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We study a mathematical model describing 3D viscoelastic fluids with mem-
ory, fractional viscosity, and regularized by means of a horizontal anisotropic
filter. This regularization is obtained through the action of the inverse of the
horizontal Helmholtz operator, and the system is considered in a fully peri-
odic space-domain Ω. After introducing a controlled version of such a model,
we take into account for it a suitable Galerkin approximation scheme. Exploit-
ing the Hilbert uniqueness method, we establish the exact controllability of the
finite-dimensional Galerkin system.

1 INTRODUCTION

The mathematical theory of the three-dimensional viscoelastic fluid flow equations, arising from the Kelvin–Voigt model
for the non-Newtonian fluids, has been analyzed in many papers in the last decades (see, e.g., Refs. [38–45]). Here, in
principle, we are interested in the particular case of Kelvin–Voigt fluids of order 𝐿 = 1 (see, e.g., Mohan [38]) for which
we have the following law connecting the stress tensor 𝜎 and the strain tensor D, that is,

𝜎(𝑥, 𝑡) = 𝜇1
𝜕D(𝑥, 𝑡)

𝜕𝑡
+ 𝜇0D(𝑥, 𝑡) + 𝛽1 ∫

𝑡

0

𝑒𝛼1(𝑡−𝑠)D(𝑥, 𝑠)d𝑠, (1.1)

where 𝛼1, 𝛽1, 𝜇0, and 𝜇1 are suitable positive constants, with 𝑥 ∈ Ω and 𝑡 > 0.
Then, setting 𝛼1 = 𝛿 and 𝛽1 = 𝛾, and inserting the above relation into the equations describing the motion of a

continuous incompressible medium in Cauchy form, that is,

𝜕𝑡𝐮 + ∇ ⋅ (𝐮 ⊗ 𝐮) + ∇𝑝 = ∇ ⋅ 𝜎 + 𝐟 ,

∇ ⋅ 𝐮 = 0,

we obtain the following system:

𝜕𝑡𝐮 − 𝜇1Δ𝜕𝑡𝐮 + ∇ ⋅ (𝐮 ⊗ 𝐮) − 𝜇0Δ𝐮 − 𝛾 ∫
𝑡

0

𝑒𝛿(𝑡−𝑠)Δ𝐮(𝑠)d𝑠 + ∇𝑝 = 𝐟 , (1.2)

∇ ⋅ 𝐮 = 0. (1.3)
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The above equations are considered on the periodic space domain

Ω =
{
𝐱 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3 ∶ −𝜋𝐿 < 𝑥1, 𝑥2, 𝑥3 < 𝜋𝐿

}
,

with 𝐿 > 0, and 2𝜋𝐿 periodicity with respect to 𝐱 ∶= (𝑥1, 𝑥2, 𝑥3), that is, we are actually taking into account
Equations (1.2)–(1.3) on the 3D torus 𝕋3 = Ω∕𝜕Ω.
We now set 𝜇1 = 0 in Equation (1.2), to re-introduce later a termwith the same regularity but only involving derivatives

about 𝜕𝑡, 𝜕2
𝑥1
, and 𝜕2

𝑥2
as a consequence of the use of an anisotropic horizontal filtering regularization (see Equations (1.6)

and (1.7) below).
Before introducing the smoothing procedure that will lead us to the main model analyzed in this paper, starting from

Equations (1.2) and (1.3) (with 𝜇1 = 0), we consider a weaker dissipative configuration. We assume the presence, in Equa-
tion (1.2), of the fractional-order dissipative term 𝜇0Λ

2𝛽𝐮, Λ = (−Δ)1∕2, 3∕4 ≤ 𝛽 < 1 (this range of values for 𝛽 is used for
proving existence and regularity), in place of−𝜇0Δ𝐮. The fractional dissipation can model a number of physical phenom-
ena in hydrodynamics, and it appears in describing geophysical fluid flows (see, e.g., Droniou and Imbert [26]), see also
Refs. [1, 13, 48, 56, 57] for the case of Boussinesq equations) and, in particular, can be related to the description of anoma-
lous diffusion in viscoelastic polymers [30, 54]; the anomalous diffusion typically occurs when the rates of diffusion and
viscoelastic relaxation are comparable (see Hajikarimi and Nejad [30]).
When 𝛽 ≥ 1, the system becomes more regular and the results that we provide can be achieved even more easily, so we

restrict ourselves to the case 3∕4 ≤ 𝛽 < 1.
As already observed, the presence of fractional diffusion is clearly a situation of reduced regularity, compared to that

involving the standard Laplacian. Here, also for thememory, we consider a less regular scheme by substituting−𝛾Δ𝐮with
the nondifferential term 𝛾𝐮, to get

𝜕𝑡𝐮 + ∇ ⋅ (𝐮 ⊗ 𝐮) + 𝜇0Λ
2𝛽𝐮 + 𝛾 ∫

𝑡

0

𝑒𝛿(𝑡−𝑠)𝐮(𝑠)d𝑠 + ∇𝑝 = 𝐟 , (1.4)

∇ ⋅ 𝐮 = 0. (1.5)

This is in line with the derivation of themodels considered in Refs. [3, 23]; actually we turn back to the case of a differential
memory term after the action of the anisotropic Helmholtz’s filter (see Equations (1.9) and (1.10) below).
We highlight that controllability results for linearized versions of Equations (1.4) and (1.5) have been obtained, taking

𝛽 = 1 and considering a suitable range of values for 𝜇0, in the case of viscoelastic fluids of the Maxwell and Jeffreys types
(see, e.g., Doubova et al. [24]); indeed the purely Jeffreys system can be seen as a modified Stokes equation with memory
(see, e.g., Refs. [31, 50, 51]). Linearizations emerge quite naturally as approximations for the description of viscoelastic
fluids behavior, and related models have been analyzed in a number of papers (see, e.g., Refs. [21, 22, 46, 47, 52]) where,
depending on the situation, the authors study and deduce various types (null, approximate, exact) of controllability results.
Let us now introduce the horizontal differential filtering procedure that, although coming from situations (andmodels)

typical of turbulence theory, finds application in the present context. Our interest here is mainly of amathematical nature;
however, the choice of an anisotropic filter could be combined with the presence of privileged directions in the considered
flow, in the case, for instance, of horizontal stratifications [8] (in this case, anisotropic spatial filtering is used to study
turbulent mixing in stratified flows) or in presence of a flow in an unlimited horizontal channel, with a bounded third
direction, that is, a strip-like region (see Bisconti and Catania [16]). The anisotropic filter acts in correspondence with the
horizontal layer, providing a certain regularization, which then actually affects the entire fluid flow as a consequence of
the divergence-free condition ∇ ⋅ 𝐮 = 0.
Consider

𝐱 = (𝑥1, 𝑥2, 𝑥3), 𝐱ℎ = (𝑥1, 𝑥2),

𝜕𝑗 = 𝜕𝑥𝑗
, Δℎ = 𝜕2

1 + 𝜕2
2, ∇ℎ = (𝜕1, 𝜕2),

(1.6)

where “h” stays for “horizontal,” and we take into account the anisotropic horizontal filter given by the inverse of the
following horizontal Helmholtz operator (see e.g., Berselli [9]), that is,

𝐴ℎ = 𝐼 − 𝛼2Δℎ with 𝛼 > 0. (1.7)
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BISCONTI and CATANIA 3 of 19

From the point of view of the numerical simulations (see, e.g., Refs. [2, 29, 33]), this filter is less memory consuming
with respect to the standard isotropic one. Among the others, the large eddy simulation (LES) community has mani-
fested interest in models involving such a kind of filtering procedure (see, e.g., Refs. [2, 7, 12, 14–18, 55]) and, in particular,
the connection between anisotropic 𝛼-models and turbulence has been investigated by Berselli in Ref. [9] for the 3D
Navier–Stokes equations, even if, in fact, the first use of anisotropic filters in turbulence dates back to the approach of
Germano [29] (see also Refs. [10, 11] for the case corresponding to the 3D Boussinesq equations with anisotropic filters for
turbulent flows). See also Refs. [20, 59] for the use of Helmholtz’s filter in contexts not strictly related to turbulence.

Set 𝐰 = 𝐮
ℎ
= 𝐴−1

ℎ
𝐮 and 𝑞 = 𝑝

ℎ
= 𝐴−1

ℎ
𝑝, so that 𝐮 = 𝐴ℎ𝐰. Then, applying the horizontal filter “ ⋅

ℎ
” component by

component to the various fields and tensor fields in Equations (1.4) and (1.5), and solving the interior closure problem by
the approximation

𝐮 ⊗ 𝐮
ℎ
≈ 𝐮

ℎ
⊗ 𝐮

ℎ
ℎ

= 𝐰 ⊗ 𝐰
ℎ
, (1.8)

we finally get the regularized model

𝜕𝑡𝐰 + ∇ ⋅ 𝐰 ⊗ 𝐰
ℎ
+ 𝜇0Λ

2𝛽𝐰 + ∫
𝑡

0

𝜛(𝑡 − 𝑠)𝐰(𝑠)d𝑠 + ∇𝑞 = 𝐟
ℎ
, (1.9)

∇ ⋅ 𝐰 = 0, (1.10)

where𝜛(𝜏) = 𝛾𝑒−𝛿𝜏 and we impose a suitable initial condition𝐰|𝑡=0 = 𝐰0.
In order to get the considered model, we apply the operator 𝐴ℎ = 𝐼 − 𝛼2Δℎ, term by term, to Equations (1.9) and (1.10)

and set 𝜈 = 𝜇0 to reach

𝜕𝑡𝐴ℎ𝐰 + (𝐰 ⋅ ∇)𝐰 + 𝜈Λ2𝛽𝐴ℎ𝐰 + ∫
𝑡

0

𝜛(𝑡 − 𝑠)𝐴ℎ𝐰(𝑠)d𝑠 + ∇𝑝 = 𝐟 , (1.11)

∇ ⋅ 𝐰 = 0, (1.12)

with𝐰|𝑡=0 = 𝐰0.
Existence and uniqueness of strong solutions for the model above can be established by using the same methods devel-

oped in Annese et al. [3], Sections 2 and 3] with minor modifications, regarding the treatment of the memory term, based
on what has been done in Mohan [38].

