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Abstract
We prove a new general differential identity and an associated integral identity, which
entails a pair of solutions of the Poisson equation with constant source term. This
generalizes a formula that the first and third authors previously proved and used to
obtain quantitative estimates of spherical symmetry for the Serrin overdetermined
boundary value problem. As an application, we prove a quantitative symmetry result
for the reverse Serrin problem, which we introduce for the first time in this paper.
In passing, we obtain a rigidity result for solutions of the aforementioned Poisson
equation subject to a constant Neumann condition.
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1 Introduction

Let � be a bounded domain in the Euclidean space R
N , N ≥ 2, with sufficiently

regular boundary �. We consider solutions of the Poisson equation:

�u = N in �. (1.1)

In [19, 20], the first and third author of this paper stated and then proved the following
integral identity:

∫
�

(−u)

{
|∇2u|2 − (�u)2

N

}
dx = 1

2

∫
�

(
u2ν − R2

)
(uν − qν) dSx . (1.2)

Here, u is a solution of (1.1) such that

u = 0 on � (1.3)

and q = qz is a quadratic polynomial of the form

qz(x) = 1

2
|x − z|2 + a for x ∈ R

N , (1.4)

for some z ∈ R
N and a ∈ R. Moreover, ν is the exterior unit normal on � and the

constant R has the value

R = N |�|
|�| . (1.5)

Also, notice that it is easy to see that

|∇2u|2 − (�u)2

N
= �P,

when we set:

P = 1

2
|∇u|2 − u.

This is a standard P-function for (1.1).
The function�P is important. It is non-negative, by theCauchy-Schwarz inequality

and vanishes if and only if u is a quadratic polynomial as in (1.4). Thus, it gives
a quadratic-radiality test for u. By this important feature, (1.2) yields the Serrin
Symmetry Theorem (see [30] for the celebrated proof by the method of moving planes
and [31] for the first proof based on integral identities). This asserts that, if the solution
u of (1.1) and (1.3) has constant normal derivative uν on �, then � must be a ball.
This is now easily seen from (1.2), since it turns out that the constant value of uν on �

must equal R, by the divergence theorem. Thus, (1.2) gives that �P ≡ 0 (and hence
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radial symmetry), being as −u > 0 on �, by the strong maximum principle. The use
of the volume integral in (1.2) to test the radiality of u was first noticed in [27].

Besides giving rigidity, (1.2) is even more important, because it allows to construct
sharp quantitative estimates on how the relevant domain � deviates from being a
ball (in the Hausdorff topology of domains) in terms of some norm of the deviation
of uν from a constant. This theme was inaugurated in [1], by using a quantitative
version of the method of moving planes. There, a quantitative symmetry estimate is
obtained in terms of a logarithmic profile of a C1(�)-norm of the aforementioned
deviation. It is worth noticing that this approach also works for positive solutions of
quite general semilinear Poisson equations. That strategy was improved in [10] thus
obtaining a quantitative symmetry estimate in terms of a polynomial profile of the
Lipschitz seminorm of uν . (See also [6–8] for related research and [5, 11, 12] for
recent generalizations to the fractional setting.)

An approach based on a quantitative version of the arguments contained in [31]
was initiated in [3]. The method only works for the Poisson equation (1.1). However,
the measure of the relevant deviation of uν from a constant is greatly relaxed by using
a Lebesgue norm on �. (We refer the interested reader to [18, 23, 29] for a survey on
the several stability results available in the literature; see also [9, 13] for related results
in different settings.)

Identity (1.2) was used by the first and third author to obtain optimal (for low
dimension) and allegedly1optimal (for large dimension) quantitative bounds. This
was the theme of a series of papers [20, 21, 23] culminating with the proof of the
inequality

ρe − ρi ≤ cψ(‖uν − R‖2,�). (1.6)

(See also [24, 26, 28] for recent extensions to mixed boundary value problems.) In
(1.6), we mean that

ρe = max
x∈�

|x − z|, ρi = min
x∈�

|x − z|, (1.7)

for some point z ∈ �. Hence, ρi and ρe are the radii of the largest ball contained in �

and the smallest ball containing �, both centered at z.2

The profile ψ : (0,∞) → (0,∞) changes with the dimension. In fact, by [21]
(and the improvement provided by [23] in the case N = 3), we have that

ψ(t) =

⎧⎪⎨
⎪⎩
t if N = 2,

t max
[
log (1/t) , 1

]
if N = 3,

t2/(N−1) if N ≥ 4,

(1.8)

for t > 0. The constant c in (1.6) only depends on the dimension N , the diameter
d� of �, and the radii ri and re of the uniform interior and exterior sphere conditions

1 Here, we mean that we conjecture that the bounds obtained in [23] are indeed optimal.
2 In [23], it is also shown that, besides ρe − ρi , the L2-deviation of the Gauss map of � from that of a
sphere can be estimated by the same profile ψ .
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of �, as defined in Sect. 2. (We recall that those conditions are equivalent to the C1,1

regularity of � as shown in [2, Corollary 3.14].) In [23] improvements of the profile
are also provided for N ≥ 4. In particular, if � is of class C2,α , then [23, Theorem
4.4] ensures that (1.6) holds true with

ψ(t) = t4/(N+1) for N ≥ 4, (1.9)

provided c depends on the C2,α-regularity of �, instead of its C1,1-regularity.
In this paper, we derive an integral identity, which generalizes (1.2). It simply

involves any two solutions u and v of class C2(�) of (1.1), and reads as:

∫
�

(u − u)�P dx +
∫

�

〈(I − ∇2v)∇u,∇u〉 dx

=
∫

�

(u − u) 〈∇2u ∇u, ν〉 dSx + 1

2

∫
�

|∇u|2(uν + vν) dSx

−
∫

�

〈∇v,∇u〉 uν dSx −
∫

�

(u − u) uν dSx + N
∫

�

(u − u)(uν − vν) dSx .

(1.10)

The proof is a simple application of the divergence theorem to an appropriate
differential identity (see Theorem 3.1 for details).

In (1.10), we mean that

u = max
�

u = max
�

u,

so that u − u > 0 in �, by the strong maximum principle. Of course, if we require
that u satisfies (1.3) or, more generally,

u = u0 on �, (1.11)

for some u0 ∈ R, (1.10) will simply return (1.2) (in the latter case with −u replaced
by u − u = u0 − u).

