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Abstract
A model-based biclustering method for multivariate discrete longitudinal data is proposed. We consider a finite mixture
of generalized linear models to cluster units and, within each mixture component, we adopt a flexible and parsimonious
parameterization of the component-specific canonical parameter to define subsets of variables (segments) sharing common
dynamics over time. We develop an Expectation-Maximization-type algorithm for maximum likelihood estimation of model
parameters. The performance of the proposedmodel is evaluated on a large scale simulation study, where we consider different
choices for the sample the size, the number of measurement occasions, the number of components and segments. The proposal
is applied to Italian crime data (font ISTAT) with the aim to detect areas sharing common longitudinal trajectories for specific
subsets of crime types. The identification of such biclusters may potentially be helpful for policymakers to make decisions
on safety.

Keywords Finite mixtures · Model-based clustering · Three-way data · Generalized linear models · EM algorithm

1 Introduction

Clustering (Kaufman and Rousseeuw 2009; Everitt et al.
2011; Hennig et al. 2015; Wierzchoń and Kłopotek 2018)
identifies a family of methods aiming at discovering “mean-
ingful” subsets in the observed sample. Given a data matrix
with n rows (units) and p columns (variables), the tradi-
tional goal of clustering is to identify subsets such that units
are as similar as possible within and as different as pos-
sible between clusters. Biclustering (Good 1965; Hartigan
1972, 1975; Bock 1979) represents an extension of the stan-
dard clustering approach defined to jointly partition the set of
units and variables of a datamatrix into homogeneous blocks,
the biclusters. Referred to as block clustering, bidimensional
clustering, two-way clustering, two-mode or two-side clus-
tering, direct clustering, cross-clustering, etc., during the past
decades, biclustering has been applied in several scientific
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fields to analyze large data matrices where the role of the
two modes of the matrix (rows and columns) may be thought
of as being symmetric. Just to give a few examples, biclus-
tering techniques have been used in text mining, webmining,
bioinformatics, marketing, ecology, computer science. Lit-
erature on biclustering is now quite extensive and is usually
separated into exploratory and model-based approaches. For
more details, the interested reader may refer to reviews by
Madeira and Oliveira (2004) and Brault and Lomet (2015).
Martella andAlfò (2017) discussed available software imple-
mentations.

Looking at model-based approaches, only in recent times
biclustering methods have been proposed to deal with dis-
crete data. Examples includeArnold et al. (2010) and Pledger
and Arnold (2014) for binary and count data, respectively.
The latent block mixture model for binary data and its
extension to contingency table by Govaert and Nadif (2003,
2008) and Govaert and Nadif (2010) are further exam-
ples, together with the corresponding Bayesian version by
Wyse and Friel (2012). Priam et al. (2008, 2014) proposed
instead a combination of the Bernoulli block mixture models
with probabilistic self-organizing maps to analyze high-
dimensional binary data. Li and Zha (2006) developed a
two-way Poisson mixture model in the context of text analy-
sis, while Lee and Huang (2014) proposed an algorithm for
binary data based on a penalized Bernoulli likelihood. Vicari
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and Alfó (2014) defined a mixture model for the joint clus-
tering of customers and products, while Martella and Alfò
(2017) introduced a re-parameterization of the mixture of
factor analyzers (see Ghahramani et al. 1996) to deal with
discrete data. Further recent advances onmodel-based biclus-
tering for discrete data can also be found in Fernández et al.
(2019). Some methods, such as those based on the latent
block mixture model, assume that the partition of rows and
of columns are independent. That is, the segments (clusters of
columns) are constant across components (clusters of rows).
In a customer by product context, this means that the groups
of products the costumers tend to associate are always the
same. When this hypothesis does no hold, potential depen-
dence between the two partitions should be considered; see
Vicari and Alfó (2014) and Martella and Alfò (2017).

All these methods deal with multivariate data observed
at a single occasion. In this paper, we extend model-based
biclustering to multivariate discrete data that are repeatedly
observed over time. As these represent a specific three-way
data example, we feel that Table 1, taken fromViroli (2011b),
may help. Depending on the nature of the three modes, dif-
ferent data structures may, in fact, be considered. In the
case of multivariate longitudinal data, the three modes (rows,
columns, and layers) are represented by units, variables, and
times, respectively.

A number of techniques have been developed for cluster-
ing three-way data ranging from sequential to simultaneous
clustering and data reduction procedures. Examples are Gor-
don and Vichi (1998),Vichi (1999), and Vichi et al. (2007), A
first attempt to applymodel-based techniques can be found in
Basford andMcLachlan (1985) while, more recently, we can
mention, Hunt and Basford (1999),Vermunt (2007),Viroli
(2011a, b), and Bruckers et al. (2016). Up to our knowledge,
only few methods for biclustering three-way data have been
proposed. Turner et al. (2005) extended the plaid model,
proposed by Lazzeroni and Owen (2002), to longitudinal
data, while Mankad and Michailidis (2014) generalized this
proposal to handle data observed in different experimental
conditions or time occasions, and discussed interpolation
at unobserved points. In the recent years, biclustering has
appeared also in the context of functional data; see Zhao
et al. (2004). Examples include the co-clustering approach
proposed bySlimen et al. (2018) andBouveyron et al. (2018),
which extends the proposal by Govaert and Nadif (2013) to
functional data. Both these semi-parametric models hold the
typical feature of standard latent block models: unit- and
variable-specific partitions are independent. That is, these
methods provide a grid clustering where the partition of
variables is constant for each component of the finite mix-
ture. The funLBM R package (Bouveyron et al. 2022) was
recently released to estimate the parameters of the model
proposed by Bouveyron et al. (2018). As stated above, such

a grid clustering may not be appropriate in situations where
the two partitions are somewhat dependent. To answer to
such an issue, Galvani et al. (2021) proposed a method that
adapts the Cheng and Church algorithm (Cheng and Church
2000) to deal with functional data. The novelty of such a
non-parametric biclustering approach is that it allows for
data misalignment and for the existence of curves that do
not belong to any block (i.e. non-exhaustive biclustering).
The method is implemented in the FunCCR package (Torti
et al. 2020). Both these methods were discussed, and likely
derived for, continuous data.

In this paper, we propose a model-based biclustering
approach for multivariate discrete longitudinal data, where
clusters of units are defined to share common longitudinal
trajectories for specific subsets of variables. The latter may
vary with row clusters. The method is designed to deal with
longitudinal data, originating from a limited number of mea-
surement occasions in discrete time, rather than for longer
sequences observed in a (quasi-) continuous time, i.e., func-
tional data. Within each mixture component, the canonical
parameter ismodeled by a suitable parametrization that helps
identify subsets/groups of variables evolving over time in a
similar manner for units in that cluster. Figure1 may help
understand the basic features of the proposal. It represents a
toy example where 100 units are partitioned into 3 compo-
nents and, within each of them, 4 variables are partitioned
into 2 segments that show a similar longitudinal profile over
4 time points. In detail, variables allocated to the first seg-
ment remain rather constant over time, with a slight increase
at the last occasion; on the other side, variables belonging to
the second segment increase exponentially over time. These
trends become more pronounced when moving from the first
to the last component of the finite mixture. In this sense, the
proposedmodel can be seen as a longitudinal extension of the
model proposed by Martella and Alfò (2017). The paper is
structured as follows. InSect. 2,webriefly recall the approach
introducedbyMartella andAlfò (2017). The extension to lon-
gitudinal data and a discussion on model identifiability are
illustrated in Sect. 3. Section 4 describes the EM algorithm
for maximum likelihood estimation of model parameters; in
Sect. 5, initialization, convergence of the EM algorithm, and
model selection are discussed. Section6 presents a large scale
simulation study where we analyze the ability of the pro-
posed approach in recovering the true partitions and the true
values of model parameters in several controlled settings.
In Sect. 7, we apply the proposed model to a real-life dataset
describing crime events in Italy during the period 2012–2019
(source: ISTAT). After an exploratory analysis, we present
the main results obtained by the proposed model and high-
light its potentialities. Final conclusions are drawn in Sect. 8.
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Table 1 Some common
three-way data structures

Three-way structure Mode
Rows Columns Layers

Multivariate longitudinal data Units Variables Times

Multivariate repeated measures Units Variables Situations

Multivariate spatial data Units Variables Locations

Multivariate time-series Units/locations Times Variables

Multivariate spatio-temporal data Locations Variables Times

. . . . . . . . . . . .

