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A B S T R A C T

This article provides an overview of a new approach to designing controllers for nonlinear systems using
data-driven control. Data-driven control is an important area of research in control theory, and this novel
method offers several benefits. It can recreate from a data-centred perspective many of the results available
in the model-based case, including local stabilization based on Taylor or polynomial expansion, absolute
stabilization, as well as approximate and exact feedback linearization. Moreover, the method is analytically
and computationally simple, and permits to infer regions of attraction and invariant sets, also when the data
are corrupted by noise.
. Introduction

Data-driven control is one of the most important research areas in
ontrol theory. By data-driven control, we mean those design tech-
iques where the controller is determined by employing data collected
rom system. This can be done by sequential system identification
nd model-based control (called the indirect approach) or by directly
eeking a control law compatible with available data (called the direct
pproach). The interest for data-driven control is related primarily to
he difficulties that one may encounter in deriving a mathematical
odel of the system to control from first-principle laws. Specifically,

lthough we often have information about the structure of the system
o control, an exact model of the system is almost always impossible to
btain. In such cases, it is natural to exploit data as an extra source of
nformation.

The history of data-driven control is rich and varied. Regarding
ndirect methods we can mention all the main approaches to system
dentification such as prediction error, maximum likelihood, and sub-
pace methods (Ljung, 2010). As for direct methods, notable examples
re some forms of adaptive control (Astolfi, 2020), unfalsified con-
rol (Safonov & Tsao, 1997) and the VRFT method (Campi & Savaresi,
006). We refer the interested reader to Bazanella, Campestrini, and
ckhard (2022), Hou and Wang (2013), Pillonetto, Dinuzzo, Chen, De
icolao, and Ljung (2014) and Recht (2019) for recent surveys.

Despite the vast amount of work done over the years, data-driven
ontrol remains an open research question at least for what concerns
onlinear systems. The main issues are concerned with providing the-
retical guarantees and computationally tractable algorithms. Specific
ssues related to the first point include the difficulty to design stabi-
izing controllers from a finite number of datapoints and to estimate

∗ Corresponding author.
E-mail addresses: c.de.persis@rug.nl (C. De Persis), pietro.tesi@unifi.it (P. Tesi).

region of attractions and invariant sets for the closed-loop system. Fur-
ther, data are invariably corrupted by noise, and noise prevents exact
identification of the dynamics (whether open-loop or closed-loop dy-
namics). As a result, the control law should guarantees a certain degree
of robustness to such uncertainties and developing robust controllers
for nonlinear systems is much harder than in the linear case.

Contribution. The aim of this article is to discuss a recent line of re-
search on data-driven control, introduced in De Persis and Tesi (2020).
This line of research rests on two basic elements: behavioural theory
or, more specifically, the so-called Fundamental Lemma, and convex
programming. The Fundamental Lemma, introduced in Willems, Rapis-
arda, Markovsky, and De Moor (2005), stipulates that the whole set of
trajectories that a linear system can generate can be represented by
a finite set of system trajectories provided that such trajectories come
from sufficiently excited dynamics. This theory thus gives conditions
under which data (in the form of trajectories) offer an alternative
representation to parametric modelling. As shown in De Persis and
Tesi (2020), this representation turns out to be suitable for controller
design in the form of data-dependent semidefinite programs (SPD),
hence convex programs.

In De Persis and Tesi (2020), this idea has been developed to solve
optimal and robust design for linear system, notably using noisy data
of low complexity, as well as to provide local stabilization results for
nonlinear systems. These ideas have since been developed in many
directions, also by other research groups. In this article we will review
some of these developments, focusing on nonlinear systems. As we will
see, the proposed method is capable of recreating from a data-centred
perspective many of the results available in the model-based case,
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367-5788/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

ttps://doi.org/10.1016/j.arcontrol.2023.100915
eceived 13 July 2023; Accepted 29 October 2023
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/arcontrol
http://www.elsevier.com/locate/arcontrol
mailto:c.de.persis@rug.nl
mailto:pietro.tesi@unifi.it
https://doi.org/10.1016/j.arcontrol.2023.100915
https://doi.org/10.1016/j.arcontrol.2023.100915
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2023.100915&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Annual Reviews in Control 56 (2023) 100915C. De Persis and P. Tesi

f

T
t
c

T
𝑓
d
s
a
S

2

t

L

𝑆

a

(
c
d

L

S
w

P

𝐴

a

s
i
𝐾
(
𝐷
t
i

T
R
a
a

w
r
a

P
[

including local stabilization based on Taylor or polynomial expansion,
absolute stabilization, as well as approximate and exact feedback lin-
earization. Moreover, the method is analytically and computationally
simple, and permits to infer regions of attraction and invariant sets, also
when disturbances act on the system during both the data acquisition
phase and the execution of the control task.