Remark 1.1. A natural domain for the horizontal filter 𝐴−1
ℎ
would be

Ωℎ =
{
𝐱 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3 ∶ −𝜋𝐿 < 𝑥1, 𝑥2 < 𝜋𝐿,−𝑑 < 𝑥3 < 𝑑

}
,

𝐿 > 0, 𝑑 > 0, with 2𝜋𝐿 periodicity with respect to 𝐱ℎ ∶= (𝑥1, 𝑥2), and homogeneous Dirichlet boundary conditions on

𝛤 =
{
𝐱 ∈ ℝ3 ∶ −𝜋𝐿 < 𝑥1, 𝑥2 < 𝜋𝐿, 𝑥3 = ±𝑑

}
.

This choice, although highlights the privileged directions associated with the filter, makes problematic to properly
define the fractional-order operator Λ2𝛽 on Ωℎ. A possible alternative approach, which is well suited to the choice
of this domain, with homogeneous boundary conditions, is the one about the use of the fractional anisotropic filter
𝐴

𝛽

ℎ
= 𝐼 + 𝛼2𝛽Λℎ

2𝛽 , Λℎ = (−Δℎ)
1∕2, with 3∕4 ≤ 𝛽 < 1 (see, e.g., Berselli [9]), coupled with the standard dissipative term

−𝜈Δ𝐰, with 𝜈 = 𝜇0, instead of 𝜈Λ2𝛽𝐰, in Equation (1.9). Proceeding as before, this yields the equations

𝜕𝑡𝐰 + ∇ ⋅ 𝐰 ⊗ 𝐰
ℎ
− 𝜈Δ𝐰 + ∫

𝑡

0

𝜛(𝑡 − 𝑠)𝐰(𝑠)d𝑠 + ∇𝑞 = 𝐟
ℎ
, (1.13)

∇ ⋅ 𝐰 = 0, (1.14)

where now ( ⋅ )
ℎ
= (𝐴

𝛽

ℎ
)
−1

( ⋅ ).
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4 of 19 BISCONTI and CATANIA

It is possible to verify that the results that we obtain in this paper can be achieved, following the same approach, also
for the above system. In order to give a more precise idea about this point, apply𝐴

𝛽

ℎ
term by term to Equation (1.13), to get

𝜕𝑡𝐴
𝛽

ℎ
𝐰 + (𝐰 ⋅ ∇)𝐰 + 𝜈Δ𝐴

𝛽

ℎ
𝐰 + ∫

𝑡

0

𝜛(𝑡 − 𝑠)𝐴
𝛽

ℎ
𝐰(𝑠)d𝑠 + ∇𝑝 = 𝐟 , (1.15)

∇ ⋅ 𝐰 = 0. (1.16)

Assuming to have at disposal sufficient regularity to test and manipulate Equation (1.15) against 𝐰 in 𝐿2(Ωℎ), after an
integration by parts we reach

1

2

𝑑

𝑑𝑡

(‖𝐰‖2
𝐿2 + 𝛼2𝛽‖Λ𝛽

ℎ
𝐰‖2

𝐿2

)
+ 𝜈

(‖Λ𝛽

ℎ
𝐰‖2

𝐿2 + 𝛼2𝛽‖Λ𝛽

ℎ
∇𝐰‖2

𝐿2

)
+ ∫

𝑡

0

𝜛(𝑡 − 𝑠)(𝐰(𝑠),𝐰(𝑡))𝐿2d𝑠 + 𝛼2𝛽 ∫
𝑡

0

𝜛(𝑡 − 𝑠)(Λ
𝛽

ℎ
𝐰(𝑠), Λ

𝛽

ℎ
𝐰(𝑡))𝐿2d𝑠 = (𝐟 ,𝐰)𝐿2 ,

with ‖ ⋅ ‖𝐿2 and ( ⋅ , ⋅ )𝐿2 , respectively, the norm and the scalar product in 𝐿2(Ωℎ). The presence of the term
𝜈𝛼2𝛽‖Λ𝛽

ℎ
∇𝐰‖2

𝐿2 in the left-hand side of the above relation (which is better than 𝜈𝛼2‖Λ𝛽∇ℎ𝐰‖2
𝐿2 , obtained after apply-

ing 𝐴ℎ to Equation (1.11) and performing the 𝐿2-test), allows us to recover existence, uniqueness, well-posedness, and
regularity results adapting, to this case, the calculations in Section 3.1 (see also Annese et al. [3, § 3–to–5]) performed in
the fully periodic setting. Thus, from the mathematical point of view, we consider more interesting to deal with the case
presenting the weaker dissipative term, that is, 𝜈Λ2𝛽𝐰 in Equation (1.11) and, also for this reason, in what follows, we will
consider the Equations (1.11) and (1.12) in the fully periodic context.

Because of the nature of the considered system, as in the cases treated in Refs. [4, 37, 38], it is not evident how to achieve
the exact controllability for the Equations (1.11) and (1.12) with arbitrary target functions (see also Bisconti and Mariano
[19] for further comments). In this paper, we restrict ourselves to analyzing the exact controllability of a suitable Galerkin’s
approximation scheme {𝐰𝑛} for Equations (1.11) and (1.12) on 𝕋3, and for 𝑡 > 0, that is(

(𝐼 − 𝛼2Δℎ)𝜕𝑡𝐰
𝑛, 𝐞

)
+ ((𝐰𝑛 ⋅ ∇)𝐰𝑛, 𝐞) + 𝜈

(
Λ𝛽𝐴

1∕2

ℎ
𝐰𝑛, Λ𝛽𝐴

1∕2

ℎ
𝐞
)

+

(
∫

𝑡

0

𝜛(𝑡 − 𝑠)𝐴ℎ𝐰
𝑛(𝑠)d𝑠, 𝐞

)
= (𝑈𝜒, 𝐞), ∀𝐞 ∈ 𝐸,

𝐰𝑛(0) = 𝐰𝑛
0 = 𝐏(𝐰0), 𝑛 ≤ dim𝐸 = 𝑑𝑁,

(1.17)

where𝐴1∕2

ℎ
= (𝐼 − 𝛼2Δℎ)

1∕2,𝐸 = span{𝐞1, … , 𝐞𝑑𝑁
} is a suitable finite-dimensional space, and𝐰𝑛(𝑥, 𝑡) =

∑𝑑𝑁

𝑗=1
𝜚𝑛,𝑗(𝑡)𝐞𝑗(𝑥),

with 𝜚𝑛,𝑗(𝑡) coefficient functions (see, e.g., Refs. [4, 19, 38]). Also, 𝐏(𝐰0) =
∑𝑑𝑁

𝑗=1
(𝐰0, 𝐞𝑗)𝐞𝑗 . The function 𝑈𝜒 is given as

follows: is the control domain (the domainwhere the control is acting upon),𝑈 is the distributed control function acting
on the system, and 𝜒 denotes the characteristic function of the control domain .
In the main result of this work, that is, Theorem 4.1, we prove the exact controllability of the above Galerkin system.
There is a large literature about control results (also of the type considered here) for many different fluid models. In

addition to the cases alreadymentioned above, let us recall, for instance, the problemof optimal control for certain families
of polymer solutions that has been considered in Refs. [58, 59], while in Doubova and Fernández-Cara [25], viscoelastic
Jeffreys (Oldroyd) fluids are handled and controllability results are obtained. In Refs. [35, 37], the authors proved that the
considered Galerkin’s approximations, for the Navier–Stokes system, are exactly controllable. Also, in Araruna et al. [4],
the authors consider the problem of the exact controllability of Galerkin’s approximations of micropolar fluids. A similar
analysis, in the case of polymer fluids, is addressed in Bisconti and Mariano [19]. The recent paper [32] addresses the
problem of controllability of an ideal MHD system with a control prescribed on the boundary.
In Araruna et al. [5], a Leray-𝛼 turbulence model is considered and it is proved, among other things, that the equa-

tions are locally null controllable with controls independent of 𝛼, so that, if the initial data are sufficiently small, the
controls converge as 𝛼 → 0+ to a null control of the Navier–Stokes equations. In this paper, we do not address such an
issue, and we postpone a similar study to a future work.
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BISCONTI and CATANIA 5 of 19

As a possible further point of interest, we emphasize that the analysis provided here does not seem suitable for address-
ing the problem of taking the limit for 𝑑𝑁 → +∞ in Equation (1.17) (see Remark 4.2 for further details), essentially because
the estimates used to obtain the exact controllability (at the finite-dimensional level 𝑑𝑁) are not preserved when 𝑑𝑁

becomes arbitrarily large, and, as a consequence, they cannot be used directly for the original infinite-dimensional system.
This appears to be standard for similar problems (see also Lions and Zuazua [37]).
We now give, in the following sections, a number of preliminaries and the results obtained in this paper.