The significant generality of (1.10) opens the path to its application to old and new
rigidity results for solutions of the Poisson equation (1.1). In this paper, we shall test
the effectiveness of (1.10) by analysing the stability of what we shall call the reverse
Serrin problem, as opposed to the classical Serrin problem. The former consists in
considering a solution of (1.1) subject to the Neumann condition

uν = R on �, (1.12)

and then imposing that u also satisfies (1.11).
Of course, the rigidity part of this problem gives the same (spherical) solution of

the classical Serrin problem. The stability part is however not explored.
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We shall see in Sect. 6 that one can derive stability estimates for the reverse Serrin
problem by exploiting those already obtained for the classical Serrin problem. How-
ever, this procedure leads to estimates which require a strong measure of the deviation
of u from being constant on �. In fact, we need to use the norm ‖u − u‖C1,α(�), as
shown in Theorem 6.2.

Instead, the full power of (1.10) (in place of (1.2)) allows to weaken such a stringent
deviation. In fact, in the two stability results we shall describe next, the deviation of
the function u from being a constant on � will be measured in terms of its oscillation,

osc
�

u = max
�

u − min
�

u,

and some suitable norm of its tangential gradient ∇�u (see Sect. 2 for its definition).
Our first stability result reads as follows.

Theorem 1.1 (The reverse Serrin problem with uniform deviation) Let � ⊂ R
N ,

N ≥ 2, be a bounded domain with boundary � of class C2.
Suppose u ∈ C2(�) is a solution of (1.1), (1.12) and let z be any minimum point

of u on �. Then it holds that

ρe − ρi ≤ cψ

(
osc
�

u + ‖∇�u‖∞,�

)
,

where ψ is given in (1.8). The constant c > 0 depends on N , d�, ri , and re.

We singled out this theorem since it is relatively easy to obtain from our new
identity. Moreover, the dependence of the constant c on the mentioned parameters can
be written explicitly.

In the next result, we show how the deviation of u from being a constant can be
further weakened.

Theorem 1.2 (The reverse Serrin problem with weak deviation) Let � ⊂ R
N , N ≥ 2,

be a bounded domain with boundary � of class C2,α , with 0 < α < 1.
Suppose u ∈ C2(�) is a solution of (1.1), (1.12) and let z be any minimum point

of u on �. Then it holds that

ρe − ρi ≤ cψ

(
osc
�

u + ‖∇�u‖2,�
)

,

where ψ is given in (1.8). The constant c > 0 depends on N , d�, ri , and re.
Moreover, for N ≥ 4 the profile ψ can be improved to (1.9). In this case, the

dependence of c on ri and re must be replaced with that on the C2,α-regularity of �.

We shall now describe the key points of the proofs of Theorems 1.1 and 1.2 and
highlight the differences with the corresponding results in classical Serrin problem.

The first step is to rewrite (1.10) conveniently, when u also satisfies (1.12). In fact,
in this case we obtain the following identity:
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∫
�

(u − u) |∇2h|2 dx = 1

2

∫
�

|∇�u|2hν dSx

+
∫

�

(u − u)
[
(N − 1) RH − N

]
hν dSx −

∫
�

(u − u) 〈(∇ν)∇�u,∇�u〉 dSx .
(1.13)

Here, h = q − u, where q is given in (1.4). Also, H is the mean curvature of �

and ∇ν is the Jacobian of a suitable extension to a neighborhood of � of the unit
normal vector field ν on �. Since up to suitable rotations ∇ν depends on the principal
curvatures of �, we realize that each surface integral at the right-hand side of (1.13)
contains a quantity which is locally defined on � and can be made small in terms of
the relevant deviations used in Theorems 1.1 and 1.2.

In order to obtain the new version (1.13) from (1.10), terms like uν or uνν should be
replaced in (1.10). The latter term pops up when we consider the first surface integral
in (1.10). In order to see that, we extend the vector field ν to a tubular neighborhood
of � and observe that ∇(uν) = 〈∇(uν), ν〉 ν, since � is a level surface of uν . This
procedure leads to discover that

〈
(∇2u)∇u, ν

〉 = −〈
(∇ν)∇�u,∇�u

〉 + uν uνν on �,

since we also know that (∇ν) ν = 0 on � (see Sect. 2 for details).
Furthermore, the term uνν is treated by using the well-known formula for the

Laplace operator of a smooth function v on a closed surface 	:

�v = vνν + �	v + (N − 1) H vν.

Here, �	 is the Laplace-Beltrami operator on 	 and H is the mean curvature of 	.
(All these notations and computations are collected in Sect. 2.) Thus, since u satisfies
(1.1) and (1.12), we obtain that

uν uνν = N R − (N − 1) R2H − R ��u on �.

Finally, if we want obtain the desired dependence on ∇�u, we must use integration
by parts on �, i.e. apply the formula:

∫
�

(u − u)��u dSx =
∫

�

|∇�u|2dSx .

This last step and the pointwise analysis on� are peculiar of the reverse Serrin problem
and were not needed in the classical counterpart.

Since we assume that uν = R on � the remaining integrals in (1.10) are then easily
treatable.

Now,we focus our attention on the left-hand side of (1.10). Notice that, if we choose
v = q, with q as in (1.4), the second volume integral in (1.10) disappears (see also
Theorem 3.2). Hence, the left-hand side of (1.13) is easily obtained by observing that
|∇2h|2 = �P . The harmonic function h was also used in the treatment of (1.6) and
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can be viewed as a deviation of u from q, thus measuring how far the solution (and
the domain) is from a spherical configuration.

Therefore, in order to obtain the estimate in Theorem 1.2, the plan is to show that
the volume integral in (1.13) is small provided the right-hand side of (1.13) becomes
small in terms of some deviation of u on � from a constant.

Notice that if that integral is zero, then |∇2h| = 0, being as u − u > 0 by the
strong maximum principle. Thus, h is an affine function. As a consequence, we obtain
in passing a fairly general rigidity result, which holds in the case of fairly general
domains.

Theorem 1.3 Let � ⊂ R
N , N ≥ 2, be a bounded domain with boundary � of class

C2. Let u ∈ C2(�) be a solution of (1.1), (1.12).
If the right-hand side of (1.13) is non-positive, then h is affine, and hence u is a

quadratic polynomial. As a result, � is a ball.