We will present the main idea and some results in Sections 2–5.
In Section 6, we will discuss in more detail the main features of our
method, also in relation to other approaches that have been proposed
in similar contexts. Finally, we will discuss current limitations and open
research questions.

Notation. Throughout the paper, ≻ (⪰) and ≺ (⪯) denote positive
and negative (semi)-definiteness, respectively; S𝑛×𝑛 denotes the set of
𝑛 × 𝑛 real-valued symmetric matrices; 𝐴⊤ is the transpose of 𝐴. We let
|𝑥| denote the 2-norm of a vector 𝑥, and let ‖𝐴‖ be the induced 2-norm
of a matrix 𝐴. For convenience, we will often write (𝑥, 𝑢) to denote the
vector [𝑥⊤ 𝑢⊤]⊤.

2. Framework, outline of the paper, and preliminary facts

We consider a nonlinear system in the form

𝑥+ = 𝑓 (𝑥, 𝑢) (1)

where 𝑥 ∈ R𝑛 is the state and 𝑢 ∈ R𝑚 is the control input, 𝑥+ denotes
orward shifting, i.e., 𝑥+(𝑘) = 𝑥(𝑘 + 1), 𝑘 ∈ N, 𝑓 is the drift vector

field, which is assumed to be unknown (at least, not known exactly),
with (𝑥, 𝑢) = (0, 0) a known equilibrium of interest. We shall assume
that 𝑓 (𝑥, 𝑢) is a smooth function. More often than not, its continuity or
continuous differentiability will be enough. Let

D ∶= {𝑥(𝑘), 𝑢(𝑘), 𝑘 = 0, 1,… , 𝑇 } (2)

be a dataset collected from the system with an experiment, meaning
that we have a set of state and input samples that satisfy 𝑥(𝑘 + 1) =
𝑓 (𝑥(𝑘), 𝑢(𝑘)) for 𝑘 = 0,… , 𝑇 −1 where 𝑇 > 0 is a user-defined parameter.

he problem of interest is to determine, using D, a control law 𝑢 = 𝜅(𝑥)
hat stabilizes the system around the origin (globally or locally, both
ases will be considered).

In this paper we discuss the approach introduced in De Persis and
esi (2020), considering a variety of scenarios: from the case where
has a generic structure up to specific cases, for example when the

ynamics are bilinear or in Lure’s form. Other classes of nonlinear
ystems such as the polynomial ones are out of the scope of this paper
nd we refer the interested reader to Guo, De Persis, and Tesi (2022a).
pecifically, the paper is organized as follows:

1. Sections 3 and 4 tackle the case where 𝑓 has generic structure.
We will discuss both the scenarios where 𝑓 is unknown (ex-
cept for norm bounds, Section 3) or it consists of known (but
otherwise generic) basis functions (Section 4).

2. Section 5 considers various cases where 𝑓 has special form,
in particular systems in Lur’e form (Section 5.1) and bilinear
dynamics (Section 5.2).

3. A discussion on the results is provided in Section 6 along with
some extensions, and Section 7 ends the paper with concluding
remarks.

.1. Petersen’s lemma

A technical result which is extensively used throughout the paper is
he so-called Petersen’s lemma (Petersen & Hollot, 1986).

emma 1 (Petersen’s Lemma). Let 𝑆 ∈ S𝑛×𝑛, 𝑀 ∈ R𝑛×𝑝, 𝑁 ∈ R𝑞×𝑛,
𝛥 ∈ R𝑞×𝑟 be given matrices. Let  ∶= {𝐷 ∈ R𝑞×𝑝 ∶ 𝐷𝐷⊤ ⪯ 𝛥𝛥⊤}. Then,