2 SOME BASIC FACTS

2.1 Function spaces

For the sake of simplicity, in the sequel, we set Ω = 𝕋3. We introduce the following function spaces:

𝐿2(Ω) =

{
𝜙 ∶ Ω → ℝmeasurable, 2𝜋𝐿 periodic in 𝐱, ∫

Ω

|𝜙|2𝑑𝐱 < ∞

}
𝐿2
0(Ω) =

{
𝜙 ∈ 𝐿2(Ω) with zero mean with respect to 𝐱

}
,

𝐻 =
{
𝐯 ∈ (𝐿2

0(Ω))3 ∶ ∇ ⋅ 𝐯 = 0 in Ω
}
,

all with 𝐿2 norm denoted by ‖ ⋅ ‖, and scalar product ( ⋅ , ⋅ ) in 𝐿2. Also, we set

𝑉 =
{
𝐯 ∈ 𝐻 ∶ ∇𝐯 ∈ (𝐿2(Ω))9

}
,

𝑉ℎ =
{
𝐯 ∈ 𝐻 ∶ ∇ℎ𝐯 ∈ (𝐿2(Ω))6

}
.

The space 𝑉ℎ is endowed with the inner product

⟨𝐮, 𝐯⟩𝑉ℎ
= (𝐮, 𝐯) + 𝛼2(∇ℎ𝐮,∇ℎ𝐯),

and ‖𝐮‖2
𝑉ℎ

= ‖𝐮‖2 + 𝛼2‖∇ℎ𝐮‖2.
Further, for any 0 < 𝛽 < 1, we define

𝐻𝛽 =
{
𝐯 ∈ 𝐻 ∶ Λ𝛽𝐯 ∈ 𝐿2(Ω)3

}
,

𝐻
1+𝛽

ℎ
=

{
𝐯 ∈ 𝑉ℎ ∶ Λ𝛽𝐯 ∈ 𝑉ℎ

}
,

with norms, respectively,

‖𝐯‖2
𝐻𝛽

= ‖𝐯‖2 + ‖Λ𝛽𝐯‖2,

‖𝐯‖2

𝐻
1+𝛽

ℎ

= ‖𝐯‖2
𝑉ℎ

+ ‖Λ𝛽𝐯‖2
𝑉ℎ

.

Let us consider the Sobolev spaces 𝑊𝑠,2(Ω), 𝑠 > 0. Also, let us recall the homogeneous Sobolev spaces 𝐻̇𝑠 ∶= 𝐻̇𝑠(Ω)

defined for 𝑠 ≥ 0 (see, e.g., Refs. [27, 49]), as

𝐻̇𝑠 = (𝑊𝑠,2(Ω))3 ∩ 𝐻,

that, in our case, coincide with the zero-mean spaces 𝐻𝑠 introduced above. Actually, for the elements in 𝐻̇𝑠, we drop the
𝐿2 part of the𝐻𝑠-norm: In fact, making use of the Fourier series expansion, for any 𝑢 ∈ 𝐻̇𝑠, the well-defined quantity

‖𝑢‖2
𝐻̇𝑠

=
∑

𝑘∈ℤ3∖{0}

|𝑘|2𝑠|𝑢̂𝑘|2, (here 𝑢̂−𝑘 = ̄̂𝑢𝑘, and 𝑘 ⋅ 𝑢̂𝑘 = 0, ∀𝑘 ∈ ℤ3)
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6 of 19 BISCONTI and CATANIA

introduces a norm on 𝐻̇𝑠. Here, ̄̂𝑢𝑘 denotes the complex conjugate of the Fourier coefficient 𝑢̂𝑘. Observe that the above
expression does not define a norm on (𝑊𝑠,2(Ω))3 since it is equal to zero for the constant vector fields. We denote the dual
of 𝐻̇𝑠 by𝐻−𝑠 ∶= 𝐻−𝑠(Ω), where 𝑠 > 0 can be any positive number.
In the sequel, in order to keep the notation compact, we omit the superscript indicating the dimension of the considered

spaces, reintroducing it only when it is strictly required by the context.

Remark 2.1. For 𝐯 ∈ 𝑉ℎ, we have that

‖𝐴1∕2

ℎ
𝐯‖2 = ‖(𝐼 − 𝛼2Δℎ)

1∕2𝐯‖2 =
(
(𝐼 − 𝛼2Δℎ)𝐯, 𝐯

)
= ‖𝐯‖2 + 𝛼2‖∇ℎ𝐯‖2. (2.1)

Similarly, for𝐰 ∈ 𝐻
1+𝛽

ℎ
, it holds true that

‖Λ𝛽𝐴
1∕2

ℎ
𝐰‖2 = ‖Λ𝛽𝐰‖2 + 𝛼2‖Λ𝛽∇ℎ𝐰‖2. (2.2)

In the following, we indicate the partial derivatives in time, with 𝐯𝑡 = 𝜕𝑡𝐯. Also, in what follows, we always use the
compact notation𝐴ℎ (or𝐴

1∕2

ℎ
) to indicate 𝐼 − 𝛼2Δℎ (respectively (𝐼 − 𝛼2Δℎ)

1∕2) in the considered formulas, but not when
this operator acts on𝐰𝑡, and in this case, we leave 𝐼 − 𝛼2Δℎ written explicitly.
We denote by 𝑐 or 𝐶̄ generic positive constants, which may change from line to line; explicit dependencies will be

subscribed to the constant or placed in parentheses.

2.2 Properties of the kernel

Let us now introduce

(𝐿𝐰)(𝑡) ∶= (𝜛 ∗ 𝐰)(𝑡) = ∫
𝑡

0

𝜛(𝑡 − 𝑠)𝐰(𝑠)d𝑠. (2.3)

A function𝜛( ⋅ ) is called positive kernel if the operator 𝐿 is positive on 𝐿2(0, 𝑇;𝐻) for all 𝑇 > 0. That is, we have

∫
𝑇

0

(𝐿𝐰(𝑡),𝐰(𝑡))d𝑡 = ∫
𝑇

0
∫

𝑡

0

𝜛(𝑡 − 𝑠)(𝐰(𝑠),𝐰(𝑡))d𝑠d𝑡 ≥ 0 (2.4)

for all𝐰 ∈ 𝐻 and every 𝑇 > 0.
We have the following results on positive kernels.

Lemma 2.1 Lemma 4.1, [6]. Let𝜛 ∈ 𝐿∞(0,∞), and let 𝜛̂(𝜃) be the Laplace transform of𝜛(𝑡) such that

Re 𝜛̂(𝜃) > 0 for Re 𝜃 > 0.

Then,𝜛(𝑡) defines a positive kernel.

Also, 𝜛( ⋅ ) is said to be a strongly positive kernel if there exist constants 𝜀 > 0 and 𝛼 > 0 such that 𝜛(𝑡) − 𝜀𝑒−𝛼𝑡 is a
positive kernel, that is,

∫
𝑇

0
∫

𝑡

0

𝜛(𝑡 − 𝑠)(𝐰(𝑠),𝐰(𝑡))d𝑠d𝑡 ≥ 𝜀 ∫
𝑇

0
∫

𝑡

0

𝑒−𝛼(𝑡−𝑠)(𝐰(𝑠),𝐰(𝑡))d𝑠d𝑡 ≥ 0, (2.5)

for all 𝑇 > 0 and for all𝐰 ∈ 𝐿2(0, 𝑇;𝐻).

Lemma 2.2 Proposition 4.1, [6]. Let𝜛(𝑡) satisfies the following conditions:

(i) 𝜛 ∈ 𝐶[0,∞) ∩ 𝐶2(0,∞),
(ii) (−1)𝑘

𝑑𝑘

𝑑𝑡𝑘
𝜛(𝑡) ≥ 0 for 𝑡 > 0, 𝑘 = 0, 1, 2,
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BISCONTI and CATANIA 7 of 19

(iii) 𝜛(𝑡) ≠ const.

Then𝜛(𝑡) is a strongly positive kernel.

Lemma 2.3 Lemma 2.6, [38]. Let𝜛 ∈ 𝐿1(0, 𝑇), 𝑓, 𝑔 ∈ 𝐿2(0, 𝑇) for some 𝑇 > 0. Then, we have

⎛⎜⎜⎝∫
𝑇

0

𝑔2(𝑡)

(
∫

𝑡

0

𝜛(𝑡 − 𝑠)𝑓(𝑠)d𝑠

)2

d𝑡
⎞⎟⎟⎠
1∕2

≤
(
∫

𝑇

0

|𝜛(𝑡)|d𝑡)(
∫

𝑇

0

𝑔2(𝑡)𝑓2(𝑡)d𝑡

)1∕2

.