A version of this theorem for the solution of (1.1), (1.3) was proved in [20]. Of
course, the condition on the sign of the right-hand side of (1.13) in Theorem 1.3 is
satisfied if u is also constant on �.

Finally, in order to treat the stability issue, one observes that the affine function h
in Theorem 1.3 can be further normalized to a constant by an appropriate choice of
the center z of the paraboloid q. With such a choice, if the volume integral (1.13) is
small, then h is close to a constant. Heuristically, this means that the oscillation of h
on � can be controlled by a weighted norm of |∇2h|. Now, since we have that

1

2
(ρ2

e − ρ2
i ) = osc

�
q ≤ osc

�
h + osc

�
u,

the desired estimate for ρe −ρi can then be derived from one of the oscillation of h on
� in terms of the aforementioned weighted integral, which can be derived from some
inequalities proved in [23].

The structure of this paper is as follows. In Sect. 2, we collect some preliminary
formulas and results for functions defined on surfaces. Section3 contains our general
identity and its corollaries, together with rigidity results related to the reverse Serrin
problem, including the proof of Theorem 1.3. In Sect. 4, we gather some estimates for
the Neumann problem, which are instrumental to trace the dependence of the constant
c of Theorem 1.2 on the relevant parameters. The proofs of Theorems 1.1 and 1.2 are
contained in Sect. 5. Section6 contains the alternative stability result for the Serrin
reverse problem (Theorem 6.2) obtained via existing results for the classical Serrin
problem.

2 Notations and Preliminary Formulas

Let � ⊂ R
N be a bounded domain with boundary � of class C2 and consider a

function v ∈ C2(�).
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We use the following decomposition for the gradient ∇v of v on �:

∇v = vν ν + ∇�v. (2.1)

Here, ν denotes the exterior unit normal vector field to �. This decomposition defines
what we shall call the tangential gradient ∇�v of v on�. It is clear that, ifw is another
function in C2(�), then

〈∇v,∇w〉 = vν wν + 〈∇�v,∇�w〉.

We recall the well-known formula (see [15]):

�v = vνν + ��v + (N − 1) H vν on �. (2.2)

Here, �� is the Laplace-Beltrami operator on � and H denotes the mean curvature
of � defined by

H = 1

N − 1

N−1∑
j=1

κ j ,

where κ1, . . . , κN−1 are the principal curvatures of � with respect to the interior
normal.

We also recall from [15] the following formula of integration by parts on �, which
holds for any v,w ∈ C2(�):

∫
�

〈∇�v,∇�w〉 dSx = −
∫

�

v ��w dSx . (2.3)

In particular, we have that
∫
�

��w dSx = 0.
We can always extend the vector field ν smoothly to a tubular neighborhood of �

in �. For instance, we can set ν = −η ∇δ� , where δ� is the distance function, defined
by

δ�(x) = dist(x, �) for x ∈ �,

and η is a cut-off function which equals 1 in a neighborhood of �. In fact, we know
from [16] that there is neighborhood U of � in � such that δ� ∈ C2(U) and we have
that

|∇δ�| = 1 in U.

Hence, η is chosen as a smooth function with support contained in the set in U and
such that η ≡ 1 near �.
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At any point in �, we can choose coordinates (see, e.g., [14, Appendix 14.6]) so
that

∇ν = −∇2δ� =

⎡
⎢⎢⎢⎣

κ1 · · · 0 0
...

. . .
...

...

0 · · · κN−1 0
0 · · · 0 0

⎤
⎥⎥⎥⎦ .

Throughout the rest of the paper, unless explicitly indicated,� is a bounded domain
inRN , N ≥ 2, with boundary � of class C2. Under this assumption,� surely satisfies
the uniform interior and exterior sphere conditions, whose respective radii will be
denoted by ri and re. Namely, there exists ri > 0 (resp. re > 0) such that for each
p ∈ � it holds that B ∩ � = {p} for some ball B ⊂ � (resp. B ⊂ R

N \ �) of radius
ri > 0 (resp. re > 0). As already mentioned, the two properties are equivalent to the
C1,1-regularity of �, as shown in [2]. We denote by d� the diameter of �.

The following lemma will be useful.

Lemma 2.1 Let u ∈ C2(�) be a solution of (1.1), and c ∈ R. It holds that

(i) if u = c on �, then

〈∇2u ∇u, ν
〉 = uν [N − (N − 1) H uν] on �;

(ii) if uν = c on �, then

〈∇2u ∇u, ν
〉 = −〈∇ν ∇�u,∇�u〉 + uν [N − ��u − (N − 1) H uν] on �.

Proof (i) Since � is a level surface for u, by (2.1) we infer that ∇u = uν ν, and hence

〈∇2u ∇u, ν
〉 = uν uνν .

Moreover, (2.2) with v = u gives that

uνν = N − ��u − (N − 1) H uν on �. (2.4)

Since ��u = 0 on �, the desired identity ensues at once.
(ii) We proceed as already described by extending ν to a neighborhood U. The

ensuing computations are generally performed in U, and hence evaluated on �.
Since � is a level surface of 〈∇u, ν〉, we have that

∇〈∇u, ν〉 = 〈∇〈∇u, ν〉, ν〉 ν

on �. Next, we compute that

∇〈∇u, ν〉 = (∇2u) ν + ∇ν ∇u

= (∇2u) ν + uν(∇ν) ν + ∇ν ∇�u = (∇2u) ν + ∇ν ∇�u.
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Here, we have used that (∇ν) ν = 0 in U, since ν is unitary.
Thus, we infer that

(∇2u) ν + (∇ν)∇�u

= [
uνν + 〈(∇ν)∇�u, ν〉]ν = [

uνν + 〈(∇ν) ν,∇�u〉]ν = uνν ν.

Hence, multiplying by ∇u gives that

〈
(∇2u)∇u, ν

〉
= −〈

(∇ν)∇�u,∇u
〉 + uν uνν = −〈

(∇ν)∇�u,∇�u
〉 + uν uνν .