+𝑀𝐷⊤𝑁 +𝑁⊤𝐷𝑀⊤ ≺ 0 ∀𝐷 ∈ 

if and only if there exists 𝜀 > 0 such that

𝑆 + 𝜀−1𝑀𝑀⊤ + 𝜀𝑁⊤𝛥𝛥⊤𝑁 ≺ 0.
2

3. Stabilization via Taylor’s expansion

Lyapunov’s indirect method is one of the oldest and most pop-
ular approaches to model-based controller design for nonlinear sys-
tems (LaSalle, 1986, Chapter 7). We describe how to devise a data-
based version of this method by first considering the special case of
linear systems with input disturbances. Consider the system

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑑 (3)

where 𝐴,𝐵 are unknown matrices, 𝑑 ∈ R𝑠 is an unknown signal rep-
resenting a disturbance, and 𝐸 is a known matrix that specifies which
channel the signal 𝑑 enters. If such an information is not available, then
𝐸 = 𝐼𝑛 and 𝑠 = 𝑛.

Consider the dataset D in (2), and define

𝑈0 ∶=
[

𝑢(0) 𝑢(1) ⋯ 𝑢(𝑇 − 1)
]

∈ R𝑚×𝑇 , (4a)

𝑋0 ∶=
[

𝑥(0) 𝑥(1) ⋯ 𝑥(𝑇 − 1)
]

∈ R𝑛×𝑇 , (4b)

𝑋1 ∶=
[

𝑥(1) 𝑥(2) ⋯ 𝑥(𝑇 )
]

∈ R𝑛×𝑇 , (4c)

𝐷0 ∶=
[

𝑑(0) 𝑑(1) ⋯ 𝑑(𝑇 − 1)
]

∈ R𝑠×𝑇 , (4d)

nd note that 𝑋1 = 𝐴𝑋0 + 𝐵𝑈0 + 𝐸𝐷0.
The main idea of the approach introduced in De Persis and Tesi

2020) is to use the data to provide a data-based representation of the
losed-loop dynamics which can be turned into a (convex) controller
esign program.

emma 2. Consider any matrices 𝐾 ∈ R𝑚×𝑛, 𝐺 ∈ R𝑇×𝑛 such that
[

𝐾
𝐼𝑛

]

=
[

𝑈0
𝑋0

]

𝐺 . (5)

ystem (3) with 𝑢 = 𝐾𝑥 results in the closed-loop dynamics 𝑥+ = 𝛹𝑥 + 𝐸𝑑
ith 𝛹 ∶= (𝑋1 − 𝐸𝐷0)𝐺.

roof. The result follows directly from the identity

+ 𝐵𝐾 =
[

𝐵 𝐴
]

[

𝐾
𝐼𝑛

]

=
[

𝐵 𝐴
]

[

𝑈0
𝑋0

]

𝐺 (6)

nd the relation 𝑋1 = 𝐴𝑋0 + 𝐵𝑈0 + 𝐸𝐷0. ■

Lemma 2 has deep implications for controller design. To have
tability, all we need is indeed to design 𝐺 so that 𝛹 = (𝑋1 − 𝐸𝐷0)𝐺
s Schur (all the eigenvalues of 𝛹 have modulus < 1) and then set
= 𝑈0𝐺. Since the matrix 𝐷0 is unknown, the idea is to ensure that

𝑋1 − 𝐸𝐷)𝐺 is Schur for all the matrices 𝐷 ∈ , with  a set where
0 is known (or deemed) to belong. The technical tool that allows us

o implement this idea is precisely Petersen’s lemma, as we formalize
n the next result.

heorem 1. Consider system (3) along with a dataset D. Let  ∶= {𝐷 ∈
𝑠×𝑇 ∶ 𝐷𝐷⊤ ⪯ 𝛥𝛥⊤} where the matrix 𝛥 ∈ R𝑠×𝑞 is chosen by the designer,
nd suppose 𝐷0 ∈ . Suppose there exist two matrices 𝑌 ∈ R𝑇×𝑛, 𝑃 ∈ S𝑛×𝑛,
nd a scalar 𝜖 > 0 such that

⎡

⎢

⎢

⎣

𝑃 −𝛺 (𝑋1𝑌 )
⊤ 𝑌 ⊤

𝑋1𝑌 𝑃 − 𝜖𝐸𝛥𝛥⊤𝐸⊤ 0𝑛×𝑇
𝑌 0𝑇×𝑛 𝜖𝐼𝑇

⎤

⎥

⎥

⎦

≻ 0 (7a)

