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1 | INTRODUCTION

The mathematical theory of the three-dimensional viscoelastic fluid flow equations, arising from the Kelvin-Voigt model
for the non-Newtonian fluids, has been analyzed in many papers in the last decades (see, e.g., Refs. [38-45]). Here, in
principle, we are interested in the particular case of Kelvin-Voigt fluids of order L = 1 (see, e.g., Mohan [38]) for which
we have the following law connecting the stress tensor ¢ and the strain tensor D, that is,

oD(x,t)

t
O'(x’ t) =M T + IuOD(x’ t) + 51 / e ([_S)D(x’ S)dS, (11)
0

where a4, 81, 4o, and p; are suitable positive constants, with x € Q and ¢t > 0.
Then, setting a; = and $; =y, and inserting the above relation into the equations describing the motion of a
continuous incompressible medium in Cauchy form, that is,

Ju+V-u®u)+Vp=V.o+f,

V-u=0,

we obtain the following system:

t
du—uAdu+V-(u®u)— uyAu — y/ eS=9Au(s)ds + Vp = f, (1.2)
0

V-u=0. (1.3)
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The above equations are considered on the periodic space domain

Q= {X = (xl,X2,X3) (S R3 . —nL < X1, X, X3 < 7TL},

with L > 0, and 2zL periodicity with respect to x := (x1,X,,X3), that is, we are actually taking into account
Equations (1.2)-(1.3) on the 3D torus T3 = Q/3Q.

We now set u; = 0in Equation (1.2), to re-introduce later a term with the same regularity but only involving derivatives
about 9,, 6)%1, and 6362 as a consequence of the use of an anisotropic horizontal filtering regularization (see Equations (1.6)
and (1.7) below).

Before introducing the smoothing procedure that will lead us to the main model analyzed in this paper, starting from
Equations (1.2) and (1.3) (with x; = 0), we consider a weaker dissipative configuration. We assume the presence, in Equa-
tion (1.2), of the fractional-order dissipative term uyA*u, A = (—A)'/2,3/4 < 8 < 1 (this range of values for 3 is used for
proving existence and regularity), in place of —uyAu. The fractional dissipation can model a number of physical phenom-
ena in hydrodynamics, and it appears in describing geophysical fluid flows (see, e.g., Droniou and Imbert [26]), see also
Refs. [1, 13, 48, 56, 57] for the case of Boussinesq equations) and, in particular, can be related to the description of anoma-
lous diffusion in viscoelastic polymers [30, 54]; the anomalous diffusion typically occurs when the rates of diffusion and
viscoelastic relaxation are comparable (see Hajikarimi and Nejad [30]).

When § > 1, the system becomes more regular and the results that we provide can be achieved even more easily, so we
restrict ourselves to the case 3/4 < § < 1.

As already observed, the presence of fractional diffusion is clearly a situation of reduced regularity, compared to that
involving the standard Laplacian. Here, also for the memory, we consider a less regular scheme by substituting —yAu with
the nondifferential term yu, to get

t
du+ V- -(u®u)+ uyA*u + y/ eS=y(s)ds + Vp = f, 1.4)
0

V-u=0. (1.5)

This is in line with the derivation of the models considered in Refs. [3, 23]; actually we turn back to the case of a differential
memory term after the action of the anisotropic Helmholtz’s filter (see Equations (1.9) and (1.10) below).

We highlight that controllability results for linearized versions of Equations (1.4) and (1.5) have been obtained, taking
B =1 and considering a suitable range of values for u,, in the case of viscoelastic fluids of the Maxwell and Jeffreys types
(see, e.g., Doubova et al. [24]); indeed the purely Jeffreys system can be seen as a modified Stokes equation with memory
(see, e.g., Refs. [31, 50, 51]). Linearizations emerge quite naturally as approximations for the description of viscoelastic
fluids behavior, and related models have been analyzed in a number of papers (see, e.g., Refs. [21, 22, 46, 47, 52]) where,
depending on the situation, the authors study and deduce various types (null, approximate, exact) of controllability results.

Let us now introduce the horizontal differential filtering procedure that, although coming from situations (and models)
typical of turbulence theory, finds application in the present context. Our interest here is mainly of a mathematical nature;
however, the choice of an anisotropic filter could be combined with the presence of privileged directions in the considered
flow, in the case, for instance, of horizontal stratifications [8] (in this case, anisotropic spatial filtering is used to study
turbulent mixing in stratified flows) or in presence of a flow in an unlimited horizontal channel, with a bounded third
direction, that is, a strip-like region (see Bisconti and Catania [16]). The anisotropic filter acts in correspondence with the
horizontal layer, providing a certain regularization, which then actually affects the entire fluid flow as a consequence of
the divergence-free condition V - u = 0.

