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Abstract. Machine Learning components in safety-critical applications can per-
form some complex tasks that would be unfeasible otherwise. However, they
are also a weak point concerning safety assurance. An aspect requiring study is
how the interactions between machine-learning components and other non-ML
components evolve with training of the former. It is theoretically possible that
learning by Neural Networks may reduce the effectiveness of error checkers or
safety monitors, creating a major complication for safety assurance. We present an
initial exploration of this problem focused on automated driving, where machine
learning is heavily used. We simulated operational testing of a standard vehicle
architecture, where a machine learning-based Controller is responsible for driv-
ing the vehicle and a separate Safety Monitor is provided to detect hazardous
situations and trigger emergency action to avoid accidents. Among the results, we
observed that indeed improving the Controller could make the Safety Monitor less
effective; it is even possible for a training increment to make the Controller’s own
behaviour safer but the vehicle’s less safe. We discuss implications for practice
and for research.

Keywords: Safety · Autonomous vehicles · Automotive · Machine-learning

1 Introduction

Machine Learning (ML) is bringing great changes in many embedded computing appli-
cations. In many applications, Neural Networks (NNs) generalize well from situations
encountered during training to those it will encounter during subsequent testing and,
with luck, to those it will encounter during operation. However, neural networks also
represent a weak point from the viewpoint of safety assurance. The lack of an explicit
design derived from a specification undermines the very basis of established verifica-
tion activities for critical systems: verifying with confidence that the implementation
satisfies its specifications, and the specified safety properties. An additional concern is
that established practice requires a safety-critical system to change as little as possible,
and changes to be clearly documented, to support verification towards their acceptance.
Machine learning, by contrast, encourages a development culture in which frequent
change (additional “learning”) is accepted and, due to the nature of ML, there is no
documentation of the changes that could directly support verification. Manufacturers of
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2 F. Terrosi et al.

autonomous vehicles are known to collect data from their fleets of vehicles under test,
and even in commercial operation, to incrementally train and improve the ML “driver”
[1–3]. Last but not least, some self-driving vehicles must satisfy extreme safety require-
ments (accident rates comparable to, or substantially better than, those of human drivers),
such that simple statistical demonstration of their satisfaction through road resting is not
feasible [9–12].

Given that we cannot trust these control systems (“Controllers”, for brevity) to be
safe enough, it is natural to apply independent safety subsystems (“Safety Monitors”
SMs, hereafter) that can detect hazardous situations, e.g., approaching collisions, and
command remedial actions such as braking, as an additional line of defense [4–7].

Ideally, a safety monitor is much simpler than a Controller, so that, once verified,
it gives strong confidence that it will perform to the level of reliability (and hence of
vehicle safety) that has been assessed. This may seem to offer a solution for the assurance
problem: aim for strong confidence in the safety system even if there will be uncertainties
on the safety of the Controller by itself. Although a real safety monitor does not have
100% coverage (probability of detecting and mitigating a hazard situation, conditional
on its arising), the coverage could be assessed by extensive simulation testing. The goal
is a high enough coverage value that if one multiplies (1-coverage) times the estimate
of the rate at which the Controller allows hazardous situations to arise, the result is a
low enough rate of accidents. Even if the Controller is frequently changed, this form of
reasoning will remain valid. Estimating the two multiplicands separately through testing
would require substantially less testing than estimating the rate of accidents directly.

This solution to the assessment difficulties is – however – illusory. The coverage of
the Safety Monitor depends on the Controller that it monitors [8]. It is possible that, as
a vehicle’s Controller improves, and even if this improvement includes its safety (i.e., if
without the help of the Safety Monitor each new version would cause fewer accidents
than the previous one), the coverage of the Safety Monitor becomes worse, because
the fewer hazard situations allowed by the Controller are increasingly of kinds with
which the Safety Monitor cannot cope. So, the whole system must be tested enough to
demonstrate that the rate of accidents would not exceed the required bound. In theory
the coverage may decrease so much that improving the Controller makes the vehicle as
a whole less safe. It would be very desirable to have a strong argument that this will not
happen [9], since this would support a sound and simple form of safety argument based
on operational testing of the vehicle.

A first step to study this possibility is the empirical study that we present here, to
answer these research questions:

1. Can one observe in practice these “unwelcome surprises” in which improving a
Controller reduces the monitor’s coverage, or even increases the vehicle’s accident
rate?