𝑋0𝑌 = 𝑃 (7b)

ith 𝛺 ≻ 0 chosen by the designer. Then, the controller 𝐾 = 𝑈0𝑌 𝑃−1

enders 𝐴 + 𝐵𝐾 Schur, thus renders the closed-loop system (globally)
symptotically stable

roof. Suppose (7a) holds. A Schur complement gives

𝑃 −𝛺 (𝑋1𝑌 )⊤
]

− 𝜖−1
[

𝑌 ⊤ ]

[

𝑌 0𝑇×𝑛
]

𝑋1𝑌 𝑃 0𝑛×𝑇
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[

0𝑛×𝑠
𝐸

]

𝛥𝛥⊤ [

0𝑠×𝑛 𝐸⊤] ≻ 0.

By Lemma 1,
[

𝑃 −𝛺 𝑌 ⊤(𝑋1 − 𝐸𝐷)⊤

(𝑋1 − 𝐸𝐷)𝑌 𝑃

]

≻ 0 ∀𝐷 ∈ . (8)

By applying another Schur complement we get

𝑌 ⊤(𝑋1 − 𝐸𝐷)⊤𝑃−1(𝑋1 − 𝐸𝐷)𝑌 − 𝑃 +𝛺 ≺ 0 ∀𝐷 ∈ . (9)

Pre- and post-multiplying both sides for 𝑃−1 and letting 𝐺 = 𝑌 𝑃−1, we
obtain the Lyapunov’s stability condition for (𝑋1 −𝐸𝐷)𝐺, in particular
for (𝑋1 − 𝐸𝐷0)𝐺 because 𝐷0 ∈ . Finally notice that the constraint
𝑋0𝑌 = 𝑃 is equivalent to 𝑋0𝐺 = 𝐼𝑛. This, together with 𝐾 = 𝑈0𝐺,
implies (5), meaning that 𝐴 + 𝐵𝐾 = (𝑋1 − 𝐸𝐷0)𝐺. This concludes the
proof. ■

A few comments are in order. The choice of  reflects our prior
information or guess about 𝑑. For instance, if 𝛿 > 0 is a known bound
on the norm of 𝑑, i.e., |𝑑(𝑖)| ≤ 𝛿 for 𝑖 = 0, 1,… , 𝑇 − 1, we can take
𝛥 = 𝛿

√

𝑇 𝐼𝑠, where 𝛥 can be regarded as an energy bound on 𝑑. 𝛥 can
e made independent of the length 𝑇 of the dataset by effectively taking
nto account the instantaneous bound on 𝑑 (Bisoffi, De Persis, & Tesi,
021). We discuss this option in Appendix along with a few advantages
t offers. Stochastic disturbances can also be accounted for (possibly,
ith other choices of 𝛥), see De Persis, Rotulo, and Tesi (2023, Section
I.C). In general, large sets  make condition 𝐷0 ∈  easier to hold
ut make (7a) more difficult to satisfy.

The choice of 𝛺 is instead arbitrary in the sense that it does not
ffect the feasibility of (7a). The reason to have 𝛺 ≻ 0 (in fact, also
= 0 guarantees stability) is to have information on the decay rate of

he unforced dynamics. This will be especially useful in the context of
onlinear controller design, as we will discuss shortly.

A final comment regards (5). Condition (5) depends on the matrix
𝑈0
𝑋0

] and this matrix reflects how ‘rich’ is our dataset. In particular, if
𝑈0
𝑋0

] is full row rank then we can parametrize any control loop with
ata. This fact can be related to a popular result proposed by Jan C.
illems and collaborators, known as the Fundamental Lemma (Willems

t al., 2005). The Fundamental Lemma asserts that if we excite the
ynamics of a linear controllable system with a persistently exciting
nput then, in the absence of noise, the resulting input–output trajectory
s as informative as the system’s parametric model (i.e., any other
rajectory of the system can be generated from the recorded input–
utput data). In particular, [ 𝑈0

𝑋0
] is full row rank. As shown in Lemma 2,

his property allows us to directly parametrize all possible control loops,
lso with noisy data.

The Fundamental Lemma and the role of persistency of excitation
or controller design has recently been subject of numerous studies, see
.g. van Waarde, De Persis, Camlibel and Tesi (2020) and van Waarde,
ising, Trentelman and Camlibel (2020). For an extension of these
oncepts to certain classes of nonlinear systems the interested reader
s referred to Alsalti, Lopez and Müller (2023).