Remark 2.2. The following facts hold true:

(I) If we take 𝑔(𝑡) = 1 and 𝑓 = ‖𝐰‖ with𝐰 ∈ 𝐿2(0, 𝑇;𝐻) in the above formula, we obtain

⎛⎜⎜⎝∫
𝑇

0

(
∫

𝑡

0

𝜛(𝑡 − 𝑠)‖𝐰(𝑠)‖d𝑠)2

d𝑡
⎞⎟⎟⎠
1∕2

≤
(
∫

𝑇

0

|𝜛(𝑡)|d𝑡)(
∫

𝑇

0

‖𝐰(𝑡)‖2d𝑡

)1∕2

. (2.6)

(II) Moreover, for𝜛(𝑡) = 𝛾𝑒−𝛿𝑡, we know that

∫
∞

0

𝜛(𝑡)d𝑡 =
𝛾

𝛿
and 𝜛̂(𝜃) =

𝛾

𝜃 + 𝛿
for Re 𝜃 > 0. (2.7)

and so, by Lemma 2.1,𝜛(𝑡) is a positive kernel.
(III) As a consequence of Lemma 2.2, we also get that𝜛(𝑡), introduced in (II), is a strongly positive kernel.
(IV) Assume that𝜛(𝑡) is a strongly positive kernel, in particular, of the type in (II). Using an integration by parts, we have

−∫
𝑇

0

⟨(𝜛 ∗ (Δ𝐰)(𝑡)),𝐰(𝑡)⟩d𝑡 = ∫
𝑇

0

((𝜛 ∗ (∇𝐰)(𝑡)), ∇𝐰(𝑡))d𝑡 ≥ 0, (2.8)

and also

−∫
𝑇

0

⟨(𝜛 ∗ (Δℎ𝐰)(𝑡)),𝐰(𝑡)⟩d𝑡 = ∫
𝑇

0

((𝜛 ∗ (∇ℎ𝐰)(𝑡)), ∇ℎ𝐰(𝑡))d𝑡 ≥ 0. (2.9)

3 WEAK SOLUTIONS

We have the following definition:

Definition 3.1. Let 𝑇 > 0. A map𝐰 ∈ 𝐶([0, 𝑇]; 𝑉ℎ) ∩ 𝐿2(0, 𝑇;𝐻
1+𝛽

ℎ
) with 𝐴ℎ𝜕𝑡𝐰 ∈ 𝐿2(0, 𝑇;𝐻−𝛽), is a weak solution to

the system (1.11)–(1.12), if for 𝐟 ∈ 𝐿2(0, 𝑇;𝐻−𝛽), and 𝐰0 ∈ 𝑉ℎ, then 𝐰 satisfies the following weak formulation for all
𝐯 ∈ 𝐻

1+𝛽

ℎ
, that is, ((

(𝐼 − 𝛼2Δℎ)𝐰𝑡(𝑡)
)
+ 𝜈Λ2𝛽𝐴ℎ𝐰(𝑡) + (𝜛 ∗ 𝐴ℎ)𝐰(𝑡) + (𝐰 ⋅ ∇)𝐰, 𝐯

)
(3.1)

= (𝐟 (𝑡), 𝐯),

lim
𝑡→0

(𝐰(𝑡), 𝐯) = (𝐰0, 𝐯), (3.2)

and the energy equality

𝑑

𝑑𝑡

(‖𝐰(𝑡)‖2 + 𝛼2‖∇ℎ𝐰(𝑡)‖2
)
+ 𝜈

(‖Λ𝛽𝐰(𝑡)‖2 + 𝛼2‖Λ𝛽∇ℎ𝐰(𝑡)‖2
)

+ (𝜛 ∗ 𝐰(𝑡),𝐰(𝑡)) = (𝐟 (𝑡),𝐰(𝑡)).
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8 of 19 BISCONTI and CATANIA

Remark 3.1. In proving the above energy equality, we use a suitable regularization procedure for the considered equa-
tions and the related solutions (see Annese et al. [3]): Let𝐰𝜀 denote the standard convolution regularization, in time, of
𝐰, with 0 < 𝑡0 < 𝑡1 < 𝑇 fixed, and 0 < 𝜀 < 𝑡0, 𝜀 < 𝑇 − 𝑡1, 𝜀 < 𝑡1 − 𝑡0 (see, e.g., Berselli [9], see also Annese et al. [3]). For
each 𝑡 ∈ [𝑡0, 𝑡1], we have

𝐰𝜀(𝑡) = (𝑗𝜀 ∗ 𝐰)(𝑡) = ∫
𝑡1

𝑡0

𝑗𝜀(𝑡 − 𝜏)𝐰(𝜏) d 𝜏,

where the smooth function 𝑗𝜀 is even, positive, supported in (−𝜀, 𝜀), and ∫ 𝜀

−𝜀
𝑗𝜀(𝑠) d 𝑠 = 1.

For the existence, we take initial data in 𝐰0 ∈ 𝑉ℎ (see Section 3.1 below), and consider an appropriate Galerkin
approximating scheme {𝐰𝑛} such that, up to pass to subsequences, satisfies

𝐰𝑛 → 𝐰 in 𝐿∞(0, 𝑇; 𝑉ℎ) ∩ 𝐿2(0, 𝑇; 𝑉 ∩ 𝐻
1+𝛽

ℎ
), (3.3)

with the limiting vector fields𝐰 verifying Equations (3.1) and (3.2) in Definition 3.1. Then, setting𝐰𝑛
𝜀 (𝑡) = (𝑗𝜀 ∗ 𝐰𝑛)(𝑡),

we have, for 1 ≤ 𝑞 < +∞, that (see, e.g., Galdi [28])

lim
𝑛→+∞

‖𝐰𝑛
𝜀 − 𝐰𝜀‖𝐿𝑞(𝑡0,𝑡1;𝑋) = 0 for 𝐰𝑛 ∈ 𝐿𝑞(𝑡0, 𝑡1; 𝑋) s.t. 𝐰𝑛 → 𝐰 ∈ 𝐿𝑞(𝑡0, 𝑡1; 𝑋), (3.4)

and 𝑋 is any of the Hilbert spaces, that is, 𝑉ℎ, 𝑉, or 𝐻
1+𝛽

ℎ
, in Equation (3.3). Then, testing Equation (1.11) against 𝐰𝑛

𝜀 in
𝐿2, and integrating on [𝑡0, 𝑡1] in d 𝜏, we get

∫
𝑡1

𝑡0

[
(𝐰, 𝜕𝑡𝐰

𝑛
𝜀 ) + 𝛼2(∇ℎ𝐰, 𝜕𝑡∇ℎ𝐰

𝑛
𝜀 ) − 𝜈

(
Λ𝛽𝐰,Λ𝛽𝐰𝑛

𝜀

)
− 𝜈𝛼2

(
Λ𝛽∇ℎ𝐰,Λ𝛽∇ℎ𝐰

𝑛
𝜀

)
+(𝐰 ⋅ ∇)𝐰𝑛

𝜀 ,𝐰)](𝜏) d𝜏 − ∫
𝑡1

𝑡0
∫

𝜏

0

𝜛(𝜏 − 𝑠)⟨𝐰(𝑠),𝐰𝑛
𝜀 (𝜏)⟩𝑉ℎ

d𝑠 d𝜏

= −∫
𝑡1

𝑡0

(𝐟 ,𝐰𝑛
𝜀 )(𝑠) d𝑠 + (𝐰(𝑡1), 𝐴ℎ𝐰

𝑛
𝜀 (𝑡1)) − (𝐰(𝑡0), 𝐴ℎ𝐰

𝑛
𝜀 (𝑡0)),

(3.5)

where ⟨𝐰𝑛
𝜀 ,𝐰⟩𝑉ℎ

= (𝐰,𝐰𝑛
𝜀 ) + 𝛼2(∇ℎ𝐰,∇ℎ𝐰

𝑛
𝜀 ). To gain the energy equality, in integral form, we use the same argument

as in Annese et al. [3] (see also Refs. [10, 28]), by passing to the limit as 𝑛 → +∞, and using the convergence types listed
in Equations (3.3) and (3.4).

We now provide a few facts about the existence of such a type of weak solutions.

3.1 Global existence and uniqueness

Let us now show that the system (1.11)–(1.12) has a unique weak solution using Galerkin approximations and energy
estimates.

Theorem 3.1. Let𝐰0 ∈ 𝑉ℎ and 𝐟 ∈ 𝐿2(0, 𝑇;𝐻−𝛽) be given. Assume 3∕4 ≤ 𝛽 < 1. Then, there exists a unique weak solution
𝐰 to the system (1.11)–(1.12), in the sense of Definition 3.1.