Consider

X = (X1, X2, X3), Xy = (X1, X3),

(1.6)
9 =0x;» Ap =07+, Vy = (01,0,),

where “h” stays for “horizontal,” and we take into account the anisotropic horizontal filter given by the inverse of the
following horizontal Helmholtz operator (see e.g., Berselli [9]), that is,

Ap =1-a’A, with a > 0. 1.7)
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From the point of view of the numerical simulations (see, e.g., Refs. [2, 29, 33]), this filter is less memory consuming
with respect to the standard isotropic one. Among the others, the large eddy simulation (LES) community has mani-
fested interest in models involving such a kind of filtering procedure (see, e.g., Refs. [2, 7, 12, 14-18, 55]) and, in particular,
the connection between anisotropic a-models and turbulence has been investigated by Berselli in Ref. [9] for the 3D
Navier-Stokes equations, even if, in fact, the first use of anisotropic filters in turbulence dates back to the approach of
Germano [29] (see also Refs. [10, 11] for the case corresponding to the 3D Boussinesq equations with anisotropic filters for

turbulent flows). See also Refs. [20, 59] for the use of Helmholtz’s filter in contexts not strictly related to turbulence.
_h —h . . ! —h
Setw=u = A;llu andg=p = A;l D, so that u = Apw. Then, applying the horizontal filter “ - ” component by

component to the various fields and tensor fields in Equations (1.4) and (1.5), and solving the interior closure problem by
the approximation

e h
u®u r*u u =wRRw , (1.8)
we finally get the regularized model
- ! —h
IW+V - wRW + uA*Pw + / w(t —s)w(s)ds+ Vg=1F , (1.9)
0
V.-w =0, (1.10)

where @(t) = ye~T and we impose a suitable initial condition w|,_, = W,

In order to get the considered model, we apply the operator Aj, = I — a?Ay,, term by term, to Equations (1.9) and (1.10)
and set v = y, to reach

t
8, AW + (W - V)W + vAZP A, w + / w(t —s)A,w(s)ds+ Vp =f, (111)
0

V-w=0, (1.12)
with W|t=0 = Wj.
Existence and uniqueness of strong solutions for the model above can be established by using the same methods devel-

oped in Annese et al. [3], Sections 2 and 3] with minor modifications, regarding the treatment of the memory term, based
on what has been done in Mohan [38].

Remark 1.1. A natural domain for the horizontal filter A;l would be
Q= {x=x1,%5,%3) ER? 1 =L < x,% <7L,—d < x3 <d},
L > 0,d > 0, with 2zL periodicity with respect to x;, : = (x1, X;), and homogeneous Dirichlet boundary conditions on
r={xeR?®: —7nL < x;,x, <7L, x3 = +d}.

This choice, although highlights the privileged directions associated with the filter, makes problematic to properly
define the fractional-order operator A% on €,. A possible alternative approach, which is well suited to the choice
of this domain, with homogeneous boundary conditions, is the one about the use of the fractional anisotropic filter
Ai =1+ a*A,28, Ay = (—A,)Y/2, with 3/4 < 8 < 1 (see, e.g., Berselli [9]), coupled with the standard dissipative term
—vAW, with v = y, instead of vA?w, in Equation (1.9). Proceeding as before, this yields the equations

____n t —h
owWw+V - ww —vAwW + / w(t —s)w(s)ds+ Vg=1f , (1.13)
0
V-w=0, (1.14)

—h -1
where now (-) =(Ai) ().
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It is possible to verify that the results that we obtain in this paper can be achieved, following the same approach, also
for the above system. In order to give a more precise idea about this point, apply Ai term by term to Equation (1.13), to get

t
6IAiw +(w-V)w + VAA[;W + / w(t — s)Aiw(s)ds +Vp=f, (1.15)
0

V-w=0. (1.16)

Assuming to have at disposal sufficient regularity to test and manipulate Equation (1.15) against w in L?(Q,,), after an
integration by parts we reach
1d

3 (W1 + AW, ) 4 3 (NI, + o2 1A Vi, )

t t
+ /0 @ (t — s)(W(s), w(t))2ds + a2 /0 @(t — )N w(s), Abw(D)2ds = (£, W)y,

with || - |l;2 and (-, -);2, respectively, the norm and the scalar product in L?(Q;). The presence of the term
va?f ||Ai Vw||12‘2 in the left-hand side of the above relation (which is better than va?||[APV hw||i2, obtained after apply-
ing A, to Equation (1.11) and performing the L*-test), allows us to recover existence, uniqueness, well-posedness, and
regularity results adapting, to this case, the calculations in Section 3.1 (see also Annese et al. [3, § 3-to-5]) performed in
the fully periodic setting. Thus, from the mathematical point of view, we consider more interesting to deal with the case
presenting the weaker dissipative term, that is, vA**w in Equation (1.11) and, also for this reason, in what follows, we will

consider the Equations (1.11) and (1.12) in the fully periodic context.

Because of the nature of the considered system, as in the cases treated in Refs. [4, 37, 38], it is not evident how to achieve
the exact controllability for the Equations (1.11) and (1.12) with arbitrary target functions (see also Bisconti and Mariano
[19] for further comments). In this paper, we restrict ourselves to analyzing the exact controllability of a suitable Galerkin’s
approximation scheme {w"} for Equations (1.11) and (1.12) on T3, and for ¢t > 0, that is

(T - a2A,)3,W", &) + (W" - VI)W", &) + v<A5A:l/2w”,AﬁA;/2e)
t
+ (/ w(t — s)A,w"(s)ds, e) =(Uyxp,e), Ve €E, (1.17)
0

w"'(0) = wy = P(wp), n<dimE =dy,

where A;/Z = (I — a®Ap)Y/?,E = spanfe, ..., e, }isasuitable finite-dimensional space, and w"(x, 1) = 2;151 onj(D)e;(x),

with g, ;(¢) coefficient functions (see, e.g., Refs. [4, 19, 38]). Also, P(w,) = Zjﬁ (W, e;)e;. The function Uy is given as
follows: O is the control domain (the domain where the control is acting upon), U is the distributed control function acting
on the system, and y denotes the characteristic function of the control domain ©.