1 2 3

1 2 3 4 1 2 3 4 1 2 3 4

0

20

40

Time

y

1 2 3 4

Fig. 1 An example of biclustering with 100 units, 4 variables, 3 com-
ponents, 2 segments, and 4 time occasions

2 Biclusteringmultivariate discrete data

Martella and Alfò (2017) proposed a model for bicluster-
ing discrete outcomes, starting from a specific version of a
finite mixture of factor analyzers. To identify homogeneous
subsets of variables they used a suitable choice of the factor
loading matrix to represent segment membership. In detail,
let n and p denote the number of observed rows (units) and
columns (variables) of the data matrix, respectively. For a
given unit, the vector yi = (yi1, . . . , yip)′ is observed; its
generic element yi j represents the value of the j-th variable
for the i-th unit, i = 1, . . . , n, j = 1, . . . , p. As it is usual
in model-based clustering, we assume that yi is drawn from a
population P formed by K non-overlapping subpopulations
Pk, k = 1, . . . , K , identified by a unit-specific component
indicator Zi = (Zi1, . . . , ZiK )′, with Zik = 1 if unit i comes
from the k-th subpopulation and Zik = 0 otherwise. The
prior probability for the i-th unit, i = 1, . . . , n, to come
from subpopulation Pk is denoted by πk = Pr(Zik = 1),
where the usual constraints 0 < πk ≤ 1, k = 1, . . . , K , and∑K

k=1 πk = 1 hold.Without loss of generality, let us consider
that responses yi j are realizations of independent random
variables with density in the Exponential Family (EF). The
joint (conditional) density of the vector yi may be expressed

as follows:

f (yi | Zik = 1) =
p∏

j=1

f (yi j |θ j(k), σ j(k))

=
p∏

j=1

exp

{
yi jθ j(k) − c(θ j(k))

b(σ j(k))
+ d(yi j ; σ j(k))

}

. (1)

Here, f (yi j |θ j(k), σ j(k)) represents a generic density in the
EF for the j-th response in the k-th component; this is char-
acterized by the canonical parameter θ j(k) and the dispersion
parameter σ j(k). Further, b(·), c(·), d(·) denote known func-
tions. As it can be observed, heterogeneity induces marginal
dependence; that is, the multivariate model is defined as a
finite mixture of conditional multivariate densities, in turn
defined as the product of conditionally independent univari-
ate densities. Even if this assumption may be overly simple,
as the corresponding dependence structure is exchangeable
at the linear predictor scale, it still gives a solution to the lack
of simple multivariate models for discrete data and gives rise
to a model which is simple to be interpreted and handled.
Martella and Alfò (2017) focused on Binomial, Poisson, and
Negative Binomial distributions as component-specificmod-
els.

To introduce partitioning of variables for units in the k-th
component of the finite mixture (i.e., to identify segments),
we assume that the parameters θ j(k), j = 1, . . . , J , k =
1, . . . , K , are described by the following equation

θ j(k) = φk + a′
jkβ.

Here, φk is a component-specific intercept, β is a Q-
dimensional vector of effects with elements β1, . . . , βQ ,
while a jk is a Q-dimensional (Q ≤ p) membership indi-
cator for the j-th variable in the k-th component. In detail,
the terms βq , q = 1, . . . , Q, are fixed effects associated to
subsets of variables. That is, if two variables share the same
effect βq , they belong to the same segment (within the k-
th component of the finite mixture). On the other hand, the
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indicator variables in a jk are defined as

a jkq =
{
1 if variable j is in segment q,

0 otherwise,

for j = 1, . . . , J , k = 1, . . . , K , q = 1, . . . , Q. This is
the main difference with respect to standard grid-clustering
(co-clustering) techniques; there, a rigid partition built up
by clusters of rows and columns is assumed. Here, instead,
we allow for a different number of variable-specific seg-
ments in each mixture component. For example, a subset of
columns may be empty in a given component and non-empty
in another one. That is, for some components k = 1, . . . , K ,
a specific segment q = 1, . . . , Q,may be empty and the cor-
responding element a jkq be null. So, for that component the
number of segments Q reduces to Q(k) ≤ Q. Further, we do
not need to assume independence between the unit and the
variable-specific partitions. Themodel is essentially based on
projecting, conditional on the cluster of units, the p observed
variables onto a reduced space of dimension Q ≤ p.

3 The extension to longitudinal data

Let us suppose we observe for a sample of n units a p-
dimensional set of variables at T measurement occasions.
Let yi j t denote the value of the j-th variable at occasion t for
unit i , i = 1, . . . , n, j = 1, . . . , p, t = 1, . . . , T . The vec-
tor yi t = (yi1t , . . . , yipt )′ is the i-th unit vector of variables
recorded at occasion t (i = 1, . . . , n, t = 1, . . . , T ), while
yi = (yi t , . . . , yiT ) denotes the matrix of values recorded
over all occasions, i = 1, . . . , n. Here, for simplicity, we
assume that all units are observed at all the intended mea-
surement occasions, as in balanced longitudinal studies.
The generalization to the unbalanced case is straightforward
under a Missing at Random (Rubin 1976) assumption.

To extend the model introduced in the previous section
to the longitudinal framework, we assume that yi is drawn
from a population P formed by K subpopulations Pk, k =
1, . . . , K , identified by a unit-specific component indicator
Zi = (Zi1, . . . , ZiK )′, with Zik = 1 if unit i comes from the
k-th subpopulation and Zik = 0 otherwise; the prior proba-
bilities πk = Pr(Zik = 1), k = 1, . . . , K , follow the usual
constraints 0 < πk ≤ 1, k = 1, . . . , K , and

∑k
k=1 πk = 1.

As it can be noticed, units’ partition is fixed over time. We
assume local independence over variables and times; accord-
ing to such an assumption, conditional on Zik = 1, the p
variables are independent, both within (same variable over
time) and between (different variables at a given occasion).
That is, we assume that the unit-specific component indi-
cator Zi captures the dependence both between and within
variables recorded at different occasions from the i-th statis-
tical unit. As before, even if this assumption may be overly
restrictive, it is due to the lack of a proper multivariate model

for discrete data. Based on such assumptions, the conditional
density (1) may be extended in a natural way as

f (yi |Zik = 1) =
T∏

t=1

p∏

j=1

f (yi j t |θ j t(k), σ j(k))

=
T∏

t=1

p∏

j=1

exp

{
yi j tθ j t(k) − c(θ j t(k))

b(σ j(k))
+ d(yi j t ; σ j(k))

}

,

(2)

where θ j t(k) represents the canonical parameter for the j-th
variable at occasion t for units in the k-th component, while
σ j(k) is the component-specific dispersion parameter for the
j-th variable, assumed to be constant across occasions.
To introduce a partitioning of observed variables, different

parameterizations can be considered. We may start noticing
that the proposal by Martella and Alfò (2017) can be applied
to cases with T = 1. For T > 1, several extensions can be
obtained by opportunely specifying the canonical parameter
θ j t(k). The simplest case consists in assuming that variable
partitioning remains constant over time. That is,

θ j t(k) = θ j(k) = φk + a′
jkβ,

j = 1, . . . , p and k = 1, . . . , K , as in the non-longitudinal
case discussed so far. A step forward is that of allowing the
variable partition to vary with time:

θ j t(k) = φk + a′
jktβ, (3)

j = 1, . . . , p , k = 1, . . . , K and t = 1, . . . , T . Here,
the vector a jkt represents the occasion-specific membership
for the j-th variable and the k-th component. Therefore,
partitioning of variables may vary with occasions and com-
ponents. Note that, in equation (3), segment membership
changeswith time,while the corresponding effects in the vec-
tor β remain constant.While this approach is more general,
it assumes that a constant vector β may well represent the
evolution over time of the observed variables. In this sense,
we may expect that a few values of β are associated with
a subset of occasions only and therefore, a higher number
of segments Q is needed in the presence of highly variable
longitudinal trajectories.