2. If so, can we derive insights on what factors in the Controller’s training, the operating
environment or the safety subsystem’s design contribute to such surprises?

Our study applies these questions to a primitive simulated vehicle and its environ-
ment. The goal of this paper is to share with the community i) the methodology, so that
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Impact of Machine Learning on Safety Monitors 3

it can be used and improved, ii) a proof of existence of the “unwelcome surprises”, and
iii) initial insights on what contributes to them.

2 Related Work

Research on machine learning techniques in many diverse applications, some of them
safety-critical, has proliferated in recent years [26–30]. Concerns about machine learn-
ing in safety-critical systems have led to research to develop techniques for safety and/or
explainability of ML components [32–34]. A common approach in safety-critical sys-
tems is to pair the main system Controller, which may use ML, with a Safety Monitor
which may be a human or, more commonly, a dedicated hardware-software subsystem
[13, 20, 31, 33]. Another approach, hardening and verifying the safety properties of
neural networks by developing new training algorithms and network architectures, has
proved effective in some studies [35, 38]. Unfortunately, improving ML components is
not enough by itself to prove valid safety arguments for such systems [19, 36]. Thus,
effort is also applied on how to provide sound and reasonable safety arguments of such
systems. These research efforts aim at improving the explainability of the decisions of
the ML components and at designing and providing guidelines for safety/assurance cases
[19, 33, 34, 36–38].

In this rich research corpus, however, we found no studies of our topic, i.e., how
improving ML components affects the efficacy of Safety Monitors that monitor them.

3 Problem Statement

Verifying that “ultra-high” dependability requirements are satisfied is known to be a hard
problem [9–12] and the use of ML makes it even harder. The challenge of assuring the
safety properties of autonomous vehicles is, as of now, one of the main concerns delaying
their deployment [13, 14]: because it is hard to collect enough evidence to prove that
one system is “safe enough”, and because it is difficult to understand the inner process
that made a neural network take a specific decision [15]. Simulation proved effective
for training a neural network to drive, and it is one of the first steps in the development
of automated, unmanned vehicles [16–18]. However, testing an autonomous vehicle is
a hard task even with the aid of a simulated environment because i) neural networks
cannot generalize their function to every possible event, ii) it is not possible to test every
possible event and iii) designing an end-to-end design and deployment process for such
complex systems is hard [19].

In this work we are interested in studying the effects of “additional learning” of
a Controller on the coverage of the Safety Monitor (probability of detecting a hazard
situation, conditional on its arising: true positive rate of the hazard detection – and
mitigation – function). Since the probability of the SM preventing an accident depends
on the relative frequencies with which the Controller generates various types of demands
on the SM (hazardous situations for which coverage is high vs those for which coverage
is low) [8], the Controller may significantly change these probabilities as it “learns”. So,
every change in the Controller will invalidate the coverage estimate and thus any safety
argument that assumes i) unchanging coverage of the Safety Monitor or even just ii) that
more learning by the Controller implies improving system safety.
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4 F. Terrosi et al.

4 System Model and Terminology

Here we describe the system model and the terminology used and define and discuss
the metrics used to measure the performance of the Safety Monitor when applied to a
learning Controller. We simulated the architecture depicted in Fig. 1, where an end-to-end
learning Controller is paired with a Safety Monitor to make the car move safely.

The Controller is the main component of the system. Its task is to drive the car from
a starting position to a destination, obeying traffic laws and other internal rules such as
ensuring a “smooth” ride or acceptable fuel consumption. A Controller is often built
as a set of specialized modules which implement the required functions of perception,
planning, etc. This allows run-time monitoring of the operation of each module. We used
a simpler, monolithic design: the whole process from perception to motion control is
encoded into a single deep learning architecture (end-to-end learning [20]). The Con-
troller is thus a “black box”: the Safety Monitor can only react to hazardous actions of
the Controller, not to internal errors of the Controller that might lead to such actions.

Our Safety Monitor uses data from other sensors (a LiDAR) than those used by the
Controller, as recommended by good practice, to sense objects and obstacles near the
car. If the action of the Controller would cause a safety hazard (i.e., potential for a crash:
e.g., not braking when crossing the minimum safe distance from an obstacle in front),
the SM triggers emergency braking.

