that, if B1, B2 ∈Bn, F1, F2 ∈ Fn, A1, A2 ∈An, then B1 B2, F1 F2, A1 A2 ∈ Cn.

6.6 Invertible β -matrices

In this section we present some results about invertibility of β -matrices. We prove the following

Theorem 6.6.1. Given V1 ∈Vn, V1 =C1+B1+F1+A1, with C1 ∈Cn, B1 ∈Bn, F1 ∈Fn, A1 ∈An,

set σ
(A1)
j =−iλ

(A1)
j , j = 0,1, . . . ,d n−1

2 e. If the matrices

Θ j =



λ
(C1)
j λ

(B1)
j λ

(F1)
j −σ

(A1)
j

λ
(B1)
j λ

(C1)
j σ

(A1)
j −λ

(F1)
j

λ
(F1)
j −σ

(A1)
j λ

(C1)
j −λ

(B1)
j

σ
(A1)
j −λ

(F1)
j λ

(B1)
j λ

(C1)
j



∈ R4×4,

j = 0,1, . . . ,d n−1
2 e, are invertible, then there exists V2 ∈ Vn such that V1 V2 = In.

Proof. First of all note that, if V2 ∈ Vn, then V2 = C2 +B2 +F2 +A2, with C2 ∈ Cn, B2 ∈ Bn,

F2 ∈ Fn, A2 ∈An.
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Observe that V1 V2 =C3 +B3 +F3 +A3, where

C3 = C1C2 +B1B2 +F1F2 +A1A2 ∈ Cn,

B3 = C1B2 +B1C2 +F1A2 +A1F2 ∈Bn,

F3 = C1F2 +F1C2 +B1A2 +A1B2 ∈ Fn,

A3 = C1A2 +A1C2 +B1F2 +F1B2 ∈An.

By imposing C3 = In, we get

λ
(C1)
j λ

(C2)
j +λ

(B1)
j λ

(B2)
j +λ

(F1)
j λ

(F2)
j +λ

(A1)
j λ

(A2)
j = 1

for j = 0,1, . . . ,d n−1
2 e.

Moreover, by imposing B3 = On, by virtue of Theorems 6.5.9 and 6.5.10 it follows that

λ
(B1)
j λ

(C2)
j +λ

(C1)
j λ

(B2)
j − iλ

(A1)
j λ

(F2)
j + iλ

(F1)
j λ

(A2)
j = 0

for j = 0,1, . . . ,d n−1
2 e.

Furthermore, we impose F3 = On. Then, from Theorems 6.5.7 and 6.5.8, it follows that

λ
(F1)
j λ

(C2)
j + iλ

(A1)
j λ

(B2)
j +λ

(C1)
j λ

(F2)
j + iλ

(B1)
j λ

(A2)
j = 0

for j = 0,1, . . . ,d n−1
2 e.

Finally, by imposing A3 = On, from Theorems 6.5.5 and 6.5.6 we obtain

λ
(A1)
j λ

(C2)
j − iλ

(F1)
j λ

(B2)
j + iλ

(B1)
j λ

(F2)
j +λ

(C1)
j λ

(A2)
j = 0

for j = 0,1, . . . ,d n−1
2 e.

Now, put σ
(A2)
j =−iλ

(A2)
j , j = 0,1, . . . ,d n−1

2 e, ϑϑϑ j
T = (λ

(C2)
j λ

(B2)
j λ

(F2)
j σ

(A2)
j ). Since Θ j is

invertible, then the system Θ j ϑϑϑ j = (1 0 0 0)T has a unique solution. This ends the proof.

Thus, it is not difficult to show that in most cases it is possible to compute the inverse of a

β -matrix by means of DFFT and Hartley-type transforms.

6.7 Toeplitz matrix preconditioning

For each n ∈ N, let us consider the following class:

Tn = {Tn ∈ Rn×n : Tn = (tk, j)k, j, tk, j = t|k− j|, k, j ∈ {0,1, . . . ,n−1} }. (6.53)
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Observe that the class defined in (6.53) coincides with the family of all real symmetric Toeplitz

matrices.

Now we consider the following problem.

Given Tn ∈ Tn, find

Vn(Tn) = min
V∈Vn

‖V −Tn‖F ,

where ‖ · ‖F denotes the Frobenius norm.

It is not difficult to see that, since Tn is symmetric, then we can assume that Vn(Tn) is sym-

metric. Therefore, Vn(Tn) = Cn(Tn) +Bn(Tn) +Fn(Tn), where Cn(Tn) ∈ Cn, Bn(Tn) ∈ Bn, and

Fn(Tn) ∈ Fn.