An alternative approach consists in considering the fol-
lowing parameterization:

θ j t(k) = φk + a′
jkβ(t). (4)

Here, membership of the p variables is constant over time
within the k-th component, while the vector of segment-
specific effects may vary. In detail, we consider a Q-
dimensional function of time β(t) = (β1(t), . . . , βQ(t))′,
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where βq(t) is a process describing segment-specific dynam-
ics. According to this parameterization, unit membership
does not change over time, while the associated effect, say
βq(t), may evolve over time and describe different dynamics
for each segment. Clearly, various specificationsmay be con-
sidered for the vector β(t) as well. In the following section,
we discuss a few examples.

3.1 The time functions

Starting from the parameterization in equation (4), different
time functions may be considered. While many alternatives
are possible, we focus on a few that we think can properly
approximate very different time behaviors.

3.1.1 Polynomial time functions

A simple way to model segment-specific functions βq(t) is
to use a polynomial of a given degree R:

βq(t) =
R∑

r=0

λqr t
r ,

where {λqr , r = 0, . . . , R} represent the polynomial coeffi-
cients, with λq0 = 0 for identifiability reasons. In this case,
equation (4) can be rewritten as:

θ j t(k) = φk + a′
jkΛω(t) (5)

where ω(t) = (1, t, t2, . . . , t R)′ is an (R + 1)-dimensional
design vector and Λ = (λ1, . . . ,λQ)′ is a Q × (R + 1)
matrix of polynomial coefficients. Each rowλq , is an (R+1)-
dimensional vector containing segment-specific coefficients
λqr , r = 0, . . . , R. For a large enough degree R, the poly-
nomial function may approximate any function of the time.
Clearly, different choices of the degree R lead to different
polynomials. Usually, R is fixed to be as low as possible
(smaller than 3 or 4); in fact, for larger values, the polyno-
mial curve may be overly flexible and this may make the
corresponding estimates unstable. See James et al. (2013)
for a discussion.

3.1.2 Basis time functions

To add some flexibility and define a smooth segment-specific
function of time, we may refer to a more general approach in
which polynomials are a special case. The idea is to represent
the segment-specific process βq(t) by a linear combination
of L known basis functions {γ1(t), . . . , γL(t)}:

βq(t) = λq0 +
L∑

l=1

λqlγl(t). (6)

Here, λq0 is an intercept constrained to be zero for iden-
tifiability reasons and λql , l = 1, . . . , L, are coefficients
associated to the basis functions γ1(t), . . . , γL(t). Note that,
in the polynomial case, the basis functions are simply γl(t) =
t l . Besides this, several other basis functions may be used;
themost common choice are the spline basis functions. These
represent a collection of piecewise polynomials that connect
smoothly in the abscissas (here, the time) at specified points
ρ1 < ρ2 < . . . < ρD (called knots). The total number of
basis functions, L , depends on the number of knots, D: the
higher the latter, the higher the flexibility. Spline functions
are known to produce more stable estimates when compared
to polynomials (Hastie et al. 2009).

Without loss of generality, we will consider the R-th
degree truncated power basis function, although the model
can be extended to other basis functions as well (B-splines,
cubic splines, Fourier, etc.). For an overview of the potential
alternatives, we refer to Green and Silverman (1993), Hastie
and Tibshirani (1990) and, Wood (2017).

The R-th degree truncated power basis functionwith knots
at ρ1, . . . , ρD is defined as

1, t, . . . , t R, (t − ρ1)
R+, . . . , (t − ρD)R+, (7)

where (t − ρd)
R+, d = 1, . . . , D, is given by

(t − ρd)
R+ =

{
0 t < ρd ,

(t − ρd)
R t ≥ ρd .

By increasing the number of knots, D, we increase the num-
ber of basis and, thus, the flexibility of the model. The total
number of basis functions depends on the number of knots
given that L = R + 1 + D. If we adopt the R-th degree
truncated power basis in equation (7), we may re-write the
segment-specific function βq(t) in equation (6) as

βq(t) =
R∑

r=0

λqr t
r +

D∑

d=1

λqR+d(t − ρd)
R+. (8)

The parametrization of the canonical parameter, θ j t(k), is
the same as in equation (5). The term ω(t) now denotes the
L-dimensional design vector ω(t) = (1, t1, t2, . . . , t R, (t −
ρ1)

R+, . . . , (t−ρD)R+)′ andΛ is a Q×L matrix of coefficients
(λ1, . . . ,λQ)′.

Choosing the number of basis functions, as well as the
number and the position of knots, is usually a challenging
task. A potential approach is that of using the smoothing
spline regression, where we set the number of knots equal
to the number of time points and the resulting over-fitting is
controlled by adding a penalty term to the objective function.
Such a method has usually a high computational complex-
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ity due to both the penalty choice and the number of time
occasions (Coffey et al. 2014).

As an alternative, we may use the penalized spline
smoothing (P-spline; Eilers and Marx, 1996). This is a
low-rank smoothing method requiring a lower number of
basis functions. It tries to avoid over-fitting by using a dis-
crete penalty, υ, called the smoothing parameter, on the
estimated coefficients. Representing the smoothing prob-
lem by P-splines reduces its dimensionality and, thus, the
computational complexity. Ruppert (2002) argued that P-
splines are also relatively insensitive to the number of basis
functions selected once a sufficient number is used. He sug-
gested to choose the number of knots via the rule-of-thumb
D = max(5,min( T4 , 35)) and to place knots at the quantiles
of the data.

To simplify estimation of the basis function coefficients,
we may make use of the generalized linear mixed model
representation of P-splines, and rewrite the segment-specific
vector as β(t) = Λω(t) + Ξu(t). Accordingly, equation (5)
becomes

θ j t(k) = φk + a′
jk [Λω(t) + Ξu(t)] , (9)

whereω(t) = (1, t1, t2, . . . , t R)′ nowcorresponds to thefirst
(R+1) basis functions,u(t) = (

(t − ρ1)
R+, . . . , (t − ρD)R+

)′

consists of the remaining D basis functions, while Λ and
Ξ are matrices of unknown coefficients associated to ω(t)
and u(t), respectively. The generic row of Ξ corresponds to
the D-dimensional random effects ξq ∼ N(0, σ 2

ξ ID) (q =
1, . . . , Q), such that σ 2

ξ = 1/υ, where, as stated above, υ

controls the trade-off between fit and smoothness. Estimates
of Λ, Ξ , and σ 2

ξ are solutions to generalized linear mixed
model equations, so that we may take advantage and use ML
implementations available in standard statistical software.

3.2 Model identifiability

Model identifiability is an important issue in this context.
As detailed by Martella and Alfò (2017), it is a twofold
problemdepending on both themixturemodel and the canon-
ical parameter re-parameterization. The identifiability of the
mixture model can be established following Teicher (1961,
1963). These works provide a foundation for finite mix-
tures of parametric distributions. See also McLachlan and
Peel (2000) for a general discussion, Yakowitz and Spragins
(1968) and Atienza et al. (2006) for specific contributions.
As far as the identifiability of parameters defining θ j t(k), we
may proceed as follows: since the vector a jk is binary and
row stochastic, the elements in β(t) can be easily identi-
fied. In fact, the vector a jk is unique, but for trivial labels
permutation. For fixed a jk and β(t), k = 1, . . . , K , j =
1, . . . , p, to identify φk, k = 1, . . . , K , we may introduce

the usual constraint
∑K

k=1 πkφk = 0, that is a typical iden-
tifiability condition in regression models with unit-specific
discrete random effects. Thus, conditions given in Hennig
(2000) ensure identifiability of the parameters in β(t) and
φ = (φ1, . . . , φK )′ appearing in the model for θ j t(k). Further
details can be found in Martella and Alfò (2017).

