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Abstract

Committee selection rules are procedures selecting sets of candidates (committees) of a given size

on the basis of the preferences of the voters. There are in the literature two natural extensions

of the well-known single-winner Simpson voting rule to the multiwinner setting. We propose an

in-depth analysis of those committee selection rules, assessing and comparing them with respect

to several desirable properties among which unanimity, fixed majority, non-imposition, stability,

local stability, Condorcet consistency, some kinds of monotonicity, resolvability and consensus

committee. We also investigate the probability that the two methods are resolute and suffer

the reversal bias, the Condorcet loser paradox and the leaving member paradox. We compare

the results obtained with the ones related to further well-known committee selection rules. The

probability assumption on which our results are based is the widely used Impartial Anonymous

Culture.
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1 Introduction

A voting rule is a procedure for associating with any preference profile, that is a collection of individual

preferences expressed as linear orders on a set of candidates, one of the candidates to be interpreted

as the winner of the election. There are many situations where instead of choosing a single winner

a society is required to select a given number of candidates from the set of available options. This

may begin with the choice of representatives in an elementary school class to the choice of national

legislators or international representatives of a country (e.g., in the European Parliament). This

motivates the introduction of the concept of committee selection rule (csr), namely a procedure

which associates with any preference profile and any positive integer k a subset of candidates of size

k. There are many csrs studied in the literature based on different ideas and principles. Most of

them are extensions of well-known voting rules to the multiwinner setting, that is, they reduce to

those voting rules when k = 1.

According to this approach, Barberà and Coelho (2008) take into consideration an extension of

the Simpson voting rule,1 called here the Simpson csr and denoted by S. Recall that, given a

preference profile, the Simpson voting rule first associates with any candidate x the number of voters

preferring x to y for every other candidate y. The minimum of these quantities is called the Simpson

score of x. Next, a candidate is selected if she has the highest Simpson score. If now k is the target

size of the committee to be elected, a set W of candidates of size k is selected by S if the Simpson

score of each candidate in W is at least as great as the one of each nonmember of W . Barberà and

Coelho (2008) show that, even though the Simpson voting rule is Condorcet consistent, S is not

stable, that is, it may fail to select weak Condorcet committees. Recall that a subset of candidates is

called a weak Condorcet committee if no candidate in this subset can be defeated by any candidate

from outside the subset on the basis of pairwise majority comparisons.2 We further notice that S

presents much more severe distortions. Assume, for instance, that only three candidates x, y and z

are considered and that each voter has preferences given by x ≻ y ≻ z. If we focus on committees

having size k = 2, S selects the two sets {x, y} and {x, z}, violating a very natural unanimity

principle which should admit {x, y} as the unique selected set.

Coelho (2004) proposes another possible extension of the Simpson voting rule to the committee

selection setting, called the Minimal Size of External Opposition csr and here denoted by M. Given

1The Simpson voting rule is also known as the Simpson-Kramer, the Condorcet and the Minimax voting rule (see
Kramer, 1977; Simpson, 1969).

2Obviously, this concept is a generalization to the committee selection setting of the well-known concept of weak
Condorcet winner.
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a preference profile, the method associates with any nonempty set W a score, called the Maximin

score of W , computed as follows: for every x in W and y not in W the number of voters preferring x

to y is considered and then the minimum of these numbers is taken. Once the size k of the committee

is fixed, M selects the sets of candidates which obtain the greatest Maximin score among the ones of

size k. The main difference between the two extensions lies in the fact that S determines its outcome

on the basis of a ranking of candidates while the outcome of M is directly obtained by means of

a ranking of committees of the same size. It can be proved that, differently from S, M is stable.

Moreover, M selects the subset {x, y} as the unique winning committee in the above considered

example. This depends on the fact that the Maximin score of {x, y} equals the total number of

voters, while the Maximin score of the other two possible subsets of size two is zero.

The first contribution of this paper is an in-depth analysis of the properties of the two csr S and

M. We mainly rely on the papers of Kamwa (2017a,b) as well as the paper of Elkind et al. (2017).

In Kamwa (2017a) some of the properties considered in our paper are already studied for M and

other stable csrs which can be considered as possible extensions of well-known voting rules to the

committee selection setting. That paper is extended by Kamwa (2017b) who compares the considered

csrs when there are three candidates and the size of the committee to be elected is two on the basis

of what the author calls the ‘divergence on outcomes’ defined as the situation where a committee

selected by a csr differs from the committee made by the best candidates of the corresponding

voting rule from which the csr is adapted. Elkind et al. (2017) represents a preliminary attempt to

develop a formal framework for the study of the characteristics of csrs when the voters’ preferences

are linear orders, where several properties are introduced and discussed. We take into account all the

properties considered by Kamwa (2017a,b) and Elkind et al. (2017) and, in addition, we formulate

further desirable properties against which the two csrs S and M are judged. Table 1 provides a

summary of our results. It is worth noting that two families of csrs were introduced by Elkind et

al. (2017, Section 3.2) to describe many classic csrs in a unified framework: the best-k rules and the

committee scoring rules. It can be easily seen that S is a best-k rule, while it is not a committee

scoring rule (Proposition 13). Even though those families surely cover a lot of interesting csrs, there

is room for other kinds of rules based on a quite different approach and which do not fall into one

of those categories. Indeed, M is neither a best-k rule nor a committee scoring rule (Propositions 7

and 13).

In the course of our investigations, we also observe that both S and M fail to be resolute and

suffer the reversal bias, the Condorcet loser and the leaving member paradoxes. We compute then
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the probability of these particular situations and we compare the results with those obtained for

the Borda, the Plurality, the Negative Plurality and the Bloc csrs. The probability assumption on

which our results are based is the widely used Impartial Anonymous Culture (IAC). We are also

concerned about the probability that S and M select the same unique committee as well as the

probability that each of them and the Borda csr select the same unique committee. This identifies

the second contribution of this paper. Our results show distinct performances of the csrs according

to the number of candidates, the number of voters and the target size of the committee. In many

cases, M does not have the highest level of performance, but in general it behaves better than S.

The paper is structured as follows. Section 2 is devoted to basic notation and definitions. Section

3 presents our results about the properties of S and M. Section 4 presents the computational

probabilistic analysis related to S and M and the other considered csrs. Finally, the appendix

contains some further properties about S and M which are mainly instrumental for the arguments

developed in Section 4.

2 Definitions and notation

Let N be the set of positive integers and set N0 = N ∪ {0}. Let k ∈ N and X be a finite set. We

denote by [k] the set {1, . . . , k} and by |X| the size of X. Moreover, we denote by 2Xk the set of the

subsets of X of size k. If |X| = m ≥ 1, we denote by L(X) the set of linear orders on X. Given

q ∈ L(X), we represent q by an expression of the type x1 ≻q x2 ≻q . . . ≻q xm (the subscript q is

generally omitted) or by a column vector [x1, . . . , xm]T , where x1, . . . , xm are the distinct elements of

X. We define qr as the element in L(X) such that, for every x, y ∈ X, x ≻q y if and only if y ≻qr x.

Let Sym(X) be the set of bijective functions from X to X. For every ψ ∈ Sym(X), we also define

ψq as the element of L(X) such that, for every x, y ∈ X, x ≻q y if and only if ψ(x) ≻ψq ψ(y). Thus,

if q = [x1, . . . , xm]T , then qr = [xm, . . . , x1]
T and ψq = [ψ(x1), . . . , ψ(xm)]T .

Consider a countably infinite set C whose elements are to be interpreted as potential candidates

and a countably infinite set V whose elements are to be interpreted as potential voters. For simplicity,

we identify C and V with N. An election is a vector (C, V, p), where C is a finite subset of C having

at least two elements, V is a nonempty and finite subset of V , and p is a function from V to L(C),

the set of linear orders on C. Given an election (C, V, p), p(v) is interpreted as the preference relation

of voter v on the set of candidates C. For x, y ∈ C with x ̸= y, x ≻p(v) y means that x is strictly

preferred to y in p(v). The function p is called the preference profile of the election. When V = [n],
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p can be represented by a matrix whose v-th column is p(v) for all v ∈ V . Each W ⊆ C with

|W | ∈ [1, |C| − 1] is called committee, so that 2Ck is the set of committees of size k.

The set of elections is denoted by E . A committee selection rule (csr) R is a function which

associates with every (C, V, p) ∈ E and k ∈ [|C| − 1] a nonempty subset of 2Ck .

Let (C, V, p) ∈ E . For every x, y ∈ C with x ̸= y, we set

cp(x, y) = |{v ∈ V : x ≻p(v) y}|.

Given x ∈ C, the Simpson score of x is defined by

S(C, V, p, x) = min
y ̸=x

cp(x, y).

Following Barberà and Coelho (2008), the Simpson csr S is defined, for every (C, V, p) ∈ E and

k ∈ [|C| − 1], by

S(C, V, p, k) =
{
W ∈ 2Ck : ∀x ∈W, ∀y ̸∈W, S(C, V, p, x) ≥ S(C, V, p, y)

}
.

The Simpson csr restricted to the case k = 1 agrees, by definition, with the classical Simpson

voting rule. Note that, according to Elkind et al. (2017, Definition 1), the Simpson csr is the best-k

rule associated with the social preference function naturally induced by the Simpson score. That

observation allows to obtain some properties for S as an application of general results about best-k

rules proved by Elkind et al. (2017).

Coelho (2004) proposes another csr which agrees with the Simpson voting rule when k = 1. Here

we introduce it via an equivalent definition. Given (C, V, p) ∈ E and W ⊆ C with |W | ∈ [|C| − 1],

the Maximin score of W is defined by

M(C, V, p,W ) = min
x∈W,y ̸∈W

cp(x, y).

The Minimal Size of External Opposition csr M is defined, for every (C, V, p) ∈ E and k ∈ [|C| − 1],
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by3

M(C, V, p, k) = argmax
W∈2Ck

M(C, V, p,W ).

We stress that, even though S and M agree when k = 1, that is not true in general for other

values of k. For instance, considering (C, V, p) ∈ E with C = [3], V = [3] and

p =


1 1 3

2 2 1

3 3 2

 ,

we have that M(C, V, p, 2) = {{1, 2}} and S(C, V, p, 2) = {{1, 3}}.

In what follows, when the set of candidates C and the set of voters V are clear, we usually omit

those symbols. For instance, the expression S(C, V, p, x) simply becomes S(p, x).

3 An analysis of the Simpson and the Maximin csrs

Anonymity, neutrality and homogeneity are well-known properties a csr may meet. Anonymity and

neutrality refer to the fact that respectively voters and candidates names are immaterial. Homo-

geneity means that replicating the preferences of each voter has no impact on the final outcome.

A csr R is anonymous if, for every (C, V, p) ∈ E , k ∈ [|C| − 1] and φ ∈ Sym(V ), R(C, V, p, k) =

R(C, V, pφ, k), where pφ(v) = p(φ−1(v)) for all v ∈ V ; R is neutral if, for every (C, V, p) ∈ E ,

k ∈ [|C| − 1] and ψ ∈ Sym(C), R(C, V, ψp, k) = {ψ(W ) ∈ 2Ck : W ∈ R(C, V, p, k)}, where (ψp)(v) =

ψ(p(v)) for all v ∈ V . Given now (C, V1, p1), (C, V2, p2) ∈ E with V1 ∩ V2 = ∅, we denote by p1 + p2

the preference profile such that, for every v ∈ V1, (p1 + p1)(v) = p1(v) and, for every v ∈ V2,

(p1 + p2)(v) = p2(v). Thus, (C, V1 ∪ V2, p1 + p2) is an element of E . R is homogeneous if, for every

(C, V1, p1), (C, V2, p2) ∈ E such that V1∩V2 = ∅ and k ∈ [|C|−1], we have R(C, V1∪V2, p1+p2, k) =

R(C, V1, p1, k), provided that there exists a bijective function σ : V1 → V2 such that for every v ∈ V1,

p1(v) = p2(σ(v)).