.1. Stabilization via Taylor’s expansion

The previous discussion provides a conceptual model that can be
eadily extended to nonlinear systems. In fact, we see that (3) is also a
irst-order approximation of (1) where 𝑑 represents the remainder term
n the Taylor’s expansion of 𝑓 . Specifically, assuming that 𝑓 is a smooth
unction we can write (1) as
+ = 𝐴𝑥 + 𝐵𝑢 +𝐻𝑟(𝑥, 𝑢) (10)

here

=
𝜕𝑓
𝜕𝑥

|

|

|

|(𝑥,𝑢)=(0,0)
, 𝐵 =

𝜕𝑓
𝜕𝑢

|

|

|

|(𝑥,𝑢)=(0,0)

are unknown and 𝑟(𝑥, 𝑢) ∈ R𝑝 is the unknown remainder containing
3

high-order terms. Like 𝐸 in (3), 𝐻 is a known matrix specifying which 𝑔
components of 𝑓 are actually nonlinear. If this information is not
available we simply set 𝐻 = 𝐼𝑛.

The following two results descend from Lemma 2 and Theorem 1.

Lemma 3. Consider any matrices 𝐾 ∈ R𝑚×𝑛, 𝐺 ∈ R𝑇×𝑛 such that
(5) holds. Then, system (1) under the control law 𝑢 = 𝐾𝑥 results in the
closed-loop dynamics

𝑥+ = 𝛹𝑥 +𝐻𝑟(𝑥,𝐾𝑥) (11)

where 𝛹 ∶= (𝑋1 −𝐻𝑅0)𝐺, and

𝑅0 ∶=
[

𝑟(0) 𝑟(1) … 𝑟(𝑇 − 1)
]

(12)

where 𝑟(𝑘) ∶= 𝑟(𝑥(𝑘), 𝑢(𝑘)).

Theorem 2. Consider system (1) along with a dataset D. Let  ∶= {𝑅 ∈
R𝑝×𝑇 ∶ 𝑅𝑅⊤ ⪯ 𝛥𝛥⊤} where the matrix 𝛥 ∈ R𝑝×𝑞 is chosen by the designer,
and suppose 𝑅0 ∈ . Suppose there exist two matrices 𝑌 ∈ R𝑇×𝑛, 𝑃 ∈ S𝑛×𝑛,
and a scalar 𝜖 > 0 such that (7) holds, with 𝐸 replaced by the matrix 𝐻
in (10). Then, the controller 𝐾 = 𝑈0𝑌 𝑃−1 renders the origin a (locally)
asymptotically stable equilibrium for the closed-loop system.

Theorem 2 descends directly from the fact that 𝐴+𝐵𝐾 is Schur and
that lim𝑥→0

|𝑟(𝑥,𝐾𝑥)|
|𝑥| = 0, meaning that the remainder term 𝑟(𝑥,𝐾𝑥) goes

to zero faster than 𝑥.
The choice of  obeys the same considerations made for . In

articular, a point-wise bound on |𝑟(𝑥, 𝑢)| can be obtained from coarse
nformation on 𝑓 . For instance, a Lipschitz bound on the gradient of
he components of 𝑓 valid on a convex set  ⊆ R𝑛+𝑚 makes sure
hat |𝑟(𝑥, 𝑢)| ≤ 𝑐|(𝑥, 𝑢)|2 for (𝑥, 𝑢) ∈  and for some known constant
(Folland, 1990; Guo, De Persis, & Tesi, 2022b), which gives a known
ound for ‖𝑅0‖ provided that the experiment is conducted in such a
ay that 𝑟(𝑘) ∈  , which can be done without loss of generality.

.1.1. Region of attraction and invariant sets
Different from the linear case, Taylor’s expansions lead to local

tability result, and it is therefore important to have estimates of the
egion of attraction (RoA), defined as the set of initial states for which
he dynamics of the controlled system converge to zero. To this end,
he key observation is that Lemma 3 gives an exact description of
he closed-loop dynamics, where the only unknown terms are 𝑅0 and
(𝑥,𝐾𝑥), both related to the remainder. Thus, a bound on the norm of
(𝑥, 𝑢) is sufficient to estimate the RoA. Specifically, let 𝛿 ∶ R𝑛 → R be
known function such that

𝑟(𝑥,𝐾𝑥)| ≤ 𝛿(𝑥), 𝑥 ∈ R𝑛 and lim
𝑥→0

𝛿(𝑥)
|𝑥|

= 0. (13)

All the derivations which follow can be extended if we replace R𝑛

n the first condition with a domain of interest  ⊂ R𝑛.) By the
iscussion made previously, a bound like |𝑟(𝑥, 𝑢)| ≤ 𝑐|(𝑥, 𝑢)|2 gives
(𝑥) = 𝑐|(𝑥,𝐾𝑥)|2. Domain knowledge can be exploited to derive tighter
ounds, as we exemplify later on in Example 1.