4 Maximum likelihood estimation

The observed log-likelihood for n independent observations
may be expressed as follows

�(Ψ ) =
n∑

i=1

log f (yi | Ψ )

=
n∑

i=1

log
K∑

k=1

πk f (yi | Zik = 1),

where Ψ represents the vector of model parameters and
f (yi | Zik = 1) is defined according to equation (2) with
a canonical parameter specified according to either equation
(5) or (9). If the latter is considered, depending on the time
function we adopt to describe dynamics over time, we have a
different number of parameters to estimate. However, regard-
less the choice, we exploit the EM algorithm (Dempster et al.
1977) to compute the ML estimate for Ψ . Considering the
component indicators Zi ’s as missing data and adopting for
them a Multinomial distribution with index 1 and parameter
π = (π1, . . . , πK )′, the complete-data log-likelihood func-
tion for Ψ is

�c(Ψ ) =
n∑

i=1

K∑

k=1

zik log(πk)

+
n∑

i=1

K∑

k=1

p∑

j=1

T∑

t=1

zik log f (yi j t | Zik = 1).

LetW = {wik}(k=1,...,K ,i=1,...,n) denote the matrix of poste-
rior probabilities of units’ component membership, and let
A = {a jk}(k=1,...,K , j=1,...,p) be the matrix of binary vectors
that define,within each component, the segment the j-th vari-
able belongs to. The EM algorithm proceeds by initializing
A andW to Â0 and Ŵ0 and iterating the following steps until
convergence.

1. M-step 1: update β(t), φ = (φ1, . . . , φK )′, and σ =(
σ1(1), . . . , σp(K )

)′

Conditional on Â and Ŵ, the likelihood is a weighted
version of a standard generalized linear (mixed-effects in
the case of P-spline) model likelihood. As no closed form
solutions are available, we update β̂(t) t = 1, . . . , T , φ̂,

123



Statistics and Computing            (2024) 34:42 Page 7 of 21    42 

and σ̂ via aNewton–Raphson algorithmon the augmented
data (Y, Ŵ, Â).

2. M-step 2: update π

Conditional on Â and Ŵ, update π̂ , via the standard finite
mixture solutions

π̂k =
∑n

i=1 ŵik

n
k = 1, . . . , K .

3. M-step 3: update A
Conditional on Ŵ, β̂(t), φ̂, σ̂ , and π̂ , allocate units into
components according a Maximum A Posteriori (MAP)
rule and update Â as follows

(a) consider the j-th variable and the k-th component,
j = 1, . . . , p, k = 1, . . . , K , and compute the log-
likelihood contribution

� j(kq) =
∑

i∈k

T∑

t=1

yi j t θ̂ j t(kq) − c(θ̂ j t(kq))

b(σ̂ j(k))
+

+ d(yi j t ; σ̂ j(k)),

with θ̂ j t(kq) = φ̂k + β̂q(t) and q = 1 . . . , Q;
(b) for fixed j and k, compute the maximum log-

likelihood value � j(kq) over q = 1, . . . , Q, and
denote it by �max

j(k) ;
(c) for the k-th component, allocate the j-th variable to

the q-th segment (by setting a jkq = 1) if � j(kq) =
�max
j(k) , for j = 1, . . . , p, k = 1, . . . , K

4. E-step: update W
Conditional on Ψ̂ , update Ŵ by computing

ŵik = π̂k f (yi | Zik = 1)
∑K

k=1 π̂k f (yi | Zik = 1)
,

for k = 1, . . . , K , and i = 1, . . . , n.

At convergence, each unit may be assigned to the compo-
nent with the highest posterior probability (MAP rule), while
each variable is assigned to the q-th segment according to the
elements in the matrix Â. We may notice that, while the esti-
mated row (unit) partition is fuzzy, the column (variable) par-
tition is assumed to be hard, with non-overlapping segments.

5 Initialization, convergence andmodel
selection

Even if convergence of the EM algorithm is guaranteed when
the (log-)likelihood function is bounded fromabove, as it is in
the current case, its performancemayheavily dependon start-
ing values, since the log-likelihood surface has oftenmultiple
(local) maxima. A good initialization strategy is defined as

one that attains a good solution in a low number of iterations.
While the literature is rich in proposals to find reasonable
starting values, no strategy seems to uniformly outperform
the others. For an overview, see Giordani et al. (2020). Ran-
dom initialization of component/segment memberships may
lead to slower convergence than starting from other cluster-
ing solutions, such as k-means, even though none of the two
guarantees that a global maximum is attained. To this end,
a multi-start strategy is usually suggested. In the simulation
study, we used a multiple starting procedure based on inde-
pendent k-means algorithms on the rows and the columns of
the data matrix, in order to obtain an initial partition of units
and variables.

As far as the stopping rule criteria is concerned, following
Martella and Alfò (2017), the EM algorithm is stopped when

�(r)(·) − �(r−1)(·) < ε, ε > 0,

where r is the current iteration and ε = 10−5. Clearly, other

suitable stopping rules, like ||Ψ̂ (r) − Ψ̂
(r−1)|| < ε, could be

reasonable.
Weassumed that the number of components and segments,

as well as the degree of the polynomial are known; this is
usually not the case and they must be estimated through
the data. As in standard mixture models, we can make use
of information criteria, where we minimize twice the nega-
tive log-likelihood function penalized by model complexity.
Examples are theAkaike InformationCriterion (AIC;Akaike
1973)

AIC = −2�(Ψ̂ ) + 2ν,

where ν is the number of free parameters to be estimated.
Here, ν = K + J K +Q(R+1)+ (K −1) in the polynomial
case and ν = K + J K + QL + (K − 1) in the basis func-
tion case. We may also consider the Bayesian Information
Criterion (BIC; Schwarz 1978) defined as

BIC = −2�(Ψ̂ ) + ν log(n),

as well as the Integrated Completed Likelihood (ICL;
Biernacki et al. 2000), which can be calculated via the fol-
lowing approximation

ICL= BIC −
K∑

k=1

n∑

i=1

ŵik log(ŵik).

TheNormalizedEntropyCriterion (NEC;Celeux andSoromenho
1996) obtained as

NEC =
⎧
⎨

⎩

−∑K
k=1

∑n
i=1 ŵik log(ŵik )

�(Ψ̂ K∗ )−�(Ψ̂ 1)
if K > 1,

1 otherwise,
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represents a further alternative. Here, Ψ̂ K denotes the esti-
mated parameter vector obtained with K components. For
details on the performance of such criteria, see Soromenho
(1994), Kass and Raftery (1995), Celeux and Soromenho
(1996),McLachlan andPeel (2000), andBaudry et al. (2010),
among others.

6 Simulation study

We conducted a large scale simulation study, based on vary-
ing sample sizes, number of time occasions, and number of
components and segments. The aim is to evaluate the per-
formance of the proposed biclustering method in different
controlled contexts. In Sects. 6.1 and 6.2, we present the
results we obtained by considering either a polynomial or
a spline specification, as described in Sects. 3.1.1 and 3.1.2,
respectively.

6.1 Polynomial time functions

We start by considering the case of count data with condi-
tional Negative Binomial distribution

f (yi j t |Zik = 1) =
(
yi j t + s j(k) − 1

s j(k) − 1

)

×
(

θ j t(k)

θ j t(k) + s j(k)

)yi j t( s j(k)
θ j t(k) + s j(k)

)s j(k)
. (10)

This distribution is widely used when modeling counts as it
allows for overdispersion in the data and, further, includes
the Poisson distribution as a particular case.

The term θ j t(k) in equation (10) denotes the component-
specific canonical parameter for the j-th variable at occasion
t and ismodeled according to equation (5).On the other hand,
the term s j(k) controls for variable- and component-specific
overdispersion and, for simplicity, it is assumed to remain
constant with j (i.e., s j(k) = s(k), j = 1, . . . , p).