In the main result of this work, that is, Theorem 4.1, we prove the exact controllability of the above Galerkin system.

There is a large literature about control results (also of the type considered here) for many different fluid models. In
addition to the cases already mentioned above, let us recall, for instance, the problem of optimal control for certain families
of polymer solutions that has been considered in Refs. [58, 59], while in Doubova and Fernandez-Cara [25], viscoelastic
Jeffreys (Oldroyd) fluids are handled and controllability results are obtained. In Refs. [35, 37], the authors proved that the
considered Galerkin’s approximations, for the Navier-Stokes system, are exactly controllable. Also, in Araruna et al. [4],
the authors consider the problem of the exact controllability of Galerkin’s approximations of micropolar fluids. A similar
analysis, in the case of polymer fluids, is addressed in Bisconti and Mariano [19]. The recent paper [32] addresses the
problem of controllability of an ideal MHD system with a control prescribed on the boundary.

In Araruna et al. [5], a Leray-a turbulence model is considered and it is proved, among other things, that the equa-
tions are locally null controllable with controls independent of «, so that, if the initial data are sufficiently small, the
controls converge as @ — 0% to a null control of the Navier-Stokes equations. In this paper, we do not address such an
issue, and we postpone a similar study to a future work.
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As a possible further point of interest, we emphasize that the analysis provided here does not seem suitable for address-
ing the problem of taking the limit for dy — +o0 in Equation (1.17) (see Remark 4.2 for further details), essentially because
the estimates used to obtain the exact controllability (at the finite-dimensional level dy) are not preserved when dy
becomes arbitrarily large, and, as a consequence, they cannot be used directly for the original infinite-dimensional system.
This appears to be standard for similar problems (see also Lions and Zuazua [37]).

We now give, in the following sections, a number of preliminaries and the results obtained in this paper.

2 | SOME BASIC FACTS
2.1 | Function spaces

For the sake of simplicity, in the sequel, we set Q = T3. We introduce the following function spaces:

L*(Q) = {qb : Q - R measurable, 277 L periodic in x, / ||%dx < oo}
Q

L3(Q) = {¢ € L*(Q) with zero mean with respect to x},
H={ve@i():V-v=0inQ},
all with L? norm denoted by || - ||, and scalar product ( -, - ) in L2. Also, we set
V={veH:Vve (W)},
Vpy={veH:Vywel*Q)°}.
The space V}, is endowed with the inner product
(w,v)y, = @,v)+a*(Vyu, Vyv),

and IIuII%,h = |lull* + a?||V,ul?
Further, for any 0 < 8 < 1, we define
HF ={veH : APv e} (Q)},

1+8 _

H™={veV,: AveV,},

with norms, respectively,
2 _ 2 JY)
VI, = VI + APV,

2 _ 2 Brr112
V125 = VI, +1ARVIE, .

h

Let us consider the Sobolev spaces W*%(Q), s > 0. Also, let us recall the homogeneous Sobolev spaces H® := H*(Q)
defined for s > 0 (see, e.g., Refs. [27, 49]), as

HY = (W**(Q))’ nH,

that, in our case, coincide with the zero-mean spaces H® introduced above. Actually, for the elements in H®, we drop the
L? part of the HS-norm: In fact, making use of the Fourier series expansion, for any u € H®, the well-defined quantity

||u||ip = Z |k|?$|d;|?, (hereil_j = fy,andk - i, = 0,Vk € Z3)
keZ3\{0}
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6 0f19 m BISCONTI and CATANIA

introduces a norm on H*. Here, i, denotes the complex conjugate of the Fourier coefficient ;. Observe that the above
expression does not define a norm on (W*2(Q))3 since it is equal to zero for the constant vector fields. We denote the dual
of HS by H™S := H%(Q), where s > 0 can be any positive number.

In the sequel, in order to keep the notation compact, we omit the superscript indicating the dimension of the considered
spaces, reintroducing it only when it is strictly required by the context.

Remark 2.1. Forv € V},, we have that
1/2
1A, 2V12 = 1d = @28 2V = (T - a?Ap)v, v) = IVIP + a2 Vv @1

1+

n it holds true that

Similarly, forw € H
2
IAPA W] = [|APw |12 + a?[| APV w2 22)

In the following, we indicate the partial derivatives in time, with v, = d,v. Also, in what follows, we always use the
compact notation Ay, (or A;Z/ ®) to indicate I — a2A,, (respectively (I — a?A;)'/2) in the considered formulas, but not when

this operator acts on w;, and in this case, we leave I — a?A, written explicitly.
We denote by ¢ or C generic positive constants, which may change from line to line; explicit dependencies will be
subscribed to the constant or placed in parentheses.

2.2 | Properties of the kernel

Let us now introduce
t
Lw)(t) :=(w +=w)(t) = / w(t — s)w(s)ds. (2.3)
0

A function w( - ) is called positive kernel if the operator L is positive on L(0, T; H) for all T > 0. That is, we have

T T ot
/ (Lw(t),w(t))dt = / / w(t — s)(w(s), w(t))dsdt >0 (2.4)
0 o Jo

forallw € H and every T > 0.
We have the following results on positive kernels.