Here, we have again used (2.1) and (∇ν) ν = 0. Therefore, the desired identity follows
by (2.4). ��
Remark 2.2 From the aforementioned properties of ∇ν, we easily infer that

κ |∇�u|2 ≤ 〈
(∇ν)∇�u,∇�u

〉 ≤ κ |∇�u|2 on �,

where

κ = min
[
κ1, . . . , κN−1

]
and κ = max

[
κ1, . . . , κN−1

]

at each point of �. We also recall that

− 1

re
≤ κ ≤ κ ≤ 1

ri
on �,

where ri and re are the radii of the uniform interior and exterior sphere conditions.

3 Integral Identities and Rigidity Results

In this section, we shall derive the identities (1.10) and (1.13). We will also prove
Theorem 1.3.

Theorem 3.1 (General identity) Suppose � ⊂ R
N , N ≥ 2, is a bounded domain with

boundary � of class C2. Let u, v ∈ C2(�) be solutions of (1.1).
Set

u = max
�

u = max
�

u,

and

P = 1

2
|∇u|2 + (u − u) on �.
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Then the identity (1.10) holds, that is:

∫
�

(u − u)�P dx +
∫

�

〈(I − ∇2v)∇u,∇u〉 dx

=
∫

�

(u − u) 〈∇2u ∇u, ν〉 dSx + 1

2

∫
�

|∇u|2(uν + vν) dSx

−
∫

�

〈∇v,∇u〉 uν dSx −
∫

�

(u − u) uν dSx + N
∫

�

(u − u)(uν − vν) dSx .

Proof The proof proceeds by direct computations and an application of the divergence
theorem.By simply taking derivatives and by straightforward algebraicmanipulations,
we first infer that the following key differential identity holds:

(u − u)�P + 〈(I − ∇2v)∇u,∇u〉
= div

{
P ∇u + (u − u)∇P + 1

2
|∇u|2 ∇v − 〈∇v,∇u〉 ∇u

}

+ div {(N − 1) (u − u)∇u − N (u − u)∇v} .

Thus, an application of the divergence theorem yields:

∫
�

(u − u)�P dx +
∫

�

〈(I − ∇2v)∇u,∇u〉 dx

=
∫

�

{
Puν + (u − u) Pν + 1

2
|∇u|2 vν − 〈∇v,∇u〉uν

}
dSx

+
∫

�

{
(N − 1) (u − u)uν − N (u − u) vν

}
dSx .

Hence, we infer that

∫
�

(u − u)�P dx +
∫

�

〈(I − ∇2v)∇u,∇u〉 dx =
∫

�

{1
2

|∇u|2 + (u − u)
}
uν dSx

+
∫

�

{
〈∇2u ∇u, ν〉 − uν

}
(u − u) dSx +

∫
�

{1
2

|∇u|2 vν − 〈∇v,∇u〉 uν

}
dSx

+
∫

�

{
(N − 1) (u − u)uν − N (u − u) vν

}
dSx .

Identity (1.10) then ensues by rearranging the terms. ��

We now present a corollary of the previous result, when v is a quadratic solution q
of (1.1) as defined in (1.4).

Corollary 3.2 (Mother identity for the quadratic case) Suppose � ⊂ R
N , N ≥ 2, is a

bounded domain with boundary � of class C2.
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Let u, u, and P be as in Theorem 3.1 and let q be a quadratic polynomial of the
form (1.4). Then, the following identity holds:

∫
�

(u − u)�P dx

= 1

2

∫
�

|∇u|2(uν + qν

)
dSx −

∫
�

〈∇q,∇u〉 uν dSx

+
∫

�

(u − u) 〈∇2u ∇u, ν〉 dSx +
∫

�

(u − u)
[
(N − 1) uν − N qν

]
dSx .

(3.1)

An alternative formula is:

∫
�

(u − u)�P dx = 1

2

∫
�

u2ν
(
uν − qν

)
dSx

+1

2

∫
�

|∇�u|2(uν + qν

)
dSx −

∫
�

〈∇�q,∇�u〉 uν dSx

+
∫

�

(u − u) 〈∇2u ∇u, ν〉 dSx +
∫

�

(u − u)
[
(N − 1) uν − N qν

]
dSx . (3.2)

Proof We apply (1.10) with v = q, since q is clearly a solution of (1.1) on the whole
R

N . We have that ∇2q = I . As a result, the second volume integral at the left-hand
side of (1.10) vanishes, and hence (3.1) ensues. Formula (3.2) then simply follows by
applying (2.1) and rearranging some terms. ��

Next, we consider the case in which uν is constant on � with no constraint on the
values of u on �.

Corollary 3.3 (Constant Neumann condition) Suppose � ⊂ R
N , N ≥ 2, is a bounded

domain with boundary � of class C2.
Let q be as in (1.4) and set h = q − u, where u ∈ C2(�) is a solution of (1.1).

Further, suppose that u satisfies (1.12). Then the identity (1.13) holds, that is:

∫
�

(u − u) |∇2h|2 dx = 1

2

∫
�

|∇�u|2hν dSx

+
∫

�

(u − u)
[
(N − 1) RH − N

]
hν dSx −

∫
�

(u − u) 〈(∇ν)∇�u,∇�u〉 dSx .

Proof We work on (3.2). As already observed, we compute that �P = |∇2h|2. Next,
we compute the surface integrals at the right-hand side. We begin with

∫
�

u2ν
(
uν − qν

)
dSx = R2

∫
�

(
uν − qν

)
dSx = 0,
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thanks to the divergence theorem. Next, we compute that

1

2

∫
�

|∇�u|2(uν + qν

)
dSx −

∫
�

〈∇�q,∇�u〉 uν dSx

= 1

2

∫
�

|∇�u|2(R + qν

)
dSx − R

∫
�

(u − u)��q dSx .

Here, we used (1.12) and (2.3), in the second integral.
Moreover, we infer that

∫
�

(u − u)��q dSx = −(N − 1)
∫

�

(u − u) H qν dSx + (N − 1)
∫

�

(u − u) dSx .

This follows from the fact that taking v = q in (2.2) gives:

��q = (N − 1) (1 − H qν

)
on �.

Now, we apply item (ii) of Lemma 2.1 and get:

∫
�

(u − u) 〈∇2u ∇u, ν〉 dSx = −
∫

�

(u − u) 〈(∇ν)∇�u,∇�u〉 dSx

+R
∫

�

(u − u) [N − ��u − (N − 1) RH ] dSx .