To study the behavior of the proposedmethod in controlled
experiments, we considered different simulation scenarios
basedonvarying sample sizes (n = 50, 100, 200, 500), num-
ber of time occasions (T = 4, 8) and variables (p = 12, 24),
by keeping constant the polynomial degree to R = 1. We
considered two alternative block structures:

(a) K = 3 components and Q = 2 segments, with
component-specific locations φ = (1, 2, 3)′, segment-
specific polynomial coefficients Λ = (λ11, λ21)

′ =
(0.2, 0.8)′, component-specific overdispersions s =
(s(1), s(2), s(3))′ = κ × (1, 1.5, 2)′ and component prior
probabilities π = (0.5, 0.1, 0.4)′;

(b) K = 4 components and Q = 3 segments, with
component-specific locations φ = (1, 2, 3, 4)′, segment-

Table 2 Polynomial time function with R = 1: mean and median (in
brackets) ARI values for K = 3, Q = 2, and T = 4, in different settings

High variance Low variance
n Row Col n Row Col

p = 12

50 0.96 (1.00) 0.86 (1.00) 50 0.99 (1.00) 0.85 (1.00)

100 0.98 (1.00) 0.88 (1.00) 100 0.99 (1.00) 0.90 (1.00)

200 1.00 (1.00) 0.96 (1.00) 200 1.00 (1.00) 0.99 (1.00)

500 1.00 (1.00) 1.00 (1.00) 500 1.00 (1.00) 1.00 (1.00)

p = 24

50 1.00 (1.00) 1.00 (1.00) 50 1.00 (1.00) 1.00 (1.00)

100 1.00 (1.00) 1.00 (1.00) 100 1.00 (1.00) 1.00 (1.00)

200 1.00 (1.00) 1.00 (1.00) 200 1.00 (1.00) 1.00 (1.00)

500 1.00 (1.00) 1.00 (1.00) 500 1.00 (1.00) 1.00 (1.00)

specific polynomial coefficients Λ = (λ11, λ21, λ31)
′ =

(0.2, 0.8, 1), component-specific overdispersions s =
(s(1), . . . , s(4))′ = κ × (1, 1.5, 2, 2.5)′, and component
prior probabilities π = (0.3, 0.2, 0.1, 0.4)′.

As far as the variable partition is concerned, for each variable,
a simple random sampling without replacement is consid-
ered. Last, under both settings (a) and (b), κ controls for
heterogeneity within biclusters. In this respect, noticing that
the conditional variance of yi j t , given that unit i comes from
the k-th component, is equal to [θ j t(k) + θ2j t(k)]/s(k), we
obtainedhigh and low varianceby settingκ = 0.5 andκ = 1,
respectively.

For each scenario, we simulated B = 100 samples and,
for each of them, we ran the EM algorithm 50 times from
independent k-means algorithms applied to the rows and
the columns of the three-way data and retained the solution
corresponding to the maximum log-likelihood value. The
performance of the model is evaluated through the follow-
ing measures: (i) average and median Adjusted Rand Index
(ARI, Hubert 1985) across simulations, which measures the
agreement between the true and the estimated unit-/variable-
specific partitions, corrected by chance (it is 0 for random
labeling and1when the true and the estimated partitions com-
pletely agree); (ii) the estimated Root Mean Squared Error
(RMSE) of model parameters. The latter is obtained as the
root of the average squared differences between the estimated
and the true parameter values across simulations (the smaller
the estimated RMSE, the better the performance).

Table 2 shows the ARI values obtained with T = 4, K =
3, Q = 2, and R = 1 for varying variance levels and number
of variables /units. As it can be observed, in all settings, the
number of variables p has an impact on units’ and, above all,
variables’ partitioning, as the ARI value clearly increases
with p. For p = 24, the variance level and the sample size
n do not have any impact on partitioning of both units and
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Table 3 Polynomial time
function with R = 1: RMSE
values for K = 3, Q = 2, and
T = 4, in different settings

n RMSEφ RMSEΛ RMSEs RMSEπ

High variance

p = 12

50 [0.34, 0.31, 0.15] [0.02, 0.02] [0.48, 0.75, 1.00] [0.16,0.20, 0.27]

100 [0.31, 0.30, 0.15] [0.01, 0.01] [0.49, 0.75, 1.00] [0.22, 0.18, 0.33]

200 [0.14, 0.19, 0.03] [0.01, 0.01] [0.49, 0.75, 1.00] [0.39, 0.22, 0.27]

500 [0.03, 0.02, 0.02] [0.01, 0.01] [0.50, 0.75, 1.00] [0.02, 0.02, 0.02]

p = 24

50 [0.05, 0.05, 0.04] [0.01, 0.01] [0.49, 0.74, 0.99] [0.07, 0.05, 0.08]

100 [0.03, 0.04, 0.02] [0.01, 0.01] [0.49, 0.75, 0.99] [0.05, 0.03, 0.06]

200 [0.02, 0.02, 0.02] [0.01, 0.01] [0.49, 0.75, 1.00] [0.03, 0.03, 0.04]

500 [0.02, 0.02, 0.01] [0.00, 0.00] [0.50, 0.75, 1.00] [0.02, 0.02, 0.02]

Low variance

p = 12

50 [0.33, 0.28, 0.18] [0.02, 0.02] [0.26, 0.19, 0.18] [0.26, 0.36, 0.34]

100 [0.25, 0.28, 0.16] [0.01, 0.01] [0.15, 0.21, 0.18] [0.29, 0.18, 0.32]

200 [0.09, 0.02, 0.02] [0.01, 0.01] [0.08, 0.04, 0.03] [0.17, 0.09, 0.12]

500 [0.02, 0.02, 0.01] [0.01, 0.01] [0.02, 0.03, 0.03] [0.02. 0.02, 0.02]

p = 24

50 [0.03, 0.03, 0.03] [0.01, 0.01] [0.04, 0.07, 0.06] [0.07, 0.05, 0.08]

100 [0.02, 0.02, 0.04] [0.01, 0.01] [0.03, 0.03, 0.15] [0.13, 0.29, 0.37]

200 [0.01, 0.01, 0.01] [0.01, 0.01] [0.02, 0.03, 0.02] [0.03, 0.03, 0.04]

500 [0.01, 0.01, 0.01] [0.00, 0.00] [0.02, 0.02, 0.02] [0.02, 0.02, 0.02]

Table 4 Polynomial time
functions: mean and median (in
brackets) ARI values for
n = 100 and p = 12, in
different settings

High variance Low variance
K Q T R Row Col K Q T R Row Col

3 2 8 1 1.00 (1.00) 1.00 (1.00) 3 2 8 1 1.00 (1.00) 1.00 (1.00)

3 2 4 2 1.00 (1.00) 1.00 (1.00) 3 2 4 2 1.00 (1.00) 1.00 (1.00)

4 3 4 1 1.00 (1.00) 0.90 (0.94) 4 3 4 1 1.00 (1.00) 0.90 (1.00)

Table 5 Polynomial time functions: RMSE values for n = 100 and p = 12, in different settings

K Q T R RMSEφ RMSEΛ RMSEs RMSEπ

High variance

3 2 8 1 [0.09, 0.04, 0.02] [0.00, 0.00] [0.49, 0.75, 0.99] [0.21, 0.11, 0.23]

3 2 4 2 [0.10, 0.10, 0.10] [0.09, 0.09, 0.01 0.02] [0.49, 0.75, 0,98] [0.11, 0.12, 0.18]

4 3 4 1 [0.12, 0.04, 0.12, 0.04] [0.01, 0.05, 0.01] [0.49, 0.75, 1.00, 1.23] [0.18, 0.20, 0.14, 0.17]

Low variance

3 2 8 1 [0.02, 0.04, 0.01] [0.00, 0.00] [0.02, 0.17, 0.04] [0.31, 0.16, 0.17]

3 2 4 2 [0.08, 0.07, 0.06] [0.06, 0.05, 0.01,0.01] [0.06, 0.06, 0.05] [0.12, 0.09, 0.16]

4 3 4 1 [0.24, 0.21, 0.14, 0.04] [0.01, 0.05, 0.01] [0.14, 0.18, 0.14, 0.12] [0.19, 0.21, 0.15, 0.13]
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variables, while, for p = 12, both quantities seem to have an
impact. In any case, as expected, ARI values increase with
increasing sample size and decreasing variance level. In all
settings, we obtain good results in terms of recovering the
unknown data structure, with an ARI index always above
0.85 (a standard threshold for evaluating clustering efficacy)
and reaching the maximum achievable when dealing with a
large number of variables, regardless the variance level.