Lemma 2.1 Lemma 4.1, [6]. Let w € L*(0, 00), and let @(0) be the Laplace transform of w(t) such that
Re@(0) > 0 for Reb > 0.

Then, w(t) defines a positive kernel.

Also, w(+) is said to be a strongly positive kernel if there exist constants ¢ > 0 and « > 0 such that w(t) —ce™* is a
positive kernel, that is,

T T .t
/ / w(t — s)(w(s), w(t))dsdt > s/ / e~ =9 (w(s), w(t))dsdt > 0, (2.5)
o Jo o Jo
forall T > 0 and for allw € L*(0, T; H).
Lemma 2.2 Proposition 4.1, [6]. Let w(t) satisfies the following conditions:

(i) @ € C[0, ) N C%(0, ),
k
(ii) (—1)";707(0 >0fort>0,k=0,1,2,
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(iii) w(t) # const.
Then w(t) is a strongly positive kernel.

Lemma 2.3 Lemma 2.6, [38]. Let w € L'(0,T), f,g € L*(0,T) for some T > 0. Then, we have

2

1/2
T t T
2 - d d < d
/0 g(t)( /0 @t - $)f(s) s> ‘ _< /0 w0 t)( /0

Remark 2.2. The following facts hold true:

T

1/2
g f 2(t)clt> .

(I) If we take g(t) = 1 and f = ||w| with w € L?(0,T; H) in the above formula, we obtain
2 1/2 1/2

T t T T
/ ( / w(t—s)||w(s)||ds> at s( / |w(t>|dt>< / ||w(r)||2dr> . (26)
0 0 0 0

(I) Moreover, for @w(t) = ye~!, we know that

* Y . Y
= — = —— f R . 2-
/0 w(t)dt 5 and @(6) 515 or Re6 >0 2.7)

and so, by Lemma 2.1, w(t) is a positive kernel.
(III) As a consequence of Lemma 2.2, we also get that w(t), introduced in (ID), is a strongly positive kernel.
(IV) Assume that w(t) is a strongly positive kernel, in particular, of the type in (II). Using an integration by parts, we have

T T
—/ (@ = (Aw)(1)), w(1))de =/ (@ = (VW)(1)), Vw(0)dt > 0, (2.8)
0 0

and also

T T
- / (@ * (Apw)(0)), w(t))dt = / (@ * (Vp,w)(1)), Vyw(t))dt > 0. (29)
0 0

3 | WEAKSOLUTIONS
We have the following definition:

Definition 3.1. Let T > 0. Amapw € C([0,T];V};,) nL*(0,T; H;Jrﬁ) with A,8,w € L2(0,T; H ), is a weak solution to
the system (1.11)-(1.12), if for £ € L2(0, T; HF), and w, € V},, then w satisfies the following weak formulation for all
vV E H;;rﬁ, that is,

(T = a?ApwW (1) + VAP A, W() + (w = Apw(t) + (W - VIw, V) 3.1
= (£(t),v),
%i_{% (w(t),v) = (wo,V), (3.2)

and the energy equality
d
E(IIW('—‘)II2 + @ (IVyw(OI?) + v(IAPWOI? + a?IAPV,w (D)%)

+ (w = w(t),w(t)) = (£(t), w(t)).
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Remark 3.1. In proving the above energy equality, we use a suitable regularization procedure for the considered equa-
tions and the related solutions (see Annese et al. [3]): Let w, denote the standard convolution regularization, in time, of
w,with0 <ty <t; <Tfixed,and 0 < e < ty, e <T —ty,€ < t; — t; (see, e.g., Berselli [9], see also Annese et al. [3]). For
each t € [ty, t1], we have

51
W(t) = (o * W)(0) = / jut = Dw(D)dx,
t

0

where the smooth function j, is even, positive, supported in (—¢, ), and f_EE Je(s)ds =1.
For the existence, we take initial data in w, € V), (see Section 3.1 below), and consider an appropriate Galerkin
approximating scheme {w"} such that, up to pass to subsequences, satisfies

W' w in LO0,T;V,) NLX0,T;V nH, ™), (3.3)

with the limiting vector fields w verifying Equations (3.1) and (3.2) in Definition 3.1. Then, setting w['(¢t) = (j, * w™)(¢),
we have, for 1 < g < +o0, that (see, e.g., Galdi [28])

lirJP IWe — WellLageyrx) = 0 for W' € LI(ty, £1;X) s.t. w" — w € Li(ty, £1;X), (3.4)
n—+o00

and X is any of the Hilbert spaces, that is, V, V, or H}ll+5 , in Equation (3.3). Then, testing Equation (1.11) against w/ in
L?, and integrating on [t, ;] in d 7, we get

51
/ (W, 3, W) + a*(V,w, 8, V,wl) — v(APw, APW!) — va? (APV,w, APV W)

Lo

1 pT
+(w - V)wl,w)|(t)dr — / / w (7 — s)(W(s), Wl (1))y, dsdr (3.5)
o Jo

151
=— [ (EwW)(s)ds + (W(ty), Apwe (£1)) — (W(to), Apw¢ (1)),
to

where (w;, W)y, = (W, w/) + a?(V,w, V,wh). To gain the energy equality, in integral form, we use the same argument
as in Annese et al. [3] (see also Refs. [10, 28]), by passing to the limit as n — +o0, and using the convergence types listed
in Equations (3.3) and (3.4).