Fig. 1. System architecture

4.1 Terminology

Neural networks can be trained over long periods, using multiple data sets to improve
their performance. Their evolution is described by the changes in their internal parame-
ters, i.e., weights of the prediction function. We define a checkpoint as the set of weights
of the NN’s function after a series of training steps. We say: checkpointi < checkpointj
if checkpoint j is obtained from checkpoint i after a number of training steps. We define
Ci as “the Controller obtained at checkpoint i” and will refer to it just as “Controller”
when the level of training is irrelevant. Note that j > i only means that Cj had more
training than Ci, not necessarily that it performs better.

The Controller’s task is to drive the car efficiently and safely, while obeying traffic
laws. In practice in our simulation, since the car’s training was stopped at a compara-
tively immature stage, we allowed all simulated trips to continue until a crash occurred.
Since we are only interested, at this stage of the work, in safety, we define a failure of
the Controller as:
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Impact of Machine Learning on Safety Monitors 5

“Any action taken by the Controller that would result in a crash”, i.e., the output of
the Controller will trigger a transition from inside to outside the space of safe states. The
safety performance of the Controller can be evaluated as a rate of accidents per km, or
per unit of time in operation, or per trip.

Whenever the Controller fails, the SM has to detect this situation and intervene as
soon as possible to prevent the imminent crash. The SM may respond correctly, which
will in some cases avert the accident and lead the system to a safe state. Obviously, the
SM can fail as well, in one of these two ways:

• It does not detect the problem (obstacle).
• It detects the obstacle and takes action, but the car still crashes.

The Safety Monitor can thus be seen as an “extended binary classifier” that classifies
the system’s state as safe or unsafe, based on the Controller’s actions and sensor data,
and takes action accordingly. Its performance can be described via a matrix, akin to the
Confusion Matrix for a classifier, but related to results of actions (e.g., success or failure
of a safety intervention) rather than just classification decisions.

4.2 Description of the State Space

We divide the state space of the system (Controller plus Safety Monitor) into:

• Safe States: all the states in which the Controller does not need the intervention of the
Safety Monitor, and the Monitor does not intervene.

• Mitigation States, in which the Controller behavior would lead to a system failure
(accident), but the Monitor correctly prevents the crash.

• False Alert States: the states in which the Controller does not need the intervention of
the Safety Monitor, but the Monitor wrongly intervenes.

• Accident States: all the states in which the Controller’s behavior leads to a crash which
are not solved by the Monitor.

The actions of the Controller cause transitions between the system states. Figure 2
is a Venn diagram representing the events “transitions from the safe state”. Areas repre-
sent event probabilities, determined by the system and its environment, and which will
normally change if the system components change (e.g., through machine learning). For
reasonably safe systems, transitions to safe states and mitigation states will be much
more likely than the others. For good availability, performance, comfort, transitions to
false alert states should also be rare.

Any further training of the Controller will change its behavior and thus the proba-
bilities associated to each transition. If the probabilities of transitions to both safe states
and mitigation states increase, system safety improves. However, it is also possible that,
even if the Controller learned to drive very safely (i.e., the probability of transitions to
safe states gets very large), transitions to accident states also become more frequent, at
the expenses of transitions to the mitigation states. These two possible effects of training
that makes the Controller safer are shown in Fig. 3. Starting from the diagram in Fig. 2,
additional training may produce, among others, either one of these two Venn diagrams.
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6 F. Terrosi et al.

False

Alert

Safe

Mitigation
Accident

Fig. 2. “Safe” + “False Alerts” indicates probability of the Controller continuing safe opera-
tion; the squarish rectangle on the right, “False Alerts” + “Mitigation”, represents the SM’s
interventions. The remaining white area rep resents initiation of accidents.