With this in mind, suppose that we found a stabilizing controller 𝐾
ith the method described in Theorem 2 and consider the closed-loop

ystem, which has dynamics (11). Let 𝑉 (𝑥) = 𝑥⊤𝑃−1𝑥 with 𝑃 obtained
rom (7). It is simple to see that 𝑉 (𝑥) gives a Lyapunov function for the
inear part of the dynamics. In particular,

(𝑥+) − 𝑉 (𝑥)

(𝛹𝑥 +𝐻𝑟(𝑥,𝐾𝑥))⊤𝑃−1(𝛹𝑥 +𝐻𝑟(𝑥,𝐾𝑥)) − 𝑥⊤𝑃−1𝑥

−𝑥⊤𝛷𝑥 + (2𝛹𝑥 +𝐻𝑟(𝑥,𝐾𝑥))⊤𝑃−1𝐻𝑟(𝑥,𝐾𝑥),

here 𝛷 ∶= 𝑃−1𝛺𝑃−1. Recalling that 𝛹 = (𝑋1 − 𝐻𝑅0)𝐺 and that
𝑅0‖ ≤ ‖𝛥‖ by hypothesis, we obtain

(𝑥+) − 𝑉 (𝑥) ≤ −𝑥⊤𝛷𝑥 + 𝑔(𝑥, 𝛿(𝑥)), (14)

here

(𝑧, 𝜂) ∶= 𝑟 (𝑧)|𝜂| + 𝑟 (𝑧)|𝜂| + 𝑟 |𝜂|2, (15a)
1 2 3
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𝑟1(𝑧) ∶= 2|(𝑋1𝐺𝑧)⊤𝑃−1𝐻|, (15b)

2(𝑧) ∶= 2‖𝛥‖‖𝐻⊤𝑃−1𝐻‖|𝐺𝑧|, (15c)

3 ∶= ‖𝐻⊤𝑃−1𝐻‖, (15d)

= 𝑌 𝑃−1 and 𝑌 is obtained from (7).
Noting that the right-hand side of (14) involves known quantities,

he next result follows at once.

orollary 1. Consider the same setting as in Theorem 2, and let 𝛿 ∶
R𝑛 → R be a known function satisfying (13). Let  ∶= {𝑥 ∶ −𝑥⊤𝛷𝑥 +
(𝑥, 𝛿(𝑥)) < 0} and  =  ∪ {0}. (Note that  is nonempty.) Finally, let

𝑉 (𝑥) ∶= 𝑥⊤𝑃−1𝑥 and 𝛾 ∶= {𝑥 ∶ 𝑉 (𝑥) ≤ 𝛾} with 𝛾 > 0 arbitrary. Then,
the origin is an asymptotically stable equilibrium for the closed-loop system,
and any set 𝛾 contained in  is a positively invariant set (the trajectories
ever escape 𝛾) and gives an estimate of the RoA.

.1.2. Robust invariance sets
In a similar manner, the analysis can be extended to include process

isturbances. Consider the system

+ = 𝑓 (𝑥, 𝑢) + 𝐸𝑑 (16)

here 𝑑 is a bounded disturbance with known bound, i.e., |𝑑(𝑡)| ≤ 𝜈
or all 𝑡 ≥ 0 for some known 𝜈, and 𝐸 is a known matrix specifying
hich part of the dynamics is affected by the disturbance. We can thus
xpress the dynamics in Taylor’s expansion:

+ = 𝐴𝑥 + 𝐵𝑢 +
[

𝐻 𝐸
]

⏟⏞⏟⏞⏟
∶=𝐽

[

𝑟(𝑥, 𝑢)
𝑑

]

⏟⏞⏟⏞⏟
=∶𝑠(𝑥,𝑢,𝑑)

. (17)

stability property that accounts for the presence of disturbances is
he following Blanchini (1999):

efinition 1. A set  is called robustly positively invariant (RPI) for
he system 𝜉+ = 𝑓 (𝜉, 𝑑) if for every 𝜉(0) ∈  and all 𝑑(𝑡) ∈ , with  a
ompact set, the solution is such that 𝜉(𝑡) ∈  for 𝑡 > 0.