We now provide a few facts about the existence of such a type of weak solutions.

3.1 | Global existence and uniqueness

Let us now show that the system (1.11)-(1.12) has a unique weak solution using Galerkin approximations and energy
estimates.

Theorem 3.1. Letw, € V}, and f € L?(0, T; H™) be given. Assume 3/4 < f8 < 1. Then, there exists a unique weak solution
w to the system (1.11)-(1.12), in the sense of Definition 3.1.

This result is based on a compactness argument in the style of Aubin-Lions (see Annese et al. [3]) combined with proper
a priori estimates.

Let usassume w, € Vj, and f € L?(0,T;V},). We proceed formally to get the needed a priori estimates, but the procedure
actually goes through the use of the Galerkin approximation scheme (1.17).

Let us test Equation (1.11) against w in L?, to get

1d

57 (W2 + @2 1V,wI2) + v (IAPWIP + 2 IAFV, W) + (@ 5 W, w) = (£, w).
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Then, using Equation (2.5) along with Equation (2.9), we get

| =

(IWI? + IV, wi?) + (v = DIAPWIIZ + VAPV, w1 < ColIf -5 (3.6)

N =
=

t
Testing Equation (1.11) against ¢ € HF, we infer
(T = D)Wy, )| < c(v(INPWI + PIAPY W) + [ % Wil + [IFl] -5 ) 11 s
+ (W - VIw, ¢)|.
In particular, it holds that (see [3])
|((w - V)W, ¢)| < [(Wp, - Vi)W, $)| + |(w305w, )]

< c(llwp - VWl + [lws03wWll -5 ) 1l 76

3.7
< c(IAPWRLINV W+ Twslln IAPW) 1]l
< clIVawll (IAPwy | + IAPW ) 1116
and so, using (2.6), we infer
T
/O 1T = Wil ds
T 2
<c / (VIAPWI + 2 |APY W) + [1fl-5) ds (3.8)
0

" ( / ' |w(s)|ds>2 /

Hence, it follows that ||(I — oczAh)wtllzfﬁ € LIZOC(O, +00).

Thanks to the above estimates, we can proceed as in Annese et al. [3] to prove, first, existence and then uniqueness.

T T
||w||2ds+c/ |APw||2ds.
0

4 | EXACT CONTROLLABILITY OF GALERKIN APPROXIMATIONS

In order to establish the exact controllability of the Galerkin approximation scheme for the considered model, we start by
introducing the following controlled system, for x € Q = T3, and t > 0, that is,

(I —a?Ap)w, +vAP Ayw + (@« Ayw) + (W - V)W + Vp = Uy,
(V-w)(t,x) =0, (4.1)
w(0, x) = wy(x),

where the control domain O (i.e., the domain on which the control is acting) is supposed to be as small as needed, U is
the distributed control function acting over the system, and y denotes the characteristic function of ©.
If we take the inner product of the first equation in Equation (4.1) withv € H ;l+'8 , We arrive at

1/2
h

1/2

w,AﬁAh

(I =AW, v) +1(APA V) + (@ * W), V)

+ a?((w * V,w), Vv) + (W - VIW, V) = (Uype, V),

1+

w(0)=w0€Hh .
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Now, consider {e; };‘;1 basis of H ;Jrﬁ made of elements that are linearly independent in H. The existence of such a basis
is guaranteed by the following result due to Lions and Zuazua (see Theorem 3.1, [36] and Proposition 2.1, [37]) when the
148
H
h

immersionJ : — H is utilized.

Proposition 4.1 Theorem 3.1, [36]. Let H, and H, be Hilbert spaces. LetJ : H; — H, be a bounded linear operator with an
infinite-dimensional range. Then, there exists a Riesz basis {e; ;‘;1 of Hy such that {Je; ;’;1 are linearly independent in H,.

Next, as standard, we consider the finite-dimensional space
E = spanfey, ..., e, } 4.2)

and take into account a suitable Galerkin approximation scheme {w"} for the system (1.11)-(1.12) with f = 0.
We are going to use the following Galerkin approximation (already introduced in Equation (1.17)), where we setw = w"
in order to keep the notation concise, so that

1/2
h

1/2

w,AﬁAh

(I — a?Ap)w,,e) + (AP A e)+ ((w = w),e)

+ &2(w * Vyw), Vye) + (W - VIw,e) = (Uyo,e), Ve € E, (4.3)

w(0,x) =w, EE,
Here, we allow a slight abuse of notation having set
dy
wy = P(wy) = )’ (W, €)e;.
i=1
This system admits a unique solution w € C([0,T]; E), as a consequence of the Carathéodory’s existence theorem and
uniqueness follows from the local Lipschitz property (see Annese et al. [3], see also Mohan [38]) and this is one of the
basic points behind the proof of Theorem 3.1.
As a further matter of notation, in what follows, we will use the notations || - || and (-, - ) to denote the norm and inner
product, both on L?(T?) and on the finite-dimensional space E.
4.1 | Exact controllability

Let us start by defining what we mean by exact controllability for system (4.3).