5 Study Method

To test the Controller at different stages of its training, we generated m checkpoints,
resulting in m Controllers C1…Cm. We tested all these on the same predefined set of
scenarios, to observe how well the ML component handles the same task (i.e., reach-
ing a target destination, via specified waypoints, given a starting position, in the same
environmental conditions) at different stages of its training. A “scenario” is defined by
the initial conditions of the environment in which the system is tested. This includes the
starting point, seeds for random number generators, a target destination and intermediate
waypoints, and environmental conditions such as weather and traffic density. Scenarios
can be made more difficult by manipulating conditions, e.g., by increasing the traffic
present in the environment or by simulating adverse weather. We call the difficulty levels
h0, h1, etc. A higher subscript represents greater difficulty: if x < y, hy is designed to be
harder than hx . We note that a level that is harder for the Controller may not be harder
for the SM monitoring that Controller in that environment.

a) Improved safety b) Decreased safety

False

Alert

Mitigation

Safe

Accident

Safe
False

Alert

Accident
Mitigation

Fig. 3. Examples of training that improves the Controller’s safety shown in Fig. 2. In case a) this
improvement reduces hazards that the SM could not mitigate; in case b) it reduces hazards that
the SM would mitigate, while adding some that the SM cannot mitigate.

5.1 Paired Tests with and Without Safety Monitor

The Controllers were first tested without the Safety Monitor in every scenario, until the
car reached the target destination, or crashed. Our setup also allows a test to be stopped
earlier, but we did not use this option.
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Impact of Machine Learning on Safety Monitors 7

For every such trip, we recorded the initial conditions and the sequence of actions
chosen by the Controller; then “replayed” the run exactly, but activating the SM, to
observe whether it intervenes correctly to interrupt the specific accident sequences that
ended SM-less runs.

This setup allows one not only to observe “how good” the SM is in preventing failures,
but also, in some cases, to understand which situations are difficult for the Controller,
and which ones are difficult for the Safety Monitor.

In more detail: in the run with the Safety Monitor, we record all the alerts it raises
in each simulation step, but with safety braking disabled until it becomes necessary to
prevent the collision that ended a specific SM-less run. To this end, we computed by
what earlier time t the hazard must be detected so that braking may prevent the accident.
We assumed that any alert raised by the Safety Monitor before time t is not necessary
and thus a false alarm. After time t, that is, during the series of simulation frames that
directly resulted in a crash, we enable emergency braking by the SM. If the imminent
collision is avoided, we terminate the run and log a successful SM intervention.

These precautions are needed because if we simply re-ran each SM-less run, from
the same initial conditions but with the SM active, the sequence of events that led to a
crash might not happen again: e.g., a false alert by the SM could slow down the car so
that it would not encounter the same hazard.

In the present study, we enabled emergency braking 2 s before the accident happened;
this interval was chosen based on the maximum speed (50 km/h) the car can reach, the
reaction time needed to respond to the hazard, and the distance required for braking. In
the last 2 s of the simulation, an alert raised by the SM will now effectively make the
car brake.

We note that with this setup our test of the Safety Monitor will omit events of
potential interest: in reality, false alarms may cause accidents, e.g., if hard braking causes
the vehicle to be hit from behind. This risk complicates the task of specifying safety
monitors. This potential for the SM to cause accidents is also one way that improving the
Controller may make the vehicle less safe, e.g., if the Controller learns “bold” maneuvers
that it would complete safely but that prompt a SM to apply potentially risky emergency
actions. We left the simulation of these more complex effects to future research; the
focus of this study was to demonstrate subtle problems in safety arguments even with a
safety monitor whose interventions are always beneficial.

5.2 Evaluation of the Components and the System (Vehicle) Safety

We define the event “a crash would occur without the SM” as “C_crash” (Controller
crash). We define classes of correct and wrong actions of the SM as follows:

• Successful Intervention (SI). Every crash prevented by the SM: the safety response of
the SM triggers a transition from a safe state to a mitigation state.

• False Alarm (FA). Each alert raised by the SM when the system is in a safe state.
• True Negative (TN). The system is in a safe state and the SM does not raise an alert.
• Crash (CR). Every crash not prevented by the Safety Monitor, i.e., there is a transition

from a safe state to an accident state.
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8 F. Terrosi et al.

From the recorded counts of these events, we derived safety measures of interest.
First, we computed the Coverage (COV) of the SM, the ratio between the number of
crashes avoided by the SM and the number of crashes that the Controller would cause
if the SM were not present, that is:

COV = number of SIs

number of C_crashes
(1)

We also compare the rate of occurrence of accidents per kilometer caused by the
Controller without a Safety Monitor:

P(C_crash) = number of C_crashes

kilometers driven
(2)

with the rate when the SM is active:

P(crash) = number of Crashes

kilometers driven
(3)

We also measure (but did not analyze in detail) the False Alarm Rate:

FAR = number of FAs

number of FAs + number of TNs
(4)

The SM may raise a false alarm at any time during a simulation run, while the
Coverage is measured on the number of crashes, which happen once per run at most.