Moreover, thanks to (2.3) we compute that

∫
�

(u − u)��u dSx =
∫

�

|∇�u|2dSx .

Thus, we can write that

∫
�

(u − u) 〈∇2u ∇u, ν〉 dSx = −
∫

�

(u − u) 〈(∇ν)∇�u,∇�u〉 dSx

−(N − 1) R2
∫

�

(u − u) H dSx − R
∫

�

|∇�u|2dSx + N R
∫

�

(u − u) dSx .

Summing up all these formulas then gives (1.13), after straightforward algebraic
manipulations. ��

We now present a quadratic-radial symmetry test. Its analogous for the solution of
(1.1), (1.3) essentially provides the spherical detector used in [3, 19, 20, 27, 31] (see
also [29, Lemma 1.9] for additional details). Here, we rather focus on solutions of
(1.1), (1.12). For comparison, we also provide (in item (i)) a version of its analogous
for the solution of (1.1), (1.11).

Lemma 3.4 (Radial symmetry test) Let � be a bounded domain inRN with boundary
� of class C2.
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Let u ∈ C2(�) be a solution of (1.1) satisfying either (1.11) or (1.12). If �P ≡ 0
in �, then u is a quadratic polynomial and � is a sphere of radius R given by (1.5).

Proof We know that

�P = |∇2u|2 − (�u)2

N
= |∇2u|2 − 〈∇2u, I 〉2

N
≥ 0.

Here, 〈·, ·〉 denotes the inner product in R
N2

and hence the last inequality follows by
the Cauchy-Schwarz inequality. Thus, the fact that �P ≡ 0 gives that the N 2-vectors
∇2u and I coincide in�, being as (1.1) in force. Therefore, u is a quadratic polynomial
of the form (1.4) for some z ∈ R

N and a ∈ R (see also [19, 20] and [29, Lemma 1.9]).

(i) If (1.11) holds then we have that |x − z|2 = 2 (u0 − a) for every x ∈ �. Hence, �
must be a sphere of radius

√
2 (u0 − a) andwehave that x−z = √

2 (u0 − a) ν(x).
Thus, we obtain that

2 (u0 − a) |�| =
∫

�

|x − z|2dSx

= √
2 |u0 − a|

∫
�

〈x − z, ν(x)〉 dSx = N |�|√2 |u0 − a|.

Consequently, (1.5) gives that 2 (u0 − a) = R2,

u(x) = 1

2
(|x − z|2 − R2) + u0,

and � is a sphere centered at z of radius R.
(ii) If (1.12) holds, since u is a quadratic polynomial as in (1.4), we infer that

〈x − z, ν(x)〉 = uν(x) = R for x ∈ �. (3.3)

Next, let xm and xM be points in � such that

|xm − z| = min
x∈�

|x − z| and |xM − z| = max
x∈�

|x − z|.

It is clear that xm − z and xM − z are parallel to ν(xm) and ν(xM ). Hence, (3.3) gives
that |xm − z| = |xM − z| = R, i.e. |x − z| = R for every x ∈ �. Thus, again, � must
be the sphere centered at z of radius R. ��

A consequence of item (ii) of this lemma and Corollary 3.3 is Theorem 1.3, the
general rigidity result stated in the Introduction.

Proof of Theorem 1.3 The assumption on the right-hand side of (1.13) forces the func-
tion |∇2 h|2 = �P to be identically zero, being as u − u > 0 by the strong maximum
principle. Our claim then follows from Lemma 3.4. ��
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4 Estimates for Solutions of the Neumann Problem

In this section, we derive some geometric and spectral estimates for solutions of (1.1),
(1.12), which will be useful to trace the dependence of the constant c in Theorems 1.1
and 1.2.

We begin with a geometric inequality that adapts [20, Lemma 3.1], obtained for the
solution of (1.1), (1.11).

Lemma 4.1 Let � be a bounded domain in RN . Let u ∈ C2(�) be a solution of (1.1).
Then, it holds that

u − u(x) ≥ 1

2
δ�(x)2 for every x ∈ �.

Moreover, if � is of class C1 and satisfies the uniform interior sphere condition with
radius ri , then

u − u(x) ≥ 1

2
ri δ�(x) for every x ∈ �.

Proof Let us define by f the unique solution of

� f = N in �, f = 0 on �.

Then, by comparison u − u ≥ − f in �, and the conclusion follows by [20, Lemma
3.1]. ��

We shall now derive a priori estimates on the harmonic function h = q − u and its
derivatives, in terms of geometric, spectral, and regularity parameters of the domain
�.

In what follows, we shall use the fact that a function u satisfying (1.1) and (1.12)
minimizes the functional E : W 1,2(�) → R defined by

E(v) = 1

2

∫
�

|∇v|2 dx + N
∫

�

v dx − R
∫

�

v dSx ,

for any v ∈ W 1,2(�). In the following result, ν2(�), σ2(�), denote the second (non-
trivial) Neumann and Steklov eigenvalues. Respectively, they are defined by

ν2(�) = min

{∫
�

|∇v|2dx : v ∈ W 1,2(�),

∫
�

v2dx = 1,
∫

�

v dx = 0

}
.

and

σ2(�) = min

{∫
�

|∇v|2dx : v ∈ W 1,2(�),

∫
�

v2dSx = 1,
∫

�

v dSx = 0

}
.
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Proposition 4.2 (L2 bound for oscillation) Let � be a bounded domain in R
N with

boundary� of class C2. Let u ∈ C2(�) be a solution of (1.1), (1.12) and set h = q−u,
with q given by (1.4). Then, it holds that

‖h − h�‖2,� ≤ 2 ‖R − qν‖2,�√
ν2(�) σ2(�)

. (4.1)

Here, h� denotes the mean value of h on �.

Proof Since h is harmonic in � and hν = qν − R on �, it is clear that h minimizes in
W 1,2(�) the functional defined by

W 1,2(�) � v �→ 1

2

∫
�

|∇v|2 dx −
∫

�

v (qν − R) dSx .