Definition 4.1. The Galerkin approximated system (4.3) is said to be exactly controllable at time T > 0 if, for given wy,
and wy € E, there exists a control U € L?(0, T; L*(©9)) such that the solution w of Equation (4.3) satisfies:

w(-,T;U) = wy. (4.4)

In order to achieve this goal, it will be useful to consider the following cost functional:

1" 1"
I =5 [ Wolsei=5 [ [ wora 45

Now we are ready to formulate and demonstrate the main result.

Theorem 4.1. Let T > 0. Then the Galerkin approximation scheme (4.3) is exactly controllable in the sense of Definition 4.1.
Moreover, the cost functional described in Equation (4.5) is bounded independently of the nonlinearity.

In proving this result, we show that the cost functional (4.5) is bounded independently of the magnitude of nonlinear
term in Equation (4.3) (see Equation (4.20) below) so, for convenience, we modify the nonlinearity in the considered model
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by introducing a multiplicative scalar quantity u € R, to get u(w - V)w, and after proving our controls in this situation,
we turn back, as a special subcase, to the actual system.

Proof. Let us introduce a coefficient u € R and consider the following system:

(I — a?Ap)W; + VABALW + (T % AyW) + u(w - VIW + Vp = Uyp,
(V-w)(t,x)=0, xe T3 t>0, (4.6)

w(0,x) = wy(x), x € T3,

In step 2, we will show some estimates for this system that are uniform with respect to x. Then, we will establish the exact
controllability for system (4.6), which easily gives the required result for system (4.1) by setting u = 1.
We are going to exploit the following variational formulation of system (4.6):

1/2
h

1/2

B
w, A Ah

(T - a?Ap)wy, e) + v(APA e)+ (w*w,e)
+ a?((w * V,w), V,e) + u((w - V)w,e) = (Uye,e), Ve €E, (4.7)
w(0) =w, €E.

- Step 1: Linear system. Take a function h € L?(0,T; E) and consider the following linearized system:

(( = a?Ap)w;, ) +v(APA) *w, AP A ) + (w + w,e)
+ a?((w * V,w), Vye) + u(th - VIw, e) = (Uyp,e), (4.8)

w(0) = 0.

Since system (4.8) is linear, it is immediate that it has a unique solution w € C([0, T]; E). Let us notice that we can work
with null initial data because of the linearity of system (4.8) and obtain a result, which is still valid for non-null initial
data, that is to say, if we take w(0) = w, € E.

Now, let us show that system (4.8) is exactly controllable for any time T > 0, in the sense of Definition 4.1. In order to
establish this, it is sufficient to prove that (see Lions [34] for details)

ifg € E satisfies(w(-,T;U),g) = 0 forallU € L?(0, T; L*(O)),
(4.9)
then g = 0.

Observe that this same approach is used in a number of papers to study finite-dimensional systems coming as approx-
imations of the Navier-Stokes equations (see Refs. [36, 37]) or other similar systems for the description of fluid models
(e.g., besides some families viscoelastic fluids, also micropolar fluids and polymer fluids, see Refs. [4, 19, 38]).

To prove Equation (4.9), we take into account the following adjoint system (here p; = J,p):

— (I —a?Ap)p; + VAP Aup + woA,p — uth - V)p + Vg(t, x) = 0,
xeT3t>0,
(4.10)
(V-p)t,x) =0, x€ T3, t>0,
p(T,x) = —a’Ay)'g, x €T,

where g € E and

T
(@oAp)(t) = / w(s — ) ALp(s)ds.
t
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Remark 4.1. From fOT((w x f)(t), g(t))dt, with f, g sufficiently regular, a change in the order of integration yields:

T T t
/ (@ * )0, gO)dt = / / @t — $)(f(s), gl)dsde
0 0 0

. (4.11)
- [ .o,
0
where, as defined above, (wog)(t) = f[T w(s — t)g(s)ds.
The variational formulation of the last system is
— (I - a*8)p;, €) + (AP A4, *p, AP 4,/ e) + ((wop), €) + aX(@oVp), Vye) — p((h - V)p,€) =0
(4.12)

p(D) = —a’Ay)7 g,

again, the system being linear, it has a unique solution p € C([0, T]; E). Setting e = w in Equation (4.12), we obtain

— (I - a?Ap)p, W) + v(AﬁA;/zp, AﬁA;ﬂw) + ((wop),w) + a*((woV;,p), V,yw) — u((h - V)p,w) = ?4 13)
p(D) = —a’Ay)7 g,
and integrating in time from O to T, we find
T
—(W(D), (I = a?p)p(T)) + / (A = a?Ap)w, p) + (AP AW, p) + (@ * W), p)
0 (4.14)
+6((@ * VW), Vi) + (b - V)w, p)]dt = 0.
Now we exploit the fact that p(T) = (I — a®A;,)~'g in Equation (4.14) along with Equation (4.8), so that
T
~wD.9)= [ UOzo B0 (415)
0
If the assumption given in Equation (4.9) holds true, then, from Equation (4.15), we can easily obtain that
T
/ (U xe,p(t))dt =0, forall U € L*(0, T; L*(©O)). (4.16)
0
The above equality also shows that
p =0 inO x(0,T). (4.17)