This result is based on a compactness argument in the style of Aubin–Lions (see Annese et al. [3]) combinedwith proper
a priori estimates.
Let us assume𝐰0 ∈ 𝑉ℎ and 𝐟 ∈ 𝐿2(0, 𝑇; 𝑉ℎ).We proceed formally to get the needed a priori estimates, but the procedure

actually goes through the use of the Galerkin approximation scheme (1.17).
Let us test Equation (1.11) against𝐰 in 𝐿2, to get

1

2

𝑑

𝑑𝑡

(‖𝐰‖2 + 𝛼2‖∇ℎ𝐰‖2
)
+ 𝜈

(‖Λ𝛽𝐰‖2 + 𝛼2‖Λ𝛽∇ℎ𝐰‖2
)
+ (𝜛 ∗ 𝐰,𝐰) = (𝐟 ,𝐰).
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BISCONTI and CATANIA 9 of 19

Then, using Equation (2.5) along with Equation (2.9), we get

1

2

𝑑

𝑑𝑡

(‖𝐰‖2 + 𝛼2‖∇ℎ𝐰‖2
)
+ (𝜈 − 𝜀)‖Λ𝛽𝐰‖2 + 𝜈‖Λ𝛽∇ℎ𝐰‖2 ≤ 𝐶𝜀‖𝐟‖𝐻−𝛽 . (3.6)

Testing Equation (1.11) against 𝜙 ∈ 𝐻𝛽 , we infer

||((𝐼 − 𝛼2Δℎ)𝐰𝑡, 𝜙
)|| ≤ 𝑐

(
𝜈(‖Λ𝛽𝐰‖ + 𝛼2‖Λ𝛽∇ℎ𝐰‖) + ‖𝜛 ∗ 𝐰‖ + ‖𝐟‖𝐻−𝛽

)‖𝜙‖𝐻𝛽

+ ||((𝐰 ⋅ ∇)𝐰, 𝜙)||.
In particular, it holds that (see [3])

||((𝐰 ⋅ ∇)𝐰, 𝜙)|| ≤ ||((𝐰ℎ ⋅ ∇ℎ)𝐰, 𝜙)|| + ||(𝑤3𝜕3𝐰, 𝜙)||
≤ 𝑐

(‖(𝐰ℎ ⋅ ∇ℎ)𝐰‖𝐻−𝛽 + ‖𝑤3𝜕3𝐰‖𝐻−𝛽

)‖𝜙‖𝐻𝛽

≤ 𝑐
(‖Λ𝛽𝐰ℎ‖‖∇ℎ𝐰‖ + ‖𝑤3‖𝐻1‖Λ𝛽𝐰‖)‖𝜙‖𝐻𝛽

≤ 𝑐‖∇ℎ𝐰‖(‖Λ𝛽𝐰ℎ‖ + ‖Λ𝛽𝐰‖)‖𝜙‖𝐻𝛽 ,

(3.7)

and so, using (2.6), we infer

∫
𝑇

0

‖(𝐼 − 𝛼2Δℎ)𝐰𝑡‖2
𝐻−𝛽

d𝑠

≤ 𝑐 ∫
𝑇

0

(
𝜈(‖Λ𝛽𝐰‖ + 𝛼2‖Λ𝛽∇ℎ𝐰‖) + ‖𝐟‖𝐻−𝛽

)2
d𝑠

+

(
∫

𝑇

0

|𝜛(𝑠)|d𝑠)2

∫
𝑇

0

‖𝐰‖2d𝑠 + 𝑐 ∫
𝑇

0

‖Λ𝛽𝐰‖2d𝑠.

(3.8)

Hence, it follows that ‖(𝐼 − 𝛼2Δℎ)𝐰𝑡‖2
𝐻−𝛽

∈ 𝐿2
loc(0, +∞).

Thanks to the above estimates, we can proceed as in Annese et al. [3] to prove, first, existence and then uniqueness.

4 EXACT CONTROLLABILITY OF GALERKIN APPROXIMATIONS

In order to establish the exact controllability of the Galerkin approximation scheme for the considered model, we start by
introducing the following controlled system, for 𝑥 ∈ Ω = 𝕋3, and 𝑡 > 0, that is,(

𝐼 − 𝛼2Δℎ

)
𝐰𝑡 + 𝜈Λ2𝛽𝐴ℎ𝐰 + (𝜛 ∗ 𝐴ℎ𝐰) + (𝐰 ⋅ ∇)𝐰 + ∇𝑝 = 𝑈𝜒,

(∇ ⋅ 𝐰)(𝑡, 𝑥) = 0,

𝐰(0, 𝑥) = 𝐰0(𝑥),

(4.1)

where the control domain  (i.e., the domain on which the control is acting) is supposed to be as small as needed, 𝑈 is
the distributed control function acting over the system, and 𝜒 denotes the characteristic function of .
If we take the inner product of the first equation in Equation (4.1) with 𝐯 ∈ 𝐻

1+𝛽

ℎ
, we arrive at

(
(𝐼 − 𝛼2Δℎ)𝐰𝑡, 𝐯

)
+ 𝜈(Λ𝛽𝐴

1∕2

ℎ
𝐰,Λ𝛽𝐴

1∕2

ℎ
𝐯) + ((𝜛 ∗ 𝐰), 𝐯)

+ 𝛼2((𝜛 ∗ ∇ℎ𝐰),∇ℎ𝐯) + ((𝐰 ⋅ ∇)𝐰, 𝐯) = (𝑈𝜒, 𝐯),

𝐰(0) = 𝐰0 ∈ 𝐻
1+𝛽

ℎ
.
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10 of 19 BISCONTI and CATANIA

Now, consider {𝐞𝑗}∞𝑗=1
basis of𝐻1+𝛽

ℎ
made of elements that are linearly independent in𝐻. The existence of such a basis

is guaranteed by the following result due to Lions and Zuazua (see Theorem 3.1, [36] and Proposition 2.1, [37]) when the
immersion 𝐽 ∶ 𝐻

1+𝛽

ℎ
→ 𝐻 is utilized.

Proposition 4.1 Theorem 3.1, [36]. Let𝐻1 and𝐻2 be Hilbert spaces. Let 𝐽 ∶ 𝐻1 → 𝐻2 be a bounded linear operator with an
infinite-dimensional range. Then, there exists a Riesz basis {𝐞𝑗}∞𝑗=1

of𝐻1 such that {𝐽𝐞𝑗}∞𝑗=1
are linearly independent in𝐻2.

Next, as standard, we consider the finite-dimensional space

𝐸 = span{𝐞1, … , 𝐞𝑑𝑁
} (4.2)

and take into account a suitable Galerkin approximation scheme {𝐰𝑛} for the system (1.11)–(1.12) with 𝐟 = 0.
We are going to use the followingGalerkin approximation (already introduced in Equation (1.17)), wherewe set𝐰 = 𝐰𝑛

in order to keep the notation concise, so that

((𝐼 − 𝛼2Δℎ)𝐰𝑡, 𝐞) + 𝜈(Λ𝛽𝐴
1∕2

ℎ
𝐰,Λ𝛽𝐴

1∕2

ℎ
𝐞) + ((𝜛 ∗ 𝐰), 𝐞)

+ 𝛼2((𝜛 ∗ ∇ℎ𝐰),∇ℎ𝐞) + ((𝐰 ⋅ ∇)𝐰, 𝐞) = (𝑈𝜒, 𝐞), ∀𝐞 ∈ 𝐸,

𝐰(0, 𝑥) = 𝐰0 ∈ 𝐸,

(4.3)

Here, we allow a slight abuse of notation having set

𝐰0 = 𝐏(𝐰0) =

𝑑𝑁∑
𝑖=1

(𝐰0, 𝑒𝑖)𝑒𝑖.

This system admits a unique solution 𝐰 ∈ 𝐶([0, 𝑇]; 𝐸), as a consequence of the Carathéodory’s existence theorem and
uniqueness follows from the local Lipschitz property (see Annese et al. [3], see also Mohan [38]) and this is one of the
basic points behind the proof of Theorem 3.1.
As a further matter of notation, in what follows, we will use the notations ‖ ⋅ ‖ and ( ⋅ , ⋅ ) to denote the norm and inner

product, both on 𝐿2(𝕋3) and on the finite-dimensional space 𝐸.

4.1 Exact controllability

Let us start by defining what we mean by exact controllability for system (4.3).

Definition 4.1. The Galerkin approximated system (4.3) is said to be exactly controllable at time 𝑇 > 0 if, for given 𝐰0

and𝐰𝑇 ∈ 𝐸, there exists a control 𝑈 ∈ 𝐿2(0, 𝑇; 𝐿2()) such that the solution𝐰 of Equation (4.3) satisfies:

𝐰( ⋅ , 𝑇;𝑈) = 𝐰𝑇. (4.4)

In order to achieve this goal, it will be useful to consider the following cost functional:

 (𝑈) =
1

2 ∫
𝑇

0

‖𝑈(𝑡)‖𝐿2()d𝑡 =
1

2 ∫
𝑇

0
∫ |𝑈(𝑡)|2d𝑥d𝑡. (4.5)

Now we are ready to formulate and demonstrate the main result.

Theorem 4.1. Let 𝑇 > 0. Then the Galerkin approximation scheme (4.3) is exactly controllable in the sense of Definition 4.1.
Moreover, the cost functional described in Equation (4.5) is bounded independently of the nonlinearity.

In proving this result, we show that the cost functional (4.5) is bounded independently of the magnitude of nonlinear
term inEquation (4.3) (see Equation (4.20) below) so, for convenience,wemodify the nonlinearity in the consideredmodel
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BISCONTI and CATANIA 11 of 19

by introducing a multiplicative scalar quantity 𝜇 ∈ ℝ, to get 𝜇(𝐰 ⋅ ∇)𝐰, and after proving our controls in this situation,
we turn back, as a special subcase, to the actual system.

Proof. Let us introduce a coefficient 𝜇 ∈ ℝ and consider the following system:

(𝐼 − 𝛼2Δℎ)𝐰𝑡 + 𝜈Λ2𝛽𝐴ℎ𝐰 + (𝜛 ∗ 𝐴ℎ𝐰) + 𝜇(𝐰 ⋅ ∇)𝐰 + ∇𝑝 = 𝑈𝜒,

(∇ ⋅ 𝐰)(𝑡, 𝑥) = 0, 𝑥 ∈ 𝕋3, 𝑡 > 0,

𝐰(0, 𝑥) = 𝐰0(𝑥), 𝑥 ∈ 𝕋3.

