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Abstract. We prove a Duistermaat-Heckman type formula in a suitable non-compact setting. We use
this formula to evaluate explicitly the pushforward of the Liouville measure via the moment map of
both an abelian and a non-abelian group action. As an application we obtain continuous versions of
well-known multiplicity formulas for the holomorphic discrete series representations.
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0. Introduction

Let T be a torus with Lie algebra t. If (M, w ) is a compact symplectic manifold of
dimension 2n with a Hamiltonian T-action, let 0: M - t* be the corresponding
moment map, and denote by j3 = (2;)n " the Liouville volume form. Assume
initially that M is compact. Consider the integral

In their fundamental papers [DH] Duistermaat and Heckman use the method of
exact stationary phase to prove a formula that expresses this integral explicitly in
terms of local invariants of the T-fixed point set, F, in M.

The Duistermaat-Heckman formula has a number of important applications. For
example, consider the measure +* ] Q on t*, push-forward via # of the Liouville
measure on M; we will refer to this measure as the Duistermaat-Heckman measure.
Notice that the integral (0.1 ) is the Fourier-Laplace transform of rp* I¡J 1. Guillemin,
Lerman, and Sternberg [GLS] use the Duistermaat-Heckman formula to obtain
an explicit formula for 0,, 10 itself under the assumption that F is isolated. This
formula is generalized in [GP] to non-abelian group actions. Recently Jeffrey
and Kirwan [JK] extended these formulas to allow non-isolated fixed points and
arbitrary equivariantly closed forms.

If M is not compact the integral (0.1) may not exist. We study this integral in
the case that there exists a component fl&#x3E;xo of the moment map that is proper and
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bounded from below. We also assume, for simplicity, that the T-fixed point set is
finite; though one could more generally assume that F has finitely many connected
components. In this paper, we establish a Duistermaat-Heckman type formula in
this setting (Theorem 2.2) and as an application we obtain explicit formulas for the
Duistermaat-Heckman measure in both the abelian (Theorem 3.2) and non-abelian
(Theorem 3.7) case. From the point of view of physics, the integral (0.1 ), when Z
is purely imaginary, is the partition function of a statistical system with phase space
M and energy fl&#x3E;xo’ Our assumption is natural since usually the phase space is not
compact and when this is the case, the energy is bounded only from below (and not
from above). However we should remark that in our setting the Hamiltonian flow
is periodic; this condition is quite special and mathematically this is what makes
the stationary phase exact.

In Section 1, we explore the immediate consequences of our assumption and
review some basic facts about tempered distributions (with typically non-compact
supports) and their Fourier-Laplace transformations. In Section 2, we prove a
Duistermaat-Heckman type formula for torus actions; this is obtained in stages,
by initially considering the case of circle actions on manifolds with boundary.
Our formula is formally identical to the Duistermaat-Heckman formula, except
that it only makes sense for Im (Z) belonging to a special open cone in t. (This
corresponds physically to the positivity of temperature.) In Section 3 we first obtain
an explicit formula for the measure 0,, 10 1; then we evaluate the measure 0’ 1 1,
where fl&#x3E;K is the moment map for the action of a compact connected Lie group
IÉ with Cartan subgroup T. In Section 4, we study the regular elliptic orbits of a
non-compact semisimple Lie group G that correspond to its holomorphic discrete
series representations; we observe that these orbits satisfy our assumption and we
evaluate the Duistermaat-Heckman measures associated to the action of a compact
Cartan T and to the action of a maximal compact subgroup Il of G. The non-
abelian measure was first evaluated by Duflo, Heckman and Vergne [DHV] for
elliptic orbits corresponding to all the discrete series. Finally the appendix contains
a review of basic facts about polyhedral sets and cones that are used throughout
the paper.

1. Preliminaries

Let M be a non-compact connected symplectic manifold, T a torus (with Lie
algebra t ) acting on M in a Hamiltonian fashion, and 0: M - t* the corresponding
moment map.