The results of the previous section can be extended to this case with
inor modifications. In particular, let

0 ∶=
[

𝑠(0) 𝑠(1) ⋯ 𝑠(𝑇 − 1)
]

(18)

e the dataset associated with remainder and disturbance term, where
e set 𝑠(𝑘) ∶= 𝑠(𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘)) for brevity. We introduce  = {𝑆 ∈
𝜐×𝑇 ∶ 𝑆𝑆⊤ ⪯ 𝛥𝛥⊤}, where 𝑣 is the integer equal to the dimension of
𝑟(𝑥, 𝑢), 𝑑). Clearly, a bound on 𝑆0 can be determined from individual
ounds on 𝑟(𝑥, 𝑢) and 𝑑. The following result thus follows at once:

heorem 3. Consider system (16) along with a dataset D. Let  ∶= {𝑆 ∈
𝜐×𝑇 ∶ 𝑆𝑆⊤ ⪯ 𝛥𝛥⊤} where the matrix 𝛥 ∈ R𝜐×𝑞 is chosen by the designer,
nd suppose 𝑆0 ∈ . Suppose there exist two matrices 𝑌 ∈ R𝑇×𝑛, 𝑃 ∈ S𝑛×𝑛,
nd a scalar 𝜖 > 0 such that (7) holds, with 𝐸 replaced by the matrix 𝐽
n (17). Then, the controller 𝐾 = 𝑈0𝑌 𝑃−1 renders the origin a (locally)
symptotically stable equilibrium for the closed-loop system.

Note that by studying asymptotic stability of the origin we are
mplicitly assuming that 𝑑 = 0 in the closed-loop system 𝑥+ = 𝑓 (𝑥,𝐾𝑥)+
𝑑. Assume now that 𝑑 ≠ 0 in the closed-loop system and let 𝜈 be a
nown bound on |𝑑|. By proceeding as in (14), we obtain

(𝑥+) − 𝑉 (𝑥) ≤ −𝑥⊤𝛷𝑥 + 𝑔(𝑥, (𝛿(𝑥), 𝜈))

here 𝑔(𝑧, 𝜂) is defined in (15), with 𝐻 replaced by 𝐽 given in (17).
t is then straightforward to extend Corollary 1 to robust positive
4

nvariance. t
orollary 2. Consider the same setting as in Theorem 3, and let 𝛿 ∶
𝑛 → R be a known function satisfying (13), and let 𝜈 be a known bound
n |𝑑|. Let 𝑉 (𝑥) = 𝑥⊤𝑃−1𝑥, and define 𝛾 ∶= {𝑥 ∶ 𝑉 (𝑥) ≤ 𝛾}, with 𝛾 > 0
rbitrary. Finally, let  ∶= {𝑥 ∶ −𝑥⊤𝛷𝑥 + 𝑔(𝑥, (𝛿(𝑥), 𝜈)) ≤ 0} where 𝑔(𝑧, 𝜂)
s defined in (15), with 𝐻 replaced by 𝐽 given in (17), and  ∶= 𝛾 ∩ 𝑐

here 𝑐 denotes the complement of  ( is the subset of 𝛾 for which the
yapunov difference can be positive). If

(𝑥) − 𝑥⊤𝛷𝑥 + 𝑔(𝑥, (𝛿(𝑥), 𝜈)) ≤ 𝛾 ∀𝑥 ∈  (19)

hen 𝛾 is an RPI set for the closed-loop system.

roof. Assume 𝑥 ∈ 𝛾 . Consider first the case 𝑥 ∉ . Since 𝑥 ∈ 𝛾
hen 𝑥 ∉ 𝑐 . Hence 𝑥 ∈  , and therefore 𝑉 (𝑥+) − 𝑉 (𝑥) ≤ −𝑥⊤𝛷𝑥 +
(𝑥, (𝛿(𝑥), 𝜈)) ≤ 0, implying 𝑥+ ∈ 𝛾 . Next, consider the case 𝑥 ∈ . In
iew of (19), we have 𝑉 (𝑥+) ≤ 𝛾, thus 𝑥+ ∈ 𝛾 . ■