In Table 3, the estimated RMSEs of model parameters
obtained for T = 4, K = 3, Q = 2, and R = 1 are reported.
RMSEs appear low for all model parameters and decrease
with increasing p and n, especially for φ and π . It is also
worth noticing that, when the variance level is high, the sam-
ple size n does not seem to affect the quality of estimates for
s and Λ.

Tables 4 and 5 report the ARI and the RMSE of model
parameters in other simulation settings obtained by letting T ,
K , Q, and R vary, and by keeping constant the sample size
(n = 100) and the number of variables (p = 12). In detail,
as far as the polynomial degree is concerned, we set now
R = 2 and Λ = (λ11, λ12, λ21, λ22)

′ = (0.2, 0.8, 0.2, 0.2)′.
These tables highlight the good performance of the proposal
in terms of both partitions’ and parameters’ recovery. ARI
values are, on average and in median, all equal to the max-
imum possible achievable, besides the simulation scenario,
except for that corresponding to K = 4, Q = 3, T = 4
and R = 1. In this case, the ARI measuring the agreement
between the true partitioning of variables and the estimated
one slightly reduces, even thought the standard 0.85 threshold
is still overtaken. Also results in Table 5 do not substan-
tially differ from those reported in Table 3, suggesting that
parameters’ recovery is ensured also in simulation settings
characterized by a more complex block structure.

6.2 Basis time function

To get more general insight, we simulated B = 100 samples
by considering responses yi j t from a conditional Negative
Binomial distribution, with canonical parameter θ j t(k) mod-
eled according to equation (5) and over dispersion parameter
s j(k) = s, j = 1, . . . , p, k = 1, . . . , K . Based on the
results described in the previous section, we focused the
attention on scenarios with n = 50, 100, 200 sample units,
T = 4, 8 measurement occasions and p = 12 variables,
partitioned into K = 3 components and Q = 2 segments,
respectively. We fixed the component-specific locations to
φ = (1, 1.5, 2)′, the overdispersion parameter vector to
s = (s(1), s(2), s(3))′ = (1, 1, 1)′, the component prior prob-
abilities to π = (0.3, 0.2, 0.5)′, and the elements of β(t)
as

βq(t) =
{
2 cos[2π(t + 1/(T + 1))] if q = 1,
π−1[t + 1/(T + 10)] if q = 2,

Table 6 Basis time function: RMSE values for K = 3, Q = 2, and
p = 12, in different settings

n RMSEφ RMSEs RMSEπ

T = 4

50 [0.00, 0.12, 0.07] 0.07 [0.10, 0.12, 0.03]

100 [0.00, 0.06, 0.05] 0.05 [0.05, 0.06, 0.02]

200 [0.00, 0.04, 0.03] 0.04 [0.03, 0.04, 0.01]

T = 8

50 [0.00, 0.10, 0.07] 0.07 [0.11, 0.13, 0.03]

100 [0.00, 0.06, 0.03] 0.06 [0.07, 0.08, 0.02]

200 [0.00, 0.02, 0.02] 0.03 [0.03, 0.04, 0.02]

Table 7 Basis time function:mean andmedian (in brackets)ARI values
for K = 3, Q = 2, and p = 12, in different settings

T = 4 T = 8
n Row Col Row Col

50 0.81 (0.85) 0.59 (0.60) 0.97 (1.00) 0.93 (1.00)

100 0.87 (0.87) 0.85 (0.89) 0.99 (1.00) 0.98 (1.00)

200 0.90 (0.90) 0.96 (1.00) 1.00 (1.00) 1.00 (1.00)

in order to obtain two well distinguished dynamics for the
longitudinal outcomes.

As in the previous section, an initialization strategy based
on 50 independent k-means algorithms was adopted and the
solution corresponding to the maximum log-likelihood value
was retained as the optimal one. A spline basis time func-
tion approach was considered for recovering the longitudinal
dynamics of the observed outcomes. To evaluate the perfor-
mance of the proposal we relied on the estimated RMSE of
model parameters, as well as on the average (and median)
ARI across simulations. Results of the analysis are reported
in Tables 6 and 7.

By looking at these results, it is evident that the model is
able to properly recover the underlying data generation pro-
cess, in terms of parameters’ and partitions’ recovery, both
with respect to components and segments. The quality of
results clearly improves with larger sample sizes and when a
higher number of occasions is available. This is particularly
true when looking at the estimated column partition as the
larger the number of time occasions, the more distinguish-
able the segment-specific trajectoriesweobtain according the
data generating processwe considered. This feature is clearly
evident when looking at Figs. 2 and 3 where, for each of the
scenarios described above, we report the average longitudi-
nal trajectories across units obtained in a single draw of the
simulation study. Units are distinguished in terms of the com-
ponent they belong to. In the same plots, we also report the
estimated basis time functions obtained by averaging across
simulations the estimates (solid curves) and the true func-
tions we used for simulating the data (dashed curves). Such
a figure clearly highlights very good performance in recover-
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Fig. 2 Basis time function: average longitudinal trajectories across components and segments for T = 4, p = 12, K = 3 and Q = 2, in different
settings. The solid and the dashed line correspond to the estimated and the true basis time function, respectively
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Fig. 3 Basis time function: average longitudinal trajectories across components and segments, for T = 8, p = 12, K = 3 and Q = 2, in different
settings. The solid and the dashed line correspond to the estimated and the true basis time function, respectively
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Table 8 Crime data: number of crime episodes per 100 thousands inhabitants in Italy, by crime type and year

Crimes 2012 2013 2014 2015 2016 2017 2018 2019 Mean Sd

Receiving stolen goods 45.04 45.49 44.94 41.69 39.28 36.35 33.14 29.59 39.44 5.97

Beating 28.25 28.21 27.68 27.67 25.12 25.75 25.48 26.41 26.82 1.28

Cybercrimes 13.24 17.01 19.64 17.88 19.68 19.26 24.26 29.62 20.07 4.94

Damage followed by fire 20.22 17.74 15.52 16.22 15.46 17.81 13.99 13.65 16.33 2.18

Extortion 11.65 12.40 14.85 17.82 17.36 15.44 18.18 16.48 15.52 2.44

Fires 23.75 13.36 12.41 16.21 14.56 18.77 8.68 11.99 14.97 4.64

Counterfeiting of
brands and prod-
ucts

16.05 13.44 14.18 15.32 14.06 11.53 10.80 9.14 13.06 2.37

Sexual violence 8.44 8.10 7.70 7.25 7.36 8.43 8.93 8.94 8.14 0.66

Laundering 3.00 3.38 2.87 3.24 3.14 3.37 3.39 3.33 3.21 0.20

Manslaughter 3.10 2.88 2.96 3.17 2.96 3.11 3.17 3.22 3.07 0.12

Attempted murders 2.39 2.21 2.26 2.18 1.96 2.00 1.92 1.87 2.10 0.19

Infringement
of intellectual
property

2.75 1.94 1.94 2.19 1.91 1.44 1.05 0.94 1.77 0.60

Exploitation, aid-
ing and abetting
of prostitution

2.32 2.08 1.97 1.77 1.70 1.37 1.14 0.96 1.66 0.47

Criminal conspiracy 1.53 1.25 1.61 1.32 1.11 1.03 0.83 0.68 1.17 0.32

Child pornography 0.68 0.88 0.98 1.11 0.89 1.01 1.12 1.45 1.02 0.23

Sexual acts with minors 1.00 0.95 0.89 0.92 0.83 0.88 0.90 0.95 0.92 0.05

Voluntary murders 0.95 0.91 0.86 0.85 0.73 0.67 0.60 0.58 0.77 0.14

Usury 0.72 0.83 0.72 0.67 0.73 0.56 0.34 0.34 0.61 0.18

Mean 10.28 9.61 9.66 9.86 9.38 9.38 8.77 8.90

Sd 12.32 11.93 11.88 11.48 10.89 10.62 10.23 10.35

The mean and the standard deviation across years and crime types are reported at the margins

ing the true underlying mechanism in all simulation settings
we considered. As expected, the larger the sample size and,
above all, the number of time occasions, the better the results.