By taking v ≡ 1, the minimality of h then gives that

∫
�

|∇h|2 dx ≤ 2
∫

�

h (qν − R) dSx = 2
∫

�

(h − h�) (qν − R) dSx ,

where h� is the mean value of h on �. Here, we used that qν − R has a zero mean
value on �. The Cauchy-Schwarz inequality and the definition of σ2(�) then give that

∫
�

|∇h|2 dx ≤ 2 ‖qν − R‖2,�‖h − h�‖2,� ≤ 2 ‖qν − R‖2,�√
σ2(�)

‖∇h‖2,�,

and hence

‖h − h�‖22,� ≤ ν2(�)−1
∫

�

|∇h|2 dx ≤ 4 ‖qν − R‖22,�
ν2(�) σ2(�)

,

by the Poincaré inequality. Thus, (4.1) ensues. ��
Remark 4.3 Thanks to [4, Theorems 1 and 2], we have that, within the class of uni-
formly bounded and uniformly Lipschitz domains, ν2(�) and σ2(�) are bounded from
below by a positive constant independent of �.

Theorem 4.4 (Uniform bound for the derivatives of h) Set m = 1 or m = 2. Let �

be a bounded domain in R
N of class Cm,α , 0 < α < 1. Let u be a solution of (1.1),

(1.12) and set h = q − u, with q given by (1.4). Then, there exists a constant C that
depends on N, d�, and the Cm,α regularity of �, such that

‖h − h�‖m,α;� ≤ C,

were ‖ · ‖m,α;� denotes the norm in Cm,α(�).
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Proof For simplicity of notation, in this proof by the same letter c we shall denote a
generic constant, whose dependence will be specified if needed.

We have that h is harmonic in � and hν = qν − R on �. We thus can apply a
standard a priori estimate for the Neumann problem (see e.g., [17, Chapter 7]; see also
[14, Theorem 6.30] for m = 2) to obtain that

‖h‖m,α;� ≤ c

(
max

�

|h − h�| + ‖qν − R‖m−1,α;�

)
. (4.2)

Here, c depends on N ,m, α, d�, and the Cm,α regularity of �. By arguing as in [24,
Lemma 4.9] (see also [25]) we can find a constant c such that

max
�

|h − h�| = max
�

|h − h�| ≤ c

{‖h − h�‖2,�
σ N/2 + σ ‖∇h‖∞,�

}
, (4.3)

for any 0 < σ < σ0. Here, c and σ0 only depend on N , d�, and the Cm,α-regularity
of �.3

Now, if we choose σ = min{1/(2c2), σ0} (here, c is the maximum of the two
constants appearing in (4.2) and (4.3)) and we plug (4.3) into (4.2), we easily find that

‖h‖m,α;� ≤ c
(‖h − h�‖2,� + ‖qν − R‖m−1,α;�

)
,

by using the trivial inequality ‖∇h‖∞,� ≤ ‖h‖m,α;�.Here, c can be explicitly derived
in terms of σ0 and the constants in (4.2) and (4.3).

The term ‖qν − R‖m−1,α;� can be easily bounded by a constant depending on the
same relevant parameters. Finally, Proposition 4.2 and Remark 4.3 ensure that the
norm ‖h − h�‖2,� can be bounded by a constant depending on the same relevant
parameters. The desired conclusion then ensues. ��

5 Quantitative Symmetry Results

In this section, based on the identity (1.13), we shall provide our stability estimates
for the radial symmetry in the reverse Serrin overdetermined problem (Theorems 1.1
and 1.2). To this aim, for a point z ∈ �, we recall the definition (1.7):

ρi = min
x∈�

|x − z| and ρe = max
x∈�

|x − z|.

It is clear that ρi is the radius of the largest ball contained in � and ρe is the radius of
the smallest ball that contains �, both balls centered at z.

Thus, for a solution u of (1.1), (1.12), we want to bound the difference ρe − ρi in
terms of the sum of the oscillation of u on � and a suitable Lebegue norm of |∇�u|
on �.

3 This argument gives a constant depending on N and the parameters related to a uniform interior cone
condition. This condition is equivalent to a Lipschitz-type regularity of � (see [24] for details). Of course,
the relevant parameters can be bounded in terms of the C1,α regularity of �.
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Remark 5.1 Let u be a solution of (1.1), (1.12). A convenient choice for the point z
in (1.7) is any minimum point of u in �. In fact, such a point must fall in �, since
otherwise uν ≤ 0 at that point, contrary to (1.12).

We shall first adapt to our case some estimates on the oscillation of a harmonic
function, which were derived in [23].

5.1 Interpolating Estimates for Sobolev Functions

We now recall three key inequalities for the oscillation of a harmonic function. These
descend from some interpolation inequalities proved in [23, Theorem 4.1] (see also
[24, Appendix]). Here, we present these inequalities for C2 domains, as it is enough
for the purposes of the present paper. Nevertheless, the original theorem was stated
and proved for a bounded domain satisfying the (θ, a)-uniform cone condition (see
[24, Appendix] for a definition).

Lemma 5.2 Let � ⊂ R
N , N ≥ 2, be a bounded domain with boundary � of class C2,

and let u be solution of (1.1), (1.12).
Let h = qz − u, where qz is that in (1.4) and z is any global minimum point of u

in �. Then, we have that

osc
�

h ≤ c

⎧⎪⎪⎨
⎪⎪⎩

‖√δ� ∇2h‖2,� if N = 2,

‖√δ� ∇2h‖2,� max
[
log

(
e‖∇h‖∞,�

‖√δ� ∇2h‖2,�
)

, 1
]

if N = 3,

‖∇h‖
N−3
N−1
∞,� ‖√δ� ∇2h‖

2
N−1
2,� if N ≥ 4,

where c is an explicit constant that only depends on N , d�, ri , and a lower bound for
δ�(z).

Proof By definition of h and the choice of z, we have that h is harmonic and that
∇h(z) = 0 at the point z ∈ �.