The proof of the following result is straightforward and thus omitted.

Proposition 1. S and M are anonymous, neutral and homogeneous.

3In Coelho (2004) M is denoted by SEO and it is defined as

M(C, V, p, k) = argmin
W∈2C

k

max
y ̸∈W,x∈W

cp(y, x).
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3.1 Stability and related weaker properties

In this section we deal with some properties which can be bundled together as majority kind prop-

erties. They are focused on different levels of respect of the classic Condorcet principle in electing

committees.

Let (C, V, p) ∈ E and W ⊆ C with |W | ∈ [1, |C| − 1]. Following Gehrlein (1985), we say that W

is a Condorcet committee if, for every x ∈W and y ∈ C \W ,

cp(x, y) >
|V |
2
.

Following Kamwa (2017a), we say that W is a weak Condorcet committee if, for every x ∈ W and

y ∈ C \W ,

cp(x, y) ≥
|V |
2
.

Clearly W is a Condorcet committee if and only if M(C, V, p,W ) > |V |
2 ; W is a weak Condorcet

committee if and only if M(C, V, p,W ) ≥ |V |
2 ; if W is a Condorcet committee, then it is a weak

Condorcet committee. Moreover, it can be easily checked that if a Condorcet committee of size k

exists, then it is unique of that size. On the other hand, it is possible to have more than one weak

Condorcet committee of the same size.

A csr R is called stable if, for every (C, V, p) ∈ E and k ∈ [|C| − 1] such that there exists a

weak Condorcet committee of size k for (C, V, p), we have that every W ∈ R(C, V, p, k) is a weak

Condorcet committee;4 R is Condorcet consistent if, for every (C, V, p) ∈ E and k ∈ [|C|−1] such that

there exists a Condorcet committee W of size k for (C, V, p), we have that R(C, V, p, k) = {W};5 R

satisfies fixed majority (resp. strong unanimity) if, for every (C, V, p) ∈ E , k ∈ [|C| − 1] and W ∈ 2Ck

such that a strict majority of the voters (resp. all the voters) rank all the members of W above all

the non-members of W , we have that R(C, V, p, k) = {W};6 R satisfies weak unanimity if, for every

(C, V, p) ∈ E , k ∈ [|C| − 1] and W ∈ 2Ck such that all the voters rank all the members of W above

all the non-members of W , we have that W ∈ R(C, V, p, k);6 R satisfies strong non-imposition if, for

every C ⊆ C and V ⊆ V finite sets with |C| ≥ 2, |V | ≥ 1, k ∈ [|C| − 1] and W ∈ 2Ck , there exists

(C, V, p) ∈ E such that R(C, V, p, k) = {W}; R satisfies non-imposition if, for every finite set C ⊆ C

with |C| ≥ 2, k ∈ [|C| − 1] and W ∈ 2Ck , there exists (C, V, p) ∈ E such that R(C, V, p, k) = {W}.6 It

can be easily proved that if R is stable, then it is Condorcet consistent. Indeed, if W is a Condorcet

4Barberà and Coelho (2008, Definition 3).
5Gehrlein (1985).
6Elkind et al. (2017).
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committee of size k for (C, V, p) ∈ E , then the set of the weak Condorcet committees of size k for

(C, V, p) is {W}. Then the following chain of implications holds true:

Stability ⇒ Condorcet Consistency ⇒ Fixed Majority ⇒ Strong Unanimity ⇒ Weak Unanimity

(1)

Note also that strong unanimity implies strong non-imposition.

The next proposition shows not only that S fails stability, as shown by Barberà and Coelho

(2008, Proposition 3), but that it even fails strong unanimity. On the contrary, M is stable. This is

a crucial difference between the two csrs.

Proposition 2. S is not strongly unanimous. In particular, S does not satisfy fixed majority, is

not Condorcet consistent and is not stable.

Proof. Consider (C, V, p) with C = {1, 2, 3} and 1 ≻p(v) 2 ≻p(v) 3 for all v ∈ V and k = 2. The

strong unanimity principle implies that {1, 2} is the only selected committee. However, S(p, 1) = |V |,

S(p, 2) = 0, S(p, 3) = 0 so that S(p, 2) = {{1, 2}, {1, 3}}.

Proposition 3. S is weakly unanimous, satisfies non-imposition and does not satisfy strong non-

imposition.

Proof. Let (C, V, p) ∈ E and k ∈ [|C| − 1]. Assume that W ∈ 2Ck is such that all the voters rank all

the members of W above all the non-members of W . We want to show that W ∈ S(p, k), that is, for

every x ∈W and every y ∈ C \W , we have S(p, x) ≥ S(p, y). Fix then x ∈W and y ∈ C \W . Then

S(p, y) = min
z ̸=y

cp(y, z) ≤ cp(y, x) = 0.

Thus, trivially, S(p, x) ≥ S(p, y) = 0. This shows that S is weakly unanimous.

In order to show non-imposition, let C be a finite set with |C| = m ≥ 2, k ∈ [|C| − 1] and

W ∗ ∈ 2Ck . Let W
∗ = {x1, . . . , xk} and C \W ∗ = {yk+1, . . . , ym}. If k = 1, consider just a single voter

having x1 ranked first. Assume next that k ≥ 2. In this case, consider the election (C, [2], p), where

x1 ≻p1 x2 ≻p1 . . . ≻p1 xk ≻p1 yk+1 ≻p1 . . . ≻p1 ym

and

xk ≻p2 xk−1 ≻p2 . . . ≻p2 x1 ≻p2 yk+1 ≻p2 . . . ≻p2 ym.
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Then we have S(p, xi) = 1 for all i ∈ [k], and S(p, yi) = 0 for all i ∈ {k + 1, . . . ,m}. Thus S(p, k) =

{W ∗}.

Finally note thatS does not satisfy strong non-imposition because the selection of two alternatives

when a single voter is considered never leads to a unique outcome.

The next proposition shows, among other things, that M is stable. We note that Coelho (2004)

just introduces M as an example of stable csr.

Proposition 4. M is stable. In particular, M is Condorcet consistent, satisfies fixed majority,

strong unanimity, weak unanimity and strong non-imposition.

Proof. Let (C, V, p) ∈ E and k ∈ [|C| − 1] be such that there exists a weak Condorcet committee of

size k, say W ∗. We know that, M(p,W ∗) ≥ |V |
2 . Let now W ∈ M(p, k) and prove that W is a weak

Condorcet committee. Indeed, assume by contradiction that W is not a weak Condorcet committee.

Then M(p,W ) < |V |
2 , so that M(p,W ) < M(p,W ∗) and W ̸∈ M(p, k), a contradiction.

Since M is stable, applying the chain of implications (1), all the remaining facts are immediately

established.

3.2 Monotonicity properties

In this section we deal with monotonicity properties, that is those properties assuring, within the

same election, a sensible link between elected committees of size k and elected committees of size

k + 1.

Following Elkind et al. (2017), we say that a csr R satisfies committee monotonicity if, for every

(C, V, p) ∈ E with |C| ≥ 3 and k ∈ [|C| − 2], we have that:

(1) if W ∈ R(C, V, p, k), then there exists W ′ ∈ R(C, V, p, k + 1) such that W ⊆W ′,

(2) if W ∈ R(C, V, p, k + 1), then there exists W ′ ∈ R(C, V, p, k) such that W ′ ⊆W .

By Elkind et al. (2017, Theorem 2), a best-k rule is committee monotone. As a consequence, we

immediately get the following result.

Proposition 5. S satisfies committee monotonicity.

As shown by Barberà and Coelho (2008), stability and committee monotonicity cannot co-exist.

From the example proposed by Barberà and Coelho (2008) in the proof of Proposition 8, we get the

next result.
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Proposition 6. M fails both condition (1) and condition (2) of committee monotonicity. In partic-

ular, M fails committee monotonicity.

As pointed out by Elkind et al. (2017), the fact that committee monotonicity fails is not a matter

of concern in itself, because the desirability of that property strongly depends on the application.

The above negative result allows to shed light onto the nature of M.

Proposition 7. M is not a best-k rule.

Proof. By Elkind et al. (2017, Theorem 2), every best-k rule is committee-monotone. Since, by

Proposition 6, M fails committee monotonicity, we deduce that M is not a best-k rule.

We pass now to treat monotonicity properties for a single candidate. Such properties establish,

for a given candidate, how being an element of a selected committee for a given election impacts on

being an element of some selected committee for another election in which the considered candidate

behaves better.

A csr R is said to satisfy candidate monotonicity (resp. non-crossing monotonicity; membership

monotonicity) if, for every (C, V, p) ∈ E , k ∈ [|C| − 1], W ∗ ∈ R(C, V, p, k), x∗ ∈W ∗, and p′ obtained

by p by shifting x∗ one position forward in the preference relation of some voter by swapping its

position with some x̂ ∈ C, we have that there exists W ′ ∈ R(C, V, p′, k) such that x∗ ∈ W ′ (resp.

W ∗ ∈ R(C, V, p′, k) provided that x̂ ̸∈W ∗; W ∗ ∈ R(C, V, p′, k)). Notice that candidate monotonicity

and non-crossing monotonicity are proposed by Elkind et al. (2017), and membership monotonicity

by Kamwa (2017a). Note also that membership monotonicity implies non-crossing monotonicity.

In order to study these three properties for S and M, we need to observe that, referring to the

notation used in the above definition, for every W ∈ 2Ck , the following facts hold true:

cp′(x
∗, x̂) = cp(x

∗, x̂) + 1, (2)

cp′(x̂, x
∗) = cp(x̂, x

∗)− 1, (3)

if x, y ∈ C with x ̸= y and {x, y} ≠ {x∗, x̂}, then cp′(x, y) = cp(x, y), (4)

S(p′, x̂) ∈ {S(p, x̂), S(p, x̂)− 1}, (5)

S(p′, x∗) ∈ {S(p, x∗), S(p, x∗) + 1}, (6)

if x ∈ C \ {x∗, x̂}, then S(p′, x) = S(p, x), (7)
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if {x∗, x̂} ⊆W or {x∗, x̂} ⊆ C \W, then M(p′,W ) =M(p,W ), (8)

if x∗ ∈W, then M(p′,W ) ≥M(p,W ), (9)

if x∗ /∈W, then M(p′,W ) ≤M(p,W ). (10)

The proofs of (2)-(10) are elementary and thus omitted.

Our next propositions show that S satisfies more monotonicity properties than M. This result is

quite interesting. As noticed by Elkind et al. (2017) and Barberà and Coelho (2008), monotonicity

should be a desirable requirement in many situations like, for instance, when the finalists of a

competition are to be chosen or when some applicants competing for a position at a university are

to be short-listed for an interview. We believe that this expresses one of the main advantages of S

with regards to M.

Proposition 8. S satisfies non-crossing monotonicity and candidate monotonicity.

Proof. Let (C, V, p) ∈ E , k ∈ [|C| − 1], W ∗ ∈ S(p, k), x∗ ∈W ∗, and suppose that p′ is obtained by p

by shifting x∗ one position forward in the preference relation of some voter by swapping its position

with some x̂ ∈ C.

We first show non-crossing monotonicity. Assume then that x̂ /∈ W ∗. We want to show that

W ∗ ∈ S(p′, k). Let x ∈W ∗ and y ̸∈W ∗. Then, since x ̸= x̂ and y ̸= x∗, by (5)-(7), we get

S(p′, x) ≥ S(p, x) ≥ S(p, y) ≥ S(p′, y).

We next show candidate monotonicity. This time we may have x̂ /∈ W ∗ or x̂ ∈ W ∗ and we need

to exhibit W ′ ∈ S(p′, k) with x∗ ∈W ′.

