
The Journal of Systems and Software 212 (2024) 112012

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Supporting reusable model migration with Edelta✩

Lorenzo Bettini a,∗, Amleto Di Salle b, Ludovico Iovino b, Alfonso Pierantonio c

a Università degli studi di Firenze, 50134 Firenze, Italy
b Gran Sasso Science Institute, 67100 L’Aquila, Italy
c Università degli studi dell’Aquila, 67100 L’Aquila, Italy

A R T I C L E I N F O

Keywords:
MDE
Coupled evolution
Co-evolution
Migration
Adaptation

A B S T R A C T

In Model-Driven Engineering, metamodels define the vocabulary of concepts and relations that designers use
to define a wide range of artifacts, including models, transformations, and editors. Therefore, whenever a
metamodel undergoes modifications, the depending artifacts may no longer be valid, and consistency needs to
be repaired through coupled evolution techniques. While several approaches have been proposed over the last
decades, they are artifact- and domain-specific and do not facilitate the reuse of migration strategies. Indeed,
migration strategies are often hard-coded for a given project in a specific domain. In this paper, we propose
the novel concept of migration patterns to leverage reuse across different domains and projects. The approach
extends the existing Edelta framework and has been evaluated by considering several case studies identified
in a systematic literature review.
1. Introduction

In Model-Driven Engineering (Schmidt, 2006) (MDE), models are
elevated to first-class status and can be manipulated through auto-
mated transformations. Models are defined based on the concepts
and relationships specified in metamodels, which are the fundamental
building blocks for creating artifacts such as models, transformations,
and editors.

When a metamodel evolves, however, existing artifacts may be-
come corrupted, and the consistency between them must be restored
using the techniques of coupled-evolution (co-evolution). In coupled
evolution, each change in the metamodel can impact the involved
artifacts differently, and existing works in the literature classify them
based on the impact as non-breaking, breaking and resolvable, or
unresolvable changes (Cicchetti et al., 2008a). Multiple approaches
have been proposed in the last few years to deal with the co-evolution
problem, especially in the model/metamodel setting, but also consid-
ering transformations or code-generator adaptation (artifact-specific
approaches).

Approaches for re-establishing conformance can be manual, where
transformations are manually crafted to transform existing models to
comply with the new metamodel variant (Yu and Berg, 2015). Alter-
natively, automated approaches can be based on inference approaches
where migration actions can be derived by comparing the original with
the evolved metamodel. Automated tools, such as Epsilon Flock (Rose

✩ Editor: Laurence Duchien.
∗ Corresponding author.

E-mail addresses: lorenzo.bettini@unifi.it (L. Bettini), amleto.disalle@gssi.it (A. Di Salle), ludovico.iovino@gssi.it (L. Iovino), alfonso.pierantonio@univaq.it
(A. Pierantonio).

et al., 2010b) or COPE (Herrmannsdoerfer et al., 2009), are operator-
based tools, based on DSLs for expressing the migration strategies.
Metamodel changes are often defined as patterns that recur in different
metamodels. Existing approaches for dealing with model migration
offer a way of specifying migration strategies for the affected case
studies. This means that a modeler needs to specify the migration
strategies that act on the affected models by considering the evolution
of the specific metamodel to which these models conform. Even though
the migration strategies are specified with dedicated tools, supported
by textual DSLs or graphical rules, the level of reuse is quite limited.
Indeed, for each evolving case study, the modelers need to specify the
migration rules from scratch and apply the migration for each model
to be migrated.

In this paper, we propose a novel classification for migration strate-
gies based on the concept of migration pattern, which is based on the
recurrence of the migration strategies across different scenarios. We
also, hypothesize that recurring migration strategies can be specified
as migration patterns that can be applied to cross-domain case studies.

This opens up a possible classification of domain-specific and domain-
independent migration patterns. We confirm this hypothesis with a light
systematic literature review, on whose results we base the Edelta (Bet-
tini et al., 2017) evaluation shown in this paper. We previously pro-
posed Edelta as a metamodel evolution framework, and in this paper,
we present an extension for supporting the specification of migration
vailable online 28 February 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2024.112012
Received 8 March 2023; Received in revised form 8 February 2024; Accepted 21 F
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ebruary 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:lorenzo.bettini@unifi.it
mailto:amleto.disalle@gssi.it
mailto:ludovico.iovino@gssi.it
mailto:alfonso.pierantonio@univaq.it
https://doi.org/10.1016/j.jss.2024.112012
https://doi.org/10.1016/j.jss.2024.112012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

a
S
o
E
s
S
i
c

2

m
t
b

2

e
c
g
c
o
T
m

u
d
A
a
t
a
f
w
s
d
o
r

m
a
o
-

a
c

patterns. We propose a catalog of migration patterns specified in an
Edelta library that can be used to support the migration of cross-domain
case studies. The modeler can simply import our library and use the
existing refactorings for migrating their projects.

We evaluated the novel extension of Edelta with selected case stud-
ies extracted from the literature for answering the research question
and confirmed that we are able to specify reusable migration patterns
with different levels of automation.

Structure of the paper. Section 2 describes the background concepts
nd proposes an SLR to deeply investigate and characterize the topic;
ection 2 also shows some motivating examples, based on the result
f the analysis; Section 3 describes the novel approach based on the
delta extension; Section 4 demonstrates the proposed approach on a
et of running examples; Section 5 evaluates the proposed approach and
ection 6 discusses the highlights. The threats to validity are explored
n Section 7. Section 8 presents related works and Section 9 draws the
onclusion and describes the future work.

. Model/metamodel co-evolution

This section first introduces background concepts about model and
etamodel co-evolution and new definitions we will use throughout

he paper. Then we use a light SLR to analyze how this problem has
een treated in the literature.

.1. Background

Metamodels can evolve, like many software artifacts (Di Ruscio
t al., 2011). When a metamodel evolves, existing models, previously
ompliant to the metamodel, may become corrupted and must be mi-
rated to reestablish conformance (Williams et al., 2012). A metamodel
an evolve in multiple ways to consider new emerging requirements
r to fix existing inaccurate modeling concepts (Iovino et al., 2012).
he activity of restoring the lost conformance relationship between
odels and their metamodel is called coupled-evolution (or co-evolution).

Multiple metamodel evolution patterns can be applied, from simple
(also called atomic) to complex (Hebig et al., 2017), from additive
to subtractive changes. These changes can be categorized w.r.t. the
metamodel/model co-evolution, based on the evolution pattern’s effect
on the model. These changes have been previously categorized as: non-
breaking (NBC), breaking and resolvable (BRC) or breaking unresolvable
(BUC) (Cicchetti et al., 2008b). The first category includes the meta-
model changes not impacting the model conformance. An example is
the extraction of a superclass. By definition, if we extract a superclass
from a commonly defined list of features, the existing model instances
of the (new) subclasses in the evolved metamodel are not affected by
the change. Indeed, this change is transparent to the existing models,
which will remain valid. BRCs are changes applied to the metamodel
that can trigger an automatic model migration strategy, often unique.
An example is renaming a metaclass and migrating the model by re-
typing the existing instances of the renamed type with the new type.
BUCs are changes that can be faced by using heuristics encoded in the
resolution strategy. However, they typically require user intervention:
the user is requested to specify the actions with a migration engine or
other tools.

Multiple solutions (Paternostro and Hussey, 2006; Taentzer et al.,
2013; Cicchetti et al., 2008a; Garcés et al., 2009) and tools (Rose et al.,
2010b; Herrmannsdoerfer et al., 2009) have been proposed to deal
with the problem of model–metamodel co-evolution in the last decade.
Usually, these approaches encode predetermined migration strategies.

Migration strategy. A migration strategy 𝑀𝑠 is a specific strategy of
migration of an affected model in response to an evolution scenario
applied to the corresponding metamodel MM.
2

c

All these approaches share that in every technique, the migration is
specified as domain-dependent at the specific metamodel level. Indeed,
if one has a metamodel evolution pattern, the migration strategy is
specified for each evolving metamodel based on the fact that the
resolution can be specific to the evolving domain.

Based on this evidence we formulated a hypothesis:

Hypothesis 1. There could be cases in which the migration strategy
may be re-used across metamodels.

To better frame the hypothesis, we also define the following con-
cepts.

Evolution pattern. An evolution pattern 𝐸𝑝 is a recurring evolution
scenario applied to a metamodel.

Examples of evolution patterns have been described in Herrmanns-
doerfer et al. (2010) and in Bettini et al. (2022a) and include Introduce
subclasses, where a metaclass of a metamodel is modified to become ab-
stract and subclasses are introduced to specialize it, or Merge attributes,
where a metaclass in a metamodel has attributes that are merged in an
evolved version of the metamodel. All these patterns identify recurrent
metamodel evolution scenarios and do not consider what happens at
the other defined artifacts.

Migration Pattern. We define a (co-evolution) migration pattern1

𝑀𝑝 a recurring co-evolution pair, defined as: ⟨𝐸𝑝,𝑀𝑠⟩, where 𝐸𝑝
identifies a specific metamodel evolution pattern, e.g., renaming a
metaclass, and 𝑀𝑠 identifies a possible migration strategy, e.g., re-
typing all the instances of the renamed metaclass.

It is worth noting that migration strategies are not unique and
nivocal (Di Ruscio et al., 2016) and can include multiple options
epending on multiple constraints or application and quality factors.
co-evolution pattern then considers the evolution of a metamodel

nd the corresponding effect on the models, as well as the migration
o be applied to restore the conformance. With current co-evolution
pproaches (see, e.g., Hebig et al. (2017)), even when metamodels
ormalize the same application domain, e.g., financial applications or
eb applications, or when metamodels share structural or semantic

imilarities as, e.g., in activity diagrams and statecharts, the expert
ealing with the co-evolution process is nevertheless forced to re-write
r redefine the co-evolution strategy with additional effort and limited
e-use.

For this reason, metamodel evolution scenarios induce required
igrations that can be not only classified w.r.t. the effect on the models

nd automation of the resolution strategy but also the possible level
f reuse of a determined migration strategy, i.e., domain-specific or
independent. Based on these premises we can define a Migration
Pattern as:

Domain-specific.2 A domain-specific migration pattern is a migra-
tion pattern that can be applied to models that conform to a given
domain.

Domain-independent. A domain-independent migration pattern is
a migration pattern that can be applied to generic co-evolution
patterns independently from the metamodel representing a spe-
cific domain, and thus it can be applied across multiple domains
(cross-domain).

1 We use the terms migration pattern and co-evolution pattern interchange-
bly even though ‘‘migration’’ is often used only to refer to model/metamodel
o-evolution.

2 We can use the terms domain-specific and domain-dependent as inter-
hangeable.

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. 1. The process of searching and selecting to identify relevant studies.
2.2. Literature analysis

Based on the above hypothesis, we performed a light systematic
literature review (SLR) (Kitchenham et al., 2009) with the intent of
answering the following research questions:

RQ1: What migration patterns are supported by the existing
co-evolution approaches?
RQ2: Are migration patterns applied (and shared) across multiple
domains?

2.2.1. Search process
The search strategy has been defined by answering the following

four W-questions (Zhang et al., 2011) –Which?, Where?, What?, and
When?.

Which? Automatic and manual searches were performed for rele-
vant papers from conferences and journals.
Where? The defined search strategy has been applied to digital
libraries available online, in which we selected the following
five to run the automated search to guarantee a certain level of
quality of relevant papers: IEEE Xplore,3 Scopus,4 Association for
Computing Machinery (ACM),5 dblp computer science bibliography,6
and Springer Link.7
What? We defined a query string to be executed on different
digital resources to collect papers. To this end, the query string
that we conceived is the following8:
Search String: (Title:(‘‘model migration’’) OR Ti-
tle:
(‘‘model co-evolution’’) OR Title:(‘‘model adap-
tation’’))
AND (Fulltext:(MDE) OR Fulltext:(Model Driven En-
gineering))
When? We considered papers that have been published in the
period 2005–2023.

3 https://ieeexplore.ieee.org/Xplore/home.jsp
4 https://bit.ly/3m4T74d
5 https://www.acm.org/
6 https://dblp.uni-trier.de/
7 https://link.springer.com/
8 We reported one of the strings executed on one of the digital libraries,

the others are equivalent but with different syntax and operators.
3

Springer Link’s search engine does not allow a combined full-text or
title search. Therefore, we limit the search to article titles, i.e., ‘‘model
migration’’, ‘‘model co-evolution’’, and ‘‘model adaptation’’. As for
Scopus, it does not permit full-text searching. Therefore, we limit the
search to titles, keywords, and abstracts for ‘‘MDE’’ and ‘‘model driven
engineering’’ keywords.

2.2.2. Selection process
Fig. 1 shows the process of searching and selecting relevant studies

from the defined five databases. In the initial search, 215 studies have
been identified. Then, the following selection process steps are executed
to obtain the relevant studies.
⊳ Impurity removal: In this step, we excluded non-research papers
like books, reports, theses, and articles that were unavailable or not
published in a journal or presented at a conference. After executing
the impurity removal step, we obtained 203 studies, including 21 for
the ACM, 1 for the DBLP, and 78 for the Springer databases.
⊳ Merge and duplicate removal: We combined papers from the five
sources into a single corpus and removed duplicates, resulting in 169
studies.
⊳ Application of selection criteria 1st round: During the first phase
of study selection, the second and third authors examined the titles and
abstracts of the studies and identified potential studies based on the
following selection criteria. The authors included studies if they could
not judge them by only reading the titles and abstracts. The selection
criteria are organized in inclusion criteria (I):

I1 Studies subject to peer review;
I2 Studies that propose a tool-supported approach;
I3 Studies that clearly mention or propose migration patterns, i.e.,

evolution of the metamodel and corresponding migration strategy
of the model;

whereas the exclusion criteria (E) of our study are reported in the
following:

E1 Papers that are not written in English;
E2 Short papers, tutorial slides, or technical reports;
E3 Studies or tools working on artifacts that are not modeling arti-

facts, e.g., code adaptation.
E4 Studies not reporting clear examples of the application of the

migration pattern that do not permit the formalization of a clear
migration pattern.

https://ieeexplore.ieee.org/Xplore/home.jsp
https://bit.ly/3m4T74d
https://www.acm.org/
https://dblp.uni-trier.de/
https://link.springer.com/

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. 2. Model/metamodel co-evolution.
After the first round, 49 studies have been identified.
⊳ Application of selection criteria 2nd round: The second and third
authors independently read the full papers coming from the first round.
They made the final decision on whether a study should be selected or
not. If a study was considered controversial, all the authors discussed it
and agreed on whether it should be included. At the end of the second
round, 14 studies have been selected.
⊳ Snowballing: We complemented the selection process using the
snowballing technique (Wohlin, 2014). In particular, we only con-
ducted the backward snowballing activity where the third author read
the references of the studies extracted in the first round of study
selection. In the snowballing activity, we extracted 5 studies.