The desired result is essentially contained in [23, Theorem 4.1]. To be precise, that
theorem gives an estimate for the difference ρe − ρi , which is there related to the
oscillation of the particular harmonic function v = q − f , where f is the solution of
the Dirichlet problem (1.1), (1.3) and q is given in (1.4). Indeed there holds that

max
�

v − min
�

v = 1

2
(ρ2

e − ρ2
i )

and

ρ2
e − ρ2

i ≥
( |�|

|B|
) 1

N

(ρe − ρi ). (5.1)

Now, if u is a solution of the Neumann problem (1.1), (1.12), instead, u is no
longer constant on �. Nevertheless, a careful inspection reveals that the inequalities
contained in [23, Theorem 4.1] concern the oscillation on � of any harmonic function
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in �, whose gradient vanishes at a given point z in �, and that the constant c only
depends on N , d�, ri , and a lower bound of the distance δ�(z) of z to �. Thus, the
desired result follows. ��
Remark 5.3 By adapting the arguments of [21, Remark 2.9] (see also [22] for gener-
alizations) to the present setting, we can choose x ∈ � such that δ�(x) = ri , y ∈ �

such that |y − z| = δ�(z) and, recalling Lemma 4.1, compute that

r2i
2

≤ u − u(x) ≤ u + max
�

(−u) = u − u(z)

= u − u(y) + u(y) − u(z) ≤ osc
�

u + ‖∇u‖∞,� δ�(z),

from which we get that

δ�(z) ≥
r2i − 2 osc

�
u

2‖∇u‖∞,�

.

In the following lemma, we use the tangential norm defined by

‖u − u‖21,2,τ,� = ‖u − u‖22,� + ‖∇�u‖22,�.

Lemma 5.4 Let � ⊂ R
N , N ≥ 2, be a bounded domain with boundary � of class C2,

and let u be a solution of (1.1), (1.12).
Let h = q − u, where q is that in (1.4) and z is any global minimum point of u in

�. Then, we have that

∫
�

(u − u) |∇2h|2 dx ≤ c
[
1 + osc

�
u
]
‖u − u‖21,2,τ,�,

where c is an explicit constant that only depends on N , d�, ri , re, and a lower bound
for δ�(z).

Proof For simplicity of notation, in this proof by the same letter c we shall denote a
generic constant, whose dependence will be specified if needed.

We start working on the right-hand side of (1.13). By Remark 2.2 and the Holder
inequality, we see that there is a constant c, only depending on N , d�, re and ri , such
that

∫
�

(u − u) |∇2h|2 dx

≤ c

[∫
�

|∇�u|2 dSx + ‖hν‖2,�‖u − u‖2,� + ‖u − u‖∞,�

∫
�

|∇�u|2 dSx
]
.

Here, we have used the fact that |hν | ≤ d� + R on �.
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Next, let us define by f the unique solution of

� f = N in �, f = 0 on �.

By [21, Lemma 2.5] applied with v = h, we obtain that

∫
�

h2ν dSx ≤
∫

�

|∇h|2dSx ≤ c
∫

�

(− f ) |∇2h|2dx

where c is an explicit constant that only depends on N , d�, ri , and a lower bound for
δ�(z). Since, by comparison, u − u ≥ − f on �, we then infer that

∫
�

h2ν dSx ≤ c
∫

�

(u − u) |∇2h|2 dx .

Hence, this formula and the trivial inequalities

‖u − u‖∞,� ≤ osc
�

u, ‖u − u‖2,� ≤ ‖u − u‖1,2,τ,�, ‖∇�u‖2,� ≤ ‖u − u‖1,2,τ,�

give that

∫
�

(u − u) |∇2h|2 dx

≤ c ‖u − u‖1,2,τ,�
[(

1 + osc
�

u
)
‖u − u‖1,2,τ,� +

√∫
�

(u − u) |∇2h|2 dx
]

.

This inequality easily gives the desired bound. ��
We are now in position to prove our quantitative estimates for the radial symmetry

in the reverse Serrin problem.

Proof of Theorem 1.1 Set

σ = min

{
1,

r2i
4

}
. (5.2)

We first notice that if

osc
�

u + ‖∇�u‖∞,� ≥ σ,

then the conclusion trivially holds true. In fact, by recalling the definition ofψ in (1.8),
we easily get that

ρe − ρi ≤ d� ≤
{

d�

σ
ψ

(
osc� u + ‖∇�u‖∞,�

)
if N = 2, 3,

d�

σ 2/(N−1) ψ
(
osc� u + ‖∇�u‖∞,�

)
if N ≥ 4.
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Thus, it only remains to prove the result when

osc
�

u + ‖∇�u‖∞,� < σ.

Under this assumption and recalling (1.1) and (1.12), it is clear that

‖∇u‖∞,� = ‖∇u‖∞,� = ‖∇�u + uν ν‖∞,� < σ + R ≤ σ + d�. (5.3)

The last inequality follows from (1.5) and by putting together the isoperimetric
inequality |�| ≥ N |B|1/N |�|(N−1)/N and the trivial bound |�| ≤ |B| dN

� .
As usual, we consider the harmonic function h = q − u and choose the minimum

point of q to coincide with the point z in our assumptions. Since z is a minimum point
for both q and u, we have that ∇h(z) = 0.

Thanks to Lemma 4.1, the left-hand side of identity (1.13) can be estimated from
below as

1

2
ri

∫
�

δ� |∇2h|2 dx ≤
∫

�

(u − u) |∇2h|2 dx . (5.4)

Now, from (5.1) we infer that

1

2

( |�|
|B|

) 1
N

(ρe − ρi ) ≤ osc
�

q ≤ osc
�

h + osc
�

u. (5.5)

Combining Lemma 5.2, Lemma 5.4, (5.4), and the trivial inequality
√
a2 + b2 ≤

|a| + |b|, we infer that

osc
�

h ≤ cψ

(
osc
�

u + ‖∇�u‖∞,�

)
, (5.6)

for some explicit constant c that only depends on N , d�, re, and ri . Here, we used two
facts. Firstly, (5.3), (5.2) and the trivial bound ‖∇q‖∞,� ≤ d� give the explicit upper
bound for |∇h|:

‖∇h‖∞,� ≤ ‖∇q‖∞,� + ‖∇u‖∞,� ≤ min

{
1,

r2i
4

}
+ 2d�.

Secondly, combining Remark 5.3, (5.3), (5.2), and the current smallness assumption
on the deviation of u from being constant on �, gives the explicit lower bound for
δ�(z):

δ�(z) ≥ r2i

2

(
min

{
1,

r2i
4

}
+ d�

) .
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Finally, by the trivial inequality osc� u ≤ osc� u + ‖∇�u‖∞,� and the definition
of ψ , we easily obtain that

ψ

(
osc
�

u + ‖∇�u‖∞,�

)
+ osc

�
u ≤ Cψ

(
osc
�

u + ‖∇�u‖∞,�

)
,

with

C =
{
2 if N = 2, 3,

1 + σ (N−3)/(N−1) if N ≥ 4,

where σ is that defined in (5.2).
The conclusion easily follows by putting together the last inequality, (5.6), and

(5.5). ��
Proof of Theorem 1.2 We shall adapt the argument used in the proof of Theorem 1.1
to the setting with the current deviation.