7 Application: Italian crime data

To provide further insight into the empirical behavior of the
proposed model, we considered a real-life dataset, describ-
ing the distribution over time and space of the number of
crime events in Italy. Data are freely available for download
from thewebsite of the Italian National Institute for Statistics
(ISTAT) at the following link: http://dati.istat.it/Index.aspx?
DataSetCode=dccv_delittips.

7.1 Details

The analyzed data provide information on the number
of crime episodes reported yearly by the Italian enforce-
ment authorities (Polizia, Arma dei Carabinieri, Guardia di
Finanza) to justice from2012 to 2019 (T = 8).Data are avail-

able at province level (LAU1), so that information entails a
total of n = 106 statistical units. Only operational activities
of the enforcement authorities are considered, regardless the
subsequent judicial process of the reported facts. A set of 18
different crime types were considered for the analysis; that
is, we have information on J = 18 variables. A complete
list of such variables is reported in Table 8, together with
the corresponding number of episodes registered in Italy per
100 thousands inhabitants, over the analyzed time window.
Also, the mean number of crime episodes registered yearly
in the country and the mean number of episodes of a given
type registered in the whole observation window are reported
at the margins of the table, together with the corresponding
standard deviation.

Looking at the last columns in the table, we may observe
that the average number of crime episodes reported to justice
every year significantly varies with the crime type. Receiv-
ing stolen goods and beating are the most frequent ones, with
an average number of reported episodes equal to 39.44 and
26.82 per 100 thousands inhabitants in the country, respec-
tively.Highvalues are alsoobserved for cybercrimes, damage

123

http://dati.istat.it/Index.aspx?DataSetCode=dccv_delittips
http://dati.istat.it/Index.aspx?DataSetCode=dccv_delittips


   42 Page 14 of 21 Statistics and Computing            (2024) 34:42 

Fig. 4 Crime data: distribution of the total number of crime episodes
per 100 thousands inhabitants, by province

followed by fire, and extortion (20.07, 16.33, and 15.52,
respectively). At the bottom of the list, we find voluntary
murders and usury, with an average number of episodes equal
to 0.77 and 0.61 per 100 thousands inhabitants, respectively.

For a deeper understanding, we report in Fig. 4 the yearly
average number of episodes for any type of crime per 100
thousands inhabitants across the Italian provinces. Such a
representation highlights differences across areas, with aver-
ages that generally increase as we move from the North to
the South of the country and the isles. Exceptions mainly
entail someprovinces located inLiguria (North-West region),
where the average yearly number of episodes seems to be the
highest of the country.

To further explore this latter result, we report in Fig. 5
the distribution across provinces of the average number of
episodes reported to justice every year per 100 thousands
inhabitants, by looking at the crime types appearing at the
top (most frequent) of Table 8. This further representation
lets emerge even more pronounced differences across areas.
Provinces in Liguria seems to bemore incline to crimes of the
type receiving stolen goods, beating, and cybercrime. Beat-
ing episodes are rather frequent also in the Center-North of
the country, with some picks in some of the provinces of
Piemonte, Lombardia and Emilia Romagna, in the South
(provinces in the South of Campania, Basilicata and Cal-
abria), and in Sardinia. Damages followed by fire and fire
are more likely in the South and in the isles of the penin-
sula, while extortion episodes are more spread all around the

country. Some peaks are evident in Campania, Puglia, and
Calabria, as well as in the province of Bologna, Milan, and
the nearby. As expected, besides the crime type, provinces
located in the North-East present lower criminality levels
with the respect to the rest of the country.

Going back to Table 8, as stated above,we report in the last
rows, the average number of crime episodes for each year and
the corresponding standard deviation. Here, we observe that
averages slightly reduce over years and the samedoes also the
variability of data around such quantities. To put emphasis
on this aspect, we represent in Fig. 6 the distribution of the
total number of crime episodes reported to justice per 100
thousands inhabitants across provinces, at the beginning and
at the end of the observation period. Some areas may in fact
have experienced a more evident change.

By looking at the figure, we observe that improvements
entail most of the Italian provinces, but more evidently those
located in the Center-South and the South of the country.

Last, focusing on single cells of Table 8 reporting the total
number of crime episodes by year and crime type per 100
thousands inhabitant, we may observe quite different trends
for the variables under investigation. Some domainly remain
constant over time (e.g., sexual violence), some others tend to
increase or decrease over time (e.g., cybercrimes and receiv-
ing stolen goods, respectively), others have higher variability
(e.g., fires), with subsequent up and down. This aspect will
be further investigated in the subsequent section.

7.2 Analysis

As it is evident from above, data do present a complex struc-
ture and deriving a clear interpretation is not trivial. For
this purpose, we used the proposed model-based bicluster-
ing approach to obtain a dimensionality reduction of both
rows (provinces) and columns (crime types) of the three-way
data structure. In detail, our aim is that of identifying clus-
ters of units (the Italian provinces) characterized by similar
dynamics in the number of crime episodes per 100 thousand
inhabitants, for subsets of variables (the crime types).

We considered a Negative Binomial distribution (condi-
tional on provinces’ component membership) for the count
of crime episodes of type j = 1, . . . , J , reported to justice
in province i = 1, . . . , n, at occasion t = 2012, . . . , 2019.
That is, Yi jt | Zik = 1 ∼ NegBin(θi j t(k), s(k)), where s(k)
is the overdispersion parameter and θi j t(k) is the canonical
parameter described by the following model

θi j t(k) = φk + a′
jk[Λω(t) + Ξu(t)] + log(nit ).

We decided to focus on a spline basis representation of the
linear predictor in order to give high flexibility to the model,
by setting the corresponding degree to R = 2. This latter
choice was motivated by the low number of yearly mea-
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Fig. 5 Crime data:distribution of the total number of crime episodes per 100 thousands inhabitants, by province and crime type

surement occasions (T = 8) available for each province.
Further, in the linear predictor above, nit denotes the popu-
lation size for province i at occasion t , playing the role of
an offset that captures the differential weight of provinces.
Considering such an offset term may help us finding groups
of provinces having similar trend of crime rates during the
analyzed period. For simplicity, we considered a common
dispersion parameter across variables and components; that
is s j(k) = s, j = 1, . . . , p, k = 1, . . . , K .

We ran the EM algorithm described in Sect. 4 for a vary-
ing number of components (K = 2, . . . , 5) and segments
(Q = 2, . . . , 8). An initialization strategy based on 50 ran-
dom start was considered, as in the simulation study. For each
combination [K , Q], the model corresponding to the maxi-
mum value of the log-likelihood was retained as the optimal
one.We report in Fig. 7 the value of the BIC index associated
to each of such optimal solutions, for varying K and Q.

Such a figure suggests the model corresponding to K = 3
and Q = 8 (BIC = 109, 313.3) to be the optimal solution.
That is, the optimal model is the one lying on the boundary of
the set of values we considered for Q. Looking at the results,
however, we noticed that this represents a spurious solution
due to the presence of almost empty segments; for this reason,
we decided to focus on other choices of K and Q. By looking
at Fig. 7, it is evident that the model corresponding to K =
4 may represent an appropriate alternative. As regards the
choice of Q, we identify the optimal model as the one based
on Q = 6 (BIC = 109, 935.5). This solution guaranties
interpretability of results and parsimony.

We report in Table 9 the component-specific parameter
estimates, that is, the model intercepts φk and the component
prior probabilitiesπk , for k = 1, . . . , K , as well as the size of
each component obtained by allocating provinces to clusters
according to a MAP rule.
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Fig. 6 Crime data: distribution of the total number of crime episodes
per 100 thousands inhabitants, by province and year

Fig. 7 Crime data: model selection. BIC index for varying K and Q

Table 9 Crime data: row-cluster parameter estimates and size of the
clusters according to a MAP rule

k 1 2 3 4

φk −9.695 −9.306 −9.206 −8.965

πk 0.507 0.132 0.164 0.198

size 55 13 17 21

The four clusters are well separated and are characterized
by a negative intercept, whose magnitude decreases when
moving from cluster 1 to 4. That is, the model identifies
provinces characterized by increasing baseline “criminality
levels”. Provinces belonging to the former cluster dopresent a
baseline average number of crime episodes reported to justice
by the authoritative forces equal to e−9.695 = 6.159e−05;
that is, 6.159 episodes per 100 thousands inhabitants and
such a value increases to 9.088, 10.044, and 12.781 when
considering provinces allocated to the second, the third, and
the fourth component, respectively.

We report in Fig. 8 the allocation of provinces to compo-
nents, where areas are colored according to the cluster they
are assigned to. By looking at the graphical representation
and pairing it with the results discussed in Sect. 7.1, we may
observe that the model allows to identify groups character-
ized by a homogeneous baseline propensity to the event of
interest. The 4-th component groups those provinces char-
acterized by higher criminality levels, mainly located in the
South of Calabria, Sicily, and Apulia (all provinces in the
South of the Italian peninsula), together with most of the
provinces in Sardinia. Surprisingly the province of Turin is
allocated to this cluster too. The 3-rd component clusters
provinces mainly located in the Center of the country and
includes, among other, all provinces in Liguria, some from
Tuscany and Emilia-Romagna, as well as the province of
Venice. The 2-nd component includes provinces located in
the Center-South: all provinces in Basilicata, those in Apulia
not belonging to the 4-th component, the province ofCosenza
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Fig. 8 Crime data: allocation of Italian provinces to clusters, according
to a MAP rule

(Calabria), and all provinces in Campania, but for Naples.
Finally, all the remaining Italian provinces are allocated to
the 1-st component. This includes, among others, the largest
and the most dense provinces of the country: Rome, Milan,
and Naples.

As far as variable partition is concerned, we show in
Fig. 9 the estimated time function βq(t), derived by substi-
tuting parameter estimates for Λ and Ξ into equation (8),
q = 1, . . . , Q, and t = 1, . . . , T . As it is evident, each
segment identifies variables evolving over time in a similar
manner. Almost all of them show a negative trend: segment
q = 1 collects variables reducing faster at the beginning
of the observation period and more gradually at end; seg-
ment q = 2 and, more evidently, q = 4 are characterized
by the opposite trend, with a reduction in the number of
reported crime episodes that becomes steeper in the last years
of observation; segmentsq = 5and, above all,q = 6do iden-
tify crime types for which the reported number of episodes
reduces almost linearly over time. On the contrary, segment
q = 3 is characterized by a reduction at first (till year 2015)
and then an increase in the number of crime episodes reported
to justice by administrative authorities.

For a deeper understanding, we report in Table 10 the
composition of segments across components. By looking at
these results, we observe that most of the variables (cor-
responding to the different crime types) are classified in a
different segment across the row-clusters. This means that
the reported number of crime episodes evolves differently
in the analyzed time window across the Italian provinces.
The only exceptions are represented by attempted murders
(always belonging to segment q = 5), receiving stolen goods
(always in segment q = 6), and usury and voluntary murders
(always classified in segment q = 2).

In detail, focusing on provinces belonging to the 1-th com-
ponent (the one presenting lower baseline criminality levels),
counterfeiting of brands and products, damage followed by
fire, and sexual violence are classified in segment q = 1.
That is, the number of crime episodes of this type reduces
at first and then tend to stabilize. Infringement of intellec-
tual property, usury, and voluntary murders are classified in
segment q = 2, while extortions and fire to segment q = 4.
That is, the reported number of crime episodes of this type
reduces mildly first and more evidently at the end of the
observation period. Attempted murders, child pornography,
criminal conspiracy, and crimes related to prostitution and
sexual actswithminors belong to segmentq = 5; that is, their
levels gently reduce over time linearly. Such a linear (nega-
tive) trend is more pronounced for beating, cybercrimes, and
receiving stolen goods. Segment q = 3 includes laundering
andmanslaughter. As stated above, these variables reduce at
first and start increase again since 2016 on.

On the contrary, if we focus on provinces belonging to
the 4-th component (with higher baseline criminality levels),
we do observe that those variables that reduce rapidly at the
beginning till reaching a plateaux in the last part of the obser-
vation period (segment q = 1) correspond to counterfeiting
of brands and products, cybercrimes, and extortion. Child
pornography, crimes entailing prostitution and sexual acts
withminors, usury, and voluntarymurders belong to segment
q = 2, while beating and fires to segment q = 4. All these
variables do reduce more evidently as time passes by. Sex-
ual violence is the only variable classified in segment q = 3
(that showing a parabolic trend), while the reported number
of episodes reduces linearly over time for all the remaining
crime types, classified in segment q = 5 and q = 6.

To conclude, we report in Fig. 10 the longitudinal tra-
jectories of the number of reported crime episodes per 100
thousands inhabitants by type, while accounting for both the
provinces, and the crime types’s partitions. The dotted blu
line corresponds to the estimated average number of episodes
per 100 thousands inhabitants obtained from equation (9).
These lines, reflects the temporal evolutions described above,
even though the effects are mitigated by both the scale in the
y-axis of the plots and the intercept in the model. By look-
ing at the figure, similarities between provinces and crimes
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Fig. 9 Crime data: the estimated time function βq (t)

Table 10 Crime data: variable partition across components

Crimes 1 2 3 4

Attempted murders 5 5 5 5

Beating 6 6 6 4

Child pornography 5 2 5 2

Counterfeiting of brands and products 1 1 4 1

Criminal conspiracy 5 2 2 5

Cybercrimes 6 1 6 1

Damage followed by fire 1 4 1 6

Exploitation, aiding and abetting of prostitution 5 5 5 2

Extortion 4 4 4 1

Fires 4 6 4 4

Infringement of intellectual property 2 5 2 5

Laundering 3 5 3 5

Manslaughter 3 3 3 5

Receiving stolen goods 6 6 6 6

Sexual acts with minors 5 2 2 2

Sexual violence 1 3 1 3

Usury 2 2 2 2

Voluntary murders 2 2 2 2

belonging to the same bi-cluster are evident, thus highlight-
ing the effectiveness of the proposed method.

8 Conclusion

In this paper,wepropose amodel-basedbiclustering approach
for multivariate longitudinal data. These represent a specific
type of three-way data where rows identify units, columns
identify variables, and layers identify time occasions. The
number of time occasions in longitudinal studies is usually
low and this makes the application of methods defined for
biclustering functional data rather inappropriate, as outlined
in the text. We use a finite mixture of generalized linear mod-
els to partition units into a given number of components.
Within each of them, we use a simple parameterization of
the canonical parameter to obtain a partition of variables into
a given number of segments, which are characterized by a
similar evolution over time, described by a flexible and par-
simonious representation. An EM-type algorithm is used to
derive model parameter estimates. This has been developed
in R language by the authors and is made available upon
request. A large scale simulation study highlights the per-
formance of the proposed approach, both in terms of model
parameters’ recovery and biclustering ability. The features
of our proposal are also illustrated via the the application
to a real dataset entailing crimes reported to justice by the
Italian enforcement authorities in 2012–2019. Results of this
analysis let us identifying geographical areas in the country
sharing common longitudinal trajectories for specific sub-
sets of crime-types, where the subsets vary when we look at
different clusters of provinces.

An interesting evolution of the proposed approach entails
the treatment of missing data. It is indeed rather common
in the longitudinal framework to deal with missing obser-
vations. Even though the proposal can be straightforwardly
extended to the case of unbalanced longitudinal data in the
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Fig. 10 Crime data:longitudinal trajectories of variables across clusters and segments
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case of non-informative missingness by basing inference
and partitioning on the observed data only, (at the cost of
a slightly more complex implementation of the EM algo-
rithm), the informative case is more demanding. This would
require modeling the missing data process together with the
longitudinal one, at the cost of a more complex model spec-
ification which, however, would allow us deriving unbiased
parameter estimates, as well as more reliable biclusters. A
further issue that may arise due to missing data is that of
non common time occasions; when a few time occasions are
available, this may make retriving the longitudinal trajectory
more complex. In this case, multiple imputation techniques
may be a useful tool of analysis.
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