.2. Example 1

Consider the Euler discretization of an inverted pendulum
+
1 = 𝑥1 + 𝑇𝑠𝑥2 (20a)

+
2 =

𝑇𝑠𝑔
𝓁

sin 𝑥1 +
(

1 −
𝑇𝑠𝜇
𝑚𝓁2

)

𝑥2 +
𝑇𝑠
𝑚𝓁2

𝑢 + 𝑑 , (20b)

where 𝑇𝑠 = 0.1 is the sampling time, 𝑚 is the mass to be balanced,
𝓁 is the distance from the base to the centre of mass of the balanced
body, 𝜇 is the coefficient of rotational friction, and 𝑔 is the acceleration
due to gravity. The states 𝑥1, 𝑥2 are the angular position and velocity,
respectively, 𝑢 is the applied torque and 𝑑 an external disturbance. The
system has an unstable equilibrium in (𝑥, 𝑢) = (0, 0), corresponding to
the pendulum upright position, which we want to stabilize. Suppose
that the unknown parameters are 𝑚 = 1, 𝓁 = 1, 𝑔 = 9.8 and 𝜇 = 0.01.

We collect data by running an experiment with input uniformly dis-
ributed in [−0.5, 0.5], and with an initial state within the same interval.

We consider a disturbance uniformly distributed in [−0.01, 0.01], which
gives a reasonable input signal-to-noise ratio around 30 dB. We collect
𝑇 = 10 samples (corresponding to the motion of the pendulum that
oscillates around the upright position).

In this example, 𝐸 = 𝐻 =
[

0 1
]⊤, and the remainder term is

𝑟(𝑥, 𝑢) = 𝑟(𝑥) = 𝑇𝑠𝑔
𝓁
(sin 𝑥1 − 𝑥1). We satisfy (13) by setting 𝛿(𝑥) =

| sin 𝑥1 − 𝑥1|, thus over-approximating 𝑟(𝑥) by more than 100%. While
ther choices of 𝛿(𝑥) are possible, this is an example where it is reason-
ble to know the structure of the remainder, which comes from physical
onsiderations, namely Lagrange’s equations of motion. Accordingly,
e set 𝛥 =

√

𝑇 diag(𝑐, 𝜈), with 𝑐 equal to the maximum of 𝛿(𝑥) over the
xperimental data and 𝜈 = 0.01 bound on the disturbance. Finally, we
et 𝛺 = 𝐼2.

The controller design program is feasible and we obtain 𝐾 =
−21.9778 −9.6747

]

. An illustration of RoA and RPI sets is given in
ig. 1.

We close this section with some comments regarding 𝑇 . A main
eature of De Persis and Tesi (2020) is not to require large datasets.
he analysis shows indeed that even 𝑛 + 𝑚 samples may suffice (cf.
5)), suggesting that the quality of data weights more than the quantity.
The importance of large datasets becomes apparent when disturbances
ave suitable statistics and large datasets can help to filter out noise De
ersis et al., 2023; Dean, Mania, Matni, Recht, & Tu, 2020). On the
ther hand, and with specific regard to Taylor’s method, choosing 𝑇
ufficiently small helps to keep the system in a neighbourhood of the
quilibrium during the data collection phase, which is needed to keep
small enough (recall that 𝛥 is the bound on the remainder).
When dealing with open-loop unstable systems, using small datasets

an be advantageous, in particular it may be more convenient to
onsider multiple short experiments rather than a single but long one,
ee van Waarde, De Persis et al. (2020) for a detailed discussion on

his point. For unstable systems another option is to collect data using
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Fig. 1. Results for Example 1. (Left) The grey set represents the set  , the blue set is the RPI set 𝛾 ; here, 𝑃 −1 = [ 0.2007 0.0587
0.0587 0.0351 ] and 𝛾 = 0.0442. The black set wrapping 𝛾 is the

RoA, which is larger than the RPI set. The red set around the origin is . States originating in  do not exit 𝛾 . (Right) Closed-loop behaviour starting inside the RPI set (the
position is displayed in the top figure). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
a pre-stabilizing controller 𝐾 superimposed by a sufficiently exciting
input. By implementing a pre-stabilizing controller, it is possible to
safely conduct experiments that may result in improved controllers or
controllers that guