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Abstract
Objectives To identify and evaluate predictive lung imaging markers and their pathways of change during progression of
idiopathic pulmonary fibrosis (IPF) from sequential data of an IPF cohort. To test if these imaging markers predict outcome.
Methods We studied radiological disease progression in 76 patients with IPF, including overall 190 computed tomography (CT)
examinations of the chest. An algorithm identified candidates for imaging patterns marking progression by computationally
clustering visual CT features. A classification algorithm selected clusters associated with radiological disease progression by
testing their value for recognizing the temporal sequence of examinations. This resulted in radiological disease progression
signatures, and pathways of lung tissue change accompanying progression observed across the cohort. Finally, we tested if the
dynamics of marker patterns predict outcome, and performed an external validation study on a cohort from a different center.
Results Progression marker patterns were identified and exhibited high stability in a repeatability experiment with 20 random
sub-cohorts of the overall cohort. The 4 top-ranked progression markers were consistently selected as most informative for
progression across all random sub-cohorts. After spatial image registration, local tracking of lung pattern transitions revealed a
network of tissue transition pathways from healthy to a sequence of disease tissues. The progression markers were predictive for
outcome, and the model achieved comparable results on a replication cohort.
Conclusions Unsupervised learning can identify radiological disease progressionmarkers that predict outcome. Local tracking of pattern
transitions reveals pathways of radiological disease progression from healthy lung tissue through a sequence of diseased tissue types.
Key Points
• Unsupervised learning can identify radiological disease progression markers that predict outcome in patients with idiopathic
pulmonary fibrosis.

• Local tracking of pattern transitions reveals pathways of radiological disease progression from healthy lung tissue through a
sequence of diseased tissue types.

• The progression markers achieved comparable results on a replication cohort.
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IIP Idiopathic interstitial pneumonias
ILDs Interstitial lung diseases
IPF Idiopathic pulmonary fibrosis
ML Machine learning model
RF Random forest
UIP Usual interstitial pneumonia

Introduction

Idiopathic pulmonary fibrosis (IPF) is the most frequent type of
idiopathic interstitial pneumonias (IIP) and accounts for a fifth of
all cases of interstitial lung diseases (ILDs) [1, 2]. Although IPF
has been considered rare, a review based on 34 studies of IPF
incidence and mortality has shown an incidence rate from 0.2 to
93.7 per 100,000 persons per year [3, 4]. Studies have estimated
that without treatment, the median survival among persons with
IPF is 3–5 years after diagnosis [5]. Even though the disease
cannot be reversed, the radiological disease progression can be
slowed down with disease-modifying drugs such as pirfenidone
and nintedanib [6]. CT plays a central role in the diagnosis of
IPF; the official ATS/ERS/JRS/ALAT clinical practice guideline
of IPF states that in case of a typical usual interstitial pneumonia
(UIP) pattern onCT, a lung biopsy is considered unnecessary [7].
However, in many cases, there is still a considerable overlap of
radiologic, clinical, and physiologic appearance with other ILDs,
such as non-specific interstitial pneumonia and hypersensitivity
pneumonitis [8, 9]. Consequently, there is substantial disagree-
ment between radiologists, clinicians, and pathologists regarding
final diagnosis of ILDs [10]. Most importantly, IPF and other
ILDs have distinctly different prognoses and treatment options
which emphasizes the importance of correct diagnosis [8].

Beside the difficulties in diagnosing IPF, the prediction of
radiological disease progression is even more challenging as
disease courses in IPF are quite divergent. Imaging features
associatedwith a worse prognosis have been reported to be the
extent of bronchiectasis, the extent of honeycombing and the
volume of vessel-associated structures [11].

Given the inter-observer variability in the recognition of
these features, the routine usability of these features is limited
without the support of dedicated software [12]. Furthermore,
most of the investigated imaging features observed hitherto
are based on well-established CT patterns, which are not
necessarily the most predictive features, either due to the
lack of a link to biological radiological disease progression,
or difficulty of identification and associated inter- and intra-
reader variability [13].

Therefore, techniques for the identification of quantitative
imaging markers of IPF radiological disease progression that
predict future disease course and outcome are highly
desirable.

It was the aim of this study to develop an unsupervised
machine learning approach to identify novel radiological

disease progression imaging marker patterns and evaluate if
these patterns predict outcome.

Material and methods

This retrospective study was approved by the Institutional
Review Board of the Medical University of Vienna (Ethics
Committee number 1463/2017). The local Institutional
Review Board waived the informed consent.

Study population

For the study cohort, IPF patients with diagnosis of IPF be-
tween December 2011 and October 2014 were retrospectively
retrieved from the electronic registers of an Italian referral
center (Ospedale Morgagni di Forlì, Italy, n = 76). Inclusion
criteria were as follows: (1) availability of at least two consec-
utive HRCT examinations per patient performed at least 6
months interval; (2) usage of a high-frequency reconstruction
kernel (BONEPLUS) with a slice thickness of ≤ 1.25 mm for
both examinations. Following these inclusion criteria, a total
of 76 patients (f/m: 19/57) were included, as only in these
patients follow-up scans with the same reconstruction kernel
were available (Fig. 1b). For a sub-cohort of 74 patients, sur-
vival data was available. The patient characteristics of the
entire study cohort can be seen in Table 1.

As a replication cohort, we collected a retrospective cohort
from a different center and country (n = 18, Vienna General
Hospital, Austria). Patients in this dataset were diagnosed with
IPF between April 2007 and April 2017. The inclusion criteria
were the same as the study referral center, but with a different
CT reconstruction kernel (B60f, B70f, B70s, I70f, I80s) since
scanners were from a different manufacturer.

For both cohorts, the CT diagnosis was established by two
experienced radiologists. The diagnosis of the IPF was made
by the multidisciplinary ILDs boards of both institutions.

Imaging data collection and acquisition

The study cohort dataset (Italy) was acquired with 2 CT scan-
ners, a LightSpeed Pro 16, and a BrightSpeed 16 (both GE
Healthcare). The CT examinations were performed in supine
position in sustained deep inspiration. In case of more than
two CT examinations per patient, each pair of consecutive CT
scans was included. Therefore, an individual patient could
have 1–4 pairs of scans. For the replication cohort, data was
acquired with a Siemens Sensation Cardiac 64 scanner in su-
pine position with deep inspiration. Each patient had 2 scans,
one at the time of the diagnosis and another one at the last seen
examination.
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Segmentation and follow-up registration

Lungs were automatically segmented in the CT data in a two-
step approach. First, a threshold-based algorithm was used

[14], and morphological area opening removed small struc-
tures such as small bronchi and vessels. The background was
suppressed, and airways were extracted by trachea localiza-
tion. If the algorithm failed the volume-based assessment

Table 1 Patient characteristics of
the entire study cohort Study cohort (n = 76) Replication cohort (n = 18) p value

Age at first CT, years

Mean age 65.10 ± 8.73 67.67 ± 12.39 .305

Age range 34–82 29–83 ..

Gender

Female 19 8 .101

Male 57 10 .101

Lung function test

FVC (mean ± sdt) 81.63 ± 18.96 77.64 ± 27.17 .465

DLCO (mean ± sdt) 54.27 ± 15.60 47.32 ± 16.75 .097

Unknown 3 4 ..

CT pattern

Definite UIP 32 7 .803

Probable UIP 30 10 .215

Indeterminate for UIP 5 1 .873

Inconsistent with UIP 9 0 .124

Smoking status

Active smoker 1 2 .033

Former smoker 46 11 .960

Never smoker 25 4 .379

Unknown 4 1 .960

Survival outcome

Alive 20 4 .719

Dead 54 14 .569

Unknown 2 0 .484

Fig. 1 Overview of the algorithm and dataset. a First, unsupervised learning selects marker candidates, which results in most significant progression
markers. b This flowchart represents the selection of enrolled scans
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criterion, as in cases of substantial high-density areas and
lung scarring, a multi-template atlas–based segmentation
approach was used to correct the segmentation [15]. This
segmentation approach automatically selected an optimal
templated lung transformation (VISCERAL Anatomy 3
[16]) using normalized cross correlation criteria and per-
formed a non-linear registration from this selected transfor-
mation to a predefined target atlas with Ezyes [17].

After lung mask segmentation, pairs of consecutive CT
scans were registered using Advanced Normalization Tools
(ANTs) [18] to establish correspondence of positions in the
lung imaging data for subsequent examinations of the same
patient. Registration of corresponding positions was necessary
to track the change of lung pattern classes over time and mea-
sure local transitions between pattern classes during radiolog-
ical disease progression.

To reduce computational complexity, instead of processing
each individual voxel of the slices, we over-segmented the
lung mask into small parcels of the size of 5 mm × 5 mm ×
5 mm — so-called supervoxels — using MonoSLIC [19].
Those supervoxels were extracted through k-means clustering
performed on the monogenic phase detecting the locally dom-
inant structure of the CT voxel regardless of the contrast and
brightness of the image, resulting in a total of 1,578,788
supervoxels covering the entire lung cohort (Fig. 1a).

Extraction of CT features and radiological disease
progression marker candidates

We identified distinct lung appearance patterns occurring
across the entire study population by unsupervised machine
learning on all imaging data using a bag of visual words
approach [20]. Computed tomography imaging data was
received in the form of DICOM files, with gray values rep-
resenting Hounsfield units. The gray value range was trans-
formed to 0 to 255 before extracting image features. We
calculated various statistical properties of the orientation-
independent gray-level co-occurrence matrices for each
supervoxel, resulting in so-called Haralick textural features
[21], a 65-component vector per supervoxel. To reduce this
high dimensionality, we used principal component analysis
(PCA) retaining 95% of the overall variance resulting in a 9
dimensional feature vector per supervoxel (Fig. 1a).

K-means clustering in this 9 dimensional feature space
assigned each supervoxel to one lung appearance pattern cor-
responding to a cluster. The optimal number of clusters was
determined by repeatability testing, using Jaccard score [22]
resulting in k = 20 clusters as the optimal choice. Finally, each
lung was represented by the volume fraction covered by each
of the 20 appearance patterns, resulting in a vector of 20 com-
ponents. This pattern signature captures the overall texture
composition of the lung.

Identifying marker patterns of radiological disease
progression and pathways of local tissue transition

IPF is associated with pulmonary fibrosis, a type of terminal
pathological change in the lung, caused by chronic repetitive
alveolar injury and results in excessive synthesis of extracel-
lular matrix and replacement of normal parenchyma. While
some types of pulmonary fibrosis are reversible, IPF exhibits
progressive and irreversible development [23, 24].

To identify pattern signature components associated with
radiological disease progression, we analyzed available pairs
of subsequent CT scans of the same patient (scan A and scan
B) with known acquisition dates. We trained a random forest
(RF) [25] classification model with 500 trees to predict the
correct temporal sequence of two scans (A, B) based on the
difference of their pattern signatures (prediction result: A ac-
quired after B or B acquired after A, ground truth during
training based on the acquisition dates in the DICOM header).
We used Gini importance to rank features regarding their pre-
dictive power for correct sorting. Since IPF is irreversible, the
lung scarring captured in CT scans either remains the same or
worsens. Thus, we hypothesize that features enabling correct
temporal sorting capture radiological disease progression.

The ground truth for the correct temporal sequence was
read from the CT DICOM-header. We used RF Gini impor-
tance to score the contribution of pattern signature compo-
nents to the correct sorting of scans, and hypothesize that
components — each associated with a lung tissue type with
specific appearance—with high score are strongly associated
with radiological disease progression.

Predicting outcome based on the dynamics of pattern
signatures

We used only the top 4 scored components determined previ-
ously together with their change between a pair of follow-up
scans to form the radiological disease progression signature.
We clustered patients into two groups using k-means cluster-
ing of their progression signatures. For each patient cluster, we
assessed survival in a Kaplan-Meier analysis.

Exploratory analysis of pattern transition pathways

We analyzed if the transition of lung tissue from one to a
different pattern follows one or more specific sequences dur-
ing the course of the disease. We determined the image signa-
ture component at each lung position in one scan, and the
component at the corresponding position in the subsequent
scan for all 1,578,788 supervoxels and all scan pairs in the
study. This yielded a transition probability network. It cap-
tures how likely it is to transition from one of the 20 tissue
patterns to another during radiological disease progression.
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Evaluation

To validate the radiological disease progression model, we
tested if the machine learningmodel could correctly determine
the temporal sequence of pairs of subsequent CT examina-
tions based solely on the image signatures extracted from each
of the two CT volumes, resulting in the “sorting accuracy” of
the RF model.

To evaluate if inaccuracies stem from a lack of visible
radiological disease progression, or algorithmic limita-
tions, we compared the sorting accuracy of the RF model
with the sorting accuracy of two experts with 17 years
(expert 1) and 15 years (expert 2) of experience in thoracic
radiology. The radiologists were shown pairs of follow-up
scans in random order blinded for examination dates.
Algorithm sorting accuracy was evaluated in leave-one-
patient-out cross-validation, by training the machine learn-
ing model, and identifying radiological disease progres-
sion markers on 76 patients of the dataset, and automati-
cally sorting the remaining pair of scans from a patient of
the dataset with the trained RF model.

To assess the stability of radiological disease progres-
sion marker patterns, we randomly picked 20 subsets of
95% (n = 72) of the patient’s scan pairs in each run, to train
the machine learning model, and tested if the ranking of the
top informative radiological disease progression markers
remained the same. The top-ranked prototypes were
assessed and evaluated as image patches (250 × 250 pixels)
by an expert for their content.

To evaluate if the progression signatures predict outcome,
we assessed the hazard ratio (HR) between the two patient
clusters identified based on the progression signatures. In the
study cohort, for 74 patients, survival data was available,
and analysis was performed on those patients. In a rep-
lication experiment, we processed the external validation
data (n = 18) using the same 4 components of the
progression signature, and assigned each new patient
to one of the two existing patient clusters identified in
the study cohort. We evaluated replicability by Kaplan-
Meier analysis, analogously to the study cohort.

Results

Radiological disease progression can be detected with
accuracy comparable to human expert readers

The machine learning model correctly identified the temporal
sequence of 95 out of 114 CT scan pairs (83%). In compari-
son, the expert accuracy was 83% and 67%, respectively.
Comparison of the mistakes of the machine learning model
and the expert readers showed that 9 out of 19 (47%) cases
erroneously sorted by expert 1 (E1) were also erroneously

sorted by expert 2 (E2) (Table 2). The comparison of the
model with human experts shows that 7 out of 19 (37%) errors
made by the machine learning model (ML) were also made by
expert 1, while 12 out of 19 (63%) MLmodel errors were also
made by expert 2. Six out of 114 pairs were evaluated incor-
rectly by all three (2 readers and ML). The percentage of
correct answers is different (p = .008) between the readers
(E1, E2, ML). We used the generalized estimation equations
model to evaluate the misclassification between the two
readers, E1 (83% correct) and E2 (67% correct; p = .008),
which shows to be significantly different, but we found no
significant difference between ML and either of the two ex-
perts (p = .496 and p = .156).

Radiological disease progression markers are stable

Figure 2 shows the rankings of the most informative radiolog-
ical disease progression marker candidates identified by Gini
importance [26] across 20 runs on randomized subsets. The
top 4 prototypes were consistently top-ranked across all
runs, containing vessels, ground glass opacities and in-
creased density regions. Figure 2b depicts the average rank
and rank standard deviation of all the prototypes sorted
following their average ranking. Figure 2c illustrates the
top 4 ranked cluster’s volume representations from a patient
at 4 different time points. Example patches of those four
patterns (11 - 7 - 10 - 17) from the same patient are shown in
Fig. 2a.

Progression signatures predict outcome

Clustering patients based solely on their radiological disease
progression signature results in two patient groups with mark-
edly different outcomes (Figure 3). In the study cohort, clus-
tering with the 4 static components of the signature leads to a
HR = 3.56 (p < .01). Including the dynamic components (the
difference between scans) results in higher HR = 4.14
(p < .01) between the two groups. When using the same pro-
gression signatures, and clusters, to process patients in the
external validation cohort, the 4 static components and the full
progression signature yield HR = 1.10 and HR = 1.44 (same
trend as in study cohort, but not significant), respectively
(Fig. 3). For the external validation, no re-training of patterns
or clusters was performed.

Transition pathways of local lung imaging patterns
emerge during radiological disease progression

Exploratory analysis of progression pathways revealed a
network of transition probabilities. They quantify how like-
ly lung tissue is changing from one pattern to another dur-
ing radiological disease progression (Fig. 4a and b). The
latent transition network revealed three types of patterns.
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Relatively stable patterns, such as 9, 10, and 19, remained
primarily unchanged over time. Volatile patterns, such as 4,
5, or 8, changed to other patterns more frequently, and

transient patterns that transitioned to a specific different
pattern more often than staying the same such as for in-
stance 12, 14, 15, 18, or 20.

Table 2 Comparison of errors of
machine learning models with
expert readers

Reader 1 Reader 2 Overlap errors

R1 = expert 1, R2 = expert 2 19 38 9 (47.3% of R1, 23.6% of R2)

R1 = expert 1, R2 =ML 19 19 7 (36.8% of R1)

R1 = expert 2, R2 = ML 38 19 12 (31.57% of R1)

Fig. 2 Evaluation of the stability of the progression markers. a The
pattern example among the top 4 ranked pattern. b Most informative
progression markers identified by the model, and the repeatability of
this ranking after 20 runs of random 95–5% patient splits. The top 4

ranked patterns are stable across all runs. The ranking of less
informative patterns fluctuates across runs. c The top 4 ranked cluster
volume representation from a patient at 4 different time points
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A simulation of particles entering a corresponding random
walk results in possible pathways of disease pattern progres-
sion through the transition network. For illustration, we recon-
structed two pathway visualizations. In Fig. 4c, we initiated
particles in cluster 9 and observed how they transition the
network among 10 patterns. The most dominant paths were
9 - 10 - 13 - 17, or 9 - 10 - 13 - 7, reflecting a transition from
one to another healthy pattern towards minimal ground glass
and reticular patterns and finally a pattern consisting of a mix
of vessels and severe ground glass opacities (cluster 17 and
cluster 7). A simulation in the reverse direction (Fig. 4d) asked
for pathways ending in cluster 17. Consistent with the first
pathway bundle, the dominant sources of 17 are paths 10 -
13 - 17, or 10 - 13 - 7 – 17, indicating 7 as a potential inter-
mediate step before 17.

Discussion

This study showed that unsupervised machine learning
can identify predictive CT patterns associated with radio-
logical disease progression in IPF. These patterns predict

future outcome of patients. Identifying frequently occur-
ring visual patterns in a patient cohort established a set of
marker candidates. Training a model to recognize the
temporal sequence of scan pairs based on these features
selected candidates associated with radiological disease
progression. They form a radiological disease progression
signature. Clustering patients based solely on the similar-
ity of these signatures yielded clusters with markedly
different outcomes, even though clustering was blinded
for survival data. This result was replicable on an exter-
nal validation cohort collected at a different center in a
different country. Finally, exploratory analysis of transi-
tion pathways of lung imaging patterns revealed routes
from healthy to diseased tissue that may serve as basis
for hypotheses regarding the underlying disease mecha-
nisms based on the imaging data.

Machine learning algorithms typically provide means to
automatically detect and quantify known markers in images
based on supervised learning. Related recent work has
shown the feasibility of machine-aided detection, quantita-
tive imaging analysis, and pattern recognition in IPF/ILD
[27, 28]. Humphries et al demonstrated a data-driven

Fig. 3 The survival study of Kaplan-Meier (KM) estimation of the most
informative progression markers. a The KM curve based on markers of
the scan B on the study cohort. b The KM curve based on markers of the
scan B and the difference of the scan A and B on the study cohort. c The

KM curve based onmarkers of the scan B on the replication cohort. d The
KMcurve based onmarkers of the scan B and the difference of the scan A
and B on the replication cohort
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textural analysis visual system. Another study [29] showed
adaptive multiple features lung texture analysis software
for HRCT analysis.

In this study, we addressed three questions: First, can we
identify lung pattern types associatedwith radiological disease
progression in addition to those known and named such as
ground glass opacities? This is relevant, since known patterns
have limited power in reliably diagnosing fibrosing lung dis-
eases [30, 31]. Consequently, data-driven means to expand
our disease marker vocabulary could contribute to improving
the diagnostic and prognostic capability of imaging. Our re-
sults show that in IPF the expansion of the marker vocabulary

with additional patterns reliably associated to radiological dis-
ease progression is feasible.

Secondly, do groups of patients with different radiological
disease progression signatures also have different future out-
come? We grouped patients solely based on the dynamics of
their signatures and found that in the study cohort these groups
do have significantly different outcome. Even though signa-
ture construction and grouping were blinded to outcome, pa-
tients with similar signatures observed in CT shared risk for
future outcome. To investigate to what extent signatures and
grouping is directly transferrable, a replication experiment on
an external cohort was performed. While the patient

Fig. 4 Pattern transition networks: mapping local pattern transition
networks to reconstruct pathway candidates. a From the population of
spatially matched follow-up pairs of lungs, we can observe local change
of lung tissue from one to another pattern. (b) This enables obtaining a
network of transition probabilities of lung patterns changing to others
from one to the next examination time point. The matrix shows how
likely a source pattern transitions to a target pattern. Red indicates high

probability, blue low probability. These probabilities are generated by an
underlying latent transition network that exhibits transition pathways
shown in this figure. For the top ranked most informative patterns, we
plot two pathways to illustrate this model. c Pathways originating from a
healthy pattern (cluster 9), and (d) pathways ending in vessels and ground
glass pattern (cluster 17). Arrows point at dominant directions in the
graph
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populations did share radiological IPF diagnosis, the center,
country, and scanner manufacturers were different.
Furthermore, they differed to some extent in their frequency
of UIP, lung function, and smoking history. Despite that, we
observed a comparable trend between groups assigned to the
clusters identified in the study cohort but did not reach signif-
icance (p = .473). This suggests that dynamics carry predictive
information, but while the newly identified signatures are
transferrable, training on multicenter data with a more diverse
disease composition may have benefits.

Finally, can we visualize shared the transition pathways of
components, corresponding to frequently occurring changes
of lung tissue during radiological disease progression. This
might enable translating imaging features selected by ma-
chine learning models to biologically meaningful hypothe-
ses regarding the underlying radiological disease process.
The analysis demonstrates that these transition networks
can be extracted from a patient population with follow-up
examinations.

We evaluated if algorithms or human experts can identify
radiological disease progression from imaging data, by letting
them sort the temporal sequence of two consecutive CT scans.
The algorithm and expert readers had overall comparable ac-
curacy, with the algorithm (83%) in-between two readers
(67% and 82%). Sorting mistakes can be due to either poor
model performance, or lack of radiological disease progres-
sion. The overlap of errors between the readers and the algo-
rithm (67% and 29%) suggests that at least in part lack of
discernable radiological disease progression may lead to ran-
dom sorting. Despite this, selecting features based on their
capability of temporal sorting is a viable approach to mine
imaging data for radiological disease progression markers.

Due to the high inter-observer variability in classifying IPF
[32] and the varying effectiveness of treatments for IPF [33], it
is important to identify novel radiological disease progression
markers for diagnosis and monitoring of radiological disease
progression and treatment in IPF. While prior work focused
on quantifying the ratio of healthy to pathological lung tissue
to obtain markers of radiological disease progression [34], we
identified several patterns that exhibit consistent change be-
havior during radiological disease progression with unsuper-
vised learning. The supervised prediction target of sorting
cases serves as a proxy to identify novel predictor patterns
exhibiting consistent change during radiological disease pro-
gression. Patterns are not used on their own, but as a multi-
variate signature, exploiting relationships between patterns.
Post hoc qualitative analysis of the clusters in the progression
signature revealed expected findings such as ground glass
opacities, or overall lung density, but also regions surrounding
small vessels. This is significant as vessel-related structures
have also been reported to be an independent predictor of
radiological disease progression in IPF, chronic hypersensitiv-
ity pneumonia, and unclassifiable fibrosis [35].

Location tracking during radiological disease progression
enables the observation of how lung tissue transitions from
one pattern to another over time. This augments marker pat-
terns with transition pathways that may be a key to under-
standing the underlying pathomechanisms, and their signature
visible in imaging.

Although our results of the machine learning methods
show comparable performance in comparison with the ex-
pert radiologists, this work has several limitations. Our
cohort is small in comparison with other machine learning
results. Additionally, the gold standard for IPF diagnosis
was based on imaging, possibly introducing bias into the
model. The replication cohort contained imaging data
with and without contrast enhancement, introducing het-
erogeneity into the imaging data. Despite this, the differ-
ences between the two clusters remained, although the HR
was not significant.

In conclusion, unsupervised learning, together with a proxy
task such as sorting the temporal sequence of examinations,
can identify a stable set of radiological disease progression
signatures in lung CT of IPF patients. Progression signatures
identify groups in patients with different outcomes. Tracking
the change of their components over time reveals transition
pathways that may serve as a basis for further research.
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