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Abstract— The use of thermal imaging to detect the presence 

of people in indoor and outdoor environments is gaining an 

increasing attention given its wide applicability in the tourism, 

security, and mobility domains. However, due to the particular 

characteristics of different contexts, it is necessary to 

train/finetuning specifically object detectors for each scenario in 

order to obtain accurate results. This is due to changes in 

appearance caused by camera position, scene size, environmental 

factors, etc. In this paper, we present a data augmentation method 

that can improve both versatility and robustness of pedestrian 

detection models based on thermal images. Thanks to our solution, 

the trained model can deal with unseen thermal data from both 

indoor and outdoor environments, reliably detecting pedestrians 

regardless of their apparent size and position in the image, without 

any fine-tuning or transfer learning, therefore avoiding time 

consuming labeling activities to fine-tune and deploy the system in 

different scenarios. 

Keywords—YOLOV5, thermal imaging, data augmentation, 

pedestrian detection 

I. INTRODUCTION  

Video surveillance systems are increasingly used in public 
and private sectors [1, 2] given their relevance for several 
application fields like security, tourism and mobility 
management. Pedestrian detection, and more generally object 
detection, is typically addressed by Computer Vision techniques 
that exploit convolutional neural network and work on RGB 
images [3, 4]. However, color camera-based video surveillance 
solutions can reach their limits in certain situations [5], e.g., in 
low-light conditions or when people are obscured by objects or 
structures. Additionally, the use of color images, that can be 
exploited for recognizing people identity, requires special care 
in order to respect the GDPR (General Data Protection 
Regulation) [6] and privacy issues in general.  Thermal imaging 
can provide a solution to these problems [7, 8], as it enables the 
detection of people based on their heat signature rather than 
visible light and limit the possibility to identify people, relaxing 
the privacy requirements. In addition, thermal imaging can be 
useful in the tourism sector, e.g., for monitoring crowded 
conditions ensuring people safety, and counting presences to 
address people flow estimation. The purpose of this study is to 
investigate the use of thermal imaging for the detection of people 
in indoor and outdoor environments with different camera-scene 
configurations. The development of people detection solutions 
based on thermal imaging presents some challenges. For 

example, environmental factors such as temperature, lighting 
conditions [9], camera hardware [10], distance between the 
camera and the targets, and the number of people in the scene 
can affect detection accuracy. The effects of these factors can 
vary depending on the environment, weather, and time of day. 
In addition, using a detector trained for outdoor environments 
may not be effective indoors, and vice-versa, unless transfer 
learning is applied. Difference in the observed pedestrian 
dimensions, that can change due to the distance between the 
camera and the targets, is another effect that can dramatically 
affect detection performances. Indeed large-size pedestrians 
exhibit different visual characteristic wrt small-size ones: as can 
be seen in Figure 1 (a) and (b), while thermal images of large-
size persons show sharp edges and clear details, small-size ones 
appear blurred with less characteristic features. Special care 
must be devoted in training to address such dramatic size 
changes. Additionally, due to the camera placement, people can 
be concentrated in particular image areas: for example, while in 
Figure 1 (a) people are almost uniformly scattered over the 
image, in Figure 1 (b) pedestrians appear only in the lower part 
of the image. Similar problems have been addressed for RGB 
images using data augmentation techniques [11] where the 
available labeled images are transformed in order to obtain a 
greater number of examples and increase their variance with the 
aim to obtain more general models. For example, scale 
invariance was tackled in [12] by using multi scaling, while 
resizing was used in [13]. Differently, in [14] Kisantal et al. 
propose to oversample images with small objects and copy and 
paste small objects to augment their representation in the dataset. 
However, oversampling requires at least few images with small 
objects, while copy and paste need accurate segmentation mask 
in order to avoid the introduction of artefacts during pasting. 
Therefore, simpler geometrical transformations as resizing and 

  
(a) (b) 

Figure 1: from left to right: (a) An example of image 

from Barcelona dataset, (b) An example of image from 

Florence dataset. 



scaling are more generally usable. Data augmentation can also 
address object concentrating in specific image locations by 
shifting and padding image patches. To the best of our 
knowledge, no particular effort has been devoted on assessing 
the relevance of data augmentation for detection in thermal 
images to tackle scale and position invariance. 