Theorem 6.7.1. Let Ĝn = Sn +Hn,1. Given Tn ∈ Tn, one has

Gn(Tn) =Cn(Tn)+Bn(Tn) = min
G∈Ĝn

‖G−Tn‖F = min
G∈Gn

‖G−Tn‖F , (6.54)

where Cn(Tn) =circ(c), with

c j =
(n− j) t j + j tn− j

n
, j ∈ {1,2, . . . ,n−1}; (6.55)

c0 = t0, (6.56)

and Bn(Tn) =rcirc(b), where: for n even and j ∈ {1,2, . . . ,n−1}\{n/2},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)

)
, j odd; (6.57)

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j even; (6.58)

for n even,

b0 =
2
n

(
n/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, (6.59)

bn/2 =
4
n

(
n/4−1

∑
k=1

2k
n
(t2k− tn−2k)

)
; (6.60)
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for n odd and j ∈ {1,2, . . . ,n−1},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j odd; (6.61)

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
, j even; (6.62)

for n odd,

b0 =
2
n

(
(n−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
. (6.63)

Proof. Let us define

φ(c,b) = ‖Tn− circ(c)− circ(b)‖2
F

for any two symmetric vectors c, b ∈ Rn. If j ∈ {1,2, . . . ,n−1}, then we get

∂φ(c,b)
∂c j

=−4(n− j) t j−4 j tn− j +4
n−1

∑
j=0

b j +4nc j. (6.64)

Furthermore, one has

∂φ(c,b)
∂c0

=−2nt0 +2
n−1

∑
j=0

b j +2nc0. (6.65)

If n is even and j is odd, j ∈ {1, . . . ,n−1}, then, since cn− j = c j, we have

∂φ(c,b)
∂b j

= −2

(
2 t j +4

( j−3)/2

∑
k=0

t2k+1 +2 tn− j +4
(n− j−3)/2

∑
k=0

t2k+1−

−4
n/4−1

∑
k=0

c2k+1−2nb j

)
=

= −2

(
2(t j− c j)+4

( j−3)/2

∑
k=0

(t2k+1− c2k+1)+2(tn− j− cn− j)+ (6.66)

+4
(n− j−3)/2

∑
k=0

(t2k+1− c2k+1)−2nb j

)
.

If both n and j are even, j ∈ {1,2, . . . ,n−1}\{n/2}, then, by arguing analogously as in the

previous case, we deduce

∂φ(c,b)
∂b j

= −2

(
2(t j− c j)+4

j/2−1

∑
k=1

(t2k− c2k)+2(tn− j− cn− j)+

+4(t0− c0)+4
(n− j)/2−1

∑
k=1

(t2k− c2k)−2nb j

)
. (6.67)
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Moreover, if n is even, then one has

∂φ(c,b)
∂b0

=−2

(
t0− c0 +2

n/2−1

∑
k=1

(t2k− c2k)−nb0

)
, (6.68)

getting (6.81). Furthermore, for n even, we have

∂φ(c,b)
∂bn/2

=−2

(
2(tn/2− cn/2)+4

n/4−1

∑
k=1

(t2k− c2k)−nbn/2

)
. (6.69)

Now, if both n and j are odd, j ∈ {0,1, . . . ,n−1}, then, taking into account (6.77), we obtain

∂φ(c,b)
∂b j

= −2

(
2(t j− c j)+4

( j−3)/2

∑
k=0

(t2k+1− c2k+1)+2(tn− j− cn− j)+

+4
(n− j)/2−1

∑
k=1

(t2k− c2k)+2(t0− c0)−2nb j

)
. (6.70)

If n is odd and j is even, j ∈ {0,1, . . . ,n−1}, then we have

∂φ(c,b)
∂b j

= −2

(
2(t j− c j)+4

j/2−1

∑
k=1

(t2k− c2k)+2(tn− j− cn− j)+ (6.71)

+ 4
(n− j−3)/2

∑
k=1

(t2k+1− c2k+1)+2(t0− c0)−2nb j

)
.

Finally, for n odd, one has

∂φ(c,b)
∂b0

=−2

(
t0− c0 +2

(n−3)/2

∑
k=0

(t2k+1− c2k+1)−nb0

)
. (6.72)

It is not difficult to see that the function φ is convex. Therefore, φ has exactly one point of

minimum. From this it follows that φ admits exactly one stationary point. Now we claim that

this point satisfies

n/4−1

∑
k=0

b2k+1 = 0 (6.73)

and

b0 +2
n/4−1

∑
k=1

b2k +bn/2 = 0 (6.74)

when n is even, and

b0 +2
(n−1)/2

∑
j=1

b j = 0 (6.75)

if n is odd, that is Bn(Tn) ∈ Bn. From (6.73)-(6.75) and (6.64)-(6.65) we get (6.77)-(6.78).

Furthermore, from (6.77)-(6.78) and (6.66)-(6.72) we obtain (6.79)-(6.85). Finally, (6.73)-(6.74)

follow from (6.79)-(6.82), while (6.75) is a consequence of (6.83)-(6.85).
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Theorem 6.7.2. Given Tn ∈ Tn, one has

Vn(Tn) =Cn(Tn)+Bn(Tn)+Fn(Tn) = min
V∈Vn

‖V −Tn‖F , (6.76)

where Cn(Tn) =circ(c), with

c j =
(n− j) t j + j tn− j

n
, j ∈ {1,2, . . . ,n−1}; (6.77)

c0 = t0, (6.78)

and Bn(Tn) =rcirc(b), where: for n even and j ∈ {1,2, . . . ,n−1}\{n/2},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j−3)/2

∑
k=1

2k+1
n

(t2k+1− tn−2k−1)

)
, j odd; (6.79)

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j even; (6.80)

for n even,

b0 =
2
n

(
n/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, (6.81)

bn/2 =
4
n

(
n/4−1

∑
k=1

2k
n
(t2k− tn−2k)

)
; (6.82)

for n odd and j ∈ {1,2, . . . ,n−1},

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

( j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)+

+ 4
(n− j)/2−1

∑
k=1

2k
n
(t2k− tn−2k)

)
, j odd; (6.83)

b j =
1

2n

(
4 j−2n

n
(t j− tn− j)+4

j/2−1

∑
k=1

2k
n
(t2k− tn−2k)+

+ 4
(n− j−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
, j even; (6.84)

for n odd,

b0 =
2
n

(
(n−3)/2

∑
k=0

2k+1
n

(t2k+1− tn−2k−1)

)
; (6.85)
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f j =
t j− tn− j

n
, j ∈ {1,2, . . . ,n−1}; (6.86)

f0 = 0. (6.87)

Proof. Set

φ̃(c,b, f) = ‖Tn− circ(c)− rcirc(b)− rcirc(f)‖2
F

for each symmetric vector c∈Rn, b∈Rn and for every asymmetric vector f∈Rn. By proceeding

analogously as in (6.64)-(6.72) and taking into account the asymmetry of f, we get that the

derivatives

∂ φ̃(c,b, f)
∂c j

,
∂ φ̃(c,b, f)

∂b j

have the same expressions as the respective derivatives

∂φ(c,b)
∂c j

,
∂φ(c,b)

∂b j

in (6.64)-(6.72), j = 0, 1, . . . ,n−1. Furthermore, for any n ∈ N and j ∈ {1,2, . . . ,n−1} we get

∂ φ̃(c,b, f)
∂ f j

= 4(n f j− tn + tn− j). (6.88)

Proceeding similarly as we dealt with the function φ in Theorem 6.7.1, it is not difficult to prove

the convexity of the function φ̃ . From this it follows that φ̃ has exactly one point of minimum,

and hence φ̃ admits exactly one stationary point. By arguing analogously as in Theorem 6.7.1, it

is possible to show that the same conditions as in (6.73)-(6.75) are satisfied, and the assertion of

the theorem follows.

Now we show how the approximation found in β -matrices allows to obtain also precondi-

tioned linear systems with eigenvalues clustered around 1. For every n ∈ N, set

T̂n = {t ∈ Tn : there is a function f (z) =
+∞

∑
j=−∞

t j z j, (6.89)

with z ∈ C, |z|= 1, and such that
+∞

∑
j=−∞

|t j|<+∞}.

Observe that any function defined by a power series as in the first line of (6.89) is real-valued,

and the set of such functions satisfying the condition

+∞

∑
j=−∞

|t j|<+∞
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is called Wiener class (see, e.g., [22], [44, §3]).

Given a function f belonging to the Wiener class and a matrix Tn ∈ T̂n, Tn( f ) = (tk, j)k, j:

tk, j = t|k− j|, k, j ∈ {0, 1, . . . ,n−1}, and f (z) =
+∞

∑
j=−∞

t j z j, then we say that Tn( f ) is generated by

f .

We will often use the following property of absolutely convergent series (see, e.g., [22, 43]).

Lemma 6.7.3. Let
∞

∑
j=1

t j be an absolutely convergent series. Then, we get

lim
n→+∞

[
1
n

(
n

∑
k=1

k |tk|+
n

∑
k=d(n+1)/2e

(n− k) |tk|

)]
= 0.

Proof. Let S =
∞

∑
j=1
|t j|. Choose arbitrarily ε > 0. By hypothesis, there is a positive integer n0

with

∞

∑
k=n0+1

|tk| ≤
ε

4
. (6.90)

Let n1 = max
{

2n0 S
ε

,2n0

}
. Taking into account (6.90), for every n > n1 it is

0 ≤ 1
n

(
n

∑
k=1

k |tk|+
n

∑
k=d(n+1)/2e

(n− k) |tk|

)
=

=
1
n

n0

∑
k=1

k |tk|+
1
n

n

∑
k=n0+1

k |tk|+
1
n

n

∑
k=d(n+1)/2e

(n− k) |tk| ≤

≤ 1
n1

n0

n0

∑
k=1
|tk|+2

n

∑
k=n0+1

|tk| ≤
ε

2n0 S
n0 S+2

ε

4
= ε.

So, the assertion follows.

Theorem 6.7.4. For n∈N, given Tn( f )∈ T̂n, let Cn( f )=Cn(Tn( f )), Bn( f )=Bn(Tn( f )), Fn( f )=

Fn(Tn( f )) be as in Theorem 6.7.2, and set Vn( f ) = Cn( f )+Bn( f )+Fn( f ). Then, the following

statements hold.

6.7.4.1) For every ε > 0 there is a positive integer n0, such that for each n ≥ n0 and for every

eigenvalue λ
(Vn( f ))
j of Vn( f ), it is

λ
(Vn( f ))
j ∈ [ fmin− ε, fmax + ε], j ∈ {0,1, . . . ,n−1}, (6.91)

where fmin and fmax denote the minimum and the maximum value of f , respectively.

6.7.4.2) For every ε > 0 there are k, n1 ∈N such that for each n≥ n1 the number of eigenvalues

λ
((Vn( f ))−1 Tn( f ))
j of V−1

n ( f )Tn( f ) such that |λ ((Vn( f ))−1 Tn( f ))
j −1|> ε is less than k, namely

the spectrum of (Vn( f ))−1 Tn( f ) is clustered around 1.
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Proof. We begin with proving 6.7.4.1). Let Gn( f ) = Cn( f )+Bn( f ). Choose arbitrarily ε > 0.

We denote by λ
(Cn( f ))
j (resp., λ

(Bn( f ))
j , λ

(Fn( f ))
j , λ

(Gn( f ))
j ) the generic j-th eigenvalue of Cn( f )

(resp., Bn( f ), Fn( f ), Gn( f )) in the order given by Theorem 6.4.3 (resp., Theorem 6.4.7, Propo-

sition 6.5.2). First, we claim that

λ
(Gn( f ))
j ∈ [ fmin− ε/2, fmax + ε/2], j ∈ {0,1, . . . ,n−1}. (6.92)

To prove (6.92) it is enough to show that this property holds (in correspondence with ε/4) for

each λ
(Cn( f ))
j , j = 0, 1, . . . ,n−1, and that

λ
(Bn( f ))
j ∈ [−ε/4,ε/4] for every n≥ n0 and j ∈ {0,1, . . . ,n−1}. (6.93)

Indeed, since Cn( f ), Bn( f ) ∈ Gn, we have

λ
(Gn( f ))
j = λ

(Cn( f ))
j +λ

(Bn( f ))
j for all j ∈ {0,1, . . . ,n−1},

getting the claim.

Now we consider the case n odd. For every j ∈ {0,1, . . . ,n−1}, since c j = cn− j and thanks

to (6.77), one has

∣∣∣λ (Cn( f ))
j

∣∣∣ =

∣∣∣∣∣n−1

∑
h=0

ch cos(2π h j)

∣∣∣∣∣=
∣∣∣∣∣c0 +2

(n−1)/2

∑
h=1

ch cos(2π h j)

∣∣∣∣∣=
=

∣∣∣∣∣t0 +2
(n−1)/2

∑
h=1

th cos(2π h j) −

−
(n−1)/2

∑
h=1

h
n

th cos(2π h j)+
(n−1)/2

∑
h=1

h
n

tn−h cos(2π h j)

∣∣∣∣∣≤ (6.94)

≤
(n−1)/2

∑
h=−(n−1)/2

|th|
(

ei 2π j
n

)h
+

(n−1)/2

∑
h=1

h
n
|th|+

(n−1)/2

∑
h=1

h
n
|tn−h| ≤

≤
+∞

∑
h=−∞

|th|
(

ei 2π j
n

)h
+

(n−1)/2

∑
h=1

h
n
|th|+

n−1

∑
h=(n+1)/2

n−h
n
|th|.

Choose arbitrarily ε > 0. Note that the first addend of the last term in (6.94) tends to f
(

ei 2π j
n

)
as n tends to +∞, and hence, without loss of generality, we can suppose that it belongs to the

interval [ fmin− ε/12, fmax + ε/12] for n sufficiently large. By Lemma 6.7.3, it is

lim
n→+∞

(
(n−1)/2

∑
h=1

h
n
|th|+

n−1

∑
h=(n+1)/2

n−h
n
|th|

)
= 0.
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When n is even, we get

∣∣∣λ (Cn( f ))
j

∣∣∣ =

∣∣∣∣∣n−1

∑
h=0

ch cos(2π h j)

∣∣∣∣∣=
∣∣∣∣∣c0 +2

n/2−1

∑
h=1

ch cos(2π h j)+(−1)n/2cn/2

∣∣∣∣∣=
=

∣∣∣∣∣t0 +2
n/2−1

∑
h=1

cos(2π h j) th +(−1)n/2tn/2−

−
n/2−1

∑
h=1

h
n

th cos(2π h j)+
n/2−1

∑
h=1

h
n

tn−h cos(2π h j)

∣∣∣∣∣≤
≤

n/2

∑
h=−n/2+1

|th|
(

ei 2π j
n

)h
+

n/2−1

∑
h=1

h
n
|th|+

n/2−1

∑
h=1

h
n
|tn−h|

≤
+∞

∑
h=−∞

|th|
(

ei 2π j
n

)h
+

n/2−1

∑
h=1

h
n
|th|+

n−1

∑
h=n/2+1

n−h
n
|th|.

Thus, it is possible to repeat the same argument used in the previous case, getting 6.7.4.1).

Now we turn to 6.7.4.2). From Theorem 6.4.7 we obtain

λ
(Bn( f ))
j =



n−1

∑
h=0

bh cos
(

2π j h
n

)
if j ≤ n/2,

−
n−1

∑
h=0

bh cos
(

2π (n− j)h
n

)
if j > n/2.

So, without loss of generality, it is enough to prove 6.7.4.2) for j ≤ n/2.

We first consider the case when n is even. We get

∣∣∣λ (Bn( f ))
j

∣∣∣ ≤ ∣∣∣∣∣n−1

∑
h=0

bh cos
(

2π j h
n

)∣∣∣∣∣≤ n−1

∑
h=0
|bh|=

= |b0|+
n/4−1

∑
h=1
|b2h|+

n/2−1

∑
h=n/4+1

|b2h|+ |bn/2|+
n/2−1

∑
h=0
|b2h+1|= (6.95)

= I1 + I2 + I3 + I4 + I5.

So, in order to obtain 6.7.4.2), it is enough to prove that each addend of the last line of (6.95)

tends to 0 as n tends to +∞. We get:

I1 = |b0| ≤
n/2−1

∑
k=1

4k
n2 |t2k|+

n/2−1

∑
k=1

4k
n2 |tn−2k|= (6.96)

=
n/2−1

∑
k=1

4k
n2 |t2k|+

n/2−1

∑
k=1

2n−4k
n2 |t2k| ≤

4n−8
n2

∞

∑
h=1
|th| ≤

4S
n
,

where S =
∞

∑
h=1
|th|. From (6.96) it follows that I1 = |b0| tends to 0 as n tends to +∞. Analogously

it is possible to check that I4 = |bn/2| tends to 0 as n tends to +∞.

265



Ill-Posed Problems in Computer Vision

Now we estimate the term I2 + I3. We first observe that

1
n2

n/4−1

∑
h=1

(4h−n)(|t2h|+ |tn−2h|)+
1
n2

n/2−1

∑
h=n/4+1

(4h−n)(|t2h|+ |tn−2h|)≤

≤ 1
n2

n/2−1

∑
h=1

(4h−n)(|t2h|+ |tn−2h|)≤ (6.97)

≤ 1
n2

n/2−1

∑
h=1

4h|t2h|+
1
n2

n/2−1

∑
h=1

(4h−n)|tn−2h|=

=
1
n2

n/2−1

∑
h=1

4h|t2h|+
1
n2

n/2−1

∑
h=1

(2n−4h)|t2h|.

Arguing analogously as in (6.96), it is possible to see that the quantities at the first hand of (6.97)

tend to 0 as n tends to +∞.

Furthermore, we have

2
n

n/2−1

∑
h=1

(
h−1

∑
k=1

2k
n
|t2k|

)
=

n/2−2

∑
k=1

4k
n2

(n
2
−2− k

)
|t2k| ≤

n/2−2

∑
k=1

2k
n
|t2k|, (6.98)

2
n

n/2−1

∑
h=1

(
h−1

∑
k=1

2k
n
|tn−2k|

)
=

n/2−2

∑
k=1

4k
n2

(n
2
−2− k

)
|tn−2k| ≤

n/2−1

∑
k=2

2k
n
|t2k|, (6.99)

2
n

n/2−1

∑
h=1

(
n/2−h−1

∑
k=1

2k
n
|t2k|

)
≤

n/2−2

∑
k=1

2k
n
|t2k|, (6.100)

and

2
n

n/2−1

∑
h=1

(
n/2−h−1

∑
k=1

2k
n
|tn−2k|

)
≤

n/2−2

∑
k=1

4k
n2

(
n−2k−2

2

)
|tn−2k|=

=
n/2−1

∑
k=2

(n−2k)(2k−2)
n2 |t2k| ≤

n/2−1

∑
k=2

2k
n
|t2k|. (6.101)

Summing up (6.97)-(6.101), from (6.80) we obtain

I2 + I3 =
n/4−1

∑
h=1
|b2h|+

n/2−1

∑
h=n/4+1

|b2h| ≤
1
n2

n/2−1

∑
h=1

4h|t2h|+
1
n2

n/2−1

∑
h=1

4h|tn−2h|+

+
n/2−2

∑
k=1

4k
n
|t2k|+

n/2−1

∑
k=2

4k
n
|t2k|. (6.102)

Thus, taking into account Lemma 6.7.3, it is possible to check that the terms at the right hand

of (6.102) tend to 0 as n tends to +∞.

Now we estimate the term I5. One has

2
n

n/2−1

∑
h=0

(
h−1

∑
k=0

2k+1
n
|t2k+1|

)
=

n/2

∑
k=0

2k+1
n
|t2k+1|=

=
n/2

∑
k=0

2k
n
|t2k+1|+

n/2

∑
k=1

1
n
|t2k+1|= J1 + J2.
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Thanks to Lemma 6.7.3, it is possible to check that J1 tends to 0 as n tends to +∞. Moreover, we

have

0≤ J2 ≤
S
n
, (6.103)

and hence I4 tends to 0 as n tends to +∞. Analogously as in the previous case, it is possible to

prove that

I5 =
n/2−1

∑
k=0
|b2k+1| ≤

1
n2

n/2−1

∑
k=0

2(2k+1)|t2k+1|+

+
2
n

n/2−2

∑
k=1

(n
2
−1− k

)(2k+1
n

)
|tn−2k−1| ≤ (6.104)

≤
n/2−2

∑
k=1

2(2k+1)
n

|t2k+1|+
n/2−1

∑
k=2

2(2k+1)
n

|t2k+1|.

By virtue of Lemma 6.7.3 and (6.103), we get that I5 tends to 0 as n tends to +∞. Therefore, all

addends of the right hand of (6.95) tend to 0 as n tends to +∞. Thus, (6.93) follows from (6.95),

(6.96), (6.102) and (6.104).

When n is odd, it is possible to proceed analogously as in previous case. This proves (6.92).

Now we claim that the eigenvalues of Fn( f ) lie between −ε/2 and ε/2 for n large enough.

We have:

|λ Fn( f )
j |=

∣∣∣∣∣n−1

∑
k=0

f j sin
(

2π k j
n

)∣∣∣∣∣≤ n−1

∑
k=0
| f j| ≤

1
n

n−1

∑
k=0
|t j|+

1
n

n−1

∑
k=0
|tn− j|. (6.105)

Since f belongs to the Wiener class, we get the claim.

Moreover, we observe that

Gn( f )+Fn( f ) = Qn (Λ
(Gn( f ))+Yn Λ

(Fn( f ))Y T
n )QT

n ,

where

Λ
(Gn( f )) = λλλ

(Gn( f )) = (λ
(Gn( f ))
0 λ

(Gn( f ))
1 · · ·λ (Gn( f ))

n−1 )T ,

Λ
(Fn( f )) = λλλ

(Fn( f )) = (λ
(Fn( f ))
0 λ

(Fn( f ))
1 · · ·λ (Fn( f ))

n−1 )T .
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Thus, the matrix Gn( f )+Fn( f ) is similar to Λ(Gn( f ))+Yn Λ(Fn( f ))Y T
n . Note that

Yn Λ
(Fn( f ))Y T

n =



0 0 . . . 0 λ
(Fn( f ))
0

0 . . . 0 λ
(Fn( f ))
1 0

...
...

... . . .
...

0 λ
(Fn( f ))
2 0 . . . 0

λ
(Fn( f ))
1 0 . . . 0 0


.

Therefore, 6.7.4.1) follows from the Gerschgorin theorem (see, e.g., [72]).

Now we turn to 6.7.4.2), that is we prove that the spectrum of (Vn( f ))−1 Tn( f ) is clustered

around 1. Since (Vn( f ))−1(Tn( f )−Vn( f )) = (Vn( f ))−1Tn( f )−In, where In is the identity matrix,

it is enough to check that the eigenvalues of (Vn( f ))−1(Tn( f )−Vn( f )) are clustered around 0.

Choose arbitrarily ε > 0. Since f belongs to the Wiener class, there exists a positive integer

n0 = n0(ε) such that
∞

∑
j=n0+1

|t j| ≤ ε.

Proceeding similarly as in the proof of [22, Theorem 3 (ii)], we get

Tn( f )−Vn( f ) = Tn( f )−Cn( f )−Bn( f )−Fn( f ) =W (n0)
n +Z(n0)

n +E(n0)
n ,

where W (n0)
n , Z(n0)

n , E(n0)
n are suitable matrices such that W (n0)

n and Z(n0)
n agree with the (n−

n0)× (n− n0) leading principal submatrices of Tn( f )−Cn( f ) and Bn( f )+Fn( f ), respectively.

We have:

rank(E(n0)
n ) ≤ 2n0;

‖W (n0)
n ‖1 ≤ 2

n

n−n0−1

∑
k=1

k |tn−k− tk| ≤
2
n

n0

∑
k=1

k |tk|+4
∞

∑
k=n0+1

|tk|; (6.106)

‖Z(n0)
n ‖1 ≤

n−1

∑
h=0

(|bh|+ | fh|),

where the symbol ‖ · ‖1 denotes the 1-norm of the involved matrix. Let n1 > n0 be a positive

integer with

1
n1

n0

∑
k=1

k |tk| ≤ ε and
n−1

∑
h=0

(|bh|+ | fh|)≤ ε. (6.107)

Note that such an n1 does exist, thanks to Lemma 6.7.3 and since all terms of (6.95) and (6.105)

tend to 0 as n tends to +∞. From (6.106) and (6.107) it follows that

‖W (n0)
n +W (n0)

n ‖1 ≤ ‖W (n0)
n ‖1 +‖Z(n0)

n ‖1 ≤ 8ε. (6.108)
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From (6.108) and the Cauchy interlace theorem (see, e.g., [162]) we deduce that the eigenvalues

of Tn( f )−Vn( f ) are clustered around 0, with the exception of at most k = 2n0 of them. By

the Courant-Fisher minimax characterization of the matrix (Vn( f ))−1 (Tn( f )−Vn( f )) (see, e.g.,

[162]), we obtain

λ
(Vn( f ))−1 (Tn( f )−Vn( f ))
j ≤

λ
(Tn( f )−Vn( f ))
j

fmin
(6.109)

for n large enough. From (6.109) we deduce that the spectrum of (Vn( f ))−1 (Tn( f )−Vn( f )) is

clustered around 0, namely for every ε > 0 there are k, n1 ∈ N with the property that for each

ε > 0 the number of eigenvalues λ
(Vn( f ))−1 Tn( f )
j such that

∣∣∣λ (Vn( f ))−1 Tn( f )
j −1

∣∣∣> ε is at most equal

to k.

Note that a similar result can be obtained by approximating Gn( f ) = Cn( f ) +Bn( f ) (see

[28]).

6.8 Experimental results

In order to test the goodness of the proposed approximations, we have proceeded as follows:

fixed the dimension n and the range of values which the involved Toeplitz matrices can assume,

we have created 10000 different instances of Toeplitz symmetric matrices Tn, whose values have

been randomly and uniformly chosen in the interior of the prefixed range. Moreover, we have

computed the approximation Cn(Tn) given in [45], the approximation Hn(Tn) presented in [22]

and the approximations Gn(Tn) and Vn(Tn) given in (6.54) and (6.76), respectively. Furthermore,

we have computed the mean error in terms of difference between the matrix Tn and the precondi-

tioning matrix evaluated with respect to the Frobenius norm. In Table 6.1 the considered range is

[0,1]. In this case, as expected, Vn(Tn) turns to be the best approximation, while Gn(Tn) is the sec-

ond best approximation in mean. In Table 6.2, the considered interval is [−1,1], and the obtained

results are analogous to the previous ones. In Table 6.3, to generate the first row of the Toeplitz

symmetric matrix, we have proceeded as follows. We have taken the value of the first entry equal

to 1. To determinate the value of the i-th entry, we have multiplied the value of the i−1-th entry

by a random constant chosen uniformly in [0.9,1]. Such a choice allows to better simulate the

Toeplitz matrices present in the blur operators. The behavior of the errors is similar to that of
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‖Tn−Cn(Tn)‖F ‖Tn−Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn−Vn(Tn)‖F

n = 20 3.1389 3.1156 3.0770 3.0532

n = 25 4.1076 4.0885 3.9591 3.9392

n = 30 4.8062 4.7903 4.7369 4.7207

n = 35 5.7528 5.7390 5.5989 5.5847

n = 40 6.4536 6.4416 6.3811 6.3689

n = 45 7.4243 7.4135 7.2649 7.2538

n = 50 8.1211 8.1114 8.0471 8.0373

n = 100 16.46786 16.46293 16.38939 16.38444

n = 1000 166.48101 166.48051 166.39821 166.39771

Table 6.1: Mean error obtained by the various approximations with respect to 10000 instances of randomly

generated Toeplitz matrices Tn with entries in [0,1].

the prevous cases. Moreover, from Tables 6.1-6.3 it is possible to see that, for large numbers,

the approximations Cn(Tn) and Hn(Tn) give similar results, while the approximations Gn(Tn) and

Vn(Tn). Furthermore, as seen in Table 6.4, for large numbers the approximation Gn(Tn) is always

better than the approximation Hn(Tn). Since the multiplication of Vn(Tn) by a vector needs three

fast discrete transforms, while the multiplication of Vn(Tn) by a vector requires only one fast

discrete transform. Thus we deduce that, for n very large, Gn(Tn) is the better solution in terms

both of approximation and in computational costs.
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‖Tn−Cn(Tn)‖F ‖Tn−Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn−Vn(Tn)‖F

n = 5 0.73470 0.65623 0.65593 0.56618

n = 10 1.44816 1.40540 1.40531 1.36116

n = 15 2.42566 2.39475 2.28953 2.25668

n = 20 6.2564 6.2098 6.1313 6.0838

n = 25 8.2016 8.1633 7.8982 7.8584

n = 30 9.6160 9.5842 9.4776 9.4453

n = 35 11.517 11.489 11.210 11.182

n = 40 12.915 12.891 12.771 12.747

n = 45 14.835 14.813 14.521 14.499

n = 50 16.292 16.272 16.141 16.121

n = 100 32.92819 32.91833 32.76966 32.75976

n = 1000 332.72496 332.72396 332.56154 332.56054

Table 6.2: Mean error obtained by the various approximations with respect to 10000 instances of randomly

generated Toeplitz matrices Tn with entries in [−1,1].
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‖Tn−Cn(Tn)‖F ‖Tn−Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn−Vn(Tn)‖F

n = 5 0.18725 0.16362 0.18190 0.15743

n = 10 0.71534 0.68775 0.67302 0.64363

n = 15 1.43778 1.41100 1.33331 1.30439

n = 20 2.28601 2.26095 2.10745 2.08025

n = 25 3.17788 3.15482 2.92053 2.89542

n = 30 4.07270 4.05158 3.73644 3.71341

n = 35 4.95798 4.93865 4.54353 4.52243

n = 40 5.79877 5.78109 5.31037 5.29105

n = 45 6.59117 6.57494 6.03320 6.01547

n = 50 7.30809 7.29317 6.68763 6.67133

n = 100 11.56697 11.55943 10.60308 10.59485

n = 1000 13.68293 13.68225 13.43137 13.43068

Table 6.3: Mean error obtained by the various approximations with respect to 10000 instances of randomly

generated Toeplitz matrices Tn with entries in [0,1] in decreasing way.
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range = [−1,1] range = [−1,1],decreasing

n = 5 4994 0

n = 10 5019 9992

n = 15 8989 10000

n = 20 8727 10000

n = 25 9794 10000

n = 30 9765 10000

n = 35 9973 10000

n = 40 9943 10000

n = 45 9993 10000

n = 50 9990 10000

n = 100 10000 10000

n = 1000 10000 10000

Table 6.4: Number of times in which the first proposed approximation gives better results than that in

[22] with respect to 10000 instances of randomly generated Toeplitz matrices Tn with entries in [0,1] in

decreasing way.
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Questi tre anni sono volati.

Tra la ricerca, la pandemia, gli impegni vari, mi sembra ieri che ho scoperto di aver superato

il test di ammissione per il dottorato e poter cosí intraprendere questo entusiasmante percorso.

Ed ora eccoci qui, sono giunta al termine di questo viaggio e non posso non essere un pochino

malinconica, non solo perché aver intrapreso questo percorso mi ha permesso di ampliarmi cul-

turalmente sotto tantissimi aspetti (non solo puramente matematici), ma anche perché lascio una

famiglia: il professor Ivan Gerace, il mio tutor, ed il professor Antonio Boccuto, che ha da sin

dall’inizio collaborato con noi. Essi non sono stati dei semplici docenti, ma delle persone, che

ognuna con il suo modo di essere, hanno saputo trasmettermi l’amore per la professione che

svolgono. La stima nei confronti di una persona non la si chiede, né la si puó pretendere, ma la

si guadagna di giorno in giorno, facendo bene e con amore, il proprio lavoro. Grazie per ció che

avete fatto per me, io vi stimo tantissimo ed é proprio vero che spesso non sono i riconoscimenti

che ti rendono un grande, ma sono le impronte che lasci nelle persone a cui insegni, con cui passi

del tempo, con cui lavori. Ancora grazie di cuore per aver collaborato con me in questi tre anni

e per ció che avete fatto per me.

Un ringraziamento speciale va alla mia famiglia, alle persone che mi amano, Massimiliano,

Roberta, Giada, Natascia, Luca, che mi sono state vicino in momenti, soprattutto tu Massi, che

senza che te lo chiedessi, lo hai fatto anche in quei frangenti in cui neanche io sarei voluta es-

sere in compagnia di me stessa. Un grazie unico, va alla mia mamma, il merito se ho intrapreso

questo dottorato é tantissimo anche suo, perché, come dice spesso, ′′mi devi sempre dare retta!!′′,

in effetti é cosí, ma forse questa é una caratterista di tutte le mamme, non solo della mia, ci danno

la vita e ce la migliorano ogni giorno con i loro consigli.
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Infine un grazie va a me. Nonostante alcuni momenti non facili, ce l’ho fatta. Valentina

hai stretto i denti, forse alcune volte anche contro le tue aspettative comunque ce l’hai fatta, hai

tenuto talk, hai pubblicato articoli su importanti riviste, e tante altre piccole grandi soddisfazioni

che terrai sempre nel tuo cuore e che ti hanno fatta crescere.

Ora sei un’altra, da quando hai iniziato sino ad ora, hai acquisito ancora piú sicurezza in te

e nelle tue potenzialitá. Un percorso che, nonostante il Covid, che sicuramente ti ha tolto tanto,

in merito ad opportunitá ed esperienze che avresti potuto intraprendere, ti ha permesso, ad ogni

modo, di stringere amicizie ed inoltre hai potuto conoscere dei professionisti che sono e saranno

sempre fonte di ispirazione sotto diversi punti di vista. Questo viaggio ti ha arricchito.

Ed infine una domanda a te stessa Valentina, la rifaresti questa scelta, riprenderesti il dottorato?

Altre duemila volte sí.

Grazie Dio per avermi concesso questa opportunitá.
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