Finally, from p = Z?:l pi(t)e; and the fact that the basis {e; ;’;1 is linearly independent in L?(©) (see, e.g., Araruna et al.
[4]) and from Equation (4.17), we can conclude that p; = 0 for all i = 1,..., n, that is to say that p = 0, and thus g = 0,
and the statement (4.9) is proved. Therefore, we have shown that the linear system (4.8), and hence also Equation (4.6),
is exactly controllable.
- Step 2: Estimates based on the duality argument. The results shown in Step 1 allow us to define the operator
M : L*(0,T;E) - R given by
1 /7
— 2 2
Mh) = Ulerg 3 /o /(9 |U|*dxdt, (4.18)

ad

where U4 denotes the set of all admissible controls, that is to say

Vg = {U € L>(O % (0,T)) : w solution of (4.8) satisfying (4.4)}. (4.19)
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‘We will obtain that

M(h) <C, (4.20)

where the positive constant C is independent of h and u.
The proof is based on a suitable duality argument (see, e.g., Refs. [4, 38]). Let us consider the continuous linear operator
L : L>(Ox(0,T)) = E given by

L(U) :=w(-,T;U), (4.21)
and also the functionals
1 /7
F,(U) = 5 / / |U|?dxdt, (4.22)
o Jo
and
0, ifg=wr,
Fy(g) = {oo, otherwise. (4.23)

This allows us to recast the functional M as

M(h) = inf [F1(U) + F,5(L(U))]. (4.24)

in
UeL2(0x(0,T))

Thanks to the duality theorem due to Fenchel and Rockafellar (see Rockafellar [53], Theorem 31.1], see also Refs. [4, 38]),
we derive

—M(h) = inf [Fi(L*(g) + F5(—g)] (4.25)

where L* : E — L*(O x (0,T)) is the adjoint operator of L. A use of relation (4.15) yields
L*(g) = p inO x(0,T). (4.26)

From the fact that

T
1
Fio =3 [ [ IpPdvdt and Fi-g) = ~(g w), (4.27)
0 O

where, to keep the notation coincise, we write |p|?> = |p(x, t)| in the above integrals. Then, we deduce

T
-M(h) = érel}fE l% /0 /(9 |p|2dxdt—(g1,wT)]. (4.28)

The hypotheses on the basis of E imply that |le||o = / © |e|?dx is indeed a norm on E, that is a finite-dimensional space,
so that we also have the equivalence of norms given by

cllell* < llells, < Clle||*>, Ve € E, (4.29)
with ¢ and C positive constants only depending on E, provided

el = / le(o)|2dx, Ve € E.
T2

Hence, we obtain that

g€E

T
—M(h) > inf l% /0 /T 2 |p|2dxdt—(g,wT)]. (4.30)
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We set e = p(t) in Equation (4.12) and integrate in time from ¢ to T, so that we obtain

T T T
1
(IIpl1> + 2211 V,pll?) +V/ IIABA;,/szIZdH/ (w0p,p)dS+a2/ (woV,p, Vip)ds = S gl (4.31)
t t t

ST

An integration from 0 to T and a change in the order of integration produce

1

T T T
T
2 e i)+ [ eafapird s [ fmopp) + X @eVip, Vip]de = Tl (432
0 0 0

Exploiting the fact that the space E is finite-dimensional, and using Equations (2.1) and (2.2), we have

1A, *pI2 = lIplI® + a2 V412,

2
||A'8A;l/ plI?> = IApII® + & ||IAPV ,pI2,
Ipll < llpll + IViepll < Kllpll,  IVipll < Clipll, (4.33)
Iipll < llpll + IV,pll + IAPpI + AP V,pll < Klipll,
APV ,pll < Clipl|
for some C, K > 0 only dependent on E. In particular, we have that ||A;/ 2p|| < K||p|| as well as ||AﬁA;/ 2p|| < K|Ipll, with

the same constant K as above.
So we can apply the same method shown in Mohan [38] and, using Cauchy-Schwarz’s and Holder’s inequalities, we
get

T
/ t[(wop(t), p(t)) + a*(woV ,p(t), V,,p(t))] dt
t

T T
- / / sw(t — 9)[(2(). D)) + a2(Vp(s), Vp()] dsde
0 t

T T t
<T H)||12dt t— ds | dt
< ( /0 Ip(O)] ) /0 < /0 w(t - 9)lip)l s>
T 1/2 T ¢ 2
2T t—9s)||V ds | dt
ra (/0 /0 </0 @t - )|Vl s)

T T
<CT / Ip()I*dt + Ca®T / IV,p(0)]12dt
0 0

cyQ +a®)T [T
itial / IpIPdr,
0

1/2 2 \!/2

(4.34)
1/2

||Vhp(t)||2dt)

where we utilized Equation (4.33), and y and § are positive constants suitably obtained.
Finally, using Equation (4.32) in combination with Equations (4.33) and (4.34), we get

1+a? :
legll2 < l(1 +a’C)+CT (v + rate) / l[pll*de.
2 2 5 0

If we set

cT
k= (14a2) ’
1+ a2C) + 2(7/ + VT>CT
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as a consequence of Equation (4.30), we conclude that
X K X 1
_ > inf | Elel? — ] > inf | el — Een2 — L 2
M) = inf | Zligl® ~ (g wp)] > inf [2 gl = Zllgll> - o liwrl ]

1 2
= ——lIwrl?
and therefore,
1 2
M(h) < o w14, (4.35)
K
which is Equation (4.20).