In this paper, we aim to provide a solution for pedestrian 
detection in indoor and outdoor environments under strong 
changes in scale and position using thermal images. In 
particular, the paper proposes an easy and practical solution to 
increase flexibility in the range of applications to obtain relevant 
precision in different conditions without the need to fine-tune or 
retrain the model. The solution is based on a procedure for 
improving the learning process via data augmentation in order 
to address changes due to indoor and outdoor environments, size 
of the scene and apparent pedestrian size, different point of 
views/perspectives of the cameras. The research has been 
developed in the context of national Center on Sustainable 
Mobility, MOST, of Italy, with the aim of developing easy to 
use solution for people detection in mobility conditions: indoor 
and outdoor. The development exploited the facilities of DISIT 
lab and Snap4City platform (https://www.snap4city.org) [15], 
[16]. 

This paper is organized as follows. Section II presents the 
data and assessment method. Section III describes the proposed 
approach in terms of training procedure. In Section IV, the 
evaluation results are reported and discussed. Finally, in Section 
V conclusions are drawn. 

II. DATA AND ASSESSMENT METHODOLOGY 

According to the introduction, several infrared and thermal 
imaging datasets have been considered. The main datasets used 
for the training phase were (i) the benchmark datasets LLVIP 
(Low Light Vehicle Identification and Verification Program) 
[17], and (ii) Teledyne FLIR ADAS (Advanced Driver 
Assistance Systems) [18]. LLVIP is a dataset consisting of about 
150000 images annotated for different object categories and 
acquired with infrared cameras under different lighting 
conditions. The second dataset, Teledyne FLIR ADAS, contains 
more than 10000 manually labeled thermal images taken under 
different lighting and visibility conditions. LLVIP and FLIR 
ADAS were used to develop and test video surveillance systems, 
advanced driver assistance systems, such as pedestrian, and 
cyclist detection. Both datasets were filtered to take the images 
with humans. For the evaluation phase we used two thermal 
imaging datasets acquired under different conditions in 
Barcelona and Florence. The Barcelona dataset has been 
obtained by randomly selecting 212 images from 392 videos. 
These videos were taken during the three days of the annual 
Smart City conference in Barcelona from Nov. 15, 2022, to Nov. 
17, 2022. Each image was then manually annotated with a 
bounding box for the positions of the people. As can be seen in 
Figure 1 (a), some people may appear taller than others 
depending on the perspective on how far they are from the wide-
angle camera, which is mounted on a tripod at a height of 3.5 
meters. Since Barcelona is an indoor space, there are no natural 
light sources, and the temperature of the pavilion is controlled 
by ventilation systems. People can be numerous and appear 
anywhere in the picture. The view is a one of the cross points in 

which two large corridors intersect each other. The Florence 
dataset consists of images taken by a thermal imaging camera 
with a wide-angle lens in Piazza della Signoria in Florence on 
the days from 14/07/2022 to 19/07/2022. In this case, we applied 
the same sampling strategy as in Barcelona to obtain a sample 
of 219 images. As you can see in Figure 1 (b), because of the 
distance of the camera from the scene (the camera is 30 meters 
away from the scene), the people appear very small and are only 
in the lower part of the scene. Also, the scene is very crowded 
and there are usually between 80 and 120 people in the images. 
In this case, the images represent an outdoor environment, so the 
lighting of the scene is very dynamic, changing from daylight to 
night, illuminated by streetlamps. The temperature also changes, 
increasing during the day and decreasing at night. Manual 
labeling was performed using bounding boxes. 

In both cases (Florence and Barcelona) the images were pre-
processed to eliminate the wide-angle image effects, since most 
of the datasets used to train algorithms (such as LLVIP and FLIR 
ADAS) do not contain wide-angle images. It should be noted 
that such processing does not limit the applicability of the 
proposed detector, since in video surveillance applications the 
camera is usually accessible and offline calibration can be 
performed. These two datasets differ in terms of environmental 
conditions. It can be also noted by observing the cumulative 
histograms of the grey level distribution. These histograms were 
obtained by calculating the grayscale histogram for each image 
and then summing to obtain the cumulative histogram. The 
Florence dataset images show a higher concentration of pixels 
with values between 100 and 200, see Figure 2, while the 
Barcelona dataset mainly includes pixels with values ranging 
from 100 to 150.  In the specific case, the Kullback-Leibler 
divergence [19] between the two datasets is 1.41. Thus, the 
above-described datasets represent relevant test benches for the 
experiments since they depict two environments with strongly 
different characteristics, in terms of scale, and perspective. In 
the following Sections, a particular care has been devoted to the 
training process to obtain a model network capable to deal with 
different environments and avoid a relevant loss in performance 
in passing from the usage of a model in the conditions similar to 
those in which has been trained to a new case in which the 
operative conditions are quite different as explained above. 
Table 1 reports the numbers of training and validation sets of 
images for the above-mentioned datasets. 

A. Evaluation metrics 

Typically, specific metrics are used to evaluate the 
performance of an object detection system [20] as reported in 

 
Figure 2: Histogram of gray scale for datasets. 



the following. These metrics are influenced by a basic metric 
called the intersection over union, often abbreviated as IoU. 

Given the areas of the inferred bounding box ��and the area of 

the ground-truth bounding box ��, IoU measures the amount of 
area the two rectangles have in common as:  

��� = �� ∩ ��
�� ∪ ��

 

Higher IoU scores indicate better detection results. This 
metric directly affects the precision and recall metrics, as the 
IoU affects the detection of true positives, false positives, and 
false negatives, which determine the precision and recall rates. 
After selecting a threshold for the IoU, a detection that meets or 
exceeds the threshold is classified as a true positive, otherwise 
as a false positive. False negatives are detections that did not 
occur. Rather than using precision and recall separately, the 
mean average recision metric (mAP) is used. In order to evaluate 
the goodness of a detector, for all experiments mAP@50 is 
considered, that calculates the average precision (AP) for all 
classes with an intersection over union (IoU) greater than 0.5. 

B. YOLOV5 

In this work, the YOLOV5 architecture, proposed by 
Ultralytics [21], was used. The first version of Yolo was 
introduced in [22]. YOLOV5 is made up of 3 main parts: the 
backbone CSPDarknet [23], the neck PANet [24], and the head 
Yolo layer. The backbone CSPDarknet is used as a feature 
extractor and is designed to provide a balance between accuracy 
and speed. The neck PANet is made up of a series of modules 
that connect the backbone to the head of the neural network that 
consists of a Spatial Pyramid Pooling [25] (SPP) module, which 
allows information to be captured at different spatial scales. 
Finally, the YOLOV5 head is responsible for predicting the 
bounding boxes and the classes of the detected objects. It uses 
a combination of convolutions, batch normalization and 
activation functions to produce the predictions. 

C. Loss function of YOLOV5 

The YOLOV5 loss is the sum of 3 losses: 


��� = ��� + ���� + ��� 

which are the bounding box regression loss function, the 
classification loss function, and the confidence loss function, 
respectively defined as: 
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where ������  is the position loss coefficient, ���2��  is the 
category loss coefficient, ,=  and 0=  are the true central 

coordinates of the target,  �9  and ℎ>  are the width and height of 

the target. ��,�
��

 and ��,�
<���

are two binary variables that take 

values 1 or 0. Specifically, if there is an object in the anchor box 

at position (i,j), then ��,�
��

 takes the value 1 and ��,�
<���

 takes the 

value 0. Otherwise, ��,�
��

 takes the value 0 and ��,�
<���

 takes the 

value 1. 3�8;: is the probability of the object belonging to class 
c, while 3�9  is the true probability of the object belonging to class 
c. 

III. PROPOSED METHOD 

This works started from a previous application where a 
domain adaptation strategy, the bottom-up layerwise [27], was 
applied on a YOLOV5 model (pretrained on COCO [26]) using 
a mixture of images taken by LLVIP and Florence, the model 
was named as Camera52. The results obtained by the usage of 
Camera52 model on Barcelona dataset was very poor, 
mAP@50 = 0.19. The main difference is the size of the people 
(e.g., Figures 1 (a) and 1 (b)). The retraining of the Camera52 
model with a set of Barcelona images produced a relevant 
improvement, and took a relevant amount of time and 
resources, which is what we would like to avoid since the TV 
Cam should be typically installed in several different scenarios 
without the need of changing the model. Therefore, an initial 
study to identify the best image resize has been performed 
without changing the Camera52 model. The approach 
identified a resize factor of 25.19% obtaining a mAP@50=0.39. 
Figure 3 shows the mAP@50 trend of Camera52 model as a 
function of resize factor, confirming the fact that the resize is 
relevant for improving performance.  

Other factors governing performance are the number of 
people to be detected and where they are placed in the scene, 
for example if no people appear on the left or bottom left of the 
scene then the detector will never look at those areas of the 
image for people. 

Therefore, as declared in the introduction, our proposed 
method aims to create a robust data augmentation that can help 
a detector model trained on a benchmark dataset to achieve 
reasonable performance on novel unseen conditions without 

Dataset Train example Validation 
example 

TV cam Kind 

LLVIP 12025 3463 Infrared 

FLIR ADAS 10742 1144 Thermal 

Florence 175 44 Thermal 

Barcelona 169 43 Thermal 

Table 1: Volume of data sets images for the used data. 

 
Figure 3: Performance of the Camera52 model (wide 

angle camera used in Florence and Barcelona) as the 

resize factor varies. 
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using any labeling or fine-tuning activity. The approach is 
based on data augmentation with the aim of producing a 
training set which included different sizes and positioning in the 
images. The procedure has been applied to the LLVIP and FLIR 
ADAS datasets, resulting in a fourfold increase in the size of 
the LLVIP dataset, referred to as LLVIP4X dataset. Similarly, 
the FLIR ADAS dataset was increased by a factor of two, FLIR-
ADAS-aug. Figure 4 shows some examples of augmented data 
generated by using the thermal data augmentation technique. 

The algorithm of the proposed data augmentation method is 
reported in Algorithm 1. The procedure takes as input an 
annotated image dataset, along with two vectors for resize and 
padding. The resizeFactors vector contains different scaling 
factors, while the paddingPositions vector contains a list of 
strings representing different padding strategies, such as 
"padding_center", "padding_left", "padding_right", and so on. 

The procedure first creates an empty set called ?#, and for each 
resize factor and padding strategy it extracts an image and its 
annotations from the D dataset. Then, various functions are 
applied to manipulate the image and its bounding boxes. The 
ResizeImage function applies the resize to the image, and since 
the image is subsampled, the bounding boxes must be scaled 
according to the resize factor to be consistent with the new 
dimensions of the image. However, subsampling can cause 
aliasing and artifacts that degrade the quality of the resulting 
image. To remove these unwanted effects, Gaussian smoothing 
is applied using a 3x3 kernel matrix, and the library that 
implements Gaussian smoothing obtains the standard deviation 
sigma according to the dimensions of the kernel matrix. To get 
more images, a horizontal flip effect is applied with a certain 
probability, which is set to 0.5 by default. This effect helps to 
make the mesh independent of the positions that need to be 
viewed to identify people. The bounding boxes must be flipped 

to match the flipped image. This is performed with the 
horizontalFlipBBoxs function. A padding is applied that 
executes the strategy specified by the P variable. The effect of 
padding returns the image to its original spatial dimensions 
since the original images were 640x640 pixels by default. In 
addition, the padding effect forces the detector to scan the entire 
image to find objects of interest. Again, the bounding boxes 
must be computed consistently by the zeroPaddingBBoxs 
function, which takes into account the padding strategy applied 
to the image. To avoid numerical instability and false negatives, 

objects present in image �@ with an area less than 100 pixels have 
been removed. Finally, an additional check is performed to 

remove images without bounding boxes from ?#. 

IV. EXPERIMENTAL RESULTS ASSESSMENT 

The default recommended hyperparameters of YOLOV5 
were initially used. The YOLOV5s architecture was used and 
initialized with the pre-trained weights from COCO. The 
process of tuning hyperparameters led us to change the batch 
size to 64, and the number of epochs to 1000. All experiments 
were run on a computer with an Intel(R) Xeon(R) W-2235 @ 
3.80GHz processor, 32GB DDR5 RAM, and an Nvidia 
RTX3900 GPU. 

A. Experimental Results 

A series of experiments were conducted to evaluate the 
effects of the data augmentation procedure. Initially, it was 
created a YOLOV5s COCO model retrained on the LLVIP 
(called Model 1) and another YOLOV5s trained with the 
augmented data set produced with the data augmentation 
above-described LLVIP4X (called Model 2). Both models have 
been evaluated wrt to the LLVIP validation set, LLVIP-VAL as 
reported in Table 2. Both models achieved excellent results in 
terms of mAP@50, with values of 0.967 and 0.966, 
respectively. The difference in performance between the two 
models was minimal, only 0.001, indicating that the proposed 
data augmentation had no negative impact since the model 
trained on the augmented data was able to cover all the cases in 
the dataset, the results were reported in Table 2. 

A similar analysis has been repeated for FLIR ADAS 
dataset. Two more models were created, one by using 

 
Figure 4: Some data images generated by the data 

augmentation procedure. 

Algorithm 1: Thermal data augmentation procedure 

Data: D: dataset, resizeFactor: list of floats, paddingPositions: list of 
string 

Result: ?#: augmented dataset 
?# ← {} 
for R ∈ resizeFactors do  

for P ∈ paddingPositions do 
for I, B ∈ D do 

�@ ← resizeImage(I, R); 
A> ← resizeBBoxs(B, R);  
�@ ← gaussianBlur(�@, BCDEC� ← 3x3); 
�@ ← horizontalFlip(�@, 3D�F ← 0.5); 
A> ← horizontalFlipBBox(A> , prob ← 0.5);  
�@ ← zeroPadding(�@, G); 
A> ← zeroPaddingBBox(A> , P);  
for A>� ∈ A> do 

if A>� . IDCI J 100 then 
A>. DCM�NC8A>�:; 

end 

end 

?#. I33CEO8�@, A>:; 
end 

end 

end 

for �@, A> ∈ ?# do  
if A>. �CE7Pℎ = 0 then 

?#. DCM�NC8�@, A>:; 
end 

end 



YOLOV5s COCO model tuned with FLIR ADAS (Model 3) 
and one by using FLIR-ADAS-aug (Model 4), with both 
models evaluated on the FLIR ADAS validation set. Once 
again, both models achieved excellent results in terms of 
mAP@50, with values of 0.831 and 0.817, respectively, and the 
differences in performance between the two models was 0.014. 
Again, these results proof that the data augmentation had no 
negative effects for FLIR ADAS, see Table 3. 

This type of analysis was performed for other training 
combinations as reported in Table 4. Model 1 and Model 2 were 
retrained on FLIR ADAS and FLIR-ADAS-aug, respectively. 
Four new models emerged from these trainings and were 
evaluated using the LLVIP validation set. The results of the 
validation set show that all Models (identified as Model 5, 6, 7, 
8, respectively) are above 0.7 in terms of mAP@50, in 
particular model 8 reaches a value of 0.766.  

The models have been compared with former Model 1 to 
measure how much they omitted from the previous data set. 
This provides information on whether the data augmentation 
procedure improves the generalization capacity of the models. 
The Models 5, 6, 7, and 8 had a 20% to 25% loss of information, 
especially the models that were trained with at least one 
augmented dataset such as Model 5 and Model 7, were found 
to be less forgetful than Model 6, which was trained without 
ever seeing augmented data. The model with the best recall of 
all was Model 8, which saw only augmented data from both 
data sets, allowing it to forget only 20% of the information 
learned during initial training. Thus, the approach with direct 
training using the augmented training set resulted to produce 
better results. 

To further test the generalization capabilities of the different 
models obtained, they were also tested on two additional 
validation sets of the Florence and Barcelona datasets, which 
have been described in Section II. These datasets have never 
been used to train or tuning the different models, and thus 
represent an additional evaluation step for the data 
augmentation procedure. In this experiment, see Table 5, all the 
models obtained in the previous experiments were used, taking 
Model 1 as the baseline. The best performance for Barcelona 

was obtained by Model 4, which obtained a mAP@50 of 0.773. 
For Florence, the best performance was obtained with the 
Model 7, which obtained a mAP@50 of 0.580.  Note that a 
direct comparison of the results of Table 5 and those reported 
in Section III (i.e., Camera52 Model) is not straightforward. In 
Section III, the YOLO model was trained on COCO, LLVIP 
and Florence data sets: this led to excellent scores on Florence 
and poor results on Barcelona (even after resizing) obtaining a 
mAP@50 of 0.19 (0.39 after resizing). The fine-tuning of the 
YOLO-COCO-LLVIP with Florence dataset let the detector 
focus on small-size pedestrians, losing the capability to detect 
big-size ones. Differently, using the proposed data 
augmentation (as for Models 4 and 7) the detector can work 
sufficiently well with both Florence and Barcelona datasets, 
that were not used in model training, confirming the validity of 
our solution. 

The results presented in Table 5 shown that the data 
augmentation procedure improved the generalization 
capabilities of YOLOV5, even for data that were not part of the 
original training set, which was the goal of the study. On the 
other hand, training a model directly on new dataset (e.g., 
obtained with YOLO-COCO-LLVIP fine-tuned with Florence 
or Barcelona) yield significantly better results, as shown in 
Table 6. Nevertheless, such an approach requires a training and 
not a direct usage of the model on the TV Cam as one expect 
when a new TV camera is installed in a new and different 
context. The training also implies a manual labeling of the new 

 training validation 
Model Coco LLVIP LLVIP4X mAP@50 

LLVIP-
Val 

mAP@50 
difference 

1 X X  0.967 — 

2 X  X 0.966 0.001 

Table 2: Comparison between YOLOV5s-COCO 

trained on LLVIP and on LLVIP4X. 

 training validation 
Model Coco LLVIP LLVIP4X FLIR 

ADAS 
FLIR- 

ADAS-
aug 

mAP@50 
LLVIP-val 

mAP@50 
difference

1 X X    0.967  

2 X  X   0.966 0.001 

5 X X   X 0.715 0.252 

6 X X  X  0.703 0.264 

7 X  X X  0.750 0.217 

8 X  X  X 0.766 0.201 

Table 4: Summary of models obtained in the different 

experiments forgetting the information learned from the 

LLVIP dataset. 

 Training recipes validation 
Model Coco FLIR-

ADAS 
FLIR-

ADAS-
aug 

mAP@50 
FLIR-

ADAS-
VAL 

mAP@50 
difference 

3 X X  0.831  

4 X  X 0.817 0.014 

Table 3: Comparison between YOLOV5s models 

trained on FLIR ADAS and on FLIR ADAS augmented. 

 Training recipes Validations 

Model Coco LLVIP LLVIP4X 
FLIR 

ADAS 

FLIR-
ADAS-

aug 

mAP@50 
Florence-

val 

mAP@50 
Barcelona-

val 

1 X X    0.305 0.719 

2 X  X   0.450 0.738 

3 X   X  0.576 0.719 

4 X    X 0.546 0.773 

5 X X   X 0.530 0.761 

6 X X  X  0.554 0.735 

7 X  X X  0.580 0.728 

8 X  X  X 0.549 0.738 

Table 5: Comparison between YOLOV5s on unseen 

data taken from Florence and Barcelona datasets. 



dataset, a tedious activity that should be avoided when 
deploying the model in new scenarios. 

V. CONCLUSIONS 

This paper addressed the problem of pedestrian detection in 
indoor and outdoor environments under flexibility in terms of 
large-scale and position changes using thermal images.  To 
solve this problem, a data augmentation approach has been 
proposed, which strengthen the generalization capabilities of a 
YOLOV5 model, making it stronger to produce better results 
with respect new conditions and data having very different 
characteristics. The validation has been demonstrated by using 
a set of benchmarks.  Several tests have been performed to 
verify that the procedure did not degrade the performance of the 
models, and to quantify how much the models trained on the 
augmented data forgot the information from the previous 
training. Finally, a number of tests to measure the 
generalization capabilities towards new data not used during 
training were carried out. Results show that the procedure 
improve the performance of the obtained models, preserves 
most of the information from the previous training, and allows 
obtaining models with good generalization capabilities on 
unseen data even if they have different characteristics. 
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Model mAP@50 mAP@50 (exp) mAP@50 (diff) 

Florence 0.778 0.580 0.198 

Barcelona 0.914 0.773 0.141 

Table 6: Results of the models trained on the previous 

datasets and their comparison with the best models 

that used data augmentation. 