Let σ be given by (5.2). As before, it is clear that it is enough to check the case in
which

osc
�

u + ‖∇�u‖2,� < σ.

This time, we observe that

‖∇u‖∞,� ≤ ‖∇q‖∞,� + ‖∇h‖∞,� ≤ d� + ‖∇h‖∞,�. (5.7)

An explicit bound for ‖∇h‖∞,� will be obtained at the end of the proof.
Also, as before we can use (5.4). Similarly, by proceeding as in the proof of The-

orem 1.1, with osc� u + ‖∇�u‖∞,� replaced by osc� u + ‖∇�u‖2,� , we arrive at the
inequalities

ψ

(
osc
�

u + ‖∇�u‖2,�
)

+ osc
�

u ≤ C ψ

(
osc
�

u + ‖∇�u‖2,�
)

(5.8)

and

osc
�

h ≤ cψ

(
osc
�

u + ‖∇�u‖2,�
)

. (5.9)

Here, ψ is that in (1.8), C is the same constant appearing in the proof of Theorem
1.1, and c is an explicit constant that only depends on N , d�, ri , re, a lower bound for
δ�(z), and an upper bound for ‖∇h‖∞,�.

The desired conclusionwill easily follow from (5.5), (5.9), and (5.8), after obtaining
suitable bounds for δ�(z) and ‖∇h‖∞,�.
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By putting together (5.2), Remark 5.3, (5.7), and the current smallness assumption
on the deviation of u from being constant on �, we easily get that

δ�(z) ≥ r2i
4(d� + ‖∇h‖∞,�)

.

We are thus left to obtain an upper bound for ‖∇h‖∞,�.
Thanks to Theorem 4.4 (with m = 1) and recalling [2, Corollary 3.14], ‖∇h‖∞,�

can be clearly bounded by a constant that depends on N , d�, ri , and re.
When� is of classC2,α , we can obtain an improvement of the profileψ , by arguing

as in [23, Lemma 4.2 and Corollary 4.3] (with p = 2, q = +∞). In fact, we infer that

‖∇h‖∞,� ≤ c ‖∇2h‖(N−1)/(N+1)
∞,� ‖δ1/2� ∇2h‖2/(N+1)

2,� ,

for some c depending on N , d�, ri , re. Hence, by recalling Theorem 4.4 (withm = 2),
we easily get that

‖∇h‖∞,� ≤ c ‖δ1/2� ∇2h‖2/(N+1)
2,� ,

where c depends on N , d�, and the C2,α-regularity of �.
Plugging the last inequality in Lemma 5.2 and using Lemma 5.4 and (5.4) as

before, gives (5.9) with the improved profile shown in (1.9). Clearly, for this profile,
(5.8) remains true with C given by

C =
{
2 if N = 2, 3,

1 + σ (N−3)/(N+1) if N ≥ 4.

Thus, combining (5.5), (5.9), and (5.8) gives the improved stability for N ≥ 4. ��

6 Stability Via the Classical Serrin Problem

Wenowpresent a quantitative bound for the reverseSerrin problem that can be obtained
exploiting the existing stability results for the classical Serrin problem. The proof is
based on a simple trick. As discussed in the Introduction, we get a poorer estimate
than those obtained in Theorems 1.1 and 1.2. In fact, the main drawback is that the
deviations osc� u+‖∇�u‖∞,� and osc� u+‖∇�u‖2,� used in Theorems 1.1 and 1.2
must be replaced by the much more stringent deviation ‖u − u‖C1,α(�).

We start with an estimate for an auxiliary function.

Proposition 6.1 Let � ⊂ R
N , N ≥ 2, be a bounded domain with boundary � of class

C1,α , 0 < α < 1. Let u be a solution of (1.1), (1.12).
Set f = u − w, where w is the solution of the Dirichlet problem

�w = 0 in �, w = u on �.
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Then, we have that

‖R − fν‖C0,α(�) ≤ c ‖u − u‖C1,α(�).

Here, c only depends on N and the C1,α-regularity of �.

Proof We notice that

‖R − fν‖C0,α(�) = ‖wν‖C0,α(�) ≤ ‖u − w‖C1,α(�).

The desired conclusion then follows from [14, Theorem 8.33]. ��
Theorem 6.2 (The reverse Serrin problem with strong deviation) Let � be a bounded
domain in RN , N ≥ 2, with boundary � of class C1,1.

Let u be solution of (1.1), (1.12), and let z be any global minimum point of u on �.
Then, we have that

ρe − ρi ≤ cψ
(‖u − u‖C1,α(�)

)
,

where ψ is the profile defined in (1.8). The constant c only depends on N, d�, ri , and
re.

For N ≥ 4 the profile ψ can be improved to obtain (1.9), at the cost of replacing
the dependence of c on the ri and re with that on the C2,α-regularity of �.

Proof It is clear that the function f defined in Proposition 6.1 satisfies:

� f = N in �, f = 0 on �.

By [21, Theorem 3.1] (for N �= 3) and [23, Theorem 4.4] (for N = 3), we have that

ρe − ρi ≤ cψ
(‖ fν − R‖L2(�)

)
,

where c only depends on N , d�, ri , and re. Here, ψ is as in (1.8).
Furthermore, the improvement of the profile ψ to (1.9) for N ≥ 4 is obtained from

[23, Theorem 4.4], at the aforementioned cost.
The conclusion then follows from Proposition 6.1 and by noting that

‖ fν − R‖L2(�) ≤ |�|1/2‖ fν − R‖L∞(�) ≤ |�|1/2‖ fν − R‖C0,α(�).

As usual, |�| can be estimated in terms of the desired parameters by recalling [23,
Remark 3.1]. ��
Remark 6.3 The argument may be adjusted to work also in the semilinear case, at the
cost of replacing the application of [21, Theorem 3.1] and [23, Theorem 4.4] by the
results in [1, 10], and hence obtaining a more general but poorer stability estimate.
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