At the end of the searching and selecting process, 19 studies have
been identified.9
⊳ Data extraction: The second and third authors extracted information
about the selected primary studies to answer the RQs. In particular,
concerning the RQ1, they collected the co-evolution patterns indicated
and described in the articles using and adding, when not present,
the classification on the effect of the co-evolution on models defined
in Cicchetti et al. (2008b). Regarding RQ2, they extracted the examples
together with their co-evolution migration patterns. Tables 1 and 2 (in
Section 5) and Fig. 2 are the results of the data extraction activity.

2.3. Analysis of the results

Table 1 summarizes the results of the data extraction phase by
indicating the patterns of co-evolution divided by atomic or complex
and non-breaking (NBC), breaking and resolvable (BRC) or breaking
unresolvable (BUC) (Cicchetti et al., 2008b). The table also represents
the main result in response to RQ1.

All the approaches in Table 1 specify and manage migration strate-
gies as domain-specific, meaning that for each evolution scenario, we
need to implement a migration strategy for the treated domain. Note
that the last row in Table 1 reports a paper exploring the patterns,
but with exemplary scenarios, e.g., metaclass A-B-C-D, so the patterns
are not referable to any realistic example, which is why it is not
included in Table 2. This general approach to managing co-evolution
is depicted in Fig. 2, where we also reported the MOF four-layered
architecture (Cadavid et al., 2012) to highlight that domain-dependent
migrations are expressed at m2 level since concepts of the specific
metamodel are needed to express co-evolution patterns.

Therefore, we may specify meta-migration strategies going beyond
the specific metamodel and express them as domain-independent. This

9 At the following GitHub repository https://github.com/amletodisalle/JSS_
edelta-migration-SLR a spreadsheet with the information about the extracted
papers can be found.
4

meta-level of expression is conceptually close to expressing general mi-
gration strategies at the meta-metamodel level, that in EMF (Steinberg
et al., 2008) for instance, would correspond to Ecore.

In the remainder of this section, we show some examples of meta-
model evolution and corresponding model migration patterns, ex-
tracted from Table 1, by using an excerpt of metamodel/model co-
evolution examples.10 Moreover, since we wanted to have statistical
applicability of the identified patterns, we also inspected the repository
presented in Barriga et al. (2020), looking for similar examples of the
metamodels in the Table.

In the following, we show how we analyzed the extracted works.
We use this knowledge later in Section 5 to fill Table 2 to answer RQ2.

2.3.1. Introduction of subclasses
The metamodel excerpt in Fig. 3 represents one of the existing

metamodels in the literature, ‘‘engineering state charts’’. Some of the
existing metamodels, w.r.t. to the version reported in Fig. 3 (left),
report additional subclasses of the metaclass State, i.e., InitialState,
FinalState, as in Fig. 3 (right).

This can be considered an evolution scenario, as proposed in Kessen-
tini et al. (2016), in which an existing concrete metaclass in the initial
metamodel evolves to abstract and new subclasses are introduced in
the evolved metamodel. If models conform to the initial metamodel
exist, the declared instances of Node need to be migrated to the newly
introduced subclasses, being Node abstract. This change is classified
as BUC since the migrator needs information about how to retype
the existing instances according to the newly introduced subclasses.
Generally, some user intervention is needed in these cases, but there
are cases in which a different migration strategy can be applied. For
example, if we introduce only a single subclass, the change becomes
BRC since all the instances can be retyped automatically (𝑀𝑖𝑔1). Let
us consider the specific case in Fig. 3. We could apply a strategy in
which the first node of the nodes list in Model can be automatically
retyped to an InitialNode, the last one can be retyped to FinalState and
the rest can be retyped to State (𝑀𝑖𝑔2). In the repository of metamodels
published in Barriga et al. (2020), there are 28 metamodels classified
as Statecharts. In some of these cases, if the introduction of subclasses
is applied, it may be related to the exact pattern (𝑀𝑖𝑔2) we represented
in Fig. 3, enforcing the need for general, reusable, and flexible model
migration strategy definition.

Moreover, there are metamodels in which specialization of the
introduction of subclasses pattern occurs. This case occurs when an
enumeration is converted into subclasses of the metaclass in which the

10 Some examples are directly extracted from the papers in Table 1, others
come from a public repository published in Barriga et al. (2020).

https://github.com/amletodisalle/JSS_edelta-migration-SLR
https://github.com/amletodisalle/JSS_edelta-migration-SLR

The Journal of Systems & Software 212 (2024) 112012

5

L. Bettini et al.

Fig. 3. 𝑀𝑖𝑔2: Example of introduction of subclasses migration (Kessentini et al., 2016).

Fig. 4. 𝑀𝑖𝑔3: Example of enumeration to subclasses migration (Rutle et al., 2020).

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

a

b

a
c
c
t
i

i
c
e

t

Table 1
Literature analysis and extracted patterns.

Examples co-evolution patterns

Atomic Complex

BUC BRC BRC BRC BUC BUC BRC BRC BRC BRC NBC BRC BUC BRC BRC BRC BRC

Ad
d/

De
le

te
at

tr
ib

ut
e

Re
na

m
e

m
et

ac
la

ss

M
ov

e
Re

fe
re

nc
e

De
le

te
m

et
ac

la
ss

Re
st

ric
t/

En
la

rg
e

m
ul

tip
lic

ity

Ad
d

re
fe

re
nc

e

Re
na

m
e

at
tr

ib
ut

e/
re

fe
re

nc
e

De
le

te
re

fe
re

nc
e

M
ov

e/
Pu

sh
do

w
n

At
tr

ib
ut

e

Ex
tr

ac
t

m
et

ac
la

ss

Ex
tr

ac
t

su
pe

r
m

et
ac

la
ss

M
er

ge
/S

pl
it

at
tr

ib
ut

e

In
tr

od
uc

tio
n

of
su

bc
la

ss
es

Co
lla

ps
e

H
ie

ra
rc

hy

In
lin

e
m

et
ac

la
ss

M
er

ge
m

et
ac

la
ss

es

Sp
lit

re
fe

re
nc

e

Rose et al.
(2010a)
Rose et al.
(2010b)

∙ ∙ ∙

Cicchetti et al. (2008a)a ∙

∙ ∙ ∙

Taentzer et al. (2012)b ∙ ∙ ∙

∙

Di Ruscio et al.
(2012)
Wagelaar et al.
(2012)

∙ ∙ ∙ ∙

Krause et al. (2013) ∙ ∙ ∙ ∙

Anguel et al. (2014) ∙

Kessentini et al. (2016) ∙

García et al. (2012) ∙ ∙ ∙

Rutle et al. (2020) ∙ ∙ ∙ ∙ ∙ ∙

Garcés et al. (2014) ∙ ∙ ∙ ∙

Demuth et al. (2016) ∙ ∙

Taentzer et al. (2013) ∙ ∙ ∙

Rose et al. (2014a) ∙ ∙ ∙ ∙ ∙ ∙

Kessentini and Alizadeh (2020) ∙ ∙ ∙

Di Ruscio et al. (2016) ∙ ∙ ∙ ∙

Rose et al. (2014b) ∙ ∙

Rose et al. (2014b) ∙ ∙ ∙ ∙ ∙ ∙ ∙

Herrmannsdoerfer et al. (2010) ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

This example reports two evolution steps: MM1–>MM2–>MM3.
This example reports two evolution steps: E0–>E1–>E2.
2

o
T
r
m
m

m
m
i
m

ttribute of the enumeration type is defined (Rutle et al., 2020). This
ase is reported in Fig. 4 where the Node has an attribute called type that
an be set to ‘‘Initial’’, ‘‘Normal’’ or ‘‘Final’’. This attribute can be used
o automate the migration process and apply a retyping of the existing
nstances based on this attribute (𝑀𝑖𝑔3) (see Fig. 4 for the final result).

For these three cases of the same evolution/migration patterns, even
f they vary only slightly, the migration strategies are usually written
onsidering the specific domain, requiring a new migration program
very time.

To summarize, concerning the identified migration strategies for
his evolution pattern:

– 𝑀𝑖𝑔1 is not domain-specific, and it can be applied every time that
condition is verified in the metamodel, making the evolution a
BRC.

– 𝑀𝑖𝑔2 is a domain-specific strategy for the statecharts (and maybe
other related domains), and it can be reused for most of the
existing metamodels classified as ‘statecharts’, which introduce
those subclasses in the evolved scenarios.
6

m

– 𝑀𝑖𝑔3 is a specific case of the pattern, and it is a BRC and domain-
independent since it can be applied to all the cases when this
evolution pattern occurs in the metamodel.

.3.2. Merge and split attributes
The evolution patterns treated in this paragraph deal with merging

r splitting existing attributes in the metaclasses of the metamodel.
he merge attributes evolution is a specialization of the merge features
eported in Herrmannsdoerfer et al. (2010), and it is applied when
ultiple attributes are merged into a single one. The corresponding
odels become invalid since they refer to not existing attributes.

Fig. 5 reports an example of this pattern applied to the AddressBook
etamodel shown in Rutle et al. (2020). In this metamodel, in the
etaclass Person, the attributes firstname and lastname are merged

nto a single attribute name. The existing instances of Person in the
odels have to be migrated.11 The migration strategy applied is quite

11 We reported only the model excerpt touched by this evolution pattern to
ake the example readable.

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. 5. Example of Merge attributes migration.
simple; the name attribute is set to the firstname and lastname values
concatenation with a white space in the middle. This migration strategy
is domain-dependent even if it can be applied by default to all the
metamodels where the evolution pattern occurs (𝑀𝑖𝑔1).

In other cases, this pattern can be automated in different ways.
For instance, if applied to a metaclass Account, where first name and
last name are merged into a username attribute, the migration strategy
can be applied as a concatenation of firstname+‘‘.’’+lastname, e.g., ‘lu-
dovico.iovino’ (𝑀𝑖𝑔2), since white spaces are not allowed in accounts.
Again, this pattern is domain-dependent even if the metamodels, in-
cluding metaclasses representing accounts, are multiple. Other possible
migration strategies could apply heuristics or, for instance, require the
user to provide the separator. In the same metamodel in Fig. 5, if the
merged attributes are street, zip, city to a completeAddress, the migration
could require a separator, e.g., comma, to migrate the existing instances
(𝑀𝑖𝑔3).

In the repository presented in Barriga et al. (2020), six metamodels
reporting the metaclass Person are candidates for this possible migra-
tion resolution strategy. In particular, 𝑀𝑖𝑔1 can be domain-specific, but
it can also be used as a default strategy and then domain-independent
as 𝑀𝑖𝑔3, whereas 𝑀𝑖𝑔2 seems to be domain-specific. The opposite evo-
lution pattern of ‘‘merge attributes’’ is ‘‘split attributes’’, which can be
managed as merge by identifying the separator and assigning the values
to the split attribute’s values. There are cases in which is not possible
to deal with it without user intervention, for instance, in the case of
multiple types of separators or undecidable resolutions. For example,
in the case of strings containing multiple separators, an autonomous
resolution would not be able to determine which separator(s) must be
used to split the string into multiple attributes.

2.3.3. Extract metaclass
This metamodel evolution pattern is used when a metaclass violates

the single responsibility principle, modeling unrelated content. In this
case, a new metaclass can be extracted by moving all the attributes
inside and associating a new reference. Examples of extraction of meta-
class can be found in all Petri net examples, as for instance, in Cicchetti
et al. (2008a), Taentzer et al. (2012).
7

An example of this evolution pattern is depicted in Fig. 6, where
the metaclass Person contains multiple address-related attributes that
can be moved to a new metaclass. In this case, this evolution pattern is
a BRC since we can safely adopt a migration strategy that instantiates
a new metaclass for every address, and the source person refers to
the corresponding instance (𝑀𝑖𝑔1). Another variation of this evolution
pattern can be used when instead of extracting an associated metaclass
with optional multiplicity, the reference becomes required, i.e., instead
of [0..1], we use [1]. This leads to possible migration strategies consid-
ering whether the attributes in the original metaclass are set or unset
and derive the instantiation of the newly introduced superclass (𝑀𝑖𝑔2).
Thus, this migration strategy can be considered domain-independent and
can be used to deal with multiple metamodels.

2.3.4. Restrict/enlarge multiplicity
By taking as an example again the metamodel in Fig. 5, we can

notice that a Person can have [0..*] associated Addresses. Suppose the
evolution considers restricting this cardinality to 1, for instance, as
in Fig. 6 (evolved version on the right). In that case, the existing
instances of Person are valid only in cases where the person has a
single (or none) associated address, making the change NBC. Whereas,
if the person has multiple addresses, the change is usually managed as
BUC since the migration strategy cannot automatically drop instances
of addresses without knowing which one is correct. In this case, if
considered domain-independent, the change can be managed by user
intervention and iteratively selecting the instances to drop (𝑀𝑖𝑔1).
Another possibility can be to consider the first address as the most
important and then maintain only the first one (𝑀𝑖𝑔2), considering the
change as domain-specific. Other migration strategies could be designed
for specific domains, for instance by specifically writing constraints to
select the right ones. If the cardinality is enlarged, if the multiplicity
was optional and becomes required, the change is BUC since at least one
instance of the associated metaclass should be added to the model. In
this case, heuristics can be used to define instances to make the model
valid with the required task to make the instance consistent with the
model at the refinement stage.

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. 6. Example of extract class migration.
Fig. 7. Proposed Edelta extension to manage model migration.
3. Supporting reuse in model migration with Edelta

In this section, we propose a metamodel co-evolution approach that
supports the re-use of migration patterns that can be defined as domain-
specific, but also domain-independent. We implement our approach as
an extension of the Edelta framework (Bettini et al., 2020b, 2022b),
adding the new model management functionality that can be used to
write migration strategies corresponding to metamodel evolution. The
conceptual Edelta extension to manage model migration is reported
in Fig. 7, and in the following sections, we give details about the
implementation of the migration strategies in Edelta. In Fig. 7, ‘‘Edelta
libraries’’ include both the Edelta Java runtime library (Section 3.1)
and the migration library described in the rest of the paper.
8

In Section 3.1, we first recall how Edelta can be used to manage
metamodel evolution. Then, in Section 3.2, we give details about the
new application in model migration. In Section 3.3, we propose a
classification to describe our implementations of migration patterns.

3.1. Evolving metamodels with Edelta

Edelta is an open-source project available at https://github.com/
LorenzoBettini/edelta, and we also provide an Eclipse update site and
a complete Eclipse distribution with Edelta installed. It is important
to mention that we also provide a Maven plugin to compile Edelta
programs headlessly, e.g., in a Continuous Integration server. Edelta

https://github.com/LorenzoBettini/edelta
https://github.com/LorenzoBettini/edelta
https://github.com/LorenzoBettini/edelta

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

w
o
w
e
r
n
2

b
r

o
o
o

r
i
n
u
c
d
o
u
F
c

E
t
t
g
c
i
o
I
i
c
d
v
p
a
i
i
a
i
t
t

t
a
i
m
a

d
i
s
t
C
s
m

a

Listing 1: The shape of an Edelta program
1 metamodel "..."
2 metamodel "..."
3 ...
4 use ... as ...
5 use ... as ...
6 ...
7 def <name>(<... parameters ...>) : <

returntype > {
8 <body>
9}

10 ...
11 modifyEcore <name> epackage <EPackage name>

{
12 <body>
13}
14 ...

as originally conceived as a framework for refactorings and evolutions
f EMF metamodels (Bettini et al., 2017). Still, it has also been applied
ith other intents, e.g., bad smell detection and resolution (Bettini
t al., 2019), or for automatically detecting metamodel evolution in
epositories (Bettini et al., 2020a). Since then, Edelta evolved with
ew features concerning the developer user experience (Bettini et al.,
020b) and additional static checks (Bettini et al., 2022b).

Edelta consists of a Java runtime library and a DSL to specify
asic metamodel changes (e.g., additions and deletions) and complex
eusable changes by aggregating existing library refactorings.

The Edelta runtime library is based on the Java API built on top
f the standard EMF API. Still, it aims to provide a ‘‘fluent’’ style for
perations specification and be more statically type-safe than the EMF
ne.

Concerning the Edelta DSL, a program consists of a few parts we
eport in pseudo-code in Listing 1. First, existing EMF metamodels are
mported using the syntax metamodel followed by the EPackage’s
ame. Then, existing Edelta libraries can be imported with the syntax
se ... as ... to be used in the current program. Some reusable functions
an be defined with a syntax starting with the keyword def (parameter
eclarations have the same syntax as in Java; the return type can be
mitted and will be inferred by the compiler). Such functions can be
sed in the same program or imported into other Edelta programs.
inally, actual evolution operations on a specific imported EPackage
an be specified with the syntax modifyEcore.

Concerning bodies of reusable functions and modifyEcore, the
delta DSL provides a syntax similar to Java but removes much ‘‘syn-
actic’’ noise. For example, terminating semicolons are optional, and
he parenthesis can be omitted when invoking a method without ar-
uments. Edelta provides syntactic sugar for getters and setters: one
an simply write o.name instead of o.getName() and o.name = ‘‘...’’
nstead of o.setName(‘‘...’’). The Edelta DSL is statically typed, relying
n type inference so that most types can be omitted in declarations.
n particular, the type system of Edelta is completely compliant and
nteroperable with the Java type system so that an Edelta program
an seamlessly use any existing Java code and Java libraries. Variable
eclarations in Edelta start with val or var, for final and non-final
ariables, respectively. In Edelta lambda expressions have the shape: [
aram1, param2, . . . | body]. When a lambda is the last argument of
method call, it can be moved out of the parenthesis; for example,

nstead of writing m(..., [...]), one can write m(...)[...]. When a lambda
s expected to have a single parameter, the parameter can be omitted
nd automatically available with the name it. The symbol it acts as an
mplicit receiver and can be omitted in method invocations, just like
his. The DSL includes extension methods, a syntactic sugar mechanism
o simulate adding new methods to existing types without modifying
9

hem. Instead of passing the first argument inside the parentheses of
method invocation, you call the method on the first argument (as if

t were one of its methods). For example, if m(Entity) is an extension
ethod, and e is of type Entity, you can write e.m() instead of m(e),

s if m was a method defined in Entity.
For example, this is the implementation in Edelta of the ‘‘Intro-

uction of subclasses’’ migration pattern shown in Section 2.3.1, deal-
ng only with the metamodel (in the next subsection, we will also
how the migration of the model). This reusable definition creates
he classes with the given names as subclasses of the passed super-
lass, which will also be made abstract (note the syntactic sugar for
etAbstract(true) and the use of addNewSubclass as an extension
ethod):

1 def introduceSubclasses(EClass superClass ,
Collection names)

2 : Collection <EClass> {
3 superClass.abstract = true
4 val subclasses = names.map[name |

superClass.addNewSubclass(name)]
5 return subclasses
6}

The above function is part of our library EdeltaRefactorings, so
we can apply this function to the example of Fig. 3, Section 2.3.1, in
an Edelta program as follows (where we declare to use EdeltaRefac-
torings):

1 metamodel " statecharts "
2
3 use EdeltaRefactorings as refactorings
4
5 modifyEcore introduceNodeSubclasses epackage

statecharts {
6 val ePackage = it
7 refactorings.introduceSubclasses(
8 ecoreref(Node),
9 #[" InitialState " , " FinalState " , " State "]

10)
11}

The special syntax for collections, #[e1, . . . , en], allows the pro-
grammer to easily specify a list with initial contents. Note that Edelta
provides a specific syntax to refer to Ecore elements in a statically typed
way, ecoreref(...) so that programs refer directly to the model classes of
n Ecore (like ecoreref(Node) in the listing above). Thus, this approach

works even when the EMF Java model has not been generated. Refer-
ences to Ecore elements, such as packages, classes, data types, features,
and enumerations, can be specified by their fully qualified name in an
ecoreref expression using the standard dot notation or by their simple
name if there are no ambiguities (possible ambiguities are checked by
the compiler).

In the next sub-section, we will extend this example to the migration
of models by using the extended version of Edelta presented in this
paper.

The Edelta compiler translates Edelta programs into standard Java
code, which relies on the Edelta runtime library. The generated Java
code can be called from any Java program.

The Edelta DSL is embedded in an Eclipse-based IDE with all the
typical IDE mechanisms, such as syntax highlighting, content assist,
code navigation, quick fixes, incremental building, error reporting, and
debugging.

We also provide an Eclipse wizard for creating an Edelta project
with the required dependencies and an example Edelta program evolv-
ing an example Ecore file. The wizard also generates a Java file with
a main method that calls the generated Java code. This Java main file
is meant to be a starting point for the developer, who will customize it
appropriately. We will see an example of such a Java main file in the

examples of the next subsection.

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

p
h
w
t

b
w
m
a
m
m

t
a
o
w
r
a

The Edelta editor provides a ‘‘live’’ development environment for
evolving metamodels, giving immediate feedback on the evolved ver-
sion of the metamodels in the IDE. In fact, Edelta performs many static
checks, also employing an interpreter that keeps track on the fly of the
evolved metamodel, enforcing the correctness of the evolution right in
the IDE based on the flow of the execution of the migration operations
specified by the user. The interpretation is performed on an in-memory
copy of the original metamodels, so modelers are free to experiment
without affecting the original metamodels. These mechanisms allow
for fast development cycles since the ‘‘live’’ preview is available even
without saving the program in the editor.

To summarize, Edelta programs are much more compact than Java
programs and much easier to read and understand based on a DSL.

For all the features of Edelta, its DSL, and its Eclipse-based IDE, we
refer the interested reader to the Edelta website and to Bettini et al.
(2020b).

In Fig. 7, we can place the previous status of Edelta applications in
the 𝑚2 layer, where a metamodel can be programmatically evolved to
roduce an evolved version. In the next section, we describe how Edelta
as been extended to express how the existing models are migrated
hen a specific metamodel evolution pattern is applied. In Fig. 7,

his new functionality corresponds to the execution at 𝑚1 layer, but it
includes all the modeling layers, from 𝑚1 to 𝑚3, and in the next section,
we explain how.

3.2. Co-evolving models with Edelta

In the new version of Edelta presented in this paper, we enriched
its Java API with mechanisms for co-evolving models and their meta-
models. The input is then enriched with models that conform to the
‘‘evolving’’ metamodel that will be migrated in reaction to the specified
evolution. Since the Edelta DSL is integrated with Java, no further
extension to the Edelta DSL syntax was required.

Internally, the model migration in Edelta is implemented by a
custom EMF EcoreUtil.Copier, which migrates EMF models together
with the corresponding Ecore models. Such a mechanism takes care of
the overall migration mechanism. The developer can participate in this
evolution by specifying a few custom model migration rules, as we will
explain in the rest of this section. Thus, the developer is relieved from
the task of handling the model migration on a low level and can focus
on some specific parts of the migration process in a declarative way.

In particular, the EcoreUtil.Copier itself implements a map as-
sociating original elements to copied elements; thus, in our custom
implementation, we can always: (i) given a type element (respectively,
an object) of the evolved metamodel (respectively, model), retrieve its
original version (function getOriginal); (ii) given a type element (re-
spectively, an object) of the original metamodel (respectively, model),
retrieve its migrated version (function getMigrated); in particular, in
this case, we can trigger the migration if a model element has not been
migrated yet, making the model migration independent from the order
of the objects in the model.

In both cases, for plain Java objects, not instances of EObject,
these functions simply return the objects themselves. Moreover, these
methods also work on collections. Finally, as prescribed by the contract
of EcoreUtil.Copier, we first migrate all the contained elements and
then all the references.

The new Edelta Java API for model migration consists of the facade
class EdeltaModelMigrator. Thanks to the use of the custom copier
described above and to the associations between original and evolved
metamodels and models, our migrator automatically handles changes
like renaming (since the associations work at the object identity levels,
we do not need to lookup elements by their names) and removals (since
in the evolved models the objects belonging to Ecore elements that
have been removed are simply discarded). Besides that, the user can
participate in the model migration, as shown in the next paragraphs.
10
In an Edelta program, from def and modifyEcore constructs, the
method modelMigration can be called. This method takes as a param-
eter a lambda where the EdeltaModelMigrator methods can be used
to specify custom model migration strategies for specific features and
classes, which are meant to be related to the features and classes that
have just been evolved in that program context.12

The EdeltaModelMigrator provides a few ‘‘rules’’ to define custom
migration strategies. Rules are specified by calling specific methods
of EdeltaModelMigrator. Such methods take two lambdas. The first
one is a predicate, which has to determine when such a rule has to
be applied. Our migrator calls this lambda with an Ecore element
when it migrates the corresponding model element, e.g., an EClass,
an EAttribute, etc. The second lambda is called when the predicate
evaluates to true. The parameters of the second lambda depend on the
rule that has been specified. For simpler rules, the lambda only takes
a single element of the original metamodel or model and has to return
the corresponding element of the evolved metamodel or model. For
example, given a feature of the original metamodel, the lambda returns
a feature of the evolved metamodel or an instance corresponding to that
feature in the evolved model. For more complex rules, the lambda takes
the feature of the original metamodel, the original model’s object, and
the evolved model’s object. The latter has already been created by our
migrator, and the lambda can further configure it, e.g., by setting its
features’ values as the developer sees fit.

Concerning predicates for the rules, the EdeltaModelMigrator pro-
vides a few convenience methods for specifying such predicates: isRe-
lated and wasRelated take an Ecore element (e.g., a feature or a type)
elonging to the evolved metamodel and return a predicate to check
hether the original element under migration is related to the argu-
ent. The latter does not check whether the element has been removed

nd thus allows the developer to provide migration strategies for ele-
ents that have been replaced by other elements in the evolved meta-
odel. Variants like wasRelatedToAtLeastOneOf(collection) check

whether a single element is related to at least one element of the
collection. This is useful in migrations that are related to several
features. All these convenience methods are based on the associations
maintained during the migration, as described above.

For the complete API provided by the EdeltaModelMigrator, we
refer the interested reader to the Edelta website.

We can now extend the function introduceSubclasses of Sec-
ion 3.1 to deal also with model migration. The function now needs an
dditional parameter, objectMigrator, which is applied for migrating
bjects that were originally instances of the superClass (as in Java,
e use the functional interface java.util.function.UnaryOperator to

epresent a lambda expression that takes a single argument and returns
result of the same type as its argument):

1 def introduceSubclasses(EClass superClass ,
2 Collection names, UnaryOperator <

EObject> objectMigrator)
3 : Collection <EClass> {
4 superClass.abstract = true
5 val subclasses = names.map[name |

superClass.addNewSubclass(name)]
6 modelMigration[
7 createInstanceRule(
8 isRelatedTo(superClass),
9 objectMigrator

10)
11]
12 return subclasses
13}

12 We suggest to rely on the implicit parameter it in such a lambda, so that
the methods of EdeltaModelMigrator can be called without a receiver, as
explained in Section 3.1. We use this methodology in the examples of the use
of modelMigration in the rest of the paper.

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. 8. 𝑀𝑖𝑔3: Example of migrated model of Fig. 3.

In this example, we use the rule createInstanceRule, which, besides
the predicate on EClass, takes a lambda that is responsible for instan-
tiating in the migrated model an object corresponding to the matched
class in the original metamodel. The lambda takes as an argument the
object of the old model, which can be used to properly initialize the
object of the evolved model that the lambda has to instantiate and
return. In this function, such a lambda (objectMigrator) has to be
passed as an argument to this definition.

An application of this extended function to the example of Fig. 3,
Section 2.3.1, is shown in the next listing. The first two arguments are
the same as in Section 3.1. For the additional argument, we specify
programmatically the migration strategy for objects that were of type
Node in the original model. This strategy simply uses the position of
the objects of the old model in the containing list to determine the
concrete subclass in the evolved model (getValueAsList is one of our
utility functions to safely convert values of a feature into a collection).

1 metamodel " statecharts "
2
3 use EdeltaRefactorings as refactorings
4
5 modifyEcore introduceNodeSubclasses epackage

statecharts {
6 val ePackage = it
7 refactorings.introduceSubclasses(
8 ecoreref(Node),
9 #[" InitialState " , " FinalState " , " State

"] ,
10 [oldObj |
11 val nodes = oldObj.eContainer.

getValueAsList(oldObj.
eContainingFeature)

12 if (nodes.head == oldObj)
13 return createInstance(ePackage.

getEClass (" InitialState "))
14 else if (nodes.last == oldObj)
15 return createInstance(ePackage.

getEClass (" FinalState "))
16 return createInstance(ePackage.

getEClass (" State "))
17]
18)
19}

If we apply this migration strategy to the model of Fig. 8-left, we
get as an evolved model the one in Fig. 8-right.

As mentioned in Section 3.1, the Java code generated by the Edelta
compiler is meant to be executed from a standard Java program (our
project wizard generates an initial skeleton of such a Java main file).
The typical steps are: create an instance of our EdeltaEngine passing
11
an instance of the generated Java code corresponding to the Edelta
program, loading the Ecore files and the model XMI files to be migrated,
and call the execute method. Then, the evolved Ecore and model files
can be saved into the specified output directory. For the example we
have just shown, this is the Java main file, in which the metamodel and
model to be migrated are passed at lines 6 and 7 and then executed by
the Edelta engine at line 9:

1 public class StateChartsExampleMain {
2 public static void main(String[] args)

throws Exception {
3 // create the engine specifying the

generated Java class
4 EdeltaEngine engine = new EdeltaEngine

(StateChartsExample::new);
5 // Make sure you load all the used

Ecores (Ecore.ecore is always
loaded)

6 engine.loadEcoreFile(" model/
StateCharts.ecore ");

7 engine.loadModelFile(" model/
StateChartsModel.xmi ");

8 // Execute the actual transformations
defined in the DSL

9 engine.execute();
10 // Save the modified Ecores and models

into a new path
11 engine.save(" modified ");
12 }
13}

3.3. Classification of Edelta migration patterns

All the implementations of migration patterns in Edelta are meant
to be reusable across different metamodels. They are also meant to be
automatic. We classify them according to the following definitions.

An autonomous migration pattern is a migration pattern that re-
quires only values to be executed. Such a pattern can be imple-
mented by a function whose arguments are meant to be fully
evaluated before the invocation.

Thus, the arguments for such functions are meant to be Ecore ele-
ments, strings, integers, collections, and, in general, Java objects. Once
such a function is called, it will automatically perform the migration.

A collaborative migration pattern is a migration pattern that,
besides values, also requires some expressions that will be evaluated
during the execution. Such a pattern can be implemented by a func-
tion that also accepts code blocks as arguments, meant to be used
several times within the function when the function implementation
sees fit.

Thus, some arguments for such functions are lambda expressions.
Once such a function is called, it will still automatically perform the
migration, but it will call the passed lambdas when some migration
strategies cannot be implemented automatically and are delegated to
the code blocks passed by the developer.

An interactive migration pattern is like an autonomous one, but it
collaborates with the developer by using an interactive session.

Thus, such functions do not require code blocks and still automati-
cally perform the migration. However, when some migration strategies
cannot be implemented automatically, they prompt the user to decide
how to migrate some model objects. The interactive session is any kind
of user interface, e.g., a command line prompt or a GUI.

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

t
r
s

s

e

The patterns implemented in Edelta always perform checks to make
sure that the arguments, excluding code blocks, satisfy some validity
constraints (pre-conditions) for the specific metamodel evolution. In
case of failed pre-conditions, the whole evolution process is interrupted
with error reporting, thus ensuring we never produce invalid evolved
metamodels/models. From the developer’s point of view, when one of
their code blocks is called or when they are prompted for an answer,
they can assume that the arguments of the code block or the questions
refer only to elements that need a proper migration because they are
affected by that specific metamodel evolution pattern.

We will use this classification in the rest of the paper to describe our
implementations of migration patterns. Although this classification is
transversal to the ones introduced in Section 2 and specific to our Edelta
approach, we can implement the non-breaking and breaking resolvable
changes as autonomous: for the former, only the metamodel evolution
must be specified; for the latter, the migration of the model can be
derived by considering the evolution of the metamodel. The breaking
unresolvable changes can be implemented both as collaborative and
interactive patterns. However, if a breaking unresolvable change can
be faced by using heuristics, then we can also implement such a change
as an autonomous migration pattern.

4. Running examples

To show the application of model migration in Edelta, we show
some Edelta functions that implement a few migration patterns from
the examples of Section 2. The presented implemented functions are a
subset of the refactoring library part of the Edelta distribution.

Please remember that all the implemented migration patterns de-
scribed in our library are meant to be domain–independent. However,
the developer may sometimes need to refer to domain-specific concepts
in the migration specification. When an Edelta function cannot safely
implement the model migration strategy in a completely autonomous
way, an additional parameter in the shape of a lambda expression has
to be passed to the function. The function will use such a lambda
appropriately when the function needs to migrate the elements affected
by the metamodel evolution. We also provide functions that prompt the
user on the console while migrating metamodels and models instead of
requiring a lambda. In such cases, some choices are shown to the user.

Thus, we divide our implementations according to the classification
of Section 3.3.

4.1. Collaborative migration patterns

We have already shown an example of an implementation of a
collaborative migration pattern, introduceSubclasses, in Section 3.2.

We now show the function of the Edelta library implementing
he mergeAttributes migration strategy (Section 2.3.2). This function
elies on the more general one, mergeFeatures (mergeReferences is
imilar):

1 def mergeAttributes(String newAttributeName ,
Collection <EAttribute > attributes ,

2 Function <Collection <Object>, Object>
valueMerger) : EAttribute {

3 return mergeFeatures(newAttributeName ,
attributes , valueMerger , null)

4}
5
6 def mergeReferences(String newReferenceName ,

Collection <EReference > references ,
7 Function <Collection <EObject>, EObject>

valueMerger , Runnable postCopy)
8 : EReference {
9 return mergeFeatures(newReferenceName ,

references , valueMerger , postCopy)
10}
11
12
12 def <T extends EStructuralFeature , V>
mergeFeatures(String newFeatureName ,

13 Collection <T> features, Function<
Collection <V>, V> valueMerger ,

14 Runnable postCopy) : T {
15 checkNoDifferences(
16 features ,
17 new EdeltaFeatureDifferenceFinder().

ignoringName ,
18 " The two features cannot be merged "
19)
20 val firstFeature = features.head
21 val owner = firstFeature.EContainingClass
22 val mergedFeature = firstFeature.copyToAs(

owner, newFeatureName)
23 removeAllElements(features)
24 modelMigration[
25 copyRule(
26 wasRelatedTo(firstFeature),
27 [_, oldObj, newObj |
28 var originalFeatures = features.

stream()
29 .map[a | getOriginal(a)]
30 var oldValues = originalFeatures
31 .map[f | oldObj.eGet(f)]
32 .collect(Collectors.toList())
33 var merged = valueMerger.apply(

getMigrated(oldValues) as
Collection <V>)

34 newObj.eSet(mergedFeature , merged)
35],
36 postCopy
37)
38]
39 return mergedFeature
40}

The function mergeFeatures performs the actual merging of fea-
tures and the corresponding model migration after checking the con-
straint that the features have the same type, cardinality, and other
properties (including that they belong to the same class). If the con-
straint does not hold, the function stops with a failure, describing the
differences in the differing features and a message. After this check,
since we can safely assume that all the features are compliant, we take
the first one and copy that into the containing classes; all the passed
features are then removed from the metamodel. We also note that the
functions in Edelta can be made generic so that static type checking
can be effectively performed.

In this example, we use copyRule, which, besides the predicate,
takes a lambda with three parameters: the feature of the original meta-
model (in this example, it is not used, so we use _ for the parameter
name), the EObject of the original model (whose class has that feature)
and the EObject of the model being migrated (which has already been
created by the model migrator). The lambda is then responsible for
setting the value (or values, depending on the context) in the object
of the evolving model that is somehow related to that feature of the
original metamodel. Remember that by default, our model migration
strategy automatically discards the values (respectively, objects) related
to features (respectively, types) that have been removed in the evolved
metamodel. In this case, all the features of the original metamodel
have been removed by this function in the evolved metamodel. Thus,
we do not have to discard the corresponding values explicitly in the
evolved model. Instead, we specify a rule that is applied when we
encounter the feature of the original metamodel corresponding to the
first feature passed to the function definition (we consider the first one
in the predicate wasRelatedTo(firstFeature)). The lambda in the rule
then simply merges the original values (relying on getOriginal) into a
ingle one, using the merging function passed to this function.

The optional additional Runnable postCopy, if passed, will be
xecuted after the model migration of the rule has been applied, that is,

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

e
m

c

4

t
s
t
r

w
a
t

in this case, after the values of the original model have been merged
into a single value of the evolved model. This is useful for merging
references that refer to shared objects (i.e., not contained), for example,
for performing some garbage collection of objects that are not referred
to anymore in the evolved model after the merging.

Thanks to the architecture of our model migration implementation,
the mergedFeature in the lambda of the model migration rule is
xactly the same object as the new feature introduced in the evolved
etamodel. Since newObj, created by our model migrator and passed

as an argument to the lambda, is an object of the evolved metamodel,
the EMF reflective operation newObj.eSet(mergedFeature, merged)
will not fail at run-time: the feature mergedFeature belongs to the
EClass of newObj.

The more specific functions mergeAttributes and mergeRefer-
ences only introduce, through their parameters, a specialization of
the type arguments, allowing the compiler to perform a static check.
This way, passing a collection with attributes and features is ruled out
statically by the compiler. Similarly, a collection of attributes cannot
be passed to mergeReferences.

An application of mergeAttributes to the model of Fig. 5 can be as
follows:

1 metamodel " addressbook "
2
3 use EdeltaRefactorings as refactorings
4
5 modifyEcore mergeName epackage addressbook {
6 refactorings.mergeAttributes(
7 " name " ,
8 #[ecoreref(firstname), ecoreref(lastname

)],
9 [oldValues | oldValues.filterNull.map[

toString].join (" ")]
10)
11}

In this case, the merging function that we pass to mergeAttributes
onsists of a simple joining with a space character.

.2. Autonomous migration patterns

We now show the implementation of ‘‘Enum To Subclasses’’ (Sec-
ion 2.3.1) as a particular case of ‘‘Introduce Subclasses’’ we have
hown in Section 3.2. The presented listing is intentionally simpler than
he actual implementation: we removed some checks and possible error
eporting, e.g., if the attribute’s type is not an enumeration.

1 def enumToSubclasses(EAttribute attr) :
Collection <EClass> {

2 val type = attr.EAttributeType as EEnum
3 val owner = attr.EContainingClass
4 val createdSubclasses =

introduceSubclasses(owner,
5 type.ELiterals.map[toString.toLowerCase.

toFirstUpper],
6 [oldObj |
7 val literalValue =
8 oldObj.getValueFromFeatureName(attr.

name).toString()
9 val correspondingSubclass =

10 owner.findSiblingByName(literalValue
.toLowerCase.toFirstUpper)

11 return createInstance(
correspondingSubclass)

12]
13)
14 removeElement(type) // will also remove

the attribute
15 return createdSubclasses
16}
13

(

In this implementation, we call introduceSubclasses (Section 4.1)
by passing an object migrator lambda that creates instances of the intro-
duced subclasses according to the original value of the type attribute.
Note that this function also removes such an attribute since, in the new
metamodel, it is useless.

An application of enumToSubclasses to the example of Fig. 4,
Section 2.3.1, is shown in the next listing where we also rename
the introduced subclasses according to Fig. 4. Note that thanks to
the on-the-fly interpretation of the Edelta compiler (see Section 3.1),
the introduced subclasses are immediately available in the rest of the
program.

1 metamodel " statechart "
2
3 use EdeltaRefactorings as refactorings
4
5 modifyEcore introduceNodeSubclasses epackage

statechart {
6 refactorings.enumToSubclasses(ecoreref(

type))
7 //optional renaming of the newly created

classes
8 ecoreref(Normal).name = " State "
9 ecoreref(Initial).name = " InitialState "

10 ecoreref(Final).name = " FinalState "
11}

If the initial model is as in Fig. 8-left of the previous section, where
the type attributes’ values are set appropriately to enum literals, the
resulting evolved model is the same as in Fig. 8-right.

The implementation of ‘‘Extract Metaclass’’ described in Section 2.3.3
in Edelta is as follows:

1 def extractClass(String name, Collection <
EStructuralFeature > features) {

2 checkNoBidirectionalReferences(features,
3 " Cannot extract bidirectional references

")
4 val owner = findSingleOwner(features)
5 val extracted = owner.

addNewEClassAsSibling(name)
6 val reference = owner.

addMandatoryReference(name.
toFirstLower , extracted)

7 makeContainmentBidirectional(reference)
8 features.moveAllTo(extracted)
9 modelMigration[

10 copyRule(
11 wasRelatedToAtLeastOneOf(features),
12 [origFeature , origObj, migratedObj |
13 var extractedObj = migratedObj.

getOrSetEObject(reference ,
14 [extracted.createInstance])
15 extractedObj.eSet(
16 getMigrated(origFeature),
17 getMigrated(origObj.eGet(

origFeature))
18)
19]
20)
21]
22 return reference
23}

We first check a few constraints: we cannot extract a feature
that is a bidirectional reference, and we must ensure that all the
passed features belong to the same class (findSingleOwner). Then,

e create a new class (in the package of the owner of the features,
ddNewEClassAsSibling), and we add to the owner a required con-
ainment reference to the new class, which is then made bidirectional

makeContainmentBidirectional). Finally, all the features are moved

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

a
W
T
c

m
t
J
r
b

t
i
o
c
c
s
g
t
t

4

o
v
p
t
s
t
g
f
b

S
c
(

M
1

C
M
1

to the new extracted class. Concerning model migration, we apply the
same rule to all the features of the original metamodel that are related
to the (now moved) features of the evolved metamodel. We use again
copyRule, explained in Section 4.1 for mergeFeatures. In this case,
the lambda of the rule uses all the passed arguments. In particular, we
create an instance of the extracted class (only the first time) and set the
corresponding values. Note the use of getMigrated that we described
before.

An application to the example of Section 2.3.3, Fig. 6 is as simple
as this:

1 metamodel " addressbook "
2
3 use EdeltaRefactorings as extension

refactorings
4
5 modifyEcore extractAddress epackage

addressbook {
6 refactorings.extractClass(
7 " Address " ,
8 #[ecoreref(street), ecoreref(zip),

ecoreref(city)]
9)

10}

Restricting and enlarging multiplicity (described in Section 2.3.4)
re provided through the following functions in our Edelta library.
e provide two convenience functions (changeToSingle and change-
oMultiple) that are implemented in terms of the most generic one,
hangeUpperBound:

1 def changeToSingle(EStructuralFeature
feature) {

2 changeUpperBound(feature, 1)
3}
4
5 def changeToMultiple(EStructuralFeature

feature) {
6 changeUpperBound(feature, -1)
7}
8
9 def changeUpperBound(EStructuralFeature

feature, int upperBound) {
10 feature.upperBound = upperBound
11 modelMigration[
12 copyRule(
13 isRelatedTo(feature),
14 multiplicityAwareCopy(feature)
15)
16]
17}

In changeUpperBound we also implement a default strategy for
odel migration: excluding the extra elements, if any, according to

he new upper bound. This is implemented by the model migration
ava utility function of the Edelta library multiplicityAwareCopy that
eturns a lambda that considers at most 𝑛 elements, where 𝑛 is the upper
ound of the migrated feature:

1 Procedure3 <EStructuralFeature , EObject,
EObject> multiplicityAwareCopy(

2 EStructuralFeature feature) {
3 return (EStructuralFeature oldFeature ,

EObject oldObj, EObject newObj) -> {
4 if (oldObj.eIsSet(oldFeature))
5 EdeltaEcoreUtil.setValueForFeature(
6 newObj,
7 feature,
8 getMigrated(
9 EdeltaEcoreUtil.

getValueForFeature(oldObj
, oldFeature ,
14
10 feature.getUpperBound())
)

11);
12 };
13}

In this code snippet, we use our utility functions getValueForFea-
ture and setValueForFeature, which allow the developer to treat the
model’s values uniformly as collections. The former returns a collection
of, at most, the specified size (−1 means without limit), even in case
he value corresponds to a single feature. In that case, the single value
s wrapped in a collection if the value is set or in an empty collection
therwise. The latter implements the unwrapping of the collection in
ase of a single feature. This way, the developer does not have to
heck the cardinality of features and can then write simpler migration
trategies than with standard EMF reflective API. Moreover, we use
etMigrated to retrieve the objects in the evolved model corresponding
o those in the original model. As said before, getMigrated also triggers
he copy of such values if they have not been copied already.

.3. Interactive migration patterns

In the next listing, we show an alternative to introduceSubclasses
f Section 3.2, where no lambda for model migration is required. In this
ariant, we delegate to the introduceSubclasses we showed before by
assing a lambda for model migration that prompts the user to provide
he appropriate subclass while migrating each object of the original
uperclass. This relies on some utility functions we provide in Edelta:
he attributes’ values of the current object are shown on the console, to-
ether with its position inside its container (obtained through the utility
unction EdeltaEObjectHelper.positionInContainter). Then, the possi-
le subclasses’ names are shown, and the user must select one.

1 use EdeltaRefactorings as refactorings
2
3 def introduceSubclassesInteractive(EClass

superClass , List<String> names)
4 : Collection <EClass> {
5 return refactorings.introduceSubclasses(

superClass , names) [
6 oldObj |
7 val helper = new EdeltaEObjectHelper
8 EdeltaPromptHelper.show (" Migrating " +

helper.represent(oldObj))
9 EdeltaPromptHelper.show(helper.

positionInContainter(oldObj))
10 val choice = EdeltaPromptHelper.choice(

names)
11 return createInstance(superClass.

EPackage.getEClass(choice))
12]
13}

If we apply this migration to the metamodel of 𝑀𝑖𝑔3 defined in
ection 2.3.1 and to the model of Fig. 8-left, we get this output on the
onsole. As an example, we also show some inputs provided by the user
what the user inserts is the number after the ‘‘?’’):

igrating Node{name = 1}
/ 3
1 InitialState
2 State
3 FinalState
hoice? 1
igrating Node{name = 2}
/ 3
1 InitialState
2 State

3 FinalState

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

o
i

M
S

(

F

t

M
=
C

C
C

Choice? 4
Not a valid choice: 4
Choice? 1
Migrating Node{name = 3}
2 / 3
1 InitialState
2 State
3 FinalState

Choice? 2
...

In this case, the user uses the position of the node object being
migrated to specify the subclass in the migrated model. If the choices
are made consistently, the result is the same as Fig. 8-right.

We also show a possible implementation for merging string at-
tributes (see mergeAttributes in Section 4.1) prompting the user to
specify the separator character (note that for this migration pattern, if
we want to implement an interactive version, we must be explicit on
the type of the attribute):

1 metamodel " ecore "
2
3 use EdeltaRefactorings as refactorings
4
5 def mergeStringAttributes(String

newAttributeName ,
6 Collection <EAttribute > attributes) :

EAttribute {
7 refactorings.checkType(attributes.head,

ecoreref(EString)) // fails if not
EString

8 refactorings.mergeAttributes(
9 newAttributeName ,

10 attributes ,
11 [oldValues|
12 val stringValues = oldValues.

filterNull.map[toString]
13 if (stringValues.empty)
14 return null
15 EdeltaPromptHelper.show (" Merging

values: " + stringValues.join(" ,
"))

16 val sep = EdeltaPromptHelper.ask ("
Separator ?")

17 return stringValues.join(sep)
18]
19)
20}

Applying mergeStringAttributes for migrating the model of Fig. 5
can be as follows:

1 metamodel " addressbook "
2
3 use EdeltaRefactoringsWithPrompt as

extension refactorings
4
5 modifyEcore mergeName epackage addressbook {
6 refactorings.mergeStringAttributes(
7 " name " ,
8 #[ecoreref(firstname), ecoreref(lastname

)]
9)

10}

We show an example of console interaction based on the model
f Fig. 5. In the example of console interaction, the space characters
nserted by the user are represented as :

erging values: Ludovico, Iovino
eparator?
15

C

Merging values: Davide, Di Ruscio
Separator?
Merging values: Lorenzo, Bettini
Separator?

Note that with this version, the user could also specify a different
separator for each migrated object.

We also show an interactive version of changeUpperBound (Sec-
tion 4.1) that, in case the elements to migrate are more than the
migrated feature’s new upper bound 𝑛, asks the user to select 𝑛 elements
discarding all the remaining ones), by showing the possible choices:

1 def changeUpperBoundInteractive(
EStructuralFeature feature, int
upperBound) {

2 feature.upperBound = upperBound
3 modelMigration[
4 copyRule(
5 isRelatedTo(feature),
6 [origFeature , origObj, migratedObj |
7 var origValues = origObj.

getValueForFeature(origFeature ,
-1)

8 if (origValues.size <= upperBound) {
9 migratedObj.setValueForFeature(

feature, getMigrated(
origValues))

10 return
11 }
12 val helper = new EdeltaEObjectHelper
13 EdeltaPromptHelper.show (" Migrating "

+ helper.represent(origObj))
14 val choices = origValues.map[helper.

represent(it)].toList
15 val newValues = new ArrayList(

upperBound)
16 for (var i = 1; i <= upperBound; i

++) {
17 EdeltaPromptHelper.show (" Choice "

+ i + " of " + upperBound)
18 val choice = EdeltaPromptHelper.

choiceIndex(choices)
19 val chosen = origValues.get(choice

)
20 newValues.add(getMigrated(chosen))
21 }
22 migratedObj.setValueForFeature(

feature, newValues)
23]
24)
25]
26}

In this code snippet, we also use getValueForFeature, setValue-
orFeature, and the console interaction functions described before.

For example, let us apply this latter function to the feature ‘‘workAd-
dress’’ of the model in Fig. 9-left by reducing the upper bound to 2
(originally, the upper bound was -1). The migration pattern prompts
the user only for the thirdPerson. If we imagine a console session like
he following one, the resulting model will be as in Fig. 9-right:

igrating PersonListForChangeUpperBound.Person{firstname
thirdPerson}
hoice 1 of 2
1 PersonList.WorkAddress{street = a street, houseNumber = 3}
2 PersonList.WorkAddress{street = another street, houseNumber = 3}
3 PersonList.WorkAddress{street = some street, houseNumber = 3}
hoice? 2
hoice 2 of 2
1 PersonList.WorkAddress{street = a street, houseNumber = 3}
2 PersonList.WorkAddress{street = another street, houseNumber = 3}
3 PersonList.WorkAddress{street = some street, houseNumber = 3}

hoice? 3

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. 9. Example of migrated model with changeUpperBoundInteractive.
5. Evaluation

The evaluation aims to confirm Hypothesis 1 defined in Section 2,
i.e., the migration strategy may be re-used across metamodels. To test
the hypothesis, we defined the following research questions:

RQ3: Can the proposed Edelta extension implement the co-
evolution patterns extracted from the literature?
RQ4: Can the proposed Edelta extension support cross-domain
model migration?

5.1. Validation of the migration patterns implemented in the Edelta library
(RQ3)

To answer RQ3, we validated our implementation of metamodel
and model migrations by writing automated tests with JUnit. First,
we implemented the new model migration parts, i.e., the EdeltaMod-
elMigrator and the custom EcoreUtil.Copier described in Section 3.2,
using the Test-Driven Development methodology (Beck, 2003). Such
a procedure allowed us to gain confidence in the correctness of the
general model migrations performed together with the correspond-
ing metamodel migrations. It also permitted us to verify that basic
changes like renaming and removals are working correctly. For our
JUnit tests, we created several ad-hoc metamodels and models. These
metamodels and models have no semantic meaning: they only represent
input data specific to the migration scenario under test. They are
also meant to cover our code fully, including exceptional and corner
cases. We wrote several JUnit assertions that check that the migrated
metamodels and models are as expected, e.g., a renamed feature in
the metamodel induces consistent renaming in type references in the
corresponding migrated models. In that respect, we manually verified
that the migrated metamodels and models were as expected on the first
test run. Then, we wrote the corresponding JUnit assertions, always
to be checked as part of our Continuous Integration process to catch
possible future regressions and bugs. Note that during our JUnit tests,
the standard EMF validators are also used to check that the migrated
metamodels and models are still valid. Then, we applied the same
methodology to implement the migration patterns described in the
paper. We implemented a few JUnit tests for each migration pattern
to cover its implementation, including corner cases. Again, we wrote
ad-hoc metamodels and models to recreate the meaningful input data
for testing the implementation of the migration pattern.

As shown in the examples of this paper, our implemented migration
functions are compact because they rely on our utility function library
for inspecting, navigating, and checking EMF models. These utility
functions had already been tested in isolation, so their correctness
is assumed and must not be tested again when implementing the
migration patterns. It is worth noting that in this development process,
apart from the implemented code, the lengthy and delicate part is the
16
first manual check that the migrated models are as expected. After that,
once the JUnit tests assertions have been written, running the whole
test suite for the migration functions only takes a few seconds.

Finally, we applied our migration functions to the example meta-
models and models once our migration functions were tested. We
applied the same testing methodology in this case as well. Of course,
in such cases, while the models are still ad-hoc, the corresponding
metamodels are the ones of the examples.

We have relied on automated tests since the beginning of the imple-
mentation of Edelta and its DSL. For each commit on the Edelta GitHub
repository, which includes all our migration functions, an automatic
build process is started on GitHub Actions. This automated continu-
ous integration process runs all the tests (unit and integration tests,
including end-to-end tests against the Eclipse distribution we make
available to our users). We use all the virtual environments provided by
GitHub Actions, e.g., Linux, Windows, and macOS. Moreover, our build
on GitHub Actions also keeps track of code quality metrics, like code
coverage (using the cloud service Coveralls13) and static analysis using
SonarCloud14 (a cloud service based on the well-known code quality
analysis tool SonarQube).

5.2. Applicability of the migration patterns implemented in Edelta (RQ4)

To answer RQ4, we formulated Table 2 starting from Table 1. In Ta-
ble 2, we report the metamodel example elicited from the cited paper in
the first column. We used a bullet icon to populate the cells of Table 2.
A bullet of the shape means an Edelta autonomous migration pattern
(Section 4.2) is available in the provided library and then can be used
in that example. A bullet of the shape means an Edelta collaborative
or interactive migration pattern (Sections 4.1 and 4.3) is available in
the provided library and can be used in that example. The indicated
migration strategy for each example corresponds to the one reported in
the cited paper. We highlight that multiple versions and variations of
Petrinet metamodels are present in the literature, and, in particular, the
second and third lines report multiple evolution scenarios contained in
the same papers. Similarly, this occurs for UML activity diagrams. The
last row represents a summary line reporting the number of groups of
metamodels affected by the migration pattern.

‘‘Extract Metaclass’’ occurs in different metamodels, i.e., Petrinet
and SQL. Moreover, multiple Petrinet metamodels and multiple migra-
tion patterns are reported. In all the Petrinet examples, the application
of the Edelta implementation of ‘‘Extract Metaclass’’ can be re-applied
as autonomous patterns. The column of ‘‘Introduction of Subclasses’’
contains both and bullets. As seen in Sections 2.3.1 and 4.1,

13 https://coveralls.io/
14 https://www.sonarsource.com/products/sonarcloud/

https://coveralls.io/
https://www.sonarsource.com/products/sonarcloud/

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

t
h
r
m
w
o
t
a
i
m
o
l
a
e
‘
r
s
o
i
1
a
u

Table 2
Evaluation Results: Reuse of co-evolution patterns in different metamodel examples.

= Edelta Autonomous migration pattern = Edelta collaborative or interactive pattern.
Examples Co-evolution patterns

Ex
tr

ac
t

m
et

ac
la

ss

Ex
tr

ac
t

su
pe

r
m

et
ac

la
ss

M
er

ge
at

tr
ib

ut
e

Sp
lit

at
tr

ib
ut

e

Ad
d

at
tr

ib
ut

e

De
le

te
at

tr
ib

ut
e

Re
na

m
e

m
et

ac
la

ss

In
tr

od
uc

tio
n

of
su

bc
la

ss
es

Co
lla

ps
e

H
ie

ra
rc

hy

In
lin

e
cl

as
s

M
ov

e
Re

fe
re

nc
e

Re
na

m
e

m
et

ac
la

ss

En
la

rg
e/

Re
st

ric
t

m
ul

tip
lic

ity

Ad
d

re
fe

re
nc

e

M
er

ge
m

et
ac

la
ss

Re
na

m
e

at
tr

ib
ut

e

Re
na

m
e

re
fe

re
nc

e

De
le

te
re

fe
re

nc
e

Sp
lit

re
fe

re
nc

e

M
ov

e/
Pu

sh
do

w
n

At
tr

ib
ut

e

Petrinet (Rose et al., 2010a,b)

Petrinet (MM0–>MM2)
(Cicchetti et al., 2008a)

Petrinet (E0–>E2)
(Taentzer et al., 2012)

Petrinet (Di Ruscio et al., 2012;
Wagelaar et al., 2012)

Petrinet (Krause et al., 2013)

Petrinet (Anguel et al., 2014)

StateChart (Kessentini et al., 2016)

ExamXML (García et al., 2012)

Company (Rutle et al., 2020)

excerpt SQL2003 (Garcés et al., 2014)

Component and communication (Demuth
et al., 2016)

Activity Diagram (Taentzer et al., 2013)

UML Activity Diagram (Rose et al.,
2014a)

Project Management (Kessentini and
Alizadeh, 2020)

Workplace (Di Ruscio et al., 2016)

Component and connector (Rose et al.,
2014b)

UML Class Diagram (Rose et al., 2014b)

Summary 2 2 1 1 2 3 4 9 3 2 3 1 4 3 2 1 2 1 1 3
a
o
l
S
E
c

6

l
a
a
a
h
e
m
m

hat co-evolution cannot be autonomous: the developer must decide
ow the instances of a single class in the original model have to be
e-typed according to the new subclasses introduced in the evolved
etamodel. However, in some examples, we need the specialization
here an enumeration is converted into subclasses according to the
riginal enumeration literal (Section 2.3.1). As shown in Section 4.2,
he implementation of such a special case, enumToSubclasses, is an
utonomous migration pattern. Concerning the change of multiplic-
ty, we have shown in Section 4.2 that we provide an autonomous
igration pattern. Nevertheless, the safe automatic migration strategy

f changing the size of the values of the corresponding evolved col-
ection might not fit some special cases. In Section 4.3, we provide
n interactive version that the developer can use to decide which
lements must be kept in the evolved collection. Also, the pattern
‘Enlarge/Restrict multiplicity’’ is marked as and since the pattern
estricting the cardinality of a reference may lead to multiple resolution
trategies that can involve autonomous in case of heuristics application
r collaborative and interactive in case user intervention is needed. For
nstance, when reducing the cardinality in a metamodel reference from
..* to n..m, if the existing referenced instances are more than m, an
utonomous pattern would not be able to decide which instances to
17

nlink or remove.
Table 2 confirms what we expressed in RQ4 since for all the ex-
mples belonging to different domains, we can use the same library
f co-evolution patterns EdeltaRefactorings. We need to import the
ibrary with a use clause in the examples of Section 4 and Appendix.
uch a library is part of the standard Edelta distribution. The source file
deltaRefactorings.edelta can be browsed online at https://github.
om/LorenzoBettini/edelta.15

. Discussion

We can notice, from Table 2, that only a few patterns in the
iterature have been applied to single domains, e.g., Split or Merge
ttributes. While all the others confirm that the strategies can be shared
cross multiple domains. The extended version of the Edelta framework
llowed us to propose a library of implemented migration patterns that
andle the co-evolution of metamodels and models. If a metamodel
volution pattern is suitable to automatically handle the corresponding
odel evolution, our library functions also autonomously migrate the
odels’ elements corresponding to the evolved metamodel elements.

15
 This library is still under development and is updated frequently.

https://github.com/LorenzoBettini/edelta
https://github.com/LorenzoBettini/edelta
https://github.com/LorenzoBettini/edelta

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

g
A
2
i
t
e
i
s
g
m

t

By design choice, we implement an autonomous co-evolution of
models only when it is safe to do so in a completely automatic way.
Thus, we never apply automatic model evolution strategies that could
result in invalid evolved models. We remind that the first aim of the
co-evolution activity is to restore the model’s validity, and the second
is to obtain qualitative migrated models (Hebig et al., 2013).

Despite ensuring valid evolved models corresponding to valid
evolved metamodels, some automatic strategies might not suit some in-
volved semantic properties of the model that cannot be expressed with
static constraints. For example, in changeUpperBound presented in
Section 4.2, it is safe to ‘‘truncate’’ a collection of values after decreas-
ing the upper bound in the metamodel. However, the modeler, and only
the modeler, of that specific domain, might know the right collection
values that must be kept. For this reason, as shown in Section 4.3, we
also provide alternative interactive versions of the migration patterns
allowing the modeler to decide which values to keep.

Some migration patterns cannot safely implement an autonomous
model evolution strategy. In such cases, our refactoring functions
require some collaboration from the developers: additional code block
arguments. The developer responsibility, who knows that specific do-
main, is to provide such code blocks. We want to stress that such a code
block is the minimal requirement that our functions need. Even in such
cases where the model migration cannot be fully autonomous, Edelta
takes over most of the model migration, removing most responsibilities
from the developer. The code blocks provided by the developer will
automatically be used by the Edelta migration function at the right
moment and only on the right elements. Thus, our implementations
always automatically know which model elements must be migrated.
Sometimes, they cannot provide an automatic migration strategy for
such elements. The developer’s code blocks are ensured to be used only
when needed and with the right elements. So, the developer’s effort is
kept to a minimum.

Note that, despite our automatic management of elements to be
migrated, when the developer needs to perform some complex migra-
tion of such elements, our library allows the developer to do that, still
minimizing the effort. An example of such a case is the last example
of Appendix. In that case, our function splitClass is called for the
common and reusable strategies. The developer can provide a code
block mapping a single object of the original model into possibly two
objects in the evolved model.

It is also important to stress that all our library functions perform
several constraint checks before applying the evolution of the meta-
model (and, thus, of the model). We have shown a few examples of
constraint checks in Section 4. Thus, using our library means reusing
the evolution operations and all the constraint checks. Such evolutions
and checks have been thoroughly tested in Edelta. If a developer
wanted to re-implement a common migration pattern from scratch,
such checks should also be re-implemented from scratch.

To summarize, we believe using our library provides safety guar-
antees and reusable operations. Using our library cannot be harder
or more time-consuming than re-implementing the co-evolution opera-
tions from scratch.

As described in Section 3.2, our metamodel and model migration
process heavily relies on a custom EcoreUtil.Copier. Thus, as implied
by EcoreUtil.Copier, during the migration, there will always be two
copies in memory of each metamodel and model involved in the migra-
tion (one copy for the original one and one copy for the migrated one).
Since our approach is meant to be generic and reusable, performing
a migration in place without keeping two copies of the element being
migrated would not be feasible. Moreover, using a EcoreUtil.Copier is
a standard procedure for dealing with versions of EMF models (see,
e.g., ‘‘EMF Diff/Merge’’). Our approach does not add further over-
head concerning memory. For checking, visiting, and traversing EMF
models, we rely on the EMF API. In particular, for dealing with cross-
references, we rely on the EMF utility classes of EcoreUtil (e.g., Ecore-
18

Util.CrossReferencer and EcoreUtil.UsageCrossReferencer). These p
are already optimized to deal with large sets of models very efficiently.
Note that we require inter-dependent models to be loaded in the same
EMF ResourceSet during the migration. Again, this is required to let
EMF correctly deal with cross-references. However, different clusters
of inter-dependent models can be migrated at different times, avoiding
the use of too much memory. Thus, we believe our approach can be
used efficiently and scalable in every context where EMF can be used
efficiently, even with large models. In that respect, we plan to perform
experiments and benchmarks with very large inter-dependent models
in the future.

7. Threats to validity

Threats to internal validity are related to factors or inaccurate
settings that can influence the evaluation outcomes. The implemented
examples are based on the case studies selected from the literature. The
current implementation of the Edelta library supporting co-evolution is
still under development and will be continuously updated to support
more patterns, even though most of the most used patterns are already
implemented. Another threat to internal validity regards the migration
strategies classified as BUC, in which Edelta proposes a prompt to the
modeler to provide additional information needed by the migration
program. It is clear that in large models, this mechanism can be really
time-consuming and less user-friendly than using an ad-hoc migration
strategy. We tried to mitigate this point by using models contained in
the projects, when available, or reproducing the models reported in
the paper proposing the case study. However, we know that a more
extended experiment involving users is required, which is part of the
future plans. Moreover, we are already working on a GUI replacing the
prompt and the integration of AI in these specific cases.

For these reasons, we do not advertise the use of refactorings with
prompts. These must be considered simple and fast prototyping mech-
anisms to experiment with possible migration strategies that cannot be
fully automated. We still foster the use of our functions that take a
lambda (code block) as an argument for those refactorings that cannot
be fully automated. This also allows for easier automated testing mech-
anisms and can scale to large models, which the prompting mechanism
cannot easily do.

Threats to external validity are related to the validity of the results
outside the considered setting. It is clear that this work is built in the
context of EMF since Edelta is based on EMF APIs, so we think that this
point is less problematic than others. Moreover, the Edelta approach
can be implemented in other languages outside the EMF technical
space.

8. Related work

In Paige et al. (2016), three categories of co-evolution approaches
have been identified: manual approaches, inference approaches, and
operator approaches. Note that the breaking unresolvable changes can-
not be fully automated. They require the metamodel’s user intervention
since she knows how to apply the correct migration actions to restore
the model conformance.

Manual approaches usually offer dedicated languages to specify mi-
ration strategies, which migrate models to an updated metamodel.
n example in this category is Ecore2Ecore (Paternostro and Hussey,
006), an EMF-specific tool specifying inter-relationships between orig-
nal and evolved metamodels. The tool automatically generates a par-
ial migration strategy. The approach does not seem to support complex
volution patterns, but only very trivial ones. Another manual approach
s presented in Taentzer et al. (2013) where co-evolution rules are
pecified using graph transformations. Migration rules are specified
raphically using a visual modeling language based on the changed
etamodel and operators to manage the migration strategies.

Wimmer et al. (2010) proposed another manual approach in which
he model co-evolution problem was solved using three steps. The ap-

roach automatically merges the source (MM1) and target metamodels

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

u
T
o
t
e
m
a
t
u
t

t
e
c
c
m

c

f
i
d
m

(MM2) in the first step. Then in the second step, the user can man-
ally define inplace transformations to specify the co-evolution rules.
hese transformations allow adding the evolved model elements to the
riginal model. The inplace transformation can be specified using any
ransformation language, and the authors used the ATL language. In the
nd, a model-to-model transformation is applied to remove all original
odel elements. The output model conforms to the MM2 metamodel

nd is the co-evolved model. The approach has two advantages: on
he one hand, the user does not need to specify evolution rules for
nchanged elements; on the other hand, the user can use a known
ransformation language to define co-evolution rules.

Inference approaches are based on comparison or differencing of
he original and updated metamodel and automated generation of
volutionary strategies for models. Such approaches as, for instance, Ci-
chetti et al. (2008a) and AML (Garcés et al., 2009), use metamodel
omparison algorithms to detect metamodel changes and infer the
igration strategies to be applied.

Operator approaches are pattern-based and typically provide a dedi-
ated language to express model migration strategies.

COPE (Herrmannsdoerfer et al., 2009) provides a set of primitives
or metamodel adaptation and model migration. For example, like
n our approach, these primitives allow the creation, renaming, and
eleting of elements. The user can use these primitives to define custom
igration strategies in Groovy16 (COPE also provides a Groovy editor

with basic syntax highlighting). COPE also offers some reusable migra-
tion patterns, like the ones we presented in this paper, which can be
used when facing recurring migration patterns. Migration patterns in
COPE are applied directly in the EMF Ecore editor, extended by COPE.
COPE records metamodel evolution changes in a ‘‘history’’ while the
modeler applies them in the extended Ecore editor. From the history,
the user can generate a migrator that will be used to perform the actual
coupled metamodel/model evolution.

Our approach aims at the same goals of COPE: ‘‘combine the reuse
of recurring transformations with the expressiveness to cater for com-
plex transformations’’ (Herrmannsdoerfer et al., 2009). Although the
approaches are similar and have the same intent, we believe Edelta
and its DSL are less error-prone and easier to use, as detailed in the
following. First of all, our DSL is statically typed (differently from
Groovy), though it still has the compact shape of dynamically typed
languages since it relies on type inference, so most types can be omitted
in declarations. In particular, the type system of Edelta is completely
compliant and interoperable with the Java type system so that an Edelta
program can seamlessly use any existing Java code and Java libraries
(Section 3.1). Thus, our DSL allows many programming errors to be
caught early by the compiler, not later, while running the program
(in this case, the migrator). Moreover, as happens for statically typed
languages, our editor is enriched with more advanced IDE support. As
described in Section 3.1, the Edelta DSL editor does not only provide
syntax highlighting: it provides all the typical IDE mechanisms, such
as content assist, code navigation, quick fixes, incremental building,
and error reporting. In particular, it allows debugging the original
Edelta DSL specification when executing the generated Java code while
providing the typical Eclipse debugging views like breakpoints (possi-
bly condition-based), variables, etc. Moreover, thanks to the on-the-fly
interpreter (Section 3.1) used by the Edelta DSL compiler, the devel-
oper always has immediate feedback on the evolved version of the
metamodels in the IDE: the Eclipse Outline View shows the modified
parts of the metamodel and the sections in the DSL specification where
that part of the metamodel has been modified (more details on this
feature can be found in Bettini et al. (2020b)). Through the interpreter,
which keeps track of the evolved metamodel, our compiler enforces
the correctness of the evolution right in the IDE based on the flow
of the execution of the migration operations specified by the user.

16 https://groovy-lang.org/
19
Thus, besides language errors due to types, our compiler immediately
detects the wrong usage of Ecore elements in a specific part of the
specification, e.g., referring to an element that has been removed or
renamed, thus avoiding generating a migrator that would make the
migrated metamodels and models invalid.

These mechanisms of Edelta and its DSL allow for fast development
cycles since the ‘‘live’’ preview is available even without saving the
program in the editor. Moreover, the migrator is generated immediately
as part of the compilation, while in COPE, there are a few steps before
getting to a migrator (see the COPE tool workflow described above).
Thus, with Edelta and its DSL, the time to get to an executable migrator
ready to be tested, possibly with automatic testing mechanisms (see our
testing strategies in Section 5.1), is very small. Moreover, in COPE, like
in our approach, metamodel and model evolution instructions are part
of the same migration function but while in COPE one has to manually
and properly retrieve all the instances that must be migrated, in Edelta,
as shown in Section 3.2, we provide a declarative approach where the
developer only has to specify how to migrate instances given some
predicates: our migration runtime takes care of the overall migration
process. Note that our use of the standard EcoreUtil.Copier allows us to
seamlessly implement what Herrmannsdoerfer et al. (2009) defines as
coupled transactions: the migrated model is always valid during the mi-
gration, while in Herrmannsdoerfer et al. (2009), during the application
of a migration pattern, the model might be in an invalid state (though,
in the end, it will be valid). Finally, in Herrmannsdoerfer et al. (2009),
only reusable autonomous migration patterns are provided, while, in
Edelta, we implement more reusable migration patterns as collabora-
tive or interactive (Section 3.3), that is, also breaking unresolvable
changes: the developer only has to specify small code blocks that will
be used appropriately during the migration by our reusable migration
implementations.

Another approach that is similar to ours is Epsilon Flock (Rose
et al., 2010b, 2014b). Edelta and Flock are operator approaches. Flock
is a model-to-model transformation language designed explicitly for
model migration. It uses a user-controlled conservative copy algorithm,
automatically copying the unchanged model elements to the migrated
model. The algorithm is user-controlled because the user only specifies
the migration strategies related to the evolved elements. For example,
if the metaclass Net is renamed to PetriNet, the user can define
the following rule retype Net to PetriNet. Flock is based on
the Epsilon object language (EOL)17 and is a rule-based transformation
language combining declarative and imperative elements. The language
allows for defining migration strategies compactly.

Edelta shares with Flock the ability to automatically copy un-
changed model elements and the compactness of migration strategy
definitions. Moreover, Edelta can also automatically handle simple
metamodel migrations like renaming and deleting. For example, re-
garding the renaming of Net to PetriNet, Edelta does not require
any model migration strategy from the user.

Flock is effective when the source and evolved metamodels are
similar, as mentioned by the authors (Rose et al., 2014b). However,
Flock does not allow handling the order in which rules are sched-
uled and, mainly, does not support simultaneously applying two or
more migration rules to the same element since the algorithm uses
the first matched rule. These limitations force users to navigate the
model to define a more general migration rule. For example, in the
ExamXML example described in Fig. A.11, the OpenElement is split
into two classes OpenElement_1 and OpenElement_2. Therefore,
the following rules could be defined: retype OpenElement to
OpenElement_1 when: (original.specificQuestion1 !=
null) and retype OpenElement to OpenElement_2 when:
(original.specificQuestion2 != null). However, if both
the attributes specificQuestion1 and specificQuestion2 are

17 https://www.eclipse.org/epsilon/doc/eol/

https://groovy-lang.org/
https://www.eclipse.org/epsilon/doc/eol/

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
set, the algorithm only uses the first rule. Thus, the user cannot define a
rule that creates both OpenElement_1 and OpenElement_2 model
elements. In this case, the user must define a migration rule for the root
element model, i.e., Exam.

With Edelta, the developer does not have to handle the entire
traversal of the model graph to migrate the parts that must be adapted
according to the evolved metamodel. It is enough to interleave the
metamodel evolution operations with calls to modelMigration passing
a predicate and a code block. Since these are code blocks and not
expressions, they will be evaluated by Edelta during the co-evolution
at the right moments, relieving the developer of handling the internal
details of model migrations.

Moreover, our model migration specifications are not based on
pattern-matching rules but just predicates on the elements of the meta-
model being evolved (for which we provide a few utility functions, as
shown in Section 4). This means there is no risk of several possible
matching patterns requiring some decision on which to apply and in
which order. Edelta applies the migrations in the order specified by
the developer, one by one, one after the other. Thus, in Edelta, we do
not have the situation described above for Flock when two rules match.

For example, regarding the above-mentioned ExamXML example, in
Edelta, the user can decide a migration rule for splitting the OpenEle-
ment metaclass to OpenElement_1 or OpenElement_2 exclusively de-
pending on the specificQuestion1 attribute value (see the first listing
in Appendix A.2), or she can create OpenElement_1 and OpenEle-
ment_2 if specificQuestion1 and specificQuestion2 are both set (see
the second listing in Appendix A.2).

Other approaches use different technologies to discover model mi-
gration strategies, e.g., search-based approaches (Williams et al., 2012)
or feature-based approaches (Di Ruscio et al., 2016). Kessentini et al.
(2018) proposes an interactive multi-objective approach that dynami-
cally adapts the model in response to metamodel evolution and interac-
tively suggests edit operations to developers. In this case, the supported
model operations must be encoded to enable the algorithm to apply the
operators.

9. Conclusions

When a metamodel evolves, all the related artifacts must be adapted
in case the applied evolution has broken their validity. This activity of
co-evolution, in the specific case of corrupted models, can be also called
migration.

Existing approaches propose automatism to deal with this problem
with limited cross-domain reuse, due to the domain-specificity of the
adopted migration strategies.

In this paper, we first analyzed the literature in order to understand
if migration strategies can be shared across different domains. From
this analysis, we deduced that, effectively, some migration strategies
recur across domains and then could be considered recurring migration
patterns.

The Edelta framework, previously presented as a metamodel evo-
lution approach, has been extended to enable the implementation of
model migration operations coupled with metamodel evolutions. Using
the provided Edelta library, models can be safely migrated simply by
reusing the provided functions. The Edelta language also supports the
definition of new patterns or the customization of existing ones. We
offered a general discussion on the level of automation the framework
can reach in co-evolving models and metamodels.

Future work in this direction includes a more extended user study
in which we evaluate the real usage of this Edelta application. Metrics
can be used to estimate the usability and efficacy of an instrument like
20

Edelta in model migration.
CRediT authorship contribution statement

Lorenzo Bettini: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Validation, Writing – original draft, Writ-
ing – review & editing. Amleto Di Salle: Conceptualization, Data cura-
tion, Investigation, Methodology, Validation, Writing – original draft.
Ludovico Iovino: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Supervision, Vali-
dation, Visualization, Writing – original draft, Writing – review & edit-
ing. Alfonso Pierantonio: Conceptualization, Investigation, Methodol-
ogy, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The links to software and data are available in the paper.

Acknowledgments

This work was partially supported by the PRIN project ‘‘T-LADIES’’
n. 2020TL3X8X, by the COmmunity-Based Organized Littering (COBOL)
national research project (PRIN 2022 PNRR program Contract
P20224K9EK), by the PNRR MUR project VITALITY (ECS00000041),
Spoke 2 ASTRA - ‘‘Advanced Space Technologies and Research Al-
liance’’, of the PNRR MUR project CHANGES (PE0000020), Spoke 5
‘‘Science and Technologies for Sustainable Diagnostics of Cultural Her-
itage’’, and by the MUR (Italy) Department of Excellence 2023–2027
for GSSI.

Appendix. Edelta code examples

In this section, we show the implementation of the co-evolution of
a few examples in Edelta, relying on some of the reusable refactorings
shown in Section 4 and other reusable refactorings of our library, which
we did not present in this paper.

A.1. Petrinet

In the following listing, we present an example of migration (both
for metamodel and model) for the Petrinet example (Fig. A.10) in
Edelta extracted from the studies of Rose et al. (2010a,b).

1 use EdeltaRefactorings as refactorings
2
3 def addWeightAttribute(EClass c) {
4 c.addNewEAttribute (" weight " , ecoreref(EInt

)) [
5 makeRequired // lowerBound = 1
6]
7}
8
9 modifyEcore modifyNet epackage petrinet {

10 ecoreref(Net).name = " Petrinet "
11}
12
13 modifyEcore introducePTArc epackage petrinet

{
14 refactorings.referenceToClass (" PTArc " ,

ecoreref(Place.dst)) => [
15 addWeightAttribute
16]
17 ecoreref(Place.dst).name = " out "
18 ecoreref(Transition.src).name = " in "

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. A.10. Petrinet metamodels - original and evolved.
19 ecoreref(PTArc.transition).name = " dst "
20 ecoreref(PTArc.place).name = " src "
21}
22
23 modifyEcore introduceTPArc epackage petrinet

{
24 refactorings.referenceToClass (" TPArc " ,

ecoreref(Transition.dst)) => [
25 addWeightAttribute
26]
27 ecoreref(Place.src).name = " in "
28 ecoreref(Transition.dst).name = " out "
29 ecoreref(TPArc.transition).name = " src "
30 ecoreref(TPArc.place).name = " dst "
31}
32
33 modifyEcore introduceAbstractArc epackage

petrinet {
34 val arc = refactorings.extractSuperclass ("

Arc " ,
35 #[ecoreref(PTArc.weight), ecoreref(TPArc

.weight)])
36
37 val netRef = arc.addNewEReference (" net " ,

ecoreref(Petrinet))
38
39 val arcs = ecoreref(Petrinet).

addNewEReference (" arcs " , arc) [
40 makeContainment
41 makeMultiple
42 makeBidirectional(netRef)
43]
44
45 // drop containment from Place and

Transition
46 val placeOut = ecoreref(Place.out)
47 placeOut.dropContainment
48 val transitionOut = ecoreref(Transition.

out)
49 transitionOut.dropContainment
50
51 // because Arc objects must be contained

in Petrinet.arcs
52 modelMigration[
53 copyRule(
54 [f | isRelatedTo(f, placeOut) ||

isRelatedTo(f, transitionOut)],
55 [f, oldObj, newObj |
56 val migratedNet = getMigrated(oldObj

.eContainer)
57 val migratedArcs = getMigrated(

oldObj.getValueAsList(f))
21
58 migratedNet.getValueAsList(arcs).
addAll(migratedArcs)

59]
60)
61]
62}

Besides simple operations, which in Edelta do not require custom
model migration strategies, like renaming, in this example, we use
‘‘Reference to Class’’ (Herrmannsdoerfer et al., 2010; Bettini et al.,
2022a), which ‘‘makes the reference composite and creates the refer-
ence class as its new type. Single-valued references are created in the
reference class to target the source and target class of the original ref-
erence’’. Concerning model migration, this is handled automatically in
referenceToClass: the original reference is replaced by objects of the
reference class, and the features and containment relations are updated
accordingly. This model migration does not require any intervention
from the user.

We also use ‘‘Extract Superclass’’ with the intended semantics. Also,
in this case, the model migration is handled automatically by the Edelta
implementation extractSuperclass.

We then introduce the new containment relation for (abstract) arcs
and drop the original containment relations from Transition and Place.
These metamodel evolution operations require a custom model migra-
tion strategy, shown at the end of the listing: we ‘‘intercept’’ the model
migration of the original containment references, and, in the migrated
model, we add the migrated arcs into the new containment reference
arcs. Note that we rely on the getMigrated function to retrieve the
migrated versions of the original object (see Section 3.2).

A.2. ExamXML

In the following listing, we present an example of migration (both
for metamodel and model) for the ExamXML (García et al., 2012)
example in Edelta.

1 use EdeltaRefactorings as refactorings
2
3 modifyEcore removeAttributes epackage

examxml {
4 removeElement(ecoreref(question))
5 removeElement(ecoreref(optional))
6}
7
8 modifyEcore introduceExerciseElement

epackage examxml {
9 ecoreref(ExamElement).addNewSubclass ("

ExerciseElement ")
10}
11
12 modifyEcore splitOpenElement epackage

examxml {

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Fig. A.11. ExamXML metamodels - original and evolved.
13 val toSplit = ecoreref(OpenElement)
14 val ePackage = ecoreref(examxml)
15 refactorings.splitClass(
16 toSplit,
17 #[" OpenElement1 " , " OpenElement2 "] ,
18 [origElement |
19 if (origElement.isSet ("

specificQuestion1 "))
20 createInstance(ePackage.getEClass ("

OpenElement1 "))
21 else
22 createInstance(ePackage.getEClass ("

OpenElement2 "))
23]
24)
25 removeElement(ecoreref(examxml.

OpenElement1.specificQuestion2))
26 removeElement(ecoreref(examxml.

OpenElement2.specificQuestion1))
27}

Besides the basic operations of removal of features and the addition
of a new subclass, the interesting part is the use of ‘‘Split Class’’ (Her-
rmannsdoerfer et al., 2010; Bettini et al., 2022a), which splits an
existing class (OpenElement in the example) into two classes, all
sharing the same features (the original class is removed in the evolved
metamodel). In the example, the two obtained classes have to be further
evolved by removing a different feature from each of them. The Edelta
implementation splitClass also requires a lambda expression used dur-
ing model migration. In fact, the user has to specify which object
to create in the migrated model (i.e., which one of the new classes
to instantiate) starting from an object of the original model (i.e., an
instance of the original class that has been split and removed). Note
that the user only has to create such an instance; splitClass will then
take care of migrating the features’ values of the original object (which
is a safe operation since all the new classes resulting from the splitting
all share the same features). In the above listing, we specify a lambda
that creates either an OpenElement1 or an OpenElement2 according
to the setting of the features specificQuestion1 or specificQuestion2
in the original object.

Thus, in this implementation, we assume that specificQuestion1
and specificQuestion2 features are mutually exclusively set for each
object in the original model. If that is not the case, we could provide
a different implementation of the model migration strategy: create an
OpenElement1 and an OpenElement2 according to the setting of
the features specificQuestion1 and specificQuestion2 in the original
object. Thus, if both features were set in the original object, then there
should be two objects instead of one in the migrated model. Since this
implies that given an object, we create two objects in the migrated
model, we cannot easily pass a lambda like the one above to splitClass.
However, Edelta also provides an overloaded version of splitClass
22
where you can pass a lambda that takes an EdeltaModelMigrator and
can then specify any model migration strategy. That is the version of
splitClass used in the following alternative implementation:

1 ... // as above
2 modifyEcore splitOpenElement epackage

examxml {
3 val toSplit = ecoreref(OpenElement)
4 val ePackage = ecoreref(examxml)
5 val elementsFeature = ecoreref(Exam.

elements)
6 refactorings.splitClass(
7 toSplit,
8 #[" OpenElement1 " , " OpenElement2 "] ,
9 [EdeltaModelMigrator it |

10 copyRule(
11 wasRelatedTo(elementsFeature),
12 [origElementsFeature , origExam,

newExam |
13 val newElements = newArrayList
14 val origElements = origExam.

getValueAsList(
origElementsFeature)

15 for (origElement : origElements) {
16 val origElementClass =

origElement.eClass
17 if (origElementClass ==

getOriginal(toSplit)) {
18 if (origElement.isSet ("

specificQuestion1 "))
19 newElements += createFrom(

ePackage.getEClass ("
OpenElement1 ") ,

20 origElement)
21 if (origElement.isSet ("

specificQuestion2 "))
22 newElements += createFrom(

ePackage.getEClass ("
OpenElement2 ") ,

23 origElement)
24 } else {
25 newElements += getMigrated(

origElement)
26 }
27 }
28 newExam.eSet(elementsFeature ,

newElements)
29]
30)
31]
32)
33 removeElement(ecoreref(examxml.

OpenElement1.specificQuestion2))

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.

T
c
t
i
p
t

R

A

B

B

B

B

B

B

B

B

C

C

C

D

D

D

D

G

G

G

H

34 removeElement(ecoreref(examxml.
OpenElement2.specificQuestion1))

35}

Here, we use copyRule, which has been presented in Section 4.1.
hus, we ‘‘intercept’’ the migration of the container object and the
ontainment feature (Exam.elements) so that we have full control on
he migration of the OpenElement objects. Of course, this alternative
mplementation of this example requires more work than the first im-
lementation. However, it shows that Edelta provides enough flexibility
o the developer for complex refactorings.

eferences

nguel, F., Amirat, A., Bounour, N., 2014. Using weaving models in metamodel and
model co-evolution approach. In: 2014 6th International Conference on Computer
Science and Information Technology. CSIT, IEEE, pp. 142–147.

arriga, A., Di Ruscio, D., Iovino, L., Nguyen, P.T., Pierantonio, A., 2020. An extensible
tool-chain for analyzing datasets of metamodels. In: Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. pp. 1–8.

eck, K., 2003. Test Driven Development: By Example. Addison-Wesley, ISBN:
0-321-14653-0.

ettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A., 2017. Edelta: An approach for
defining and applying reusable metamodel refactorings.. In: MODELS. Satellite
Events, pp. 71–80.

ettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A., 2019. Quality-driven detection and
resolution of metamodel smells. IEEE Access (ISSN: 2169-3536) 7, 16364–16376.

ettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A., 2020a. Detecting Metamodel
Evolutions in Repositories of Model-Driven Projects. J. Object Technol. 19 (2),
14:1–22.

ettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A., 2020b. Edelta 2.0: supporting
live metamodel evolutions. In: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. pp. 1–10.

ettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A., 2022a. An executable metamodel
refactoring catalog. Softw. Syst. Model. 21 (5), 1689–1709.

ettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A., 2022b. Supporting safe metamodel
evolution with edelta. Int. J. Softw. Tools Technol. Transf. 24 (2), 247–260.

adavid, J., Combemale, B., Baudry, B., 2012. Ten Years of Meta-Object Facility: An
Analysis of Metamodeling Practices (Ph.D. thesis). INRIA.

icchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A., 2008a. Automating co-evolution
in model-driven engineering. In: 12th Int. IEEE Enterprise Distributed Object
Computing Conf. EDOC 2008, IEEE Computer Society, pp. 222–231.

icchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A., 2008b. Meta-model differences
for supporting model co-evolution. In: Proceedings of the 2nd Workshop on
Model-Driven Software Evolution, Vol. 1, No. 10. MODSE, Citeseer.

emuth, A., Riedl-Ehrenleitner, M., Lopez-Herrejon, R.E., Egyed, A., 2016. Co-evolution
of metamodels and models through consistent change propagation. J. Syst. Softw.
111, 281–297. http://dx.doi.org/10.1016/j.jss.2015.03.003.

i Ruscio, D., Etzlstorfer, J., Iovino, L., Pierantonio, A., Schwinger, W., 2016.
Supporting variability exploration and resolution during model migration. In:
Wasowski, A., Lönn, H. (Eds.), Modelling Foundations and Applications - 12th
European Conference, ECMFA@STAF 2016, Vienna, Austria, July 6–7, 2016,
Proceedings. In: Lecture Notes in Computer Science, vol. 9764, Springer, pp.
231–246. http://dx.doi.org/10.1007/978-3-319-42061-5_15.

i Ruscio, D., Iovino, L., Pierantonio, A., 2011. What is needed for managing co-
evolution in MDE? In: Procs. of the 2nd Int. Workshop on Model Comparison in
Practice. IWMCP ’11, ACM, ISBN: 978-1-4503-0668-3, pp. 30–38.

i Ruscio, D., Iovino, L., Pierantonio, A., 2012. Evolutionary togetherness: How to
manage coupled evolution in metamodeling ecosystems. In: Ehrig, H., Engels, G.,
Kreowski, H., Rozenberg, G. (Eds.), Graph Transformations - 6th International
Conference, ICGT 2012, Bremen, Germany, September 24–29, 2012. Proceedings.
In: Lecture Notes in Computer Science, vol. 7562, Springer, pp. 20–37. http:
//dx.doi.org/10.1007/978-3-642-33654-6_2.

arcés, K., Jouault, F., Cointe, P., Bézivin, J., 2009. Managing model adaptation by
precise detection of metamodel changes. In: European Conference on Model Driven
Architecture-Foundations and Applications. Springer, pp. 34–49.

arcés, K., Vara, J.M., Jouault, F., Marcos, E., 2014. Adapting transformations to
metamodel changes via external transformation composition. Softw. Syst. Model.
13 (2), 789–806. http://dx.doi.org/10.1007/s10270-012-0297-1.

arcía, J., Diaz, O., Azanza, M., 2012. Model transformation co-evolution: A
semi-automatic approach. In: International Conference on Software Language
Engineering. Springer, pp. 144–163.

ebig, R., Giese, H., Stallmann, F., Seibel, A., 2013. On the complex nature of mde
evolution. In: Model-Driven Engineering Languages and Systems: 16th International
Conference, MODELS 2013, Miami, FL, USA, September 29–October 4, 2013.
Proceedings 16. Springer, pp. 436–453.
23
Hebig, R., Khelladi, D.E., Bendraou, R., 2017. Approaches to co-evolution of meta-
models and models: A survey. IEEE Trans. Softw. Eng. 43 (5), 396–414, ISSN
1939-3520.

Herrmannsdoerfer, M., Benz, S., Juergens, E., 2009. COPE-automating coupled evo-
lution of metamodels and models. In: European Conference on Object-Oriented
Programming. Springer, pp. 52–76.

Herrmannsdoerfer, M., Vermolen, S., Wachsmuth, G., 2010. An extensive catalog of
operators for the coupled evolution of metamodels and models. In: SLE. In: LNCS,
vol. 6563, pp. 163–182. http://dx.doi.org/10.1007/978-3-642-19440-5_10.

Iovino, L., Pierantonio, A., Malavolta, I., 2012. On the impact significance of metamodel
evolution in MDE. J. Object Technol. 11, 3:1–33.

Kessentini, W., Alizadeh, V., 2020. Interactive metamodel/model co-evolution using
unsupervised learning and multi-objective search. In: Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems. MODELS ’20, Association for Computing Machinery, New York, NY, USA,
ISBN: 9781450370196, pp. 68–78. http://dx.doi.org/10.1145/3365438.3410966.

Kessentini, W., Sahraoui, H., Wimmer, M., 2016. Automated metamodel/model co-
evolution using a multi-objective optimization approach. In: European Conference
on Modelling Foundations and Applications. Springer, pp. 138–155.

Kessentini, W., Wimmer, M., Sahraoui, H., 2018. Integrating the designer in-the-
loop for metamodel/model co-evolution via interactive computational search. In:
Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. pp. 101–111.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009.
Systematic literature reviews in software engineering–a systematic literature review.
Inf. Softw. Technol. 51 (1), 7–15.

Krause, C., Dyck, J., Giese, H., 2013. Metamodel-specific coupled evolution based on
dynamically typed graph transformations. In: Duddy, K., Kappel, G. (Eds.), Theory
and Practice of Model Transformations - 6th International Conference, ICMT@STAF
2013, Budapest, Hungary, June 18–19, 2013. Proceedings. In: Lecture Notes in
Computer Science, vol. 7909, Springer, pp. 76–91. http://dx.doi.org/10.1007/978-
3-642-38883-5_10.

Paige, R.F., Matragkas, N., Rose, L.M., 2016. Evolving models in model-driven
engineering: State-of-the-art and future challenges. J. Syst. Softw. (ISSN: 0164-
1212) 111, 272–280. http://dx.doi.org/10.1016/j.jss.2015.08.047, URL https://
www.sciencedirect.com/science/article/pii/S0164121215001909.

Paternostro, M., Hussey, K., 2006. Advanced features of the eclipse modeling
framework. March 2006.

Rose, L.M., Herrmannsdoerfer, M., Mazanek, S., Gorp, P.V., Buchwald, S., Horn, T.,
Kalnina, E., Koch, A., Lano, K., Schätz, B., Wimmer, M., 2014a. Graph and
model transformation tools for model migration - Empirical results from the
transformation tool contest. Softw. Syst. Model. 13 (1), 323–359. http://dx.doi.
org/10.1007/s10270-012-0245-0.

Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D.S., Garcés, K., Paige, R.F.,
Polack, F.A.C., 2010a. A comparison of model migration tools. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (Eds.), Model Driven Engineering Languages and Systems
- 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010,
Proceedings, Part I. In: Lecture Notes in Computer Science, vol. 6394, Springer,
pp. 61–75. http://dx.doi.org/10.1007/978-3-642-16145-2_5.

Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A., 2010b. Model migration with
epsilon flock. In: International Conference on Theory and Practice of Model
Transformations. Springer, pp. 184–198.

Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A., Poulding, S., 2014b. Epsilon flock:
a model migration language. Softw. Syst. Model. 13 (2), 735–755.

Rutle, A., Iovino, L., König, H., Diskin, Z., 2020. A query-retyping approach to model
transformation co-evolution. Softw. Syst. Model. 19, 1107–1138.

Schmidt, D.C., 2006. Guest editor’s introduction: Model-driven engineering. Computer
(ISSN: 1558-0814) 39 (2), 25–31.

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M., 2008. EMF: Eclipse Modeling
Framework. Pearson Education.

Taentzer, G., Mantz, F., Arendt, T., Lamo, Y., 2013. Customizable model migration
schemes for meta-model evolutions with multiplicity changes. In: International
Conference on Model Driven Engineering Languages and Systems. Springer, pp.
254–270.

Taentzer, G., Mantz, F., Lamo, Y., 2012. Co-transformation of graphs and type graphs
with application to model co-evolution. In: Ehrig, H., Engels, G., Kreowski, H.,
Rozenberg, G. (Eds.), Graph Transformations - 6th International Conference, ICGT
2012, Bremen, Germany, September 24–29, 2012. Proceedings. In: Lecture Notes
in Computer Science, vol. 7562, Springer, pp. 326–340. http://dx.doi.org/10.1007/
978-3-642-33654-6_22.

Wagelaar, D., Iovino, L., Di Ruscio, D., Pierantonio, A., 2012. Translational semantics
of a co-evolution specific language with the EMF transformation virtual machine.
In: Hu, Z., de Lara, J. (Eds.), Theory and Practice of Model Transformations - 5th
International Conference, ICMT@TOOLS 2012, Prague, Czech Republic, May 28–29,
2012. Proceedings. In: Lecture Notes in Computer Science, vol. 7307, Springer, pp.
192–207. http://dx.doi.org/10.1007/978-3-642-30476-7_13.

Williams, J.R., Paige, R.F., Polack, F.A.C., 2012. Searching for model migration
strategies. In: Proceedings of the 6th International Workshop on Models and
Evolution. In: ME12, Association for Computing Machinery, New York, NY, USA,
ISBN: 9781450317986, pp. 39–44.

http://refhub.elsevier.com/S0164-1212(24)00055-4/sb1
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb1
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb1
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb1
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb1
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb3
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb3
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb3
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb4
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb4
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb4
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb4
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb4
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb5
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb5
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb5
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb6
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb6
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb6
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb6
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb6
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb7
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb7
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb7
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb7
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb7
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb7
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb7
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb8
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb8
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb8
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb9
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb9
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb9
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb10
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb10
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb10
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb11
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb11
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb11
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb11
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb11
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb12
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb12
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb12
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb12
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb12
http://dx.doi.org/10.1016/j.jss.2015.03.003
http://dx.doi.org/10.1007/978-3-319-42061-5_15
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb15
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb15
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb15
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb15
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb15
http://dx.doi.org/10.1007/978-3-642-33654-6_2
http://dx.doi.org/10.1007/978-3-642-33654-6_2
http://dx.doi.org/10.1007/978-3-642-33654-6_2
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb17
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb17
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb17
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb17
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb17
http://dx.doi.org/10.1007/s10270-012-0297-1
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb19
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb19
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb19
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb19
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb19
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb20
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb20
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb20
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb20
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb20
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb20
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb20
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb21
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb21
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb21
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb21
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb21
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb22
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb22
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb22
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb22
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb22
http://dx.doi.org/10.1007/978-3-642-19440-5_10
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb24
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb24
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb24
http://dx.doi.org/10.1145/3365438.3410966
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb26
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb26
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb26
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb26
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb26
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb27
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb27
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb27
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb27
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb27
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb27
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb27
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb28
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb28
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb28
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb28
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb28
http://dx.doi.org/10.1007/978-3-642-38883-5_10
http://dx.doi.org/10.1007/978-3-642-38883-5_10
http://dx.doi.org/10.1007/978-3-642-38883-5_10
http://dx.doi.org/10.1016/j.jss.2015.08.047
https://www.sciencedirect.com/science/article/pii/S0164121215001909
https://www.sciencedirect.com/science/article/pii/S0164121215001909
https://www.sciencedirect.com/science/article/pii/S0164121215001909
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb31
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb31
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb31
http://dx.doi.org/10.1007/s10270-012-0245-0
http://dx.doi.org/10.1007/s10270-012-0245-0
http://dx.doi.org/10.1007/s10270-012-0245-0
http://dx.doi.org/10.1007/978-3-642-16145-2_5
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb34
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb34
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb34
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb34
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb34
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb35
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb35
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb35
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb36
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb36
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb36
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb37
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb37
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb37
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb38
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb38
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb38
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb39
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb39
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb39
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb39
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb39
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb39
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb39
http://dx.doi.org/10.1007/978-3-642-33654-6_22
http://dx.doi.org/10.1007/978-3-642-33654-6_22
http://dx.doi.org/10.1007/978-3-642-33654-6_22
http://dx.doi.org/10.1007/978-3-642-30476-7_13
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb42
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb42
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb42
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb42
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb42
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb42
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb42

The Journal of Systems & Software 212 (2024) 112012L. Bettini et al.
Wimmer, M., Kusel, A., Schönböck, J., Retschitzegger, W., Schwinger, W., Kappel, G.,
2010. On using inplace transformations for model co-evolution. In: Proc. 2nd Int.
Workshop Model Transformation with ATL, Vol. 711. Citeseer, pp. 65–78.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Shepperd, M.J., Hall, T., Myrtveit, I.
(Eds.), 18th International Conference on Evaluation and Assessment in Software
Engineering. EASE ’14, London, England, United Kingdom, May 13–14, 2014, ACM,
pp. 38:1–38:10. http://dx.doi.org/10.1145/2601248.2601268.

Yu, I.C., Berg, H., 2015. A formalisation of analysis-based model migration. In:
Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J. (Eds.), MODELSWARD 2015 -
Proceedings of the 3rd International Conference on Model-Driven Engineering and
Software Development. ESEO, Angers, Loire Valley, France, 9–11 February, 2015,
SciTePress, pp. 86–98. http://dx.doi.org/10.5220/0005240900860098.

Zhang, H., Babar, M.A., Tell, P., 2011. Identifying relevant studies in software
engineering. Inf. Softw. Technol. 53 (6), 625–637.

Lorenzo Bettini is an Associate Professor in Computer Science at DISIA Dipartimento di
Statistica, Informatica, Applicazioni ’Giuseppe Parenti’, Università di Firenze, Italy, since
February 2016. Previously, he was an Assistant Professor (Researcher) in Computer
Science at Dipartimento di Informatica, Università di Torino, Italy. His research interests
cover design, theory and implementation of programming languages (in particular
Object-Oriented languages and Network aware languages). Contact him at lorenzo.
bettini@unifi.it, or visit https://www.lorenzobettini.it.

Amleto Di Salle is currently an assistant professor at the GSSI – Gran Sasso Science
Institute, L’Aquila - in the Computer Science department. In 2015, he received a Ph.D.
24
in computer science from the University of L’Aquila. His main research activities are
related to several aspects of Software Engineering, particularly in distributed systems
composition, software architecture, model-based software engineering, and software
systems evolution, focusing on technical debt. He has worked on several European and
national research projects, such as CHOReOS, CHOReVOLUTION, INCIPICT, Territori
Aperti, and Banca Dati Emergenze. He is currently an associate editor of the Journal
of Computer Languages and a member of the Journal of Universal Computer Science
Editorial Board. He has been involved in the program committee conferences and
workshops and organized several workshops, such as MDE4SA@ICSA and FPVM@STAF.
Contact him at amleto.disalle@gssi.it, or visit https://amletodisalle.github.io/.

Ludovico Iovino is Assistant Professor at the GSSI – Gran Sasso Science Institute,
L’Aquila - in the Computer Science department. His interests include Model Driven
Engineering (MDE), Model Transformations, Metamodel Evolution, code generation and
software quality evaluation. He has been included in program committees of numerous
conferences and in the organization of various conferences, e.g., STAF, MODELS, iCities,
he is also part of the steering committee of models and evolution workshop co-located
with MODELS. He is part of different academic projects related to Model Repositories,
model migration tools and Eclipse Plugins. He is in the editorial board of the COLA
journal and in the Review board of TSE. Contact him at ludovico.iovino@gssi.it, or
visit http://www.ludovicoiovino.com.

Alfonso Pierantonio is Professor at the University of L’Aquila, Italy. His interests
include Model-Driven Engineering with a specific emphasis on co-evolution problems,
bidirectionality, and megamodeling. He has chaired a number of international confer-
ences and organized numerous scientific events (including ICMT, STAF and MODELS).
He is in the editorial board of several scientific journals (including SoSyM and JOT).
Contact him at alfonso.pierantonio@univaq.it, or visit http://pieranton.io.

http://refhub.elsevier.com/S0164-1212(24)00055-4/sb43
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb43
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb43
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb43
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb43
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.5220/0005240900860098
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb46
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb46
http://refhub.elsevier.com/S0164-1212(24)00055-4/sb46
mailto:lorenzo.bettini@unifi.it
mailto:lorenzo.bettini@unifi.it
https://www.lorenzobettini.it/
mailto:amleto.disalle@gssi.it
https://amletodisalle.github.io/
mailto:ludovico.iovino@gssi.it
http://www.ludovicoiovino.com/
mailto:alfonso.pierantonio@univaq.it
http://pieranton.io/

	Supporting reusable model migration with Edelta
	Introduction
	Model/Metamodel Co-evolution
	Background
	Literature analysis
	Search process
	Selection process

	Analysis of the results
	Introduction of subclasses
	Merge and Split attributes
	Extract metaclass
	Restrict/Enlarge multiplicity

	Supporting Reuse in Model Migration with Edelta
	Evolving metamodels with Edelta
	Co-evolving models with Edelta
	Classification of Edelta migration patterns

	Running examples
	Collaborative migration patterns
	Autonomous migration patterns
	Interactive migration patterns

	Evaluation
	Validation of the Migration Patterns implemented in the Edelta Library (RQ3)
	Applicability of the Migration Patterns implemented in Edelta (RQ4)

	Discussion
	Threats to Validity
	Related Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Edelta Code examples
	Petrinet
	ExamXML

	References