- Step 3: Nonlinear system. This part is dedicated to the proof of the exact controllability of the nonlinear system
(4.6). Assume that h € L?(0, T; E) is given and select the unique element U € L*(0, T; L?(O)) such that

T
% /0 /(9 [U(x, 0)[2dxdt = M(h), (4.36)

thus defining a continuous mapping h — U from L?(0, T; E) to L*(0, T; L?(O)) (the continuity and the other properties of
this operator are related to those of the bounded functional M, in function of which it is defined). For more details, see
the analogous construction in Araruna et al. [4] and, in particular, Rockafellar [53, §31]). Denote by w(h) the solution of
Equation (4.6) with the control U = U(h) and set e = w(¢) in Equation (4.8) to get

1d
5 2 (IW@IR + @21V, wOIP) + 1884 w12
t 4.37)
= —((@ * w(1)), w(t)) — &*((@ * V,w(1)), Vyw(1)) + (U(t) xp, W(L)).
Integrating from O to ¢, we obtain
t
IW@I? + oIV w (@l +v / 1484, w(s)|%ds
0
t t
- [ (@ W)W = [ (@ Vs, Vyw(s)ds
0 0
t
+ [ UOrowe)s (439)
0
, 12, 1/2
< / / |U(x, s)|*dxds / / [w(x, s)|?dxds
0o Jo 0o Jo
1 [ 5 1/ 5
<= |U(x, s)|*dxds + = [w(x, s)|*dxds,
2Jo Jo 2Jo Jo
where we took into account Equation (2.9). This implies
t
WO < 10l +C€ | Iwids (439)
0
and, thanks to Gronwall’s inequality, we get
WOl < e“TNU 200751200 (4.40)

for all t € [0, T]. Thanks to Equation (4.20) (which in turn depends on Equation (4.35)), as h varies in L?(0, T; E), we can
conclude that w is contained in a bounded subset K ¢ L3(0, T; E).
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In order to show that the map h —» w(h) admits a fixed point in K, we use directly Schauder’s fixed point theorem. To
this aim, it is sufficient to prove that the range of w(h), when h varies through K, is relatively compact in K. This is an
easy consequence of the following statement:

w; stays bounded in a bounded subset of L?(0, T; E)
(4.41)
when h spans over K.

Looking for such a control, we start with the estimate (see Equation (4.8), see also Equation (3.8)):

1/2

(U = Pap)w, ) <vIAFA *w, AP A,

e)| + |((w * w), e)|

+|((@ * Vpw), Vie)l + ul((h- Viw, e)| + [(U o, e)l

1/2
h

1/2

w(lIAfA,

<vlAfA ell + llw + willell + |l@ * V,w||[[Vyell

+ulhl[IVwlllellLs + Ul 2o llellzo)

1/2
h

s (4.42)

L wllIAPA

<vlafA ell + [l + wlllell + [[@ * V,w(l[|Vyell
+ ulhllIVW AP el + 11Ul 2o llell2o)

1/2

p Wi+ 1@+ wl + |z V,wi + ulh][|[Vw]]

< C<V|IA5A
+Ullz2o) llell

for all e € E, where we used the embedding HP < L* and relations (4.33), and hence

1/2

I - a2apwl < C(vinfa,

W + [l * W + || * V,w]l + ullh[|[| VW] + ”U”LZ((9)>- (4.43)

The memory terms || * w(t)|| and || * V,w(t)|| can be controlled by Holder’s inequality as

t
@ % Vaw(O)]l < / @t = IVw(s)lds
0

t 1/2 t
Y 2
s( /0 @t —s) ds> ( /0 IV aw (sl ds)

c . 1/2
7 24
< \@< /0 IV w (sl s>

1/2

and

1/2

C t

@ % Vaw(O)ll < \é( / ||w(s)||2ds>
0

Exploiting once again the fact that E is finite-dimensional, from Equation (4.43), we also deduce

cliw Ol < I = a®Ap)w, (D]

Cy
<C|vIAfA *w| + —— (IWllz20,7:8) + 2 IVeWllr207:))
l ! V25 (4.44)

+ ulh[IVawll + 11Ul 20) | »
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which yields the statement (4.41). Thanks to Schauder’s fixed point theorem, we have that h —» w(h) admits a fixed point
in K. Hence, selected a fixed point h, we conclude that the system (4.7) is exactly controllable since the system (4.8)
is exactly controllable for all times T > 0. We notice that the system (4.7) is exactly controllable for any 4 € R, and in
particular, if we choose u = 1, which easily yields the exact controllability of the system (4.3). Further, for any h, we
have the uniform estimate (4.20), which establishes that the cost functional introduced in Equation (4.5) is bounded
independently of the nonlinearity. O

Remark 4.2. The estimates used to prove the exact controllability of the approximating system (4.3) strongly depend on
the dimensions of the space E. Indeed, the inequalities (4.33) (later used in Equations (4.34)—(4.44)) hold true on these
finite-dimensional spaces, but they are not uniform with respect to dim E. Thus, at this level, due to the lack of a uniform
control, we do not have at disposal an argument to pass to the limit as dim E — +o0, and the previous results do not allow
us to conclude about the exact controllability of the system (4.1). The same kind of issue is discussed in Lions and Zuazua
[37].
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