If x̂ /∈ W ∗, by non-crossing monotonicity, we know that W ∗ ∈ S(p′, k) and thus it is enough to

choose W ′ =W ∗.

Let now x̂ ∈W ∗. Then, since W ∗ ∈ S(p, k), we have S(p, x̂) ≥ S(p, y) for all y ∈ C \W ∗.

Assume first that, for every y ∈ C \W ∗, we have

S(p, x̂) > S(p, y). (11)

We show that, in this case, W ∗ ∈ S(p′, k). Let x ∈W ∗ and y ∈ C \W ∗. Then y /∈ {x∗, x̂} and thus,

11



by (7), we have S(p, y) = S(p′, y). If x ̸= x̂, using (6), (7) and the fact that W ∗ ∈ S(p, k), we get

S(p′, x) ≥ S(p, x) ≥ S(p, y) = S(p′, y).

Moreover, by (5) and by (11), we also obtain

S(p′, x̂) ≥ S(p, x̂)− 1 ≥ S(p, y) = S(p′, y).

Suppose next that there exists y′ ∈ C \W ∗ such that

S(p, x̂) = S(p, y′). (12)

Note that y′ /∈ {x∗, x̂}. Define W ′ = (W ∗ \ {x̂}) ∪ {y′} ∈ 2Ck . Note that x∗ ∈W ′ and that C \W ′ =

[C \ (W ∗ ∪ {y′})] ∪ {x̂}. We show that W ′ ∈ S(p′, k). Let x ∈W ′ and y ∈ C \W ′. Then y ̸= x∗.

Consider first the case x ̸= y′. Then x ∈ W ∗ \ {x̂}. If y ̸= x̂, we have that y /∈ {x∗, x̂} and

y ∈ C \W ∗.

Thus, using (6), (7) and the fact thatW ∗ ∈ S(p, k), we get S(p′, x) ≥ S(p, x) ≥ S(p, y) = S(p′, y).

If instead y = x̂, using (5)-(7), (12) and the fact that W ∗ ∈ S(p, k), we have

S(p′, x) ≥ S(p, x) ≥ S(p, y′) = S(p, x̂) ≥ S(p′, x̂).

It remains to treat the case x = y′, showing that S(p′, y′) ≥ S(p′, y). If y ̸= x̂, then y ∈ C \W ∗.

Thus, recalling that y′ /∈ {x∗, x̂} and using (7), (12) and the fact that W ∗ ∈ S(p, k), we have

S(p′, y′) = S(p, y′) = S(p, x̂) ≥ S(p, y) = S(p′, y).

Finally note that, by (5), (7) and (12), we also have S(p′, y′) = S(p, y′) = S(p, x̂) ≥ S(p′, x̂).

Proposition 9. S does not satisfy membership monotonicity.

Proof. Consider C = [3], V = [3] and

p =


1 2 3

2 3 2

3 1 1


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Then {1, 2} ∈ S(p, 2) = {{1, 2}, {2, 3}}. If now 2 ∈ {1, 2} is swapped with 1 in the preferences of

voter 1, then {1, 2} ̸∈ S(p′, 2) = {{2, 3}}.

Kamwa (2017a, Theorem 4) proves that M satisfies candidate monotonicity and does not satisfy

membership monotonicity. In Proposition 11 we show that also non-crossing monotonicity, a weaker

property than membership monotonicity, fails.

Proposition 10. M satisfies candidate monotonicity.

Proposition 11. M does not satisfy non-crossing monotonicity. In particular, M does not satisfy

membership monotonicity.

Proof. Consider C = [4], V = [7] and

p =



4 1 1 1 2 2 2

1 4 3 3 3 3 4

3 3 4 4 4 4 3

2 2 2 2 1 1 1


(13)

Then {1, 2} ∈ M(p, 2) = 2C2 . If now 1 ∈ {1, 2} is swapped with 4 ̸∈ {1, 2} in the preferences of voter

1, then {1, 2} ̸∈ M(p′, 2) = {{1, 3}}.

3.3 Consistency

In this section we deal with consistency, a classic property considered in the literature for single

winner voting rules and recently extended to the committee selection setting. Following Elkind

et al. (2017) and Kamwa (2017a), we say that R satisfies consistency (resp. weak consistency) if,

for every (C, V1, p1), (C, V2, p2) ∈ E with V1 ∩ V2 = ∅ and every k ∈ [|C| − 1], if R(C, V1, p1, k) ∩

R(C, V2, p2, k) ̸= ∅, then we have R(C, V1, p1, k) ∩R(C, V2, p2, k) = R(C, V1 ∪ V2, p1 + p2, k) (resp.

R(C, V1, p1, k) ∩ R(C, V2, p2, k) ⊆ R(C, V1 ∪ V2, p1 + p2, k)). Of course, consistency implies weak

consistency.

Kamwa (2017a, Theorem 6) proves thatM fails consistency, even though from the proof we deduce

that the weak consistency property fails too. The fact that S does not satisfy (weak) consistency

too follows from Moulin (1988, Theorem 9.2). Thus, we get the next proposition.

Proposition 12. S and M fail weak consistency. In particular, S and M fail consistency.

The nature of S and M can be now better enlightened.
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Proposition 13. S and M are not committee scoring rules.

Proof. By Elkind et al. (2017, Theorem 7), every committee scoring rule satisfies consistency. Since,

by Proposition 12, S and M fail consistency, we deduce that S and M are not committee scoring

rules.

3.4 Resolvability

In this section we adapt the standard notion of resolvability for single-winner voting rules (see, for

instance, Schulze, 2011; Tideman, 1987, 2006) to the committee selection setting. This property

guarantees that if a committee is selected by an election, then adding a further suitable vote that

committee becomes the unique winner.

We say that R satisfies resolvability (resp. weak resolvability) if, for every (C, V, p) ∈ E , k ∈

[|C|−1], W ∗ ∈ R(C, V, p, k) and q∗ ∈ L(C) such that, for every x ∈W ∗ and y ∈ C \W ∗, x ≻q∗ y, we

have that if v∗ ∈ V \ V and (C, V ∗, p∗) ∈ E is defined by V ∗ = V ∪ {v∗}, p∗(v) = p(v) for all v ∈ V

and p∗(v∗) = q∗, then R(C, V ∗, p∗, k) = {W ∗} (resp. W ∗ ∈ R(C, V ∗, p∗, k)). Of course, resolvability

implies weak resolvability.

Proposition 14. S does not satisfy weak resolvability. In particular, S does not satisfy resolvability.

Proof. Consider (C, V, p) ∈ E , where C = [4], V = [7] and p is defined as in (13). It can be easily

checked that S(C, V, p, x) = 3 for all x ∈ C. Thus, {2, 3} ∈ S(C, V, p, 2) = 2C2 . Consider now

(C, V ∗, p∗) ∈ E , where V ∗ = [8] and p∗ is such that, for every v ∈ V , p∗(v) = p(v) and p∗(8) is the

linear order 3 ≻ 2 ≻ 1 ≻ 4. Since S(C, V ∗, p∗, 2) = {{1, 3}}, we see that {2, 3} ̸∈ S(C, V ∗, p∗, 2).

This shows that S does not satisfy weak resolvability.

Proposition 15. M satisfies weak resolvability and does not satisfy resolvability.

Proof. Let (C, V, p) ∈ E , k ∈ [|C| − 1], W ∗ ∈ R(C, V, p, k), q∗ ∈ L(C) such that x ≻q∗ y for all

x ∈ W ∗ and y ∈ C \ W ∗, and v∗ ∈ V \ V . Consider (C, V ∗, p∗) ∈ E , where V ∗ = V ∪ {v∗},

p∗(v) = p(v) for all v ∈ V and p∗(v∗) = q∗. In order to get weak resolvability, we have to prove

that, for every W ∈ 2Ck , M(C, V ∗, p∗,W ) ≤ M(C, V ∗, p∗,W ∗). Note that, for every x, y ∈ C with

x ̸= y, we have cp∗(x, y) ≤ cp(x, y) + 1. Thus, we also have M(C, V ∗, p∗,W ) ≤ M(C, V, p,W ) + 1.

On the other hand, for every x ∈W ∗ and y ∈ C \W ∗ we have cp∗(x, y) = cp(x, y) + 1 and therefore

M(C, V, p,W ∗) + 1 =M(C, V ∗, p∗,W ∗). Since M(C, V, p,W ) ≤M(C, V, p,W ∗), we then get

M(C, V ∗, p∗,W ) ≤M(C, V, p,W ) + 1 ≤M(C, V, p,W ∗) + 1 =M(C, V ∗, p∗,W ∗).

14



We now investigate resolvability. Consider (C, V, p) ∈ E , where C = [4], V = [7] and p is defined

as in (13). A simple check shows that {1, 2} ∈ M(C, V, p, 2) = 2C2 . Consider now (C, V ∗, p∗) ∈ E ,

where V ∗ = [8] and p∗ is such that, for every v ∈ V , p∗(v) = p(v) and p∗(8) is the linear order

2 ≻ 1 ≻ 3 ≻ 4. Then {1, 2} is not the only element in M(C, V ∗, p∗, 2) because, for instance, we also

have {1, 3} ∈ M(C, V ∗, p∗, 2). Thus M does not satisfy resolvability.

Note that, since M satisfies the property of fixed majority, if one keeps adding voters whose

preferences are described by a linear order q∗ ∈ L(C) such that, for every x ∈ W ∗ and y ̸∈ W ∗,

x∗ ≻q∗ y∗, then in a finite number of steps we reach the goal of having W ∗ as the only outcome of

M. As it can be immediately understood by the proof of Proposition 2, this does not hold true, in

general, for S.

3.5 Pareto criterion

We now come to explore how S and M behaves with respect to suitable adaptations of the Pareto

principle to the committee selection setting. According to Kamwa (2017a), we say that a csr R

satisfies the Pareto criterion (resp. weak Pareto criterion) if, for every (C, V, p) ∈ E , k ∈ [|C| − 1],

W ∗ ∈ R(C, V, p, k) and x∗, y∗ ∈ C with x∗ ̸= y∗ and cp(x
∗, y∗) = |V |, having y∗ ∈ W ∗ implies

x∗ ∈ W ∗ (resp. x∗ ∈ W ′ for some W ′ ∈ R(C, V, p, k)). Note that if k = 1 the definition means that

if y∗ is unanimously beaten by x∗ then it cannot be selected (resp. it cannot be the unique winner).

Clearly if R satisfies the Pareto criterion, then it satisfies the weak Pareto criterion.

Proposition 16. S satisfies the weak Pareto criterion but does not satisfy the Pareto criterion.

Proof. We first show that S satisfies the weak Pareto criterion. Let (C, V, p) ∈ E , k ∈ [|C| − 1],

W ∗ ∈ S(C, V, p, k), y∗ ∈ W ∗ and x∗ ∈ C, with x∗ ̸= y∗, such that cp(x
∗, y∗) = |V |. We need to find

W ′ ∈ S(C, V, p, k) such that x∗ ∈ W ′. If x∗ ∈ W ∗ we simply take W ′ = W ∗. Assume instead that

x∗ /∈ W ∗. Note that cp(x
∗, y∗) = |V | implies cp(y

∗, x∗) = 0 and thus S(p, y∗) = 0. By y∗ ∈ W ∗ we

also have S(p, y∗) ≥ S(p, y) for all y ∈ C \W ∗. It follows that S(p, y) = 0 for all y ∈ C \W ∗. Define

then W ′ = (W ∗ \ {y∗})∪ {x∗}. We show that W ′ ∈ S(C, V, p, k). Let z ∈W ′ and t ∈ C \W ′. Since

C \W ′ = [C \ (W ∗ ∪ {x∗})] ∪ {y∗}, we have that t ∈ C \W ∗ or that t = y∗. In both cases, we know

that S(p, t) = 0 and thus, trivially, S(p, z) ≥ S(p, t).