These measures are sufficient for answering the immediate questions of this study.
This simulation setup allows one also to assess, for instance, Mean Distance Between
Accidents, Mean Time Between Accidents and Reliability Functions related to accidents
and False Alarms.

Another study of interest would consider the severity of accidents. For example, a
crash at 10 km/h against a fence may be flagged as a less serious failure than hitting a
group of pedestrians at 50 km/h. These data can be used to observe correlations between
failure modes and difficulty levels that may be counterintuitive, such as a Controller that
crashes more frequently with vehicles when the number of pedestrians is increased.

6 Details of the Simulation

6.1 CARLA Simulator

We used CARLA 0.8.4 [21], an open-source simulator, sponsored by Intel and Toyota
among others. It provides a realistic urban environment and was developed specifically
to train and test autonomous vehicles controlled by ML components. It allows full
customization and control over vehicles, pedestrians, weather, and sensors. In this version
of CARLA there are four sensors:

• Scene Final Camera: provides a view of the scene as regular cameras.
• Depth Map Camera: provides a depth mapping of the objects in the environment.
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Impact of Machine Learning on Safety Monitors 9

• Semantic Segmentation Camera: it paints object pertaining to different classes (e.g.,
vehicles and pedestrians) with different colors.

• LiDAR sensor: Light Detection and Ranging creating a 3D map of the surroundings.

The Depth Map Camera and the Semantic Segmentation Camera provide ground
truth values for depth mapping and object classification. The ray-cast based LiDAR
provided by CARLA was tuned to simulate a slightly modified version of the HDL-64E
Velodyne LiDAR. The modifications were necessary because of the computational cost
required to simulate a real LiDAR.

6.2 Implementation of the Controller and Safety Monitor

The Controller was implemented using the implementation of the Deep Deterministic
Policy Gradient (DDPG) algorithm [22], provided by Coach, a framework for reinforce-
ment learning developed by Intel’s AI Labs [23]. The DDPG algorithm was chosen
because it is specifically designed for environments with a continuous action space,
such as the one we study, and it proved to perform well in driving tasks.

The Safety Monitor, implemented using the Point Cloud Library [24], is based in
part on E. Bozkurt’s project “Lidar Obstacle Detection”, available on GitHub [25]. It
implements a safety braking function using non-ML processing of data from the LiDAR
sensor to map the environment. Using two consecutive measurements, it can track objects
in the environment and estimate the relative speed of objects in front of the car. Thus, it
is possible to implement a safety routine based on the braking distance between the car
and the object detected, and their relative speed. To test the efficacy of the whole safety
routine (not only the ability of the SM to raise an alert) the runs previously recorded
without the SM are repeated with it, rather than just replaying the LiDAR data from
them to the Safety Monitor to record the alerts raised.

6.3 Structure of the Study

We collected 5 checkpoints from the training activity: Controllers C1 to C5. CARLA
offers 150 predefined locations in the city. For each one of these, we created a trip
specification that started from it and had to travel through a randomly selected sequence of
15 other locations (the latest one being the destination of that trip). Each trip specification
was then combined with 4 different traffic conditions, or “difficulty levels”, h0, h1, h2,
h3, to vary the difficulty of the Controller’s task:

h0) Default: the map is generated with 30 pedestrians and 15 vehicles.
h1) Pedestrians: the number of pedestrians in the map is doubled.
h2) Vehicles: the number of vehicles in the map is twice that in h0.
h3) Pedestrians and Vehicles: both pedestrians and vehicles are twice as many as in h0.

From each combination of trip specification and difficulty levels we created 4 sce-
narios by applying different Random Number Generator seeds in CARLA. We thus had
4 × 150 × 4 = 2400 test scenarios, on which each Controller Ci was tested with and
without the Safety Monitor. A SM-less run ends when a collision happens, or the car
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10 F. Terrosi et al.

reaches its destination (passing by the intermediate waypoints). The paired run with SM
is ended at the same point, as explained in Sect. 5.1.

The simulation runs at a fixed time step of 10 Frames Per Second, so the number of
simulation steps created per second of simulated time is an invariant. This avoids potential
accuracy problems with timing and measurements and gives a reference time-base to
compute time-dependent metrics.

7 Results of the Simulation

7.1 Controller

Table 1 shows the rates of occurrence of crashes of Controllers C1 to C5, operating,
without the SM, at the four levels of environment difficulty.

One sees that there is safety improvement from C1 to C5: e.g., the rate at difficulty h0

improved from 0.95 for C1 to 0.29 for C5, although the improvement is non-monotonic
(e.g., C3 is less safe than C2). Moreover, the way we manipulated difficulty from h0 to
h3 appears effective: it actually makes the environment more difficult for the Controller,
as P(C_crash)hi < P(C_crash)hj if j > i, for all Controllers (except for C2 performing
slightly better in h1 than in h0).

7.2 Safety Monitor

The Safety Monitor was tested with the procedure described in Sect. 5.2.
Table 2 shows the COV, and FAR of the SM combined with each Controller, for each

difficulty level. We observe that as the Controller was trained, the coverage of the SM
remained almost unchanged between C1 and C2, decreased for C3, increased again a bit
with C4 and drastically dropped with C5. Decreased coverage of the SM represents the
fact that among the hazardous situations created by the Controller, a larger fraction is
harder for the SM to mitigate successfully.

These data confirm that the efficacy of an unchanging SM may depend heavily
on the behavior of the Controller, that is, for a ML component, on its training level.
With training, the Controller learns to handle by itself some or most of the situations
that previously required the SM to intervene; but the fewer hazardous situations it now
creates may be too hard for the SM to handle, reducing its effectiveness.

7.3 Whole-Vehicle Evaluation

Table 3 shows the following measures: the rate of occurrence (per km) of crashes if
Controller is operating without SM, P(C_crash) (from Table 1), the coverage of the
SM (from Table 2), and the rate of occurrence (per km) of crashes with the SM active,
P(crash). These three rows are repeated for each difficulty level, h0,…,h3.
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Impact of Machine Learning on Safety Monitors 11

Table 1. Rate of occurrence P(C_crash),
per kilometer, of crashes caused by the
Controller, in each difficulty level.

C1 C2 C3 C4 C5

h0 0.95 0.5 0.66 0.54 0.29
h1 0.95 0.48 0.68 0.64 0.32
h2 0.96 0.69 0.76 0.79 0.51
h3 0.97 0.74 0.79 0.8 0.55

Table 2. Coverage and false alarm rate of the SM
paired with each Controller

C1 C2 C3 C4 C5

h0
COV 0.76 0.76 0.69 0.72 0.57
FAR 0.005 0.007 0.007 0.008 0.006

h1
COV 0.73 0.73 0.7 0.66 0.54
FAR 0.005 0.007 0.007 0.008 0.005

h2
COV 0.71 0.75 0.71 0.73 0.6
FAR 0.004 0.009 0.009 0.01 0.008

h3
COV 0.73 0.74 0.7 0.7 0.6
FAR 0.004 0.009 0.008 0.01 0.008

Looking at the first two rows, P(C_crash) and COV, for any difficulty level, we see
that between the worst and best Controller C1 and C5, both decrease: as the Controller
learned to cause fewer accidents, it reduced the ability of the SM to prevent an accident.
Such patterns of contrasting changes appear repeatedly in the table. For example, between
the two best Controllers, C2 and C5, we observe that for any difficulty level, P(C_crash)
improved but COV became worse: PC5(C_crash) < PC2(C_crash) but COVC2 > COVC5.
E.g., at difficulty h0, the additional training that resulted in a 42% improvement of the
Controller (PC2(C_crash) = 0.5 but PC5(C_crash) = 0.29) caused a reduction of almost
25% in the coverage of the SM (COVC2 = 0.76 > COVC5 = 0.57). Thus, using the
coverage measured on a version of the Controller to estimate the accident rate for a
different version may err on the side of optimism.

Table 3. Essential measures of vehicle safety and SM efficacy at different stages of training of
the Controller

C1 C2 C3 C4 C5

h0

P(C_crash) 0.95 0.5 0.66 0.54 0.29
COV 0.76 0.76 0.69 0.72 0.57

P(crash) 0.228 0.12 0.2046 0.1512 0.1247

h1

P(C_crash) 0.95 0.48 0.68 0.64 0.32
COV 0.73 0.73 0.7 0.66 0.54

P(crash) 0.2565 0.1296 0.204 0.2176 0.1472

h2

P(C_crash) 0.96 0.69 0.76 0.79 0.51
COV 0.71 0.75 0.71 0.73 0.6

P(crash) 0.2784 0.1725 0.2204 0.2133 0.204

h3

P(C_crash) 0.97 0.74 0.79 0.8 0.55
COV 0.73 0.74 0.7 0.7 0.6

P(crash) 0.2619 0.1924 0.237 0.24 0.22
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Next, we can compare the first and third rows for each difficulty level: the rate of
occurrence of crashes without the SM, P(C_crash), against the rate of occurrence of
crashes for the complete vehicle (C plus SM), P(crash):

1. adding our SM to any version of the Controller reduces the probability of crash if
compared to that of the Controller alone.

2. This confirms that our SM is effective. Indeed, this simulation setup is such that it
allows the SM to prevent crashes but not cause them, as explained in Sect. 5.1.

3. but making the Controller safer has in certain cases made the vehicle less safe.

E.g., Controller C5 without SM is safer than C2, but with the SM, the vehicle with
Controller C5 crashes more often that with Controller C2. The worst case is for difficulty
h2: C5 by itself would cause 26% fewer crashes than C2, but C5 with the SM causes
18% crashes more than C2 with SM. The system was safer with C2 thanks to the greater
efficacy of SM with that Controller, that is, thanks to C2’s flaws “favouring” those
accidents that the SM can prevent. Point 2 above indeed proves that, in certain situations,
the decreased coverage of the SM may outstrip the Controller improvement and reduce
overall vehicle safety. Table 4 highlights this by showing accident rates obtained for
the vehicle with C2, with C5, and in a hypothetical calculation for C5 under the wrong
assumption of unchanging coverage, i.e., multiplying the SM coverage measured with
C2 by PC5(C_crash). The wrong assumption would lead to an underestimation of the
accident rate by 39%.

Table 4. Accident rates (per km, averaged over difficulty levels) of the system for different con-
figurations: C2 + SM, C5 + SM (observed values), and for the system under the wrong assumption
of unchanging coverage of the SM.

C2 + SM C5 + SM C5 with COV2

P(crash)=P(C_crash)(1-COV) 0.154 0.174 0.1066

8 Concluding Remarks

We have shown an empirical example of how an error checker’s (our SM’s) efficacy may
change when the system that it monitors changes (“learns”). The essential conclusions
are that:

1. In this study the safety monitor made safer every version of the monitored system,
yet it may be less effective on an improved version of the monitored system (one that
is safer than the previous version, without the safety monitor).

2. this reduction of coverage may be so large that the new, improved version of the
monitored system may be less safe, when paired with the safety monitor, than the
earlier, worse version was, when paired with the same safety monitor.
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With the frequent, hard-to-analyze changes typical in the development of machine learn-
ing systems, the implication is that architectures that pair ML components with safety
monitors need joint quantitative assessment of the entire architecture at every change
of the ML component, a much more onerous process than separate assessment of the
ML-based part alone and of the safety monitor, as is often advocated.

Our very basic experiment does not prove that such “unwelcome surprises” will be
common in real-life systems, or in autonomous cars in particular; nor that they will be
rare. It proves instead that safety arguments cannot assume them to be rare or impossible.
We ran the simulations on an “immature” simulated car, allowing us to count large
numbers of events that in a real, mature products would very rare. Thus, the car was
unsafe from the start, improved very quickly and yet was still unrealistically unsafe at
the point where we took the final set of measurements. We do not propose the numbers
we report as generalizable to any real-world situation, but rather as a proof of existence
of the phenomena of concern, lest they be thought possible “only in theory”.

These early observations suggest directions for future work including: applying this
methodology to more thoroughly trained Controllers, with repeated training, to study the
likelihoods of the various possible trends in how improvements to the Controller affect
SM coverage; studying how variations in training strategy affect these likelihoods (e.g.,
would using SM alerts as input in the training, to make the Controller safer, exacerbate
the reduction in SM coverage?); a more complete simulation design that allows for
SM-caused accidents; more detailed measurement to study various trade-offs involving
severity of accident, ride comfort, energy efficiency.
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