(4.6)

In step 2, we will show some estimates for this system that are uniformwith respect to 𝜇. Then, we will establish the exact
controllability for system (4.6), which easily gives the required result for system (4.1) by setting 𝜇 = 1.
We are going to exploit the following variational formulation of system (4.6):(

(𝐼 − 𝛼2Δℎ)𝐰𝑡, 𝐞
)
+ 𝜈(Λ𝛽𝐴

1∕2

ℎ
𝐰,Λ𝛽𝐴

1∕2

ℎ
𝐞) + (𝜛 ∗ 𝐰, 𝐞)

+ 𝛼2((𝜛 ∗ ∇ℎ𝐰),∇ℎ𝐞) + 𝜇((𝐰 ⋅ ∇)𝐰, 𝐞) = (𝑈𝜒, 𝐞), ∀𝐞 ∈ 𝐸,

𝐰(0) = 𝐰0 ∈ 𝐸.

(4.7)

– Step 1: Linear system. Take a function 𝐡 ∈ 𝐿2(0, 𝑇; 𝐸) and consider the following linearized system:(
(𝐼 − 𝛼2Δℎ)𝐰𝑡, 𝐞

)
+ 𝜈(Λ𝛽𝐴

1∕2

ℎ
𝐰,Λ𝛽𝐴

1∕2

ℎ
𝐞) + (𝜛 ∗ 𝐰, 𝐞)

+ 𝛼2((𝜛 ∗ ∇ℎ𝐰),∇ℎ𝐞) + 𝜇((𝐡 ⋅ ∇)𝐰, 𝐞) = (𝑈𝜒, 𝐞),
𝐰(0) = 𝟎.

(4.8)

Since system (4.8) is linear, it is immediate that it has a unique solution𝐰 ∈ 𝐶([0, 𝑇]; 𝐸). Let us notice that we can work
with null initial data because of the linearity of system (4.8) and obtain a result, which is still valid for non-null initial
data, that is to say, if we take𝐰(0) = 𝐰0 ∈ 𝐸.
Now, let us show that system (4.8) is exactly controllable for any time 𝑇 > 0, in the sense of Definition 4.1. In order to

establish this, it is sufficient to prove that (see Lions [34] for details)

if 𝐠 ∈ 𝐸 satisfies (𝐰( ⋅ , 𝑇;𝑈), 𝐠) = 0 for all𝑈 ∈ 𝐿2(0, 𝑇; 𝐿2()),

then 𝐠 = 𝟎.
(4.9)

Observe that this same approach is used in a number of papers to study finite-dimensional systems coming as approx-
imations of the Navier–Stokes equations (see Refs. [36, 37]) or other similar systems for the description of fluid models
(e.g., besides some families viscoelastic fluids, also micropolar fluids and polymer fluids, see Refs. [4, 19, 38]).
To prove Equation (4.9), we take into account the following adjoint system (here 𝐩𝑡 = 𝜕𝑡𝐩):

− (𝐼 − 𝛼2Δℎ)𝐩𝑡 + 𝜈Λ2𝛽𝐴ℎ𝐩 + 𝜛◦𝐴ℎ𝐩 − 𝜇(𝐡 ⋅ ∇)𝐩 + ∇𝑞(𝑡, 𝑥) = 𝟎,

𝑥 ∈ 𝕋3, 𝑡 > 0,

(∇ ⋅ 𝐩)(𝑡, 𝑥) = 0, 𝑥 ∈ 𝕋3, 𝑡 > 0,

𝐩(𝑇, 𝑥) = (𝐼 − 𝛼2Δℎ)
−1𝐠, 𝑥 ∈ 𝕋3,

(4.10)

where 𝐠 ∈ 𝐸 and

(𝜛◦𝐴ℎ𝐩)(𝑡) = ∫
𝑇

𝑡

𝜛(𝑠 − 𝑡)𝐴ℎ𝐩(𝑠)d𝑠.
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12 of 19 BISCONTI and CATANIA

Remark 4.1. From ∫ 𝑇

0
((𝜛 ∗ 𝑓)(𝑡), 𝑔(𝑡))d𝑡, with 𝑓, 𝑔 sufficiently regular, a change in the order of integration yields:

∫
𝑇

0

((𝜛 ∗ 𝑓)(𝑡), 𝑔(𝑡))d𝑡 = ∫
𝑇

0
∫

𝑡

0

𝜛(𝑡 − 𝑠)(𝑓(𝑠), 𝑔(𝑡))d𝑠d𝑡

= ∫
𝑇

0

(𝑓(𝑡), (𝜛◦𝑔)(𝑡))d𝑡,

(4.11)

where, as defined above, (𝜛◦𝑔)(𝑡) = ∫ 𝑇

𝑡
𝜛(𝑠 − 𝑡)𝑔(𝑠)d𝑠.

The variational formulation of the last system is

− ((𝐼 − 𝛼2Δℎ)𝐩𝑡, 𝐞) + 𝜈(Λ𝛽𝐴
1∕2

ℎ
𝐩, Λ𝛽𝐴

1∕2

ℎ
𝐞) + ((𝜛◦𝐩), 𝐞) + 𝛼2((𝜛◦∇ℎ𝐩), ∇ℎ𝐞) − 𝜇((𝐡 ⋅ ∇)𝐩, 𝐞) = 0

𝐩(𝑇) = (𝐼 − 𝛼2Δℎ)
−1𝐠,

(4.12)

again, the system being linear, it has a unique solution 𝐩 ∈ 𝐶([0, 𝑇]; 𝐸). Setting 𝐞 = 𝐰 in Equation (4.12), we obtain

− ((𝐼 − 𝛼2Δℎ)𝐩𝑡,𝐰) + 𝜈(Λ𝛽𝐴
1∕2

ℎ
𝐩, Λ𝛽𝐴

1∕2

ℎ
𝐰) + ((𝜛◦𝐩),𝐰) + 𝛼2((𝜛◦∇ℎ𝐩), ∇ℎ𝐰) − 𝜇((𝐡 ⋅ ∇)𝐩,𝐰) = 0

𝐩(𝑇) = (𝐼 − 𝛼2Δℎ)
−1𝐠,

(4.13)

and integrating in time from 0 to 𝑇, we find

−
(
𝐰(𝑇), (𝐼 − 𝛼2Δℎ)𝐩(𝑇)

)
+ ∫

𝑇

0

[
((𝐼 − 𝛼2Δℎ)𝐰𝑡, 𝐩) + 𝜈(Λ2𝛽𝐴ℎ𝐰, 𝐩) + ((𝜛 ∗ 𝐰), 𝐩)

+𝛼2((𝜛 ∗ ∇ℎ𝐰),∇ℎ𝐩) + 𝜇((𝐡 ⋅ ∇)𝐰, 𝐩)
]
d𝑡 = 0.

(4.14)

Now we exploit the fact that 𝐩(𝑇) = (𝐼 − 𝛼2Δℎ)
−1𝐠 in Equation (4.14) along with Equation (4.8), so that

−(𝐰(𝑇), 𝐠) = ∫
𝑇

0

(𝑈(𝑡)𝜒, 𝐩(𝑡))d𝑡. (4.15)

If the assumption given in Equation (4.9) holds true, then, from Equation (4.15), we can easily obtain that

∫
𝑇

0

(𝑈(𝑡)𝜒, 𝐩(𝑡))d𝑡 = 0, for all 𝑈 ∈ 𝐿2(0, 𝑇; 𝐿2()). (4.16)

The above equality also shows that

𝐩 = 𝟎 in × (0, 𝑇). (4.17)

Finally, from 𝐩 =
∑𝑛

𝑖=1
𝐩𝑖(𝑡)𝑒𝑖 and the fact that the basis {𝑒𝑗}∞𝑗=1

is linearly independent in 𝐿2() (see, e.g., Araruna et al.
[4]) and from Equation (4.17), we can conclude that 𝐩𝑖 = 𝟎 for all 𝑖 = 1, … , 𝑛, that is to say that 𝐩 = 𝟎, and thus 𝐠 = 𝟎,
and the statement (4.9) is proved. Therefore, we have shown that the linear system (4.8), and hence also Equation (4.6),
is exactly controllable.
– Step 2: Estimates based on the duality argument. The results shown in Step 1 allow us to define the operator

 ∶ 𝐿2(0, 𝑇; 𝐸) → ℝ given by

(𝐡) = inf
𝑈∈𝑎𝑑

1

2 ∫
𝑇

0
∫ |𝑈|2d𝑥d𝑡, (4.18)

where𝑎𝑑 denotes the set of all admissible controls, that is to say

𝑎𝑑 =
{
𝑈 ∈ 𝐿2( × (0, 𝑇)) ∶ 𝐰 solution of (4.8) satisfying (4.4)

}
. (4.19)
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BISCONTI and CATANIA 13 of 19

We will obtain that

(𝐡) ≤ 𝐶, (4.20)

where the positive constant 𝐶 is independent of 𝐡 and 𝜇.
The proof is based on a suitable duality argument (see, e.g., Refs. [4, 38]). Let us consider the continuous linear operator