In order to see that S does not satisfy the Pareto criterion, consider (C, V, p) with C = [3],

k = 2 and assume that 1 ≻p(v) 2 ≻p(v) 3 for all v ∈ V . Then {1, 3} ∈ S(p, 2). Now we have that

cp(2, 3) = |V |, and 3 ∈ {1, 3}. However 2 ̸∈ {1, 3}.
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The next proposition is proved in Kamwa (2017a).

Proposition 17. M satisfies the Pareto criterion. In particular, M satisfies the weak Pareto crite-

rion.

3.6 Symmetry

Let E = (C, V, p) ∈ E and R be a csr. Given k ∈ [|C| − 1], we say that R is k-flat on E if

R(C, V, p, k) = 2Ck . We say that R is flat on E if it is k-flat on E for all k ∈ [|C| − 1]. Moreover, R

is called symmetric if it is flat on every (C, V, p) ∈ E such that cp(x, y) = cp(y, x) for all x, y ∈ C,

with x ̸= y. Note that a preference profile p satisfying the above symmetry request on cp is given,

for instance, by any p such that p and pr agree up to a reordering of the names of the voters. The

definitions of flatness and symmetry here considered are inspired by the properties with the same

name introduced by González-Dı́az et al. (2014) in the framework of ranking methods. Note that

the concept of symmetry appears also in Young (1975) in the context of voting rules with the name

of cancellation property.

We stress that being often flat can be considered a defect because if R is flat on an election, then

it cannot be used to make an effective decision. On the other hand, being flat on the elections with

profiles satisfying cp(x, y) = cp(y, x) can be considered a value. Indeed if the voters collectively do

not discriminate between any pair of candidates, it might be reasonable to require that every possible

committee must occur as outcome of the voting procedure.

We illustrate now the quite different behavior of S and M with respect to flatness and show that

they are both symmetric.

Proposition 18. Let E = (C, V, p) ∈ E. The following facts are equivalent:

(i) S is flat on E;

(ii) S is k-flat on E for some k ∈ [|C| − 1];

(iii) the function S(C, V, p, ·) : C → N0 is constant.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (iii) By assumption, we have that S(C, V, p, k) = 2Ck . Assume by contradiction that the

function S(C, V, p, ·) : C → N0 is not constant. Then, there exist x, y ∈ C with x ̸= y such that

S(C, V, p, y) > S(C, V, p, x). Since k ∈ [|C|−1], there existsW ∈ 2Ck such that x ∈W and y ∈ V \W .

Then W ̸∈ S(C, V, p, k), a contradiction.
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(iii) ⇒ (i) is trivial.

Proposition 19. Let E = (C, V, p) ∈ E. If M is flat on E, then S is flat on E. The converse does

not hold.

Proof. Let M be flat on E. Then M is 1-flat on E. Since S and M for k = 1 coincide, we have that

S is 1-flat on E. Thus, by Proposition 18, we deduce that S is flat.

In order to show that S flat on E does not imply M flat on E, we consider the election E =

(C, V, p) given by C = [4], V = [5] and

p =



2 1 3 4 4

1 2 1 3 2

3 3 2 1 3

4 4 4 2 1


.

It is immediately checked that S(p, x) = 2 for all x ∈ C and so, by Proposition 18, S is flat on E

while M(p, 3) = {{1, 2, 3}}. Thus, M is not 3-flat on E so that M is not flat on E.

By the above result, the set of elections in which S is flat is larger than the set of elections in

which M is flat. This represents a critical issue for S with respect to M.

Corollary 20. The property M is k-flat on E = (C, V, p) ∈ E, for some k ∈ [|C|−1], does not imply

the property M is flat on E.

Proof. The example used in Proposition 19 exhibits a case in which M is 1-flat but not 3-flat.

Proposition 21. The property M is k-flat on E = (C, V, p) ∈ E, for some k ∈ [|C| − 1], does not

imply the property S is flat on E.

Proof. Consider the election E = (C, V, p) given by C = [4], V = [8] and p defined in (14). It is

immediately checked that M(p, 2) = 2C2 so that M is 2-flat on E. On the other hand, we have

S(p, 1) = 4, S(p, 2) = S(p, 3) = S(p, 4) = 3. Thus, S is not flat on E.

Proposition 22. S and M are symmetric.

Proof. Let (C, V, p) ∈ E such that cp(x, y) = cp(y, x) for all x, y ∈ C, with x ̸= y, and let k ∈

[|C| − 1]. Let x, y ∈ C with x ̸= y. Since the preferences in the profile p are linear orders, we have

cp(x, y)+cp(y, x) = |V |. Thus |V | is even and cp(x, y) =
|V |
2 . As a consequence, for everyW ∈ 2Ck and

for every x ∈ C, we have that M(p,W ) = |V |
2 and S(p, x) = |V |

2 so that M(p, k) = S(p, k) = 2Ck .
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3.7 Further properties

A considerable amount of contributions in social choice theory concerns the ability of single-winner

voting rules to select the Condorcet winner. Recall that, given (C, V, p) ∈ E and x ∈ C, x is a

Condorcet winner if, for every y ∈ C with x ̸= y, cp(x, y) >
|V |
2 . Note that x ∈ C is a Condorcet

winner associated with the election (C, V, p) if and only if {x} is a Condorcet committee associated

with the same election. Kamwa (2017a) proposes the next property which refers to the behavior of a

csr when a Condorcet winner exists. A csr R satisfies the Condorcet winner criterion if, for every

(C, V, p) ∈ E , k ∈ [|C| − 1], W ∈ R(C, V, p, k) and x ∈ C a Condorcet winner, we have that x ∈W .

Proposition 23. S satisfies the Condorcet winner criterion.

Proof. Consider (C, V, p) ∈ E , k ∈ [|C|−1] andW ∈ S(C, V, p, k). Assume that x ∈ C is a Condorcet

winner. Then S(p, x) > |V |
2 . Moreover, for every y ∈ C \ {x}, we have S(p, y) ≤ cp(y, x) <

|V |
2 so

that S(p, y) < S(p, x). Assume now that x ̸∈ W and pick y ∈ W . Then S(p, y) ≥ S(p, x), a

contradiction

Proposition 24. M does not satisfy the Condorcet winner criterion.

Proof. Consider the election E = (C, V, p) given by C = [4], V = [9] and

p =



1 1 2 2 3 3 3 4 4

3 4 1 1 1 1 2 2 3

2 3 4 4 2 2 1 1 1

4 2 3 3 4 4 4 3 2


.

It is immediately checked that M(C, V, p, 2) = {{1, 3}, {2, 3}} and 1 is the Condorcet winner. Given

that 1 /∈ {2, 3}, we conclude that M does not satisfy the Condorcet winner criterion.

The next properties, namely local stability, consensus committee and weak consensus committee,

are inspired to the idea of proportional representation where the objective is to allocate seats in

representative bodies according to the number of votes received by candidates. We stress that local

stability is proposed by Aziz et al. (2017) while consensus committee by Elkind et al. (2017). The

notion of weak consensus committee is instead new.

Given (C, V, p) ∈ E , k ∈ [|C|−1] and W ∈ 2Ck , we say that W is a k-locally stable set with respect
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to the Droop quota if, for every y ∈ C \W , we have that

|{v ∈ V : ∀x ∈W, y ≻p(v) x}| ≤
⌊

|V |
k + 1

⌋
.

A csr R is locally stable if, for every (C, V, p) ∈ E and k ∈ [|C| − 1] such that there exists a k-

locally stable set, we have that every W ∈ R(C, V, p, k) is a k-locally stable set; R satisfies consensus

committee (resp. weak consensus committee) if, for every (C, V, p) ∈ E , k ∈ [|C| − 1] and W ∈ 2Ck

such that each voter ranks some member of W first and each member of W is ranked first by either⌊
|V |
k

⌋
or

⌈
|V |
k

⌉
voters, we have that R(C, V, p, k) = {W} (resp. W ∈ R(C, V, p, k)).

Proposition 25. There exists no csr R which is stable and locally stable.

Proof. Assume by contradiction that R is a stable and locally stable csr and consider C = [4],

V = [7] and

p =



1 2 3 2 1 3 1

3 3 4 3 3 4 3

4 4 1 4 4 2 4

2 1 2 1 2 1 2


Then {3, 4} is the unique Condorcet committee of size 2 and {1, 2} and {1, 3} are the only 2-locally

stable sets. Then, by stability, R(C, V, p, 2) = {{3, 4}} while, by local stability, R(C, V, p, 2) ⊆

{{1, 2}, {1, 3}}, a contradiction.

Proposition 26. S and M are not locally stable.

Proof. By Proposition 25, since M is stable, it cannot be locally stable. For what concerns S,

consider C = [4], V = [8] and

p =



1 2 2 2 3 4 4 4

3 1 1 3 1 1 2 3

4 3 3 4 4 2 3 1

2 4 4 1 2 3 1 2


(14)

It is immediately checked that {2, 4} is the unique 2-locally stable set while S(C, V, p, 2) = {{1, 2},

{1, 3}, {1, 4}}.

Proposition 27. S and M do not satisfy weak consensus committee. In particular, S and M do

not satisfy consensus committee.
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Proof. Consider C = [4], V = [3],

p =



1 2 3

4 4 4

2 1 1

3 3 2


and W = {1, 2, 3}. Any csr satisfying weak consensus committee should select W as winning

committee for the election (C, V, p) and k = 3. However, both W ̸∈ S(C, V, p, 3) = 2C3 \ {W} and

W ̸∈ M(C, V, p, 3) = {{1, 2, 4}}.

We finally show that S and M both fail to be resolute and suffer the reversal bias, the Condorcet

loser paradox7 and the leaving member paradox.8 Recall that a csr R is resolute if, for every

(C, V, p) ∈ E and k ∈ [|C|−1], |R(C, V, p, k)| = 1; R suffers the reversal bias if there exist (C, V, p) ∈ E

and k ∈ [|C| − 1] such that |R(C, V, p, k)| = 1 and R(C, V, p, k) = R(C, V, pr, k); R suffers the

Condorcet loser paradox if there exist (C, V, p) ∈ E , k ∈ [|C| − 1] and W ∗ ∈ 2Ck such that W ∗ is a

Condorcet loser committee for (C, V, p), that is, for every x ∈W ∗ and y ∈ C \W ∗, cp(x, y) <
|V |
2 , and

R(C, V, p, k) = {W ∗}; R suffers the leaving member paradox if there exist (C, V, p) ∈ E , k ∈ [|C| − 1]

with k ̸= 1, and x∗ ∈ C such that R(C, V, p, k) = {W ∗}, x∗ ∈ W ∗, R(C ′, V, p′, k) = {W ′} and

W ′ ∩ W ∗ = ∅, where C ′ = C \ {x∗} and p′ is the preference profile obtained by p erasing the

candidate x∗.9

Informally speaking, a csr is resolute if it always returns a single committee; a csr suffers the

reversal bias when for a given preference profile a unique committee is selected and reversing the

preferences of all the voters the same committee is still selected as unique outcome; a csr suffers

the Condorcet loser paradox if, for a given preference profile, the unique winning committee is a

Condorcet loser committee, that is, a committee having the property that each candidate which

does not belong to it is preferred by a majority of voters to every of its elements; a csr suffers the

leaving member paradox if for a certain election a unique committee of size k out of m candidates

is elected and if an elected candidate leaves the office for some reason and a new election on the

m − 1 remaining candidates is held, then a unique committee is elected and such a committee and

the original one are disjoint.

7Those properties are largely studied in the literature in the setting of voting rules. See for instance, Bubboloni and
Gori (2016), Diss and Gehrlein (2012), Diss and Tlidi (2018), Duggan and Schwartz (2000), Fishburn and Gehrlein
(1976), Gehrlein and Lepelley (2010b), Jeong and Ju (2017), and Saari and Barney (2003). In the committee selection
setting, resoluteness and immunity to the reversal bias are studied in Bubboloni and Gori (2019) for a fixed number
of voters and alternatives; the Condorcet loser paradox is introduced here for the first time.

