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Abstract: Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain,
control a broad range of physiological processes. Several ion channels have been characterized
in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-à-
go-go–related gene) K+ channels that are particularly important in setting neuronal firing rhythms
and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and
pathophysiological roles of ERG channels in the brain remain unclear despite their expression in
several structures. By performing immunohistochemical investigations, we found that ERG-1A,
ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional
role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain
slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent,
increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have
shown the presence of distinct ERG channel subunits in the LC which play an imperative role in
modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players
behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation
of different behaviors and in several disorders.

Keywords: locus coeruleus neurons; noradrenergic system; ERG K+ channels; ether-à-go-go–related
gene; WAY-123,398; class III anti-arrhythmic drug

1. Introduction

Located in the anterior pons, the locus coeruleus (LC), with its extensive innervations
throughout the central nervous system, is the major noradrenergic nucleus of the brain
and thereby controls a broad range of physiological processes that include cognition,
learning and memory, sleep–wake cycle, arousal, attention, mood, anxiety and pain [1–7].
These and other neurophysiological processes are known to be affected by changes in
the discharge properties of LC neurons [7], which in turn are dependent on the intrinsic
membrane properties and the ion channel constituents of these neurons. For example,
in a previous study, we demonstrated that the inwardly rectifying potassium channel
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Kir5.1 plays a crucial role in defining the CO2/pH sensitivity of LC neurons. The LC is a
CO2-chemosensitive region of the pons where more than 80% of its neurons respond to
hypercapnic acidosis with an increase in firing rate [8,9]. Kir5.1 is likely a key contributor
to LC’s firing response to hypercapnic acidosis [8].

LC neurons are endogenous pacemakers that fire spontaneous and repetitive action poten-
tials [9]. Besides Kir5.1, several ion channels have been characterized in LC neurons [8,10–15].
However, ERG (ether-à-go-go–related gene) channels that belong to the KCNH super-family
of K+ channels [16], and that are particularly important in setting neuronal firing rhythms
and automaticity [16–18], have not been identified thus far in the LC. ERG channels can be
subdivided into three groups: ERG-1 (KCNH2, Kv11.1), ERG-2 (KCNH6, Kv11.2) and ERG-
3 (KCNH7, Kv11.3). In addition, a long splice variant of ERG-1 (ERG-1A) and a short one
(ERG-1B) have been identified [19]. ERG channels have been implicated in the regulation
of excitability, discharge pattern, spike-frequency adaptation and the resonance properties of
neurons [17,18,20,21].

The human ERG-1 (hERG-1; KCNH2) encodes the pore-forming subunit of a rapid-
delayed rectifier K+ channel, the current (IKr) through which ensures a fast repolarization
phase of the cardiac action potentials and, consequently, regulates heart rhythms [22].
Its dysfunction is known to cause long QT syndrome and inherited and acquired cardiac
arrhythmias [22,23]. However, while the role of this channel is quite well-established in car-
diomyocytes, in the central nervous system its neurophysiological and pathophysiological
roles remain unclear despite its expression in several crucial brain structures [18–20,24–28].

By performing immunohistochemical and electrophysiological investigations, we found
that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in LC neurons, where members
of the ERG channel family modulate intrinsic electrical properties and rhythmic firing.

2. Results
2.1. Immunohistochemical Localization of ERG Channels within Murine LC Nuclei

In order to determine the localization of ERG channel types within the LC nuclei,
rabbit polyclonal anti-ERG-1A, anti-ERG-1B, anti-ERG-2 and anti-ERG-3 antibodies were
produced, purified and tested as previously described [19]. Using these antibodies, posi-
tive immunoreactivity was observed within the brainstem slices that were dissected from
C57BL/6J mice. LC neurons were stained with the anti-ERG-1A, anti-ERG-1B, anti-ERG-2
and anti-ERG-3 antibodies and the signal was highly specific (Figure 1A–E). Notably, the
images point out that numerous cell bodies located within the LC nucleus were immunopos-
itive for all channel types. As reported for other brain regions [19,20], ERG-2 appeared to be
the least expressed among the channel subfamily. For ERG-1A and ERG1-B, expression in
the LC was also confirmed via in situ hybridization (Figure 1F–I). Moreover, ERG-positive
cells were Tyrosine Hydroxylase (TH) positive, further confirming their expression in LC
neurons (Figure 1J–M). Overall, these observations demonstrated that ERG-1A, ERG-1B,
ERG-2 and ERG-3 channel types are expressed by LC neurons.

2.2. ERG Channels Regulate the Spontaneous Activity of LC Neurons

LC neurons in the pons were confined to the border of the IVth ventricle (Figure 2A,B),
within an anatomical area that was readily identifiable for patch-clamp recordings from living
brain slices imaged under infrared differential interference contrast microscopy. Moreover, the
electrical properties of LC neurons recorded in brain slices were remarkably uniform [8], which
further facilitated their recognition and recording. Slices were dissected from P40 ± 10-day-
old mice and the electrical properties of LC neurons were assessed by means of whole-cell
patch-clamp recordings in current-clamp mode [8]. LC neurons were spontaneously active
(within the range of 0.5–5 Hz), displayed pacemaker-like firing, and possessed consistent
action potential parameters. In particular, their resting membrane potentials oscillated between
−32 mV and −55 mV, displayed input resistance of 366 ± 41 MΩ (n =12) and basal firing
frequencies of 3.4 ± 0.5 Hz (n = 12). To assess the functional role of ERG channels in LC neurons,
we used WAY-123,398 (WAY), an ERG channel blocker, the efficacy of which we had previously
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reported in brain-slice recordings [20,29–31]. The electrophysiological properties of LC neurons
modulated by ERG channels were analyzed under control conditions by perfusing the brain
slices with a CSF and adding 10 µM WAY (final concentration in aCSF) to investigate the effects
of channel block on the spontaneous discharge of these neurons and during a wash-out period.
An enhancement of the spontaneous firing frequency was observed in LC neurons after the
addition of WAY (Figure 3A, Table 1; WAY 188 ± 35, % of baseline vs. wash-out 109 ± 13.6, % of
baseline p < 0.05; n = 6 neurons). There was no significant difference between the wash-out and
baseline levels, indicating that this enhancement was reversed during drug wash-out. Figure 3B
shows the effect of WAY on a representative LC neuron. WAY was able to almost double
the firing frequency and cause an neuronal firing irregularity, which consisted of frequency
fluctuations with unpredictable intervals (Figure 4D, raster plot).
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Figure 1. Expression of ERG1 channels in LC neurons. (A–D) Expression of Erg1a (A), Erg1b (B), 
Erg2 (C) and Erg3 (D) proteins in the LC and adjacent areas, as visualized through immunohisto-
chemistry. (E) represents a stained section where the primary antibody was omitted. (F–I) Expres-
sion of Erg1a (F) and Erg1b (H) mRNAs in the LC and adjacent areas (sagittal sections), via non-
radioactive in situ hybridization using anti-sense probes. Sections processed in parallel with sense 
probes (G,I) showed no signal. High magnification images of LC stained with the anti-TH (K) and 
anti-ERG1 (L) antibodies. Images of neurons stained with DAPI (J) and merged (M) are reported. 
Note that cells within the LC nucleus (indicated as LC) were heavily stained by the anti-TH specific 
antibody (green signal). Staining with anti-ERG1 antibody (red signal) was also present. Scale bars 
(A–I) = 100 μm, (J–M) image size is 185 × 185 μm. Abbreviations: 4V, 4th ventricle; Bar, Barrington’s 
nucleus; IntP, interposed cerebellar nucleus, posterior part; LC, Locus coeruleus; LDTg, laterodorsal 
tegmental nucleus; MVePC, medial vestibular nucleus, parvicellular part; PkC, Purkinje cells; SpVe, 
spinal vestibular nucleus. 
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Figure 1. Expression of ERG1 channels in LC neurons. (A–D) Expression of Erg1a (A), Erg1b (B), Erg2
(C) and Erg3 (D) proteins in the LC and adjacent areas, as visualized through immunohistochemistry.
(E) represents a stained section where the primary antibody was omitted. (F–I) Expression of Erg1a
(F) and Erg1b (H) mRNAs in the LC and adjacent areas (sagittal sections), via non-radioactive
in situ hybridization using anti-sense probes. Sections processed in parallel with sense probes
(G,I) showed no signal. High magnification images of LC stained with the anti-TH (K) and anti-ERG1
(L) antibodies. Images of neurons stained with DAPI (J) and merged (M) are reported. Note that cells
within the LC nucleus (indicated as LC) were heavily stained by the anti-TH specific antibody (green
signal). Staining with anti-ERG1 antibody (red signal) was also present. Scale bars (A–I) = 100 µm,
(J–M) image size is 185 × 185 µm. Abbreviations: 4V, 4th ventricle; Bar, Barrington’s nucleus; IntP,
interposed cerebellar nucleus, posterior part; LC, Locus coeruleus; LDTg, laterodorsal tegmental
nucleus; MVePC, medial vestibular nucleus, parvicellular part; PkC, Purkinje cells; SpVe, spinal
vestibular nucleus.
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Figure 2. Anatomical localization of LC nucleus. (A) Sagittal section of the murine whole brain,
each color distinguishes different regions in the brain, with black showing the localization of the
LC nucleus in the pons of brainstem. (B) Cartoon showing the boundaries of the LC nucleus in red
at the level of the Vth ventricle, compared to other surrounding structures in pink, where sections
were dissected.
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Figure 3. WAY increased LC neuron firing frequency. (A) Plot showing LC neuron firing rate (%)
increased after WAY application and recovered back to baseline levels during the wash-out period.
One-way ANOVA was performed on the mean of data points taken from a 60 s period representing
the peak effect of each condition. * p < 0.05; n = 6 neurons each from a different mouse. (B) Firing
frequency from a representative LC neuron. The firing frequency of a 60 s period in control/baseline
conditions, during WAY application and during the wash-out. (C) Bar graph showing data from
the neuron in (B). One-way ANOVA was performed on the mean data points enclosed by the red
rectangles shown in (B); **** p < 0.0001. (D) Raster plots of the data shown in (B).
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Table 1. Effects of WAY application on firing properties and firing pattern of LC neurons.