𝐿 ∶ 𝐿2( × (0, 𝑇)) → 𝐸 given by

𝐿(𝑈) ∶= 𝐰( ⋅ , 𝑇;𝑈), (4.21)

and also the functionals

𝐹1(𝑈) =
1

2 ∫
𝑇

0
∫ |𝑈|2d𝑥d𝑡, (4.22)

and

𝐹2(𝐠) =

{
0, if 𝐠 = 𝐰𝑇,

∞, otherwise. (4.23)

This allows us to recast the functional as

(𝐡) = inf
𝑈∈𝐿2(×(0,𝑇))

[𝐹1(𝑈) + 𝐹2(𝐿(𝑈))]. (4.24)

Thanks to the duality theorem due to Fenchel and Rockafellar (see Rockafellar [53], Theorem 31.1], see also Refs. [4, 38]),
we derive

−(𝐡) = inf
𝐠∈𝐸

[
𝐹∗
1 (𝐿

∗(𝐠)) + 𝐹∗
2 (−𝐠)

]
, (4.25)

where 𝐿∗ ∶ 𝐸 → 𝐿2( × (0, 𝑇)) is the adjoint operator of 𝐿. A use of relation (4.15) yields

𝐿∗(𝐠) = 𝐩 in × (0, 𝑇). (4.26)

From the fact that

𝐹∗
1 (𝐩) =

1

2 ∫
𝑇

0
∫ |𝐩|2d𝑥d𝑡 and 𝐹∗

2 (−𝐠) = −(𝐠,𝐰𝑇), (4.27)

where, to keep the notation coincise, we write |𝐩|2 = |𝐩(𝑥, 𝑡)|2 in the above integrals. Then, we deduce
−(𝐡) = inf

𝐠∈𝐸

[
1

2 ∫
𝑇

0
∫ |𝐩|2d𝑥d𝑡 − (𝐠1,𝐰𝑇)

]
. (4.28)

The hypotheses on the basis of 𝐸 imply that ‖𝐞‖ = ∫ |𝐞|2d𝑥 is indeed a norm on 𝐸, that is a finite-dimensional space,
so that we also have the equivalence of norms given by

𝑐‖𝐞‖2 ≤ ‖𝐞‖2 ≤ 𝐶‖𝐞‖2, ∀ 𝐞 ∈ 𝐸, (4.29)

with 𝑐 and 𝐶 positive constants only depending on 𝐸, provided

‖𝐞‖2 = ∫
𝕋2

|𝐞(𝑥)|2d𝑥, ∀ 𝐞 ∈ 𝐸.

Hence, we obtain that

−(𝐡) ≥ inf
𝐠∈𝐸

[
𝑐

2 ∫
𝑇

0
∫
𝕋2

|𝐩|2d𝑥d𝑡 − (𝐠,𝐰𝑇)

]
. (4.30)
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14 of 19 BISCONTI and CATANIA

We set 𝐞 = 𝐩(𝑡) in Equation (4.12) and integrate in time from 𝑡 to 𝑇, so that we obtain

1

2

(‖𝐩‖2 + 𝛼2‖∇ℎ𝐩‖2
)
+ 𝜈 ∫

𝑇

𝑡

‖Λ𝛽𝐴
1∕2

ℎ
𝐩‖2 d𝑠 + ∫

𝑇

𝑡

(𝜛◦𝐩, 𝐩)d𝑠 + 𝛼2 ∫
𝑇

𝑡

(𝜛◦∇ℎ𝐩,∇ℎ𝐩)d𝑠 =
1

2
‖𝐠‖2. (4.31)

An integration from 0 to 𝑇 and a change in the order of integration produce

1

2 ∫
𝑇

0

(‖𝐩‖2 + 𝛼2‖∇ℎ𝐩‖2
)
d𝑡 + 𝜈 ∫

𝑇

0

𝑡‖Λ𝛽𝐴
1∕2

ℎ
𝐩‖2d𝑡 + ∫

𝑇

0

𝑡
[
(𝜛◦𝐩, 𝐩) + 𝛼2(𝜛◦∇ℎ𝐩,∇ℎ𝐩)

]
d𝑡 =

𝑇

2
‖𝐠‖2. (4.32)

Exploiting the fact that the space 𝐸 is finite-dimensional, and using Equations (2.1) and (2.2), we have

‖𝐴1∕2

ℎ
𝐩‖2 = ‖𝐩‖2 + 𝛼2‖∇ℎ𝐩‖2,‖Λ𝛽𝐴

1∕2

ℎ
𝐩‖2 = ‖Λ𝛽𝐩‖2 + 𝛼2‖Λ𝛽∇ℎ𝐩‖2,‖𝐩‖ ≤ ‖𝐩‖ + ‖∇ℎ𝐩‖ ≤ 𝐾̄‖𝐩‖, ‖∇ℎ𝐩‖ ≤ 𝐶‖𝐩‖,‖𝐩‖ ≤ ‖𝐩‖ + ‖∇ℎ𝐩‖ + ‖Λ𝛽𝐩‖ + ‖Λ𝛽∇ℎ𝐩‖ ≤ 𝐾̄‖𝐩‖,‖Λ𝛽∇ℎ𝐩‖ ≤ 𝐶‖𝐩‖

(4.33)

for some 𝐶, 𝐾̄ > 0 only dependent on 𝐸. In particular, we have that ‖𝐴1∕2

ℎ
𝐩‖ ≤ 𝐾̄‖𝐩‖ as well as ‖Λ𝛽𝐴

1∕2

ℎ
𝐩‖ ≤ 𝐾̄‖𝐩‖, with

the same constant 𝐾̄ as above.
So we can apply the same method shown in Mohan [38] and, using Cauchy–Schwarz’s and Hölder’s inequalities, we

get

∫
𝑇

𝑡

𝑡
[
(𝜛◦𝐩(𝑡), 𝐩(𝑡)) + 𝛼2(𝜛◦∇ℎ𝐩(𝑡), ∇ℎ𝐩(𝑡))

]
d𝑡

= ∫
𝑇

0
∫

𝑇

𝑡

𝑠𝜛(𝑡 − 𝑠)
[
(𝐩(𝑠), 𝐩(𝑡)) + 𝛼2(∇ℎ𝐩(𝑠), ∇ℎ𝐩(𝑡))

]
d𝑠d𝑡

≤ 𝑇

(
∫

𝑇

0

‖𝐩(𝑡)‖2d𝑡

)1∕2⎛⎜⎜⎝∫
𝑇

0

(
∫

𝑡

0

𝜛(𝑡 − 𝑠)‖𝐩(𝑠)‖d𝑠)2

d𝑡
⎞⎟⎟⎠
1∕2

+ 𝛼2𝑇

(
∫

𝑇

0

‖∇ℎ𝐩(𝑡)‖2d𝑡

)1∕2⎛⎜⎜⎝∫
𝑇

0

(
∫

𝑡

0

𝜛(𝑡 − 𝑠)‖∇ℎ𝐩(𝑠)‖d𝑠)2

d𝑡
⎞⎟⎟⎠
1∕2

≤ 𝐶𝑇 ∫
𝑇

0

‖𝐩(𝑡)‖2d𝑡 + 𝐶𝛼2𝑇 ∫
𝑇

0

‖∇ℎ𝐩(𝑡)‖2d𝑡

≤ 𝐶𝛾(1 + 𝛼2)𝑇

𝛿 ∫
𝑇

0

‖𝐩(𝑡)‖2d𝑡,

(4.34)

where we utilized Equation (4.33), and 𝛾 and 𝛿 are positive constants suitably obtained.
Finally, using Equation (4.32) in combination with Equations (4.33) and (4.34), we get

𝑇

2
‖𝐠‖2 ≤

(
1

2
(1 + 𝛼2𝐶) + 𝐶𝑇

(
𝜈 +

𝛾(1 + 𝛼2)

𝛿

))
∫

𝑇

0

‖𝐩‖2d𝑡.

If we set

𝜅 =
𝑐𝑇

(1 + 𝛼2𝐶) + 2
(
𝜈 +

𝛾(1+𝛼2)

𝛿

)
𝐶𝑇

,
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BISCONTI and CATANIA 15 of 19

as a consequence of Equation (4.30), we conclude that

−(𝐡) ≥ inf
𝐠∈𝐸

[𝜅
2
‖𝐠‖2 − (𝐠,𝐰𝑇)

] ≥ inf
𝐠∈𝐸

[
𝜅

2
‖𝐠‖2 −

𝜅

2
‖𝐠‖2 −

1

2𝜅
‖𝐰𝑇‖2

]
= −

1

2𝜅
‖𝐰𝑇‖2,

and therefore,

(𝐡) ≤ 1

2𝜅
‖𝐰𝑇‖2, (4.35)

which is Equation (4.20).
– Step 3: Nonlinear system. This part is dedicated to the proof of the exact controllability of the nonlinear system

(4.6). Assume that 𝐡 ∈ 𝐿2(0, 𝑇; 𝐸) is given and select the unique element 𝑈 ∈ 𝐿2(0, 𝑇; 𝐿2()) such that

1

2 ∫
𝑇

0
∫ |𝑈(𝑥, 𝑡)|2d𝑥d𝑡 = (𝐡), (4.36)

thus defining a continuous mapping 𝐡 ↦ 𝑈 from 𝐿2(0, 𝑇; 𝐸) to 𝐿2(0, 𝑇; 𝐿2()) (the continuity and the other properties of
this operator are related to those of the bounded functional, in function of which it is defined). For more details, see
the analogous construction in Araruna et al. [4] and, in particular, Rockafellar [53, §31]). Denote by𝐰(𝐡) the solution of
Equation (4.6) with the control 𝑈 = 𝑈(𝐡) and set 𝐞 = 𝐰(𝑡) in Equation (4.8) to get

1

2

𝑑

𝑑𝑡

(‖𝐰(𝑡)‖2 + 𝛼2‖∇ℎ𝐰(𝑡)‖2
)
+ 𝜈‖Λ𝛽𝐴

1∕2

ℎ
𝐰(𝑡)‖2

= −((𝜛 ∗ 𝐰(𝑡)),𝐰(𝑡)) − 𝛼2((𝜛 ∗ ∇ℎ𝐰(𝑡)), ∇ℎ𝐰(𝑡)) + (𝑈(𝑡)𝜒,𝐰(𝑡)).