8See for instance, Diss and Doghmi (2016), Kamwa and Merlin (2015), and Staring (1986).
9Note that if k were allowed to be 1, then every csr would suffer the leaving member paradox.
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Proposition 28. S and M do not satisfy resoluteness.

Proof. Consider C = [2], V = [2], and

p =

 1 2

2 1


Then S(p, 1) = M(p, 1) = {{1}, {2}}.

Proposition 29. S and M suffer the reversal bias.

Proof. Consider C = [4], V = [11], and

p =



3 1 2 3 1 2 4 4 4 4 4

2 3 1 2 3 1 3 1 2 2 1

1 2 3 1 2 3 2 3 1 3 3

4 4 4 4 4 4 1 2 3 1 2


(15)

Then S(p, 1) = M(p, 1) = {{4}} and S(pr, 1) = M(pr, 1) = {{4}}.

Note that, by Proposition 22, if (C, V, p) ∈ E and p is such that p and pr agree up to a reordering

of the names of the voters, then S(p, k) = M(p, k) = 2Ck for all k ∈ [|C| − 1], so that S(p, k) and

M(p, k) are not singletons. Thus, for those kind of elections reversal bias never occurs.

Proposition 30. S and M suffer the Condorcet loser paradox.

Proof. Consider C = [4], V = [11], and p as in (15). Then {4} is a Condorcet loser committee for

(C, V, p) and S(p, 1) = M(p, 1) = {{4}}.

Note that, according to Kamwa (2017a), a csr R satisfies the Condorcet loser criterion if, for

every (C, V, p) ∈ E , k ∈ [|C| − 1], W ∈ R(C, V, p, k) and x ∈ C a Condorcet loser, we have that

x ̸∈W . Proposition 30 implies that S and M fail the Condorcet loser criterion. This fact for M was

proved by Kamwa (2017a, Theorem 2).

Proposition 31. S and M suffer the leaving member paradox.

Proof. Consider first S with C = [4], V = [4], and

p =



1 1 1 2

3 4 4 1

4 2 3 3

2 3 2 4


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Then S(p, 2) = {{1, 2}}. Assume now that 1 drops out of the electoral competition for some reason

and consider (C ′, V, p′) ∈ E , where C ′ = {2, 3, 4} and p′ is obtained from p by erasing candidate 1 in

each column. Then, we get S(p′, 2) = {{3, 4}}.

Consider now M with C = [4], V = [11], and

p =



1 1 1 2 2 2 3 3 3 3 4

4 4 4 1 1 4 2 2 4 4 1

2 3 3 3 3 1 1 1 2 2 2

3 2 2 4 4 3 4 4 1 1 3


Then M(p, 2) = {{1, 2}}. Assume now that 1 drops out of the competition for some reason and

consider (C ′, V, p′) ∈ E , where C ′ = {2, 3, 4} and p′ is obtained from p by erasing candidate 1 in each

column. Then, we get M(p′, 2) = {{3, 4}}.

A summary of our results is provided in Table 1.

4 Computational results

In this section we better investigate the resoluteness as well as the properties of suffering the reversal

bias, the Condorcet loser paradox and the leaving member paradox for S and M. We fix the number

m ∈ {3, 4} of candidates, the number n ≥ 2 of the voters and the size k ∈ [m− 1] of the committee

to be selected and we focus only on elections (C, V, p) with C and V fixed and such that |C| = m

and |V | = n.10 We then study each of the considered properties through a computational approach

estimating the probability of its occurrence for S and M and providing a comparison of the results

obtained with those obtained for the Borda, the Plurality, the Negative Plurality and the Bloc csrs.11

We emphasize that the Bloc csr agrees with the Plurality csr when k = 1 and with the Negative

Plurality csr when k = m − 1. Recall also that S agrees with M when k = 1. In the last part of

the section we also study the probability that S and M agree on the same unique committee as well

as the probability of the agreement of each of them with the Borda csr. Before giving the results

of our analysis, we first describe in Section 4.1 the methodology applied in order to calculate our

probabilities.

10Note that when, m ≤ 2 or n = 1, the analysis of the considered properties turns out to be straightforward.
11See Diss and Doghmi (2016) and Elkind et al. (2017) for the definitions of these csrs.
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4.1 Evaluating the probability of voting situations

Let us first present our main computational assumption, that is, the Impartial Anonymous Culture

(IAC). Withm candidates, there arem! possible individual preferences (linear orders) which we order

in some fashion. A voting situation is a vector (n1, . . . , ni, . . . , nm!) such that
∑m!
i=1 ni = n, where the

integer ni is the number of individuals voting the i-th linear order. The IAC condition stipulates that

all voting situations are equiprobable. This assumption, introduced by Gehrlein and Fishburn (1976),

is one of the most used assumption in social choice theory when computing the theoretical probability

of electoral events. For more details on the IAC condition and other well-known assumptions, we

refer the reader to the recent books by Gehrlein and Lepelley (2011, 2017). Under IAC, obtaining

the probability of an electoral event is accomplished by the computation of two elements. The first

one is the total number of voting situations, that is,
(
n+m!−1
m!−1

)
. The second one is the number of

voting situations associated with the property under examination. This can be in general reduced

to a finite system of linear constraints with rational coefficients. For instance, if C = {x, y, z}, there

exist 3!=6 linear orders on C: x ≻ y ≻ z (n1), x ≻ z ≻ y (n2), y ≻ x ≻ z (n3), y ≻ z ≻ x (n4),

z ≻ x ≻ y (n5), and z ≻ y ≻ x (n6). In this setting, evaluating the situations for which the Plurality

csr selects {x, y} as unique outcome for a given number of voters n is equivalent to finding the

number of voting situations (n1, . . . , n6) subject to the following conditions: n1 + n2 − n5 − n6 > 0

(the Plurality score of candidate x is greater than the one of z), n3 +n4 −n5 −n6 > 0 (the Plurality

score of y is greater than the one of z), ni ≥ 0 for each i ∈ [6], and
∑6
i=1 ni = n.

As recently pointed out in the literature of social choice theory, Ehrhart polynomials are the

appropriate mathematical tool to study such problems (Gehrlein and Lepelley, 2011, 2017; Lepel-

ley et al., 2008; Wilson and Pritchard, 2007). In fact, they have been widely used in numerous

studies analyzing the probability of electoral events in the case of three-candidate elections under

IAC assumption (Courtin et al., 2015; Diss, 2015; Diss et al., 2012; Gehrlein and Lepelley, 2011,

2017; Gehrlein et al., 2015, 2016, 2018; Kamwa and Valognes, 2017; Lepelley et al., 2017; Smaoui et

al., 2016). There exist strong algorithms that enable to specify the Ehrhart polynomials for many

problems in the case of three-candidate elections. In this paper, all our results for the case of three

candidates are obtained by using the parameterized Barvinok’s algorithm.12 After obtaining the

Ehrhart polynomials corresponding to each of the considered properties, we evaluate these polyno-

mials for any needed number of voters and we get the desired probabilities. As noticed by Lepelley

12For a detailed description of algorithms computing Ehrhart polynomials, we recommend the report by Verdoolaege
et al. (2005).
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et al. (2008), the different algorithms that can be used in the three-candidate framework do not

allow to deal with four-candidate elections, where the total number of variables, i.e., possible linear

orderings, is 4! = 24. However, recent developments within the polytope theory may allow to obtain

exact results for the case of m = 4 and a small number of voters. These results are obtained using

the algorithms of Normaliz (Bruns et al., 2017a) which is, to the best of our knowledge, the only

program able to compute the number of voting situations in polytopes corresponding to elections

with up to four candidates. The reader interested in a deeper understanding of the algorithms of

Normaliz is refereed to Bruns et al. (2019) who describe several results obtained in four-candidate

elections. This software can do all computations in dimension 24, but the limitation of the method

is that all voting situations (n1, . . . , nm!) that verify the required conditions of the considered voting

event are enumerated and stored. Thus, this method needs relatively high memory when the number

of voters increases. Moreover, the computation time rises accordingly. Consequently, exact results

are obtained with n ∈ {2, . . . , 9} and m = 4 and we use computer simulations in order to evaluate

the probabilities for n > 9.13 We describe now the Monte-Carlo simulation methodology applied in

order to estimate our probabilities in the same spirit as the Impartial Anonymous Culture condition.

Let us consider as an example the probability of resoluteness.

1. At the beginning of the evaluation, we randomly generate a voting situation of length m!.

2. In the second step, we check whether the conditions of the resoluteness are fulfilled or not.

3. These two steps are iterated 1, 000, 000 times to obtain the number of voting situations for

which resoluteness holds.

4. Finally, the probability of resoluteness is calculated as the quotient of the number obtained in

step 3 over the total number of simulated voting situations, i.e., 1, 000, 000.14

Another technique is used in this paper in order to obtain exact results when the number of

candidates is m = 4 and the number of voters tends to infinity. In this case, the calculations

of the limiting probability under IAC condition are reduced to computation of volumes of convex

polytopes. For this, our volumes are found with the use of the algorithm Convex which is a Maple

package for convex geometry by Franz (2017). This package works with the same general procedure

that was implemented by Cervone et al. (2005) and recently used in other studies, e.g., Diss and

13This is really possible for all the scoring csrs we are considering here but, unfortunately, this is not true when we
consider S and M. For those csrs exact probabilities can be obtained only for n ∈ {2, 3, 4, 5}.

14The MATLAB code of our simulations is available upon request.
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Doghmi (2016), Diss and Gehrlein (2012, 2015), Gehrlein et al. (2015), and Moyouwou and Tchantcho

(2017).15

Note that in what follows the probability values 0 and 0.0000 have different meanings. In fact,

the first one corresponds to an exact value while the second one is obtained using our simulation

method. Note also that, in order to simplify some computations, we use some further propositions

about S and M stated and proved in the appendix.

4.2 The probability of resoluteness

Our first concern is the probability of resoluteness. The results of our computations are provided in

Tables 2 to 6. We stress that the analysis of the probability of resoluteness of the classical scoring

csrs considered here is new in the literature.

It is intuitive that ties are highly unlikely if the number of voters is large so that the probability

of resoluteness is expected to approach 1 as n increases. Moreover, it is natural to understand that

the probability of ties highly depends on whether the number of voters is odd or even, with ties more

probable for an even number of voters. Those facts are confirmed by our results.

We observe very different behaviors of the considered csrs for odd and even numbers of voters.

For instance, with m = 3 and k = 1, both S and M (which agree in this case) perform better

than the other five csrs when the number of voters is odd, but the scoring csrs have a superior

performance when the number of voters is even. In this case, the Borda csr performs very well in

comparison with the other considered scoring csrs. When m = 3, k = 2 and n is odd, our results

show that M is the best csr, while S performs the worst. With n even, S still is the worst scenario,

but it is found that some scoring csrs can perform better than M. Finally, when the number of

candidates increases to m = 4, it appears that usually the Borda csr has a greater probability of

resoluteness than M which in turn leads to a better performance than some scoring csrs. Note that

S performs the worst in most cases. This remains in general true independently of the target size of

the committee.

It is worth mentioning that some theoretical facts about the resoluteness of the considered csrs

help in building the tables. In particular, via very simple arguments involving the concept of reversal

of a preference profile, it can be proved that the probability of resoluteness of the Borda csr is the

same for k = 1 and k = m − 1; the probability of resoluteness of the Plurality csr with k = 1 is

the same as the one of the Negative Plurality csr with k = m − 1; the probability of resoluteness

15Once again this technique can not be used for S and M for which obtaining the probabilities in the limit case is
only possible with computer simulations. We consider for them a number of voters n = 100, 000.
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of Negative Plurality csr with k = 1 is the same as the one of Plurality csr with k = m− 1; when

m is even and k = m
2 , the probability of resoluteness of the Plurality csr and the one for Negative

Plurality csr are the same. Moreover, from Proposition 35, we also get that the probability of

resoluteness of M is the same for k = 1 and k = m− 1.

4.3 The probability of suffering the reversal bias

In Tables 7 to 11, we collect our results about the probability of suffering the reversal bias. Saari

and Barney (2003) and Bubboloni and Gori (2016) prove several results about the reversal bias when

k = 1. On the basis of our results and those by Bubboloni and Gori (2016), we can deduce interesting

facts concerning the computations we are going to perform. In particular, by Bubboloni and Gori

(2016, Theorem A), we get that S and M are immune to the reversal bias for m = 3 and k = 1;

from Proposition 33, S is immune to the reversal bias for m = 3 and k = 2 as well as for m = 4

and k = 3; when m = 4, by Bubboloni and Gori (2016, Theorem A), we have that S and M are

immune to the reversal bias if and only if n ∈ {2, 3, 4, 5, 7}; by Bubboloni and Gori (2016, Theorem

A) and Corollary 37, M is immune to the reversal bias for m = 3 and k = 2; from Corollary 36, M

is immune to the reversal bias for m = 4 and k = 2; from Corollary 37, the probability for M to be

immune to the reversal bias for m = 4 and k = 1 is the same as for m = 4 and k = 3.

It is also immediate to show that the Borda csr is always immune to the reversal bias; the

probability of suffering the reversal bias of the Plurality csr (Bloc csr) with k = 1 is the same as

the one of the Negative Plurality csr (Bloc csr) with k = m − 1; the probability of suffering the

reversal bias of the Negative Plurality csr with k = 1 is the same as the one of the Plurality csr

with k = m − 1; when m is even and k = m
2 , the probability of suffering the reversal bias of the

Plurality csr and the one of the Negative Plurality csr are the same; the Bloc csr is immune to

the reversal bias.

It turns out that the most interesting cases to study for comparing S and M to the other five

csrs correspond to m = 4 with k = 1 and k = 3. Our computations reveal that, yet again, S and

M perform better than the other considered csrs (except Borda). However, M appears to be more

vulnerable to the reversal bias than S for m = 4 and k = 3.

Finally, the computations made suggest to conjecture that S is immune to the reversal bias if

m = 4 and k = 2. This is, at the moment, an open problem.
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4.4 The probability of suffering the Condorcet loser paradox

Tables 12 to 16 describe our results about the probability of suffering the Condorcet loser paradox

provided a Condorcet loser committee exists. It is important to notice that this paradox is also known

in the setting of voting rules as the strong Borda paradox. We refer the reader to Diss and Gehrlein

(2012); Diss and Tlidi (2018); Fishburn and Gehrlein (1976); Gehrlein and Lepelley (2010b), among

others.

It is important to notice that, since a Condorcet loser committee for (C, V, p) is a Condorcet

committee for (C, V, pr), if a csr is Condorcet consistent and immune to the reversal bias then it

is immune to the Condorcet loser paradox. Since M is Condorcet consistent, the analysis made in

the previous section can be used to get some information about the Condorcet loser paradox for M.

For instance, with m = 4 and k = 1, Table 9 shows that M is immune to the reversal bias when

n ∈ {2, 3, 4, 5, 7}. This remains true for the immunity to the Condorcet loser paradox as shown in

Table 14. It is well known that the Borda csr is immune to the Condorcet loser paradox when k = 1

and it is immediate to show that the probability of suffering the Condorcet loser paradox of the

Plurality csr (Bloc csr) with k = 1 is the same as the one of the Negative Plurality csr (Bloc csr)

with k = m − 1; the probability of suffering the Condorcet loser paradox of the Negative Plurality

csr with k = 1 is the same as the one of the Plurality csr with k = m − 1; when m is even and

k = m
2 , the probability of suffering the Condorcet loser paradox of the Plurality csr and the one

of the Negative Plurality csr are the same. Notice that the results in Table 12 for Plurality and

Negative Plurality when the number of voters is large are in agreement with results by Gehrlein and

Lepelley (2010b).

From the tables we understand that the probability of observing the Condorcet loser paradox can

never exceed 0.0315 with m = 3 and 0.0240 with m = 4 under all the csrs that we consider in this

paper. In other words, the probability of observing this paradox should be rare, but not impossible

to observe particularly when the number of voters increases. Our results also show that the use of

csrs like Borda, M and S will clearly tend to minimize the probability of observing the Condorcet

loser paradox, with a certain advantage for S and Borda when m = 4 and k = 3.

Our probability calculations suggest to conjecture that the Borda csr is immune to the Condorcet

loser paradox whatever the values ofm, n, and k are. In addition, except for the situation withm = 4

and k = 1, S seems to be immune to the Condorcet loser paradox for all the other values of m and

k that we consider in this paper. Again these conjectures are, at the moment, open problems.
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4.5 The probability of suffering the leaving member paradox

The probability of suffering the leaving member paradox is illustrated in Table 17. This paradox

has been introduced by Staring (1986). Kamwa and Merlin (2015) considered the probability of

this paradox under the four scoring csrs presented in this paper with the Impartial Culture (IC)16

assumption for large electorates. Considering the IAC condition, Diss and Doghmi (2016) extended

the results of Kamwa and Merlin (2015) in many directions. In particular, the results we propose for

the limit case of the scoring csrs are taken from Diss and Doghmi (2016). Since we are focusing only

on m ∈ {3, 4}, the leaving member paradox only occurs in the case m = 4 and k = 2. We deduce

then from our results that M has a better performance than the other considered csrs except for

some small number of voters; in most cases S performs better than the Plurality csr and the Bloc

csr. The Bloc csr appears to be the worst csr according to this criterion.

4.6 The probability of resolute-agreement

We know that for certain voting situations the set of committees selected by S differs from the set

of committees selected by M. However, in some cases, they both select the same unique committee.

Here we study the probability of such a situation, which we refer to as resolute-agreement between

S and M. Recall that S equals M when k = 1. Moreover, when m = 3, k = 2 and under the IAC

hypothesis, Kamwa (2017b) computes the probability of having voting situations where S and M

coincide.

The results of our calculations are described in Table 18. We can make some observations based

upon this Table. First of all, the probability of resolute-agreement is smaller when there is an even

number of voters than when there is an odd number of voters. One of the possible reasons for that

is that having ties for S or M, which are more likely in the even case, implies no resolute-agreement

between the two csrs. We also observe that, our results indicate that increasing an odd (even)

number of voters implies an increase in the probability of resolute-agreement. Moreover, when the

number of voters is large the probability of resolute-agreement reaches 70% for m = 3 and k = 2 and

60% with m = 4 and k = 2 or k = 3. Finally, it seems from the tables that, for fixed m and n, with

n large, the probability of resolute-agreement decreases as the size of the committee to be elected

increases.

We also study the probability of resolute-agreement between S and the Borda csr (Table 19),

16This is another assumption widely used for analyzing the probability of electoral events. Under this assumption,
the preference relation of each voter is drawn uniformly at random from the set of all possible linear orders.
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and between M and the Borda csr (Table 20). Our results show that there exists, at least in three-

candidate and four-candidate elections, an important set of voting situations where the Borda csr

and one of the two extensions of the Simpson voting rule agree. Surprisingly, this probability reaches

more than 80% for many cases with only 101 voters. Moreover, our results indicate that the Borda

csr is more likely to agree with M than with S except for a small even number of voters (n ≤ 6).

Since the probability of resoluteness tends to rapidly increase as the number of voters increases, we

know that each of the studied csrs usually selects a unique committee as the number of voters is

large. Hence, for large electorates, the probability of resolute-agreement here considered should be

close to the probability of equality. Note that, using a simple argument based on the concept of

reversal of a preference profile, it can be proved that the probability of resolute-agreement between

M and the Borda when k = 1 is the same as the one when k = m− 1.

5 Conclusion

In this paper we provide a careful comparison of two possible extensions of the Simpson voting rule

to the committee selection setting, namely the Simpson csr S and the Maximin csr M. To that

purpose, we consider some well-established properties and we introduce some new ones aiming to

compare the behavior of S and M by testing those properties. Our findings are summarized in Table

1. There are some properties shared by S and M and others not satisfied by both. Of course, it

is looking at those properties that are not shared by S and M that it is possible to recognize the

peculiarities of the two csrs. That allows to better qualify the range of applications of S and M.

In fact, S seems to be more appealing for shortlisting because it satisfies committee monotonicity,

non-crossing monotonicity and Condorcet winner criterion; M seems instead to be more appropriate

for finding representatives because it satisfies stability, weak-resolvability and Pareto criterion. In

order to better highlight the performances of S and M, we also study some of the properties failed

by both csrs through a computational approach estimating the probability of their occurrence, not

only for S and M, but also for the Borda, the Plurality, the Negative Plurality and the Bloc csrs

giving a wide comparison with these classic csrs, as well.
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Appendix

Proposition 32. Let (C, V, p) ∈ E, k ∈ [|C| − 1] and W ∗ ∈ 2Ck . Then S(p, k) = {W ∗} if and only

if, for every x ∈W ∗ and y ∈ C \W ∗, S(p, x) > S(p, y).

Proof. Let S(p, k) = {W ∗}. Assume, by contradiction, that there exists x∗ ∈ W ∗ and y∗ ∈ C \W ∗

such that S(p, x∗) ≤ S(p, y∗). Since for every x ∈ W ∗ and y ∈ C \W ∗, we surely have S(p, x) ≥

S(p, y), we then have

S(p, x∗) = S(p, y∗). (16)

DefineW ′ = (W ∗\{x∗})∪{y∗} ∈ 2Ck .We reach the desired contradiction showing thatW ′ ∈ S(p, k).

Let x ∈ W ′ and y ∈ C \W ′ = C \ (W ∗ ∪ {y∗}) ∪ {x∗} and show that S(p, x) ≥ S(p, y). Let us first

assume that x ̸= y∗ and y ̸= x∗. Then we have x ∈W ∗ and y ∈ C \W ∗ and thus, sinceW ∗ ∈ S(p, k),

we get S(p, x) ≥ S(p, y). Let next x = y∗ and y = x∗. Then by (16), S(p, x) = S(p, y∗) = S(p, x∗) =

S(p, y). Let now x = y∗ and y ̸= x∗. Then y ∈ C \W ∗ and, by (16) and W ∗ ∈ S(p, k), we obtain

S(p, x) = S(p, y∗) = S(p, x∗) ≥ S(p, y).

Let finally be x ̸= y∗ and y = x∗. Then x ∈W ∗ and y ∈ C \W ∗. Hence, by W ∗ ∈ S(p, k) and (16),

we get

S(p, x) ≥ S(p, y∗) = S(p, x∗) = S(p, y).

Assume next that W ∗ ∈ 2Ck is such that, for every x ∈W ∗ and y ∈ C \W ∗,

S(p, x) > S(p, y). (17)

Then W ∗ ∈ S(p, k). We want to show that W ∗ is the only element in S(p, k). Pick W ∈ 2Ck \ {W ∗}.

Since W ∗ and W have the same size k, there exist y ∈ W \W ∗ and x ∈ W ∗ \W. Thus, by (17), we

have S(p, x) > S(p, y), which excludes W ∈ S(p, k).

Proposition 33. Let (C, V, p) ∈ E be such that |S(p, |C| − 1)| = |S(pr, |C| − 1)| = 1. Then

S(p, |C| − 1) ̸= S(pr, |C| − 1).
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Proof. Assume by contradiction that there exists W ⊆ C with |W | = |C| − 1 such that

S(p, |C| − 1) = S(pr, |C| − 1) = {W}.

Let x∗ be the unique element of the set C \W . Then, by Proposition 32, we have that, for every

x ∈ W , S(p, x∗) < S(p, x) and S(pr, x∗) < S(pr, x). Since, for every x, y ∈ C with x ̸= y, cp(y, x) =

|V | − cp(x, y) and cpr (x, y) = cp(y, x), we obtain that, for every x ∈W ,

min
y ̸=x∗

cp(x
∗, y) < min

y ̸=x
cp(x, y) and max

y ̸=x∗
cp(x

∗, y) > max
y ̸=x

cp(x, y).

Thus, there exist ym, yM ∈W such that, for every x ∈W ,

cp(x
∗, ym) < min

y ̸=x
cp(x, y) and cp(x

∗, yM ) > max
y ̸=x

cp(x, y).

Then, for every x ∈ W and y ∈ C \ {x}, cp(x∗, ym) < cp(x, y) < cp(x
∗, yM ). Consequently, we have

that

cp(x
∗, ym) < cp(ym, x

∗) < cp(x
∗, yM ) and cp(x

∗, ym) < cp(yM , x
∗) < cp(x

∗, yM ),

so that

cp(x
∗, ym) < |V | − cp(x

∗, ym) < cp(x
∗, yM ) and cp(x

∗, ym) < |V | − cp(x
∗, yM ) < cp(x

∗, yM ).

Thus, we have that |V | − cp(x
∗, ym) < cp(x

∗, yM ) and cp(x
∗, ym) < |V | − cp(x

∗, yM ) from which we

deduce the contradiction |V | < cp(x
∗, ym) + cp(x

∗, yM ) < |V |.

Lemma 34. Let (C, V, p) ∈ E and W ⊆ C with |W | ∈ [|C| − 1]. Then M(p,W ) =M(pr, C \W ).

Proof. Simply observe that C \W ∈ C, |C \W | ∈ [|C| − 1] and that

M(p,W ) = min
x∈W,y∈C\W

cp(x, y) = min
x∈W,y∈C\W

cpr (y, x) =M(pr, C \W ).

Proposition 35. Let (C, V, p) ∈ E, k ∈ [|C| − 1] and W ∗ ∈ 2Ck . Then W ∗ ∈ M(p, k) if and only if

C \W ∗ ∈ M(pr, |C| − k). In particular, M(p, k) = {W ∗} if and only if M(pr, |C| − k) = {C \W ∗}.
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Proof. Consider the following statements:

1. W ∗ ∈ M(p, k);

2. for every W ∈ 2Ck , M(p,W ∗) ≥M(p,W );

3. for every W ∈ 2Ck , M(pr, C \W ∗) ≥M(pr, C \W );

4. for every W ∈ 2C|C|−k, M(pr, C \W ∗) ≥M(pr,W );

5. C \W ∗ ∈ M(pr, |C| − k).

Using Lemma 34, it is immediate to show that, for every i ∈ {1, 2, 3, 4}, statement i is equivalent to

statement i+ 1. Then statement 1 is equivalent to statement 5 and the proof is completed.

Corollary 36. Let (C, V, p) ∈ E be such that |C| is even and |M(p, |C|/2)| = |M(pr, |C|/2)| = 1.

Then M(p, |C|/2) ̸= M(pr, |C|/2).

Proof. Assume that M(p, |C|/2) = {W ∗}. Then by Proposition 35 we have that M(pr, |C|−|C|/2) =

M(pr, |C|/2) = {C \W ∗}. Since W ∗ ̸= C \W ∗, the proof is complete.

Corollary 37. Let (C, V, p) ∈ E and k ∈ [|C| − 1]. The following conditions are equivalent:

(i) M(p, k) = M(pr, k) and |M(p, k)| = 1;

(ii) M(p, |C| − k) = M(pr, |C| − k) and |M(p, |C| − k)| = 1.

Proof. Assume that (i) holds true. Then there exists W ∗ ∈ 2Ck such that M(p, k) = M(pr, k) =

{W ∗}. Then, by Proposition 35, we have that M(p, |C| − k) = M(pr, |C| − k) = {C \W ∗} which

implies (ii). The proof that (ii) implies (i) is analogous.
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ioms (Ph.d. thesis), Universitat Autònoma de Barcelona, Departament d’Economia i d’Història
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Tables

Table 1: Summary

Properties S M

Anonymity ✓ (Prop. 1) ✓ (Prop. 1)

Neutrality ✓ (Prop. 1) ✓ (Prop. 1)

Homogeneity ✓ (Prop. 1) ✓ (Prop. 1)

Non-Imposition ✓ (Prop. 3) ✓ (Prop. 4)

Strong Non-Imposition* ✗ (Prop. 3) ✓ (Prop. 4)

Weak Unanimity ✓ (Prop. 3) ✓ (Prop. 4)

Strong Unanimity ✗ (Prop. 2) ✓ (Prop. 4)

Fixed Majority ✗ (Prop. 2) ✓ (Prop. 4)

Weak Consensus Committee* ✗ (Prop. 27) ✗ (Prop. 27)

Consensus Committee ✗ (Prop. 27) ✗ (Prop. 27)

Weak Pareto criterion* ✓ (Prop. 16) ✓ (Prop. 17)

Pareto criterion ✗ (Prop. 16) ✓ (Prop. 17)

Condorcet Consistency ✗ (Prop. 2) ✓ (Prop. 4)

Stability ✗ (Prop. 2) ✓ (Prop. 4)

Local Stability ✗ (Prop. 26) ✗ (Prop. 26)

Condorcet Winner Criterion ✓ (Prop. 23) ✗ (Prop. 24)

Immunity to the Condorcet Loser Paradox* ✗ (Prop. 30) ✗ (Prop. 30)

Condorcet Loser Criterion ✗ (Prop. 30) ✗ (Prop. 30)

Committee Monotonicity ✓ (Prop. 5) ✗ (Prop. 6)

Membership Monotonicity ✗ (Prop. 9) ✗ (Prop. 11)

Non-crossing Monotonicity ✓ (Prop. 8 ) ✗ (Prop. 11)

Candidate Monotonicity ✓ (Prop. 8 ) ✓ (Prop. 10)

Weak Consistency ✗ (Prop. 12) ✗ (Prop. 12)

Consistency ✗ (Prop. 12) ✗ (Prop. 12)

Weak Resolvability* ✗ (Prop. 14) ✓ (Prop. 15)

Resolvability* ✗ (Prop. 14) ✗ (Prop. 15)

Symmetry* ✓ (Prop. 22) ✓ (Prop. 22)

Resoluteness ✗ (Prop. 28) ✗ (Prop. 28)

Immunity to the Reversal Bias ✗ (Prop. 29) ✗ (Prop. 29)

Immunity to the Leaving Member Paradox ✗ (Prop. 31) ✗ (Prop. 31)

The properties marked with * are new in the committee selection literature.
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Table 2: The probability of resoluteness: m = 3 and k = 1

n S = M
Plurality

Borda
Negative

= Bloc Plurality
2 0.4286 0.4286 0.7143 0.5714
3 0.9643 0.8571 0.8571 0.6429
4 0.6190 0.7857 0.8571 0.5952
5 0.9524 0.7857 0.8810 0.7381
6 0.7143 0.8377 0.8831 0.7662
7 0.9545 0.8788 0.9091 0.7424
8 0.7692 0.8298 0.9044 0.8089
9 0.9590 0.8931 0.9201 0.8242
50 0.9530 0.9703 0.9806 0.9588
51 0.9888 0.9725 0.9810 0.9595
100 0.9758 0.9854 0.9900 0.9782
101 0.9941 0.9851 0.9901 0.9788
1000 0.9975 0.9985 0.9990 0.9978
1001 0.9994 0.9985 0.9990 0.9978
∞ 1 1 1 1

Table 3: The probability of resoluteness: m = 3 and k = 2

n S M Plurality Borda
Negative

Plurality = Bloc
2 0.4286 0.4286 0.5714 0.7143 0.4286
3 0.4286 0.9643 0.6429 0.8571 0.8571
4 0.5714 0.6190 0.5952 0.8571 0.7857
5 0.5952 0.9524 0.7381 0.8810 0.7857
6 0.6623 0.7143 0.7662 0.8831 0.8377
7 0.6818 0.9545 0.7424 0.9091 0.8788
8 0.7226 0.7692 0.8089 0.9044 0.8298
9 0.7373 0.9590 0.8242 0.9201 0.8931
50 0.9413 0.9530 0.9588 0.9806 0.9703
51 0.9423 0.9888 0.9595 0.9810 0.9725
100 0.9697 0.9758 0.9782 0.9900 0.9854
101 0.9700 0.9941 0.9788 0.9901 0.9851
1000 0.9969 0.9975 0.9978 0.9990 0.9985
1001 0.9969 0.9994 0.9978 0.9990 0.9985
∞ 1 1 1 1 1
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Table 4: The probability of resoluteness: m = 4 and k = 1

n S = M
Plurality

Borda
Negative

= Bloc Plurality
2 0.2800 0.2800 0.7200 0
3 0.9015 0.6677 0.8185 0.3323
4 0.4807 0.7754 0.8274 0.5169
5 0.8733 0.6769 0.8481 0.5692
6 0.5155 0.6819 0.8618 0.5491
7 0.8259 0.7799 0.8730 0.6063
8 0.5787 0.7772 0.8829 0.6608
9 0.8346 0.7652 0.8901 0.6863
50 0.8841 0.8899 0.9615 0.9245
51 0.9468 0.8886 0.9619 0.9244
100 0.9411 0.9441 0.9804 0.9591
101 0.9716 0.9443 0.9805 0.9601
1000 0.9942 0.9930 0.9993 0.9949
1001 0.9955 0.9933 0.9996 0.9966
∞ 1 1 1 1

Table 5: The probability of resoluteness: m = 4 and k = 2

n S M Plurality Borda
Negative

Bloc
Plurality

2 0.4400 0.2000 0.7200 0.6400 0.7200 0.2000
3 0.2769 0.8492 0.5815 0.8031 0.5815 0.8031
4 0.5115 0.4048 0.3805 0.7774 0.3805 0.4769
5 0.4508 0.8083 0.5590 0.8227 0.5590 0.7460
6 0.5197 0.4219 0.7017 0.8245 0.7017 0.6103
7 0.4825 0.7292 0.6367 0.8477 0.6367 0.7454
8 0.5495 0.4857 0.6119 0.8517 0.6119 0.6808
9 0.5422 0.7416 0.6841 0.8665 0.6841 0.7603
50 0.8563 0.8448 0.8812 0.9500 0.8825 0.8939
51 0.8593 0.9065 0.8817 0.9477 0.8819 0.8983
100 0.9219 0.9106 0.9340 0.9719 0.9341 0.9459
101 0.9262 0.9455 0.9380 0.9779 0.9383 0.9483
1000 0.9908 0.9739 0.9916 0.9966 0.9989 0.9946
1001 0.9964 0.9825 0.9920 0.9973 0.9949 0.9962
∞ 1 1 1 1 1 1
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Table 6: The probability of resoluteness: m = 4 and k = 3

n S M Plurality Borda
Negative

Plurality = Bloc
2 0.2400 0.2800 0 0.7200 0.2800
3 0.4000 0.9015 0.3323 0.8185 0.6677
4 0.4356 0.4807 0.5169 0.8274 0.7754
5 0.5245 0.8733 0.5692 0.8481 0.6769
6 0.5414 0.5155 0.5491 0.8618 0.6819
7 0.5871 0.8259 0.6063 0.8730 0.7799
8 0.6051 0.5787 0.6608 0.8829 0.7772
9 0.6297 0.8346 0.6863 0.8901 0.7652
50 0.8767 0.8841 0.9245 0.9615 0.8899
51 0.8800 0.9468 0.9244 0.9619 0.8886
100 0.9341 0.9411 0.9591 0.9804 0.9441
101 0.9374 0.9716 0.9601 0.9805 0.9443
1000 0.9920 0.9942 0.9949 0.9993 0.9930
1001 0.9945 0.9955 0.9966 0.9996 0.9933
∞ 1 1 1 1 1

Table 7: The probability of suffering the reversal bias: m = 3 and k = 1

n
S = M Plurality Negative
& Borda = Bloc Plurality

2 0 0 0.1429
3 0 0 0.1071
4 0 0.0238 0.0714
5 0 0 0.1190
6 0 0.0260 0.1234
7 0 0.0379 0.1061
8 0 0.0210 0.1352
9 0 0.0420 0.1379
50 0 0.0776 0.1856
51 0 0.0789 0.1859
100 0 0.0852 0.1938
101 0 0.0850 0.1942
1000 0 0.0918 0.2027
1001 0 0.0918 0.2027
∞ 0 0.0926 0.2037
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Table 8: The probability of suffering the reversal bias: m = 3 and k = 2

n
S & M

Plurality
Negative

& Borda Plurality = Bloc
2 0 0.1429 0
3 0 0.1071 0
4 0 0.0714 0.0238
5 0 0.1190 0
6 0 0.1234 0.0260
7 0 0.1061 0.0379
8 0 0.1352 0.0210
9 0 0.1379 0.0420
50 0 0.1856 0.0776
51 0 0.1859 0.0789
100 0 0.1938 0.0852
101 0 0.1942 0.0850
1000 0 0.2027 0.0918
1001 0 0.2027 0.0918
∞ 0 0.2037 0.0926

Table 9: The probability of suffering the reversal bias: m = 4 and k = 1

n S = M
Plurality Negative

Borda
= Bloc Plurality

2 0 0 0 0
3 0 0 0.0246 0
4 0 0.0328 0.0492 0
5 0 0.0215 0.0513 0
6 0.0009 0.0163 0.0426 0
7 0 0.0380 0.0548 0
8 0.0011 0.0417 0.0670 0
9 0.0003 0.0381 0.0714 0
50 0.0025 0.0790 0.1326 0
51 0.0022 0.0792 0.1333 0
100 0.0030 0.0924 0.1458 0
101 0.0031 0.0924 0.1471 0
1000 0.0042 0.1086 0.1599 0
1001 0.0044 0.1078 0.1605 0
∞ 0.0044 0.1105 0.1608 0

41



Table 10: The probability of suffering the reversal bias: m = 4 and k = 2

n S
M & Borda Plurality

& Bloc & Negative Plurality
2 0 0 0.0800
3 0 0 0.0277
4 0 0 0.0085
5 0 0 0.0254
6 0.0000 0 0.0466
7 0.0000 0 0.0325
8 0.0000 0 0.0271
9 0.0000 0 0.0374
50 0.0000 0 0.0656
51 0.0000 0 0.0653
100 0.0000 0 0.0759
101 0.0000 0 0.0750
1000 0.0000 0 0.0879
1001 0.0000 0 0.0872
∞ 0.0000 0 0.0889

Table 11: The probability of suffering the reversal bias: m = 4 and k = 3

n
S &

M Plurality
Negative

Borda Plurality = Bloc
2 0 0 0 0
3 0 0 0.0246 0
4 0 0 0.0492 0.0328
5 0 0 0.0513 0.0215
6 0 0.0009 0.0426 0.0163
7 0 0 0.0548 0.0380
8 0 0.0011 0.0670 0.0417
9 0 0.0003 0.0714 0.0381
50 0 0.0025 0.1326 0.0790
51 0 0.0022 0.1333 0.0792
100 0 0.0030 0.1458 0.0924
101 0 0.0031 0.1471 0.0924
1000 0 0.0042 0.1599 0.1086
1001 0 0.0044 0.1605 0.1078
∞ 0 0.0044 0.1608 0.1105
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Table 12: The probability of suffering the Condorcet loser paradox: m = 3 and k = 1

n
S = M Plurality Negative
& Borda = Bloc Plurality

2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0.0250
6 0 0 0
7 0 0.0160 0.0080
8 0 0 0.0100
9 0 0.0159 0.0222
50 0 0.0209 0.0245
51 0 0.0258 0.0287
100 0 0.0250 0.0276
101 0 0.0275 0.0300
1000 0 0.0291 0.0311
1001 0 0.0294 0.0313
∞ 0 0.0296 0.0315

Table 13: The probability of suffering the Condorcet loser paradox: m = 3 and k = 2

n
S & M Negative Plurality

Plurality
& Borda = Bloc

2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0.0250
6 0 0 0
7 0 0.0160 0.0080
8 0 0 0.0100
9 0 0.0159 0.0222
50 0 0.0209 0.0245
51 0 0.0258 0.0287
100 0 0.0250 0.0276
101 0 0.0275 0.0300
1000 0 0.0291 0.0311
1001 0 0.0294 0.0313
∞ 0 0.0296 0.0315
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Table 14: The probability of suffering the Condorcet loser paradox: m = 4 and k = 1

n S = M
Plurality Negative

Borda
= Bloc Plurality

2 0 0 0 0
3 0 0 0.0137 0
4 0 0 0 0
5 0 0.0078 0.0059 0
6 0.0000 0 0.0005 0
7 0 0.0081 0.0105 0
8 0.0000 0.0031 0.0052 0
9 0.0000 0.0090 0.0116 0
50 0.0002 0.0115 0.0154 0
51 0.0004 0.0165 0.0208 0
100 0.0004 0.0166 0.0194 0
101 0.0005 0.0194 0.0222 0
1000 0.0006 0.0221 0.0237 0
1001 0.0007 0.0224 0.0236 0
∞ 0.0007 0.0228 0.0240 0

Table 15: The probability of suffering the Condorcet loser paradox: m = 4 and k = 2

n S M Plurality
Negative

Bloc Borda
Plurality

2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0.0027 0.0027 0.0003 0
6 0.0000 0 0.0013 0.0013 0 0
7 0.0000 0 0.0026 0.0026 0.0005 0
8 0.0000 0 0.0003 0.0003 0 0
9 0.0000 0 0.0038 0.0038 0.0006 0
50 0.0000 0 0.0055 0.0051 0.0005 0.0000
51 0.0000 0 0.0068 0.0069 0.0012 0.0000
100 0.0000 0 0.0071 0.0070 0.0009 0.0000
101 0.0000 0 0.0078 0.0076 0.0013 0.0000
1000 0.0000 0 0.0089 0.0089 0.0014 0.0000
1001 0.0000 0 0.0090 0.0089 0.0015 0.0000
∞ 0.0000 0 0.0090 0.0090 0.0016 0.0000
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Table 16: The probability of suffering the Condorcet loser paradox: m = 4 and k = 3

n S M Plurality
Negative

Borda
Plurality = Bloc

2 0 0 0 0 0
3 0 0 0.0137 0 0
4 0 0 0 0 0
5 0 0 0.0059 0.0078 0
6 0.0000 0.0000 0.0005 0 0
7 0.0000 0 0.0105 0.0081 0
8 0.0000 0.0000 0.0052 0.0031 0
9 0.0000 0.0000 0.0116 0.0090 0
50 0.0000 0.0002 0.0160 0.0116 0.0000
51 0.0000 0.0004 0.0202 0.0162 0.0000
100 0.0000 0.0003 0.0196 0.0160 0.0000
101 0.0000 0.0005 0.0221 0.0189 0.0000
1000 0.0000 0.0007 0.0233 0.0222 0.0000
1001 0.0000 0.0007 0.0235 0.0225 0.0000
∞ 0.0000 0.0007 0.0240 0.0228 0.0000

Table 17: The probability of suffering the leaving member paradox: m = 4 and k = 2

n S M Plurality Borda
Negative

Bloc
Plurality

2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0.0021 0 0 0 0 0.0055
5 0.0011 0 0.0033 0 0 0
6 0.0038 0.0000 0.0018 0.0002 0 0.0085
7 0.0020 0.0002 0.0008 0.0006 0 0.0252
8 0.0049 0.0000 0.0082 0.0008 0 0.0081
9 0.0035 0.0006 0.0060 0.0014 0 0.0253
50 0.0201 0.0032 0.0321 0.0058 0.0137 0.0485
51 0.0205 0.0041 0.0324 0.0059 0.0154 0.0512
100 0.0262 0.0051 0.0386 0.0073 0.0199 0.0612
101 0.0267 0.0060 0.0399 0.0076 0.0193 0.0605
1000 0.0338 0.0076 0.0480 0.0090 0.0278 0.0738
1001 0.0344 0.0082 0.0485 0.0090 0.0286 0.0756
∞ 0.0350 0.0084 0.0485 0.0094 0.0286 0.0757
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Table 18: The probability of resolute-agreement between S and M

n
m = 3 m = 4

k = 1 k = 2 k = 1 k = 2 k = 3
2 1 0.1429 1 0.0800 0.0400
3 1 0.3214 1 0.1846 0.2615
4 1 0.2857 1 0.1593 0.1730
5 1 0.4286 1 0.2794 0.3206
6 1 0.3766 1 0.1806 0.2305
7 1 0.4848 1 0.2840 0.3502
8 1 0.4336 1 0.2197 0.2766
9 1 0.5215 1 0.3146 0.3749
50 1 0.6346 1 0.4908 0.4900
51 1 0.6524 1 0.5168 0.5193
100 1 0.6603 1 0.5442 0.5355
101 1 0.6694 1 0.5603 0.5517
1000 1 0.6847 1 0.5983 0.5807
1001 1 0.6856 1 0.6045 0.5832
∞ 1 0.6875 1 0.6074 0.5866

Table 19: The probability of resolute-agreement between S and the Borda csr

n
m = 3 m = 4

k = 1 k = 2 k = 1 k = 2 k = 3
2 0.4286 0.4286 0.2800 0.3600 0.2400
3 0.8571 0.3214 0.7631 0.2123 0.3077
4 0.6190 0.5238 0.4561 0.4075 0.3651
5 0.8333 0.4762 0.7287 0.3509 0.4120
6 0.6883 0.5762 0.4793 0.4147 0.4362
7 0.8409 0.5530 0.6944 0.3749 0.4607
8 0.7273 0.6107 0.5286 0.4323 0.4789
9 0.8452 0.5964 0.6999 0.4198 0.4937
50 0.8624 0.7528 0.7523 0.6344 0.6526
51 0.8812 0.7522 0.7861 0.6348 0.6554
100 0.8787 0.7716 0.7908 0.6706 0.6866
101 0.8880 0.7714 0.8055 0.6753 0.6887
1000 0.8941 0.7896 0.8253 0.7118 0.7199
1001 0.8950 0.7896 0.8245 0.7146 0.7228
∞ 0.8958 0.7917 0.8272 0.7168 0.7262
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Table 20: The probability of resolute-agreement between M and the Borda csr

n
m = 3 m = 4

k = 1 & k = 2 k = 1 k = 2 k = 3
2 0.4286 0.2800 0.1333 0.2800
3 0.8571 0.7631 0.4800 0.7631
4 0.6190 0.4561 0.2525 0.4561
5 0.8333 0.7287 0.4453 0.7287
6 0.6883 0.4793 0.3835 0.4756
7 0.8409 0.6944 0.6009 0.6944
8 0.7273 0.5286 0.4333 0.5266
9 0.8452 0.6999 0.6073 0.7004
50 0.8624 0.7523 0.7031 0.7500
51 0.8812 0.7861 0.7337 0.7858
100 0.8787 0.7908 0.7459 0.7886
101 0.8880 0.8055 0.7663 0.8057
1000 0.8941 0.8253 0.7865 0.8237
1001 0.8950 0.8245 0.7909 0.8256
∞ 0.8958 0.8272 0.7945 0.8288
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