WAY-123,398 10 µM (n = 6 Neurons) Wash-Out (n = 6 Neurons)

Firing Freq + ISI + CV + Firing Freq + ISI + CV +

188 ± 35 * 62 ± 10 * 124 ± 14 109 ± 14 * 102 ± 14.4 112 ± 10
+ % of baseline ± SEM; percentage of variation in firing rate, ISI and CV during the application and wash-out of drug.
The results represent the mean of 6 different recordings from 6 mice. * Significantly different from baseline p < 0.05.
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Figure 4. WAY alters LC neuronal firing pattern. (A) Bar graph showing a decrease in mean inter-
spike interval (ISI) with WAY application (* p < 0.05, ns = no significant difference, n = 6), that was
reversed by wash-out. (B–D) Representative data from a single neuron, showing ISI scatterplots (B),
ISI distributions fitted with the Gaussian equation Y = Amplitude × exp(−0.5 × ((X-Mean)/SD)2)
(C) and ISI auto-correlograms (D) calculated in baseline conditions (blue), during WAY application
(orange) and after drug wash-out (green), from a 200 s representative period of a single recording.
Raw ISI values are plotted. The plots point out a regular firing pattern in the baseline and wash-out
periods that is remarkably evidenced by the regular peaks in the ISI auto-correlograms. By contrast,
a more irregular firing pattern of LC neurons during WAY application was clearly seen by the less
defined peaks.

While there was no significant difference in the coefficient of variation (CV), the inter-
spike interval (ISI) decreased following WAY application (baseline 819 ± 197 ms vs. WAY
531 ± 191 ms, one-way ANOVA, p < 0.05, n = 6, Figure 4A). Wash-out recovered the ISI back
to 733 ± 135 ms, with no statistically significant difference between it and the baseline (n = 6,
p = 0.6; Figure 4A, Table 1). The regular firing pattern of LC neurons recorded in control
conditions was characterized by the well-defined cluster in the scatterplot (Figure 4B), the
narrow bell-shaped distribution of the ISI histogram (Figure 4C) and the well-defined mul-
tiple peaks in the auto-correlogram (Figure 4D). The discharge irregularity brought about
by WAY was demonstrated by the more dispersed cluster in the scatterplot (Figure 4B), and
the flatter distribution with fewer peaks in the ISI auto-correlogram (Figure 4D).
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3. Discussion

In this study, and for the first time, proof of the presence of ERG-1A, ERG-1B, ERG-2
and ERG-3 channel subunits in the LC was established. The widespread expression of ERG
channels in the brain and in very critical regions, such as the LC, indicates the importance
of this channel type in the regulation of CNS functions. The study, also for the first time,
brings forth the channel’s imperative role in regulating neuronal discharge patterns in LC
neurons. Specifically, we reported in LC neurons a significant enhancement of spontaneous
tonic firing frequency accompanied by an increase in firing irregularities after specific block
of the ERG channels, indicating that ERG channels are a mechanistic tool that prevents
increased firing rates and discharge irregularities in LC neurons.

Previous studies on other brain regions have shown that ERG channels variably affect
neuronal excitability and firing frequency. ERG channel blockers increase [17,18,20,26] or
decrease [32] firing frequency. They may cause or enhance spike-frequency adaptation [26],
reduce spike-frequency adaptation, converting it to regular firing [17,18,20], or affect the
resonance properties of neurons [20]. The variation may be due to differences in the
characteristics of the areas and dynamic properties of the neurons, including the type of
inputs impinging on the neuron and the resulting intracellular signaling cascades. Indeed,
ERG channels are modulated by several intracellular signaling pathways that may mediate
their role as regulators of excitability. In particular, protein kinase A and C inhibit ERG
channel function by direct ERG subunit phosphorylation, suggesting that ERG channels,
and, consequently, neuronal excitability, can be regulated by a variety of G-protein coupled
receptors [33]. Notably, the stimulation of M1 and M2 muscarinic receptors activates
PKC, and raises [Ca2+]i and inhibits human ERG currents [34,35]. In the LC, acetylcholine
induces increases in the neuronal firing rate, which is antagonized by the M1 antagonist
pirenzepine [36,37]. Similarly, activation of the metabotropic glutamate receptor mGluR1
in Purkinje cells and mitral/tufted cells of the olfactory bulb reduced ERG currents and
increased firing frequency and excitability [35,38]. Intriguingly, mGluR1 receptors are
expressed in LC neurons [33], where they may play a role in the enhancement of firing rate
via ERG channel modulation.

LC neurons are intrinsic pacemakers that fire spontaneously in the absence of synaptic
input. Recent optogenetic studies have confirmed that there is a variability in the LC
neuronal firing rate and pattern that mediates the diverse behavioral functions associated
with the LC [7,38]. For example, the LC’s widespread innervation throughout the CNS
allows for global brain arousal, and increases in LC neuronal firing rates are correlated
with increased synchrony and arousal [39–41]. Moreover, different LC discharge rates are
associated with different levels of arousal and anxiety states [7,39,40]. In the LC, increased
tonic firing, such as that which we have observed with the ERG channel block, induces
anxiety and aversive behaviors [42], whereas a decrease in LC tonic discharge rate is
associated with a disengagement from the environment [6,43] and is evident, for instance,
during slow-wave sleep. In contrast, there is discharge silence during REM sleep. During
the arousal state, a moderate tonic firing is necessary for the occurrence of phasic burst
firing in response to salient stimuli [44]. Unlike the 1–6 Hz continuous discharge in the tonic
mode, in the phasic mode LC neurons synchronously fire in bursts of 10–15 Hz, permitting
optimum performance and allowing for a shift in focus to task-related functions as well as
to novel stimuli [6,45]. Excessive or insufficient tonic firing would impede phasic firing and
its associated task performance. These electrophysiological observations indicate strongly
that changes in the firing rate are involved in the transition between states of arousal
and consciousness as well as moving from one stage of the sleep–wake cycle to another.
While these findings bring forth LC firing patterns as a mechanism for the generation of
different states and behaviors, we propose that ERG channels are important players behind
the changes in, and/or maintenance of, firing rates. As such, it would be interesting to
investigate ERG dysfunction in different anxiety, attention, and sleep disorders.

Many antipsychotic medications, such as Haloperidol and Chlorpromazine, are potent ERG
channel inhibitors or blockers [16,46], indicating a possible association between altered ERG
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activity and cognitive dysfunction. The antipsychotic effects of these medications are induced
by blocking dopamine receptors. However, these medications also block ERG channels at
similar therapeutic concentrations, thereby affecting neuronal excitability [16,18,46]. As such, an
ERG channel blockade may contribute to the antipsychotic effect. Notably, in a human study,
Haloperidol administration significantly improved memory performance, which was associated
with increased LC activity [47]. On the other hand, antipsychotics, as well as antibiotics and
antiemetics, that are known to inhibit or block ERG channels, can predispose certain individuals
to long QT syndrome and cardiac arrhythmias due to the blockade of cardiac ERG channels.
However, LC noradrenergic activation increases the heart rate and the adverse risks associated
with tachycardia by depressing the activity of parasympathetic cardiac vagal neurons [48]. We
propose that these drugs’ blockage of the ERG channels in LC neurons alter their firing pattern
and possibly change the heart rate, potentially enhancing the risk of cardiac arrhythmia. Thus,
the potential role of ERG channels in the LC and the mechanisms of action of these medications
would deserve further investigation.

There is evidence for the pathological role of ERG channels in the brain. The signifi-
cant co-occurrence of epilepsy with long QT syndrome is noteworthy [49,50]. Furthermore,
mutations in the KCNH7 gene (ERG-3, Kv11.3) were associated with bipolar spectrum
disorders [51,52]. The results of these studies have shed light on the possible role of ERG
channel dysfunction in diseases involving the LC. The role of the LC in bringing about
schizophrenia’s cognitive symptoms has been recently emphasized with the observation
that positive symptoms are consistent with hyperactivity of the LC noradrenergic system,
while negative symptoms are consistent with a hypoactivity of this system [53]. Interest-
ingly, ERG dysfunction and its associated disruption in neural firing has been implicated in
schizophrenia [54,55]. ERG3 expression in schizophrenic hippocampi was 2.5-fold greater
than ERG-1A, resulting in a rapidly deactivating K+ current and a high-frequency, non-
adapting firing pattern [54]. More importantly, an association between ERG mutations and
schizophrenia has been established [54–57]. Finally, stress-initiated LC dysfunction has
been proposed along with genetic susceptibility as being responsible for observed tonic-
and phasic-firing imbalances that lead to schizophrenic dysfunctional network integration
and cognitive deficits [54]. Are these schizophrenic LC firing imbalances and altered ex-
citability a result of abnormal ERG currents? This question remains to be answered, and
suggests a need for novel therapeutic investigation based on ERG-modulating agents.

LC’s role in the prodromal or premotor stage of Parkinson’s disease is well estab-
lished [58]. In fact, LC cells show αSyn aggregation and Lewy pathology formation several
years earlier than dopaminergic SN neurons’ degeneration is apparent. In Parkinson’s
disease models, αSyn overexpression or rotenone exposure enhanced the spontaneous LC dis-
charge frequency, which was associated with a marked decrease of after-hyperpolarization
amplitude [58]. The small-conductance Ca2+-activated K+ (SK) channels were proposed
as mediators of this enhancement. Interestingly, in Parkinsonian rats, ERG K+ channel
blockers reduced burst discharges and the firing frequency of subthalamic nucleus neurons,
which led to an improvement in locomotor deficits, while the activators led to an increased
burst mode and impaired motor function in normal rats [21]. Here, we propose that ERG
channels reduced the mediators of the spontaneous firing rate in the LC. Therefore, it
would be interesting to explore LC ERG channel dysfunction as a possible contributor to
Parkinson and, more importantly, to explore the modulation of the LC ERG channel as a
therapeutic option.

In conclusion, we reported the protein expression of ERG channels in mice LC nuclei
and we presented electrophysiological data to confirm not only that they are functional,
but that they play a key role in the LC neuronal discharge pattern. We presented ERG
channels as essential means for the control of speed and stability of LC firing. The outcome
of ERG channel activity on LC neuronal excitability may be a contributing mechanism
towards LC’s regulation of several physiological processes attributed to it. Furthermore,
ERG K+ channel dysfunction may constitute an important pathophysiological mechanism
for disorders of the central nervous system associated with LC and the noradrenergic
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system, and should be considered during pharmacotherapeutic interventions and vigilance.
We anticipate that, in the near future, known neurological and psychiatric disorders will be
shown to be largely attributed to ERG channel dysfunction in brain areas including the LC.

4. Materials and Methods
4.1. Immunohistochemistry

This study was carried out using brainstem tissue dissected from young (P10) and
adult (P60) mice (C57BL/6J). This procedure was performed in accordance with national
and international regulations, approved by the ethics committee, and compliant with AR-
RIVE guidelines. Mice were transcardially perfused with saline (0.9% w/v sodium chloride),
followed by paraformaldehyde (Sigma, St. Louis, MO, USA; 4% w/v) in phosphate-buffered
saline (PBS, 3.2 mM Na2HPO4, 0.5mM KH2PO4, 1.3 mM KCl, 135 mM NaCl, pH7.4) under
terminal anesthesia induced by chloral hydrate (300 mg/kg i.p.). Brains were removed
and post-fixed overnight at 4 ◦C in the same fixative, then soaked in 30% sucrose for cry-
oprotection. Brains were rapidly frozen and slices were obtained with a freezing cryostat
at 30 µm thickness and collected in ice-cold PBS. Immunohistochemistry was performed
as described previously [19]. The specificity of antibodies in recognizing ERG proteins in
mouse brain-sections has been previously described [19]. Images were acquired with a
Leica DMR light microscope equipped with a Leica DC200 digital camera, converted to
greyscale, and adjusted for brightness and contrast using Adobe Photoshop (v.6.0; Abode
Systems, San Jose, CA, USA). Each immunohistochemical experiment was repeated by
using brainstem slices collected from three animals at both P10 and P60.

Immunofluorescence (IF) on cells was performed following the protocol previously
described by Guasti et al., 2008 [19]. For IF on mice brains, the latter was kindly provided
by Prof. Andrea Becchetti (Department of Biotechnology and Biosciences, University of
Milano-Bicocca, Milano, Italy), snap frozen in liquid nitrogen and sectioned with a cryostat
in 20 mm sections to localize the LC area. After 2 hours of blocking in PBS with 10%
BSA, sections were incubated for a further 2 hours with anti-TH (Millipore) (diluted 1:10),
followed by 1 hour incubation with antimouse Alexa Fluor 488 (Thermo Fisher Scientific).
Incubation with poly-hERG1 was performed overnight (diluted 1:100) at 4 ◦C. Nuclei were
stained with Hoechst (1:1000 in PBS, 45 minutes; Merck Sigma). Images were captured
using a Nikon TE2000 confocal microscope, as described in Lottini, et al., 2021 [59].

4.2. Tight-Seal, Whole-Cell Recordings

This study was carried out using brainstem slices dissected from adult C57BL/6J
male mice (P40 ± 10). Mice were decapitated after 30 min of deep chloral hydrate (4%
in saline, intraperitoneal) anesthesia and the cranium was opened to expose the entire
brain. The brain was rapidly removed and put into an ice-cold oxygenated solution of
2.5 mM KCl, 26.2 mM NaHCO3, 1 mM NaH2PO4, 2 mM MgSO4, 0.5 mM CaCl2, 11 mM
D-glucose, 238 mM sucrose, saturated with 95% O2 and 5% CO2, at pH 7.4. Coronal slices
(220 µm thickness) were cut from the brainstem (submerged in the same ice-cold solution)
using a Vibratome. Slices containing the LC were incubated at 30 ◦C for 30 min in artificial
cerebrospinal fluid (aCSF) (125 mM NaCl, 2.5 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4,
1 mM MgCl2, 2.4 mM CaCl2, 11 mM D-glucose, saturated with 95% O2 and 5% CO2, pH7.4)
and were transferred to a recording chamber (500 µl volume). The slice was secured by
means of a nylon mesh glued to a U-shaped platinum wire that totally submerged the
tissue in a continuously flowing aCSF at a rate of 2.5 ml/min (warmed to 32 ± 1 ◦C). All
neurons fired spontaneously at frequencies between 0.5 and 5 Hz (3.6 ± 1.1 Hz) when
perfused with control aCSF (95% O2 and 5% CO2, pH7.4).

Patch-clamp recordings were performed from LC neurons under visual control (using
Hamamatsu and Axioskop 2FS infrared optics) and were recorded in the current-clamp
configuration using an EPC-9 amplifier and acquired with Patch Master software (HEKA
Elektronik GmbH, Reutlingen, Germany). Patch glass pipettes (King Precision Glass,
Claremont, CA, USA) were pulled in several stages to a tip with approximately 1 µm
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outside diameter, had resistances of 3–5 MΩ and were filled with an intracellular solu-
tion containing 115 mM CH3KO4S, 20 mM KCl, 1.5 mM MgCl2, 5 mM HEPES, 0.1 mM
EGTA, 2 mM Mg-ATP, 0.5 Na-GTP and 10 mM C4H10N3O5P (pH 7.4). The liquid junction
potential was calculated to be approximately 10 mV (pipette negative relative to bath).
All data were obtained using this solution and left uncorrected. After the seal formation
(2–10 GΩ), a whole-cell configuration was obtained by further suction of the patch mem-
brane (200–300 MΩ). Current-clamp recordings were performed after ≥10 min of stable
seal formation and were analyzed only if action potential amplitudes were ≥80mV, resting
membrane potentials oscillated between −30 and −50 mV and series resistance changed
<20% throughout the entire recording period.

4.3. ERG Channels’ Blockage

To assess the functional role of ERG channels in LC neurons, we used 10 µM WAY-123,398
(C19H25N5O4S) which belongs to the class III anti-arrhythmic agents that block all ERG channel
types at this concentration, in a voltage-independent fashion [29,30]. WAY-123,398 was a
generous gift from Dr. W. Spinelli, Wyeth-Ayerst Research, Princeton, NJ, USA. WAY-123,398
aliquots of stock solution (1mM) were prepared in distilled water and stored at −20 ◦C. The
blocker was diluted to its final concentration in aCSF. A complete exchange of the bath solution
in the recording chamber occurred in approximately 2 min.

4.4. Data Analysis and Statistical Evaluation

Action potential peaks were detected using a suitable voltage threshold on Clampfit
v10.7 software (Molecular Devices, San Jose, CA, USA). The firing frequency, in Hz, and
inter-spike intervals (ISI), in ms, were automatically extracted following peak detection. The
coefficient of variation (CV), a measure of firing irregularity, was calculated as follows: CV
= σ/µ. Firing regularity analysis was performed using a Spike2 software script (Cambridge
Electronic Design, Cambridge, UK) developed by Dr. Massimo Pierucci: (a) ISI scatterplots
were used to compare differences in consecutive ISI data points. A compact scatter indicated
a regular firing pattern. (b) ISI histograms were prepared and visualized as a Gaussian
least-square fit, to test for a normal or skewed distribution of the data points; the former
indicated a regular firing pattern. (c) ISI auto-correlograms were used to test for regular
correlated peaks that signified a regular firing pattern. All statistical analyses and graph
plotting were performed with GraphPad Prism v9.1 (GraphPad software, CA, USA). A
Kolmogorov–Smirnov test was carried out on each data set to test for a normal distribution
of data. A parametric or non-parametric one-way ANOVA with multiple comparisons was
subsequently performed to compare the means of datasets before and after drug application
and during wash-out. Statistical tests were carried out using representative 60 s periods of
the raw data. Data were presented as the mean ± SEM.
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