(4.37)

Integrating from 0 to 𝑡, we obtain

‖𝐰(𝑡)‖2 + 𝛼2‖∇ℎ𝐰(𝑡)‖2 + 𝜈 ∫
𝑡

0

‖Λ𝛽𝐴
1∕2

ℎ
𝐰(𝑠)‖2d𝑠

= − ∫
𝑡

0

((𝜛 ∗ 𝐰(𝑠)),𝐰(𝑠))d𝑠 − 𝛼2 ∫
𝑡

0

((𝜛 ∗ ∇ℎ𝐰(𝑠)), ∇ℎ𝐰(𝑠))d𝑠

+ ∫
𝑡

0

(𝑈(𝑠)𝜒,𝐰(𝑠))d𝑠

≤
(
∫

𝑡

0
∫ |𝑈(𝑥, 𝑠)|2d𝑥d𝑠)1∕2(

∫
𝑡

0
∫ |𝐰(𝑥, 𝑠)|2d𝑥d𝑠)1∕2

≤1

2 ∫
𝑡

0
∫ |𝑈(𝑥, 𝑠)|2d𝑥d𝑠 + 1

2 ∫
𝑡

0
∫ |𝐰(𝑥, 𝑠)|2d𝑥d𝑠,

(4.38)

where we took into account Equation (2.9). This implies

‖𝐰(𝑡)‖2 ≤ ‖𝑈‖𝐿2(0,𝑇;𝐿2()) + 𝐶 ∫
𝑡

0

‖𝐰(𝑠)‖2d𝑠 (4.39)

and, thanks to Gronwall’s inequality, we get

‖𝐰(𝑡)‖ ≤ 𝑒𝐶𝑇‖𝑈‖𝐿2(0,𝑇;𝐿2()) (4.40)

for all 𝑡 ∈ [0, 𝑇]. Thanks to Equation (4.20) (which in turn depends on Equation (4.35)), as 𝐡 varies in 𝐿2(0, 𝑇; 𝐸), we can
conclude that𝐰 is contained in a bounded subset 𝐾 ⊂ 𝐿2(0, 𝑇; 𝐸).
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16 of 19 BISCONTI and CATANIA

In order to show that the map 𝐡 ↦ 𝐰(𝐡) admits a fixed point in 𝐾, we use directly Schauder’s fixed point theorem. To
this aim, it is sufficient to prove that the range of 𝐰(𝐡), when 𝐡 varies through 𝐾, is relatively compact in 𝐾. This is an
easy consequence of the following statement:

𝐰𝑡 stays bounded in a bounded subset of 𝐿2(0, 𝑇; 𝐸)

when𝐡 spans over𝐾.
(4.41)

Looking for such a control, we start with the estimate (see Equation (4.8), see also Equation (3.8)):

|((𝐼 − 𝛼2Δℎ)𝐰𝑡, 𝐞)| ≤ 𝜈|(Λ𝛽𝐴
1∕2

ℎ
𝐰,Λ𝛽𝐴

1∕2

ℎ
𝐞)| + |((𝜛 ∗ 𝐰), 𝐞)|

+ |((𝜛 ∗ ∇ℎ𝐰),∇ℎ𝐞)| + 𝜇|((𝐡 ⋅ ∇)𝐰, 𝐞)| + |(𝑈𝜒, 𝐞)|
≤ 𝜈‖Λ𝛽𝐴

1∕2

ℎ
𝐰‖‖Λ𝛽𝐴

1∕2

ℎ
𝐞‖ + ‖𝜛 ∗ 𝐰‖‖𝐞‖ + ‖𝜛 ∗ ∇ℎ𝐰‖‖∇ℎ𝐞‖

+ 𝜇‖𝐡‖‖∇𝐰‖‖𝐞‖𝐿4 + ‖𝑈‖𝐿2()‖𝐞‖𝐿2()

≤ 𝜈‖Λ𝛽𝐴
1∕2

ℎ
𝐰‖‖Λ𝛽𝐴

1∕2

ℎ
𝐞‖ + ‖𝜛 ∗ 𝐰‖‖𝐞‖ + ‖𝜛 ∗ ∇ℎ𝐰‖‖∇ℎ𝐞‖

+ 𝜇‖𝐡‖‖∇𝐰‖‖Λ𝛽𝐞‖ + ‖𝑈‖𝐿2()‖𝐞‖𝐿2()

≤ 𝐶
(
𝜈‖Λ𝛽𝐴

1∕2

ℎ
𝐰‖ + ‖𝜛 ∗ 𝐰‖ + ‖𝜛 ∗ ∇ℎ𝐰‖ + 𝜇‖𝐡‖‖∇𝐰‖

+‖𝑈‖𝐿2()

)‖𝐞‖

(4.42)

for all 𝐞 ∈ 𝐸, where we used the embedding𝐻𝛽 ↪ 𝐿4 and relations (4.33), and hence

‖(𝐼 − 𝛼2Δℎ)𝐰𝑡‖ ≤ 𝐶
(
𝜈‖Λ𝛽𝐴

1∕2

ℎ
𝐰‖ + ‖𝜛 ∗ 𝐰‖ + ‖𝜛 ∗ ∇ℎ𝐰‖ + 𝜇‖𝐡‖‖∇ℎ𝐰‖ + ‖𝑈‖𝐿2()

)
. (4.43)

The memory terms ‖𝜛 ∗ 𝐰(𝑡)‖ and ‖𝜛 ∗ ∇ℎ𝐰(𝑡)‖ can be controlled by Hölder’s inequality as
‖𝜛 ∗ ∇ℎ𝐰(𝑡)‖ ≤ ∫

𝑡

0

𝜛(𝑡 − 𝑠)‖∇ℎ𝐰(𝑠)‖d𝑠
≤

(
∫

𝑡

0

𝜛(𝑡 − 𝑠)2d𝑠

)1∕2(
∫

𝑡

0

‖∇ℎ𝐰(𝑠)‖2d𝑠

)1∕2

≤ 𝐶𝛾√
2𝛿

(
∫

𝑡

0

‖∇ℎ𝐰(𝑠)‖2d𝑠

)1∕2

and

‖𝜛 ∗ ∇ℎ𝐰(𝑡)‖ ≤ 𝐶𝛾√
2𝛿

(
∫

𝑡

0

‖𝐰(𝑠)‖2d𝑠

)1∕2

.

Exploiting once again the fact that 𝐸 is finite-dimensional, from Equation (4.43), we also deduce

𝑐‖𝐰𝑡(𝑡)‖ ≤ ‖(𝐼 − 𝛼2Δℎ)𝐰𝑡(𝑡)‖
≤ 𝐶

[
𝜈‖Λ𝛽𝐴

1∕2

ℎ
𝐰‖ +

𝐶𝛾√
2𝛿

(‖𝐰‖𝐿2(0,𝑇;𝐸) + 𝛼2‖∇ℎ𝐰‖𝐿2(0,𝑇;𝐸)

)
+ 𝜇‖𝐡‖‖∇ℎ𝐰‖ + ‖𝑈‖𝐿2()

]
,

(4.44)
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BISCONTI and CATANIA 17 of 19

which yields the statement (4.41). Thanks to Schauder’s fixed point theorem, we have that 𝐡 ↦ 𝐰(𝐡) admits a fixed point
in 𝐾. Hence, selected a fixed point 𝐡, we conclude that the system (4.7) is exactly controllable since the system (4.8)
is exactly controllable for all times 𝑇 > 0. We notice that the system (4.7) is exactly controllable for any 𝜇 ∈ ℝ, and in
particular, if we choose 𝜇 = 1, which easily yields the exact controllability of the system (4.3). Further, for any 𝐡, we
have the uniform estimate (4.20), which establishes that the cost functional introduced in Equation (4.5) is bounded
independently of the nonlinearity. □

Remark 4.2. The estimates used to prove the exact controllability of the approximating system (4.3) strongly depend on
the dimensions of the space 𝐸. Indeed, the inequalities (4.33) (later used in Equations (4.34)–(4.44)) hold true on these
finite-dimensional spaces, but they are not uniform with respect to dim𝐸. Thus, at this level, due to the lack of a uniform
control, we do not have at disposal an argument to pass to the limit as dim𝐸 → +∞, and the previous results do not allow
us to conclude about the exact controllability of the system (4.1). The same kind of issue is discussed in Lions and Zuazua
[37].
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