1.1 SOME PROPERTIES OF THE MOMENT MAP

Assume for a moment that Ox - ( 0, X), for a certain X e t, is a proper function
(it may happen that such an X does not exist). Then the moment map 0 itself is
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a proper mapping. Moreover, Ox is a function of Morse-Bott type with critical
submanifolds (if any) of even indices; thus the levels of Ox either are empty or
have a constant number of connected components [A]. This observation leads to
strong restrictions on the occurrence of (local) extrema for Ox, and on the image
set Ox (M):

LEMMA l.l. Assume that 4l x is a proper function. If Ox is surjective there are
no extrema. If Ox is not surjective there is a unique extremal value and Ox is an
interval of the types: [mx, oc), ( -00, n x ] .

Proof. According to the standard Bott-Morse theory, passing through an extremal
value entails adding an additional connected component to the level tPxl(a); but
the number of connected components is constant so all extrema must be global.
Now, since Ox is proper Ox (M) is an unbounded interval and there can be at most
one extremal value, none if Ox is surjective. Assume that Ox is not surjective.
Then we will have, for example, Ox &#x3E; c strictly for some real number c. Let a be
a regular value of Ox and consider the manifold M - = 0- ( [ c, a]) with boundary
Ox ’(a); M- is compact since Ox is proper. Let mX be the global minimum of
Ox on M-. It is easy to see that mX  a; this ensures that mX corresponds to a
(global) minimum on M itself, and that fi&#x3E; x ( M) == [mX , oo). o

Let us now focus on the case where Ox is not surjective.

PROPOSITION 1.2. Each connected component of the critical set of a proper
component of the moment map Ox contains at least a T-fixed point.

Proof. Let T’ be the closure of the one-parameter subgroup {etX } in T. Then,
the critical set of Ox coincides with

It is proven in [GS, Theorem 27.2], that MT, is a union of closed T-invariant
connected symplectic submanifolds, Wi, and that Ox maps each of these to a
point. The main observation here is that since Ox is proper Wi is compact. But T
acts on Wi in a Hamiltonian fashion so that each Wi must contain a point which is
fixed by T. D

Denote by F the T-fixed point set. From now on, we make the following:

ASSUMPTION 1.3. Assume that there exists an Xo e t such that Ox,, is proper
and not surjective. By the above proposition F is non-empty; assume that it is
finite.

In general, if the moment map 0 is proper and if the fixed point set has a finite
number of connected components, the image fI&#x3E;(M) is a polyhedral set [CDM-
HNP]. (We will be using a number of properties of polyhedral sets; we refer to the
Appendix for details.)
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PROPOSITION 1.4. Under Assumption 1.3, the polyhedral set O(M) is proper.
Let G C t* be its asymptotic cone, then Ox is proper if and only if X E :f:Int( C’).
If X E Int(C’), then Ox (M) = [mx, (0) for a suitable mx E R.

Proof. Notice that Ox - 7rx o 0, where 7rx: t* 2013 R is defined by zx - (., X ) .
It follows from Lemma A. 10 and Lemma A.7 that Ox is proper if and only if
X e ±Int(C’). By Assumption 1.3, Int(C’) is not empty, hence O(M) is proper. D

1.2 DISTRIBUTIONS WITH NON-COMPACT SUPPORT AND THE LAPLACE TRANSFORM

This subsection is devoted to a brief overview of the elements of the theory of
Laplace transforms that will be needed throughout the paper. We refer to [Hô]
for all proofs. Let E be a finite-dimensional vector space, and let E* be its dual.
Let D’(E) be the space of distributions on E, and S’(E), that of tempered ones.
For any T E D’(E), the set r(T) = {Y E E* 1 e-(Yx)T(x) E 8’(E)j (which
may be empty) is convex. Since the Fourier transform F is a linear isomorphism
from S’(E) to S’(E*), if r is non-empty one can define the Laplace transform of
T e D’(E*) by

L(T) is an analytic function on the interior of the above domain. For T e S’, I’
contains 0 and, by the continuity of the Fourier transform, when Y - 0 inside
any closed cone in r(T), L(T)( Z)  F(T)(X) as tempered distributions. If the
distribution is tempered and compactly supported the region r(T) is all of E, but we
will be interested in distributions that have non-compact support. Let’s concentrate
for a moment on a simple example that will be of fundamental importance.

EXAMPLE 1.5. Let a1, ... , an (n &#x3E;, dim E ) be a spanning set of vectors in E
that generates a proper polyhedral cone, Ca. Let Hat be the Heaviside distribution
defined by

Then the convolution Hal *...* Han defines a tempered distribution on E supported
on Ca. There is another description for this measure. Let La be the map from the
positive n-tant in R n to E defined by

La is proper since Ca is, and the pushforward via La of Lebesgue measure, ds,
on E, is well defined and given by ( L a ) * ds = Ha1 * ... * Ha n [GP]. It is quite
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easy to see that the set f(La) is the dual cone C£ and that, for all Z E (E*)C with
Im (Z) e Int(C£ ) , the Laplace transform is given by

Retuming to the Hamiltonian T-action on (M 2n w ), we take E = t* and hence
E* = t. Let Q = (2;)n % be the Liouville volume form and tP*Ij3I, the push-
forward of the corresponding measure. Under Assumption 1.3, tP*If3I, supported
on O(M), is piecewise polynomial and therefore defines a tempered distribution.
It will be shown in Sect. 3 that 0, can be written as a sum of distributions of the
form considered in Example 1.5.

PROPOSITION 1.6. f(tP*IJI) = C’ (the dual of the asymptotic cone, C, of (M) ).

Proof. Let f 0 be the Radon-Nikodym derivative of 0* 10 with respect to the
Lesbegue measure. For any Y E C’, eA (t-t,x +AY) is bounded asy runs through
0 (M) (Lemma A.7). So eA(t-t,x+AY)jçp(J-l) E S’, i.e., Y E F. Conversely,
if Y e C’, then there is an element à e C such that (a, Y)  0. Moreover, from
the proof of Lemma A.3, one can choose ao such that the ray ao -I- ta E 0(m)
is contained in O(M) for sufficiently large t &#x3E; 0. In fact, one can choose ao such
that the ray is in the interior of O(M), considered as a top dimensional subset of
its affine hull. The function fp (a,, + ta) is a non-zero piecewise polynomial in t.
Therefore, eA (ao+ta,X +AY) j çp( aO + ta) increases at least exponentially as
t - +00. So eA(t-t,x+AY) jçp(J-l) rJ. S’ and Y e 1’. D

2. A Duistermaat-Heckman type formula

In this section, (M,w) is a 2n dimensional non-compact symplectic manifold
with a Hamiltonian torus action satisfying Assumption 1.3. For p e F let ap,
i = 1,..., n, be the weights of the isotropy representation of T on the tangent
space TpM.

DEFINITION 2.1. We will say that Z e ic is regular if

THEOREM 2.2. Under Assumption 1.3, for each regular Z E tc with lm (Z) E
Int(C’), the following improper integral exists and
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Proof. Notice first that it is enough to prove the theorem when Z is purely imag-
inary, i.e., Z e 1 1. The general case will follow by analytic continuation since
both sides are analytic functions in the domain {Z E il regular Im (Z) E Int( C’)}.
Consider now the lattice G = {Y E t 1 e21rY = 1} in t and notice that the set

is dense in the set of regular elements Z E 1 t with Im (Z) E Int(C’). Therefore,
by continuity, it will be enough to prove the formula for Z E Ao, (fi&#x3E;, Z) =
1 s 45Y. However, since Y E £, H - Oy is a moment map for the induced
action of S 1 = {etY} on M. Moreover, since Y is regular, the critical set of Oy
is isolated and by Proposition 1.2 it coincides with F. We have thus reduced this
case to the special case T = 51, which follows from Lemma 2.3 below (the M-
case), with z = 1 s and after taking the limit a - +00. In fact for s &#x3E; 0, e-sa
decays exponentially as a - +00. When a is sufficiently large, the cohomological
class of Wa depends linearly on a [DH], while that of Da remains fixed, since the
topology of the bundle H -1 1 (a) - Ma does not change as a runs through a set of
regular values. So the integral over Ma is a polynomial in a,* and consequently,
the second sum on the right hand side of (2.2) converges to 0 as a - + 00. Il

LEMMA 2.3. Let (M2n, w) be a symplectic manifold on which there is a Hamil-
tonian 51-action with an isolated fixed point set F. Let cx 1, ... , cxn be the weights
of the isotropy representation of S 1 on Tp M, p E F. Assume that the moment map
H : M --+ R is proper and not surjective. Let a E R be a regular value of H and let
Ma = H -1 ( a ) / S 1 be the symplectic quotient with the canonical symplectic form
Wa. Choose a connection of the V-bundle H-1(a)  Ma with curvature 2-form
Da. If H is bounded from above (below, respectively), let M+ = H-1([a,00))
(M- = H -1 (( -00, a]), respectively) and F± = F n M±. Then for any z E CC,

Proof. Since a is a regular value of H, there is a small number 6 &#x3E; 0 such that

H-1 (( -b, b ) ) is diffeomorphic to H -1 ( a ) x (-b, b ) and the induced symplectic
form on the latter is, up to an exact form, à A dH - (H - a) Da + wa for one
(hence any) connection 1-form a of H-1(a)  Ma [DH,W]. One can find an
S 1-invariant Riemannian metric g on M and can choose a connection whose
horizontal spaces are induced by g. Denote the vector of the S1 -action by XM, let

* For an explicit formula of this polynomial, see [W, Theorem 5.2], which can also be deduced by
collecting the coefficients of z-(k+ 1) in (2.2).
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0 = i xmglg(Xm, Xm) and v - ’ 0 A (dO )-IlB el Herej= d--,l Iz zxm
is the equivariant derivative and w = w + 1 zH is the closed equivariant
extension of w. Both 0 and v are well-defined on MBF and (2;)n é = dv. For any
fixed point p E F, let Bp be the ball centered at p and of radius c. Since the top
form in (2;)n é is eA zH 13, Stokes’ theorem implies

A standard argument [BV,GS] shows that ars 6 - +0,

The boundary OM± is :f: H -1 (a). (Here the minus sign refers to the reversed
orientation.) One can show easily that, when restricted to H-1 (a), 0 = a, d0 =
Da - 1 z and i5 = Wa + 1 za. Therefore

Notice that if the fixed point set F is no longer isolated, but has finitely many
connected components, similar arguments show that Lemma 2.3, hence Theo-
rem 2.2, remains valid, after replacing the point-like contribution by an integral
over the fixed (symplectic) submanifold, and the products of weights by the equiv-
ariant Euler class of the normal bundle. It should also be noted that the proof of
Lemma 2.3 above could be adapted to allow, instead of eW , more general equivari-
antly closed forms; this could be useful in applications to the ring structure of the
ordinary De Rham cohomology of the reduced phase space (cfr. [JK]).

3. Formulas for the Duistermaat-Heckman measure

3.1 THE ABELIAN CASE

Now consider the Hamiltonian T-action on M. The hyperplanes perpendicular to
the weights cxp ( p E F, i = 1,..., n ) divide the cone C’ into finitely many subcones,
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each of which we will call a chamber for the action of T near F, briefly an action
chamber. Any regular vector X E C’ sits in the interior of such a chamber. We fix
such an X and call the corresponding chamber, C+, the positive action chamber.
Define, for p e F, 1 = 1 , ... , n: Qj’ = sign( af ( X) ) af .
DEFINITION 3.1. The set f3f, p E F, i = 1,..., n is called a renormalization of
the set of weights.

Let 6(p) = TIi=  sign( af (X) ), and let 8 t-t be the delta distribution supported at
p e t* .

THEOREM 3.2. Under Assumption 1.3

Proof. Both sides of (3.1) are tempered distributions on t*. By Theorem 2.2
and Example 1.5 the Laplace transformations of the two sides are equal for all
Z with Y = Im ( Z) in the interior of the positive action chamber C+. Letting
Y - 0 inside C+, we conclude that the Fourier transform of the two sides of (3.1 )
are equal (as tempered distributions) [Hô]. (3.1) follows from taking the inverse
Fourier transformation. D

Notice that (3.1) is actually a collection of formulas, one for each choice of
a positive action chamber in C’. What is also remarkable is that if we compute
the right-hand side at given point y E t*, the terms (and even the number of
terms) that contribute will also depend on the choice of the action chamber. More
specifically, the summation set above could be replaced, at J1 e t*, by the sub-
set F. = tp e F 1 r/J(p) + L siJf = J-l, Si  01. Similar remarks hold for the
formulas that will appear in the following.

3.2 THE NON-ABELIAN CASE

First some notation. Let Il be a compact connected (non-abelian) Lie group with
Lie algebra t and let T be a maximal torus in Il with Lie algebra t. Let 3+ -
{A o;i ?... ? A ak} (cxi E t* ) be a set of positive roots. For each i = 1,..., k
let Xi e t denote the vector dual to cx2 with respect to the restriction to t of a Il-
invariant scalar product on t and consider P = flj= Xi, viewed as a polynomial
in t*. Let treg be the set of elements ii of t* such that P(p)  0 and let reg be the
set li7 - t;eg in t*.

Assume that Il acts on a symplectic manifold M in a Hamiltonian fashion, and
denote by fl&#x3E;K the corresponding moment map M  t*. The induced action of T
on M is also Hamiltonian with moment map, +, the composition of the natural
projection t* - t* with r/J1.
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ASSUMPTION 3.3. Assume that, as a T-space, M satisfies Assumption 1.3. Then
the T -fixed point set F is finite; assume in addition that ,pK ( p) E t;eg for each
p E F.

Let us examine for a moment the implications of the first sentence of this
assumption. First, the equivariance of the A"-moment map implies that the image
of the T-moment map, #(M ), a polyhedral set in t, is invariant under the Weyl
group W of the pair (tc, tC). So the asymptotic cone C of 0 (M) and its dual C’are
also W-invariant. We also know that the open W-invariant convex set Int(C’ ) is
non-empty since it contains the vector Xo of Assumption 1.3. By averaging under
W, we can assume that Xo is W-invariant and therefore belongs to the center of t.
In particular, we conclude that the center of Il contains a circle.

The assumption that OK (p) tr* e 9 for each p e F is not absolutely necessary; if
we omit it, most of the argument below goes through, except for the cancellations
in the proof of Proposition 3.6. The result would be a more complicated formula
(3.6), involving a differential operator.

Notice now that in this setting (0 thus) OK is a proper mapping; then the mea-
sure OKIOI is well defined and uniquely determined by its W-invariant restriction,
v, to t*, which is defined as follows: if f is a K -invariant smooth compactly
supported function on * and g is its restriction to t*, then

Consider now the symplectic cross-section Mreg = (r/J1-B) -1 (t;eg); Mreg is naturally
a Hamiltonian T-space. The second sentence of Assumption 3.3 implies that Mreg
shares its T-fixed point set with M and is therefore non-empty; moreover at each of
these fixed points p the set of weights, cxp, ..., cxn, of the isotropy representation of
T on TpM contains the set of weights of the same representation of T on TpMreg;
the weights that are left are, up to signs, the elements al, ... , ak. After possible
relabelings we can assume that at each p E F, af = ff ai, i = 1,..., k, with ff
either 1 or -1. Denote by W = flll= c( .

The rest of the section will be devoted to write down and prove, under Assump-
tion 3.3, an explicit formula for the measure v, which is analogous to a formula
proven in [GP] for M compact. We start by recalling a useful formula, consequence
of a classical formula of Harish-Chandra [HC1]. Consider P* = fl/j= ai viewed
as a polynomial on t. Let A D x be differentiation with respect to Xi and let
DP * flll=i Dx .
PROPOSITION 3.4. Let f be a K-invariant compactly supported smooth function
on t* and let 9 be its restriction to t*; then, for Z E tC,

where et = (D p( P*) )-1 is a non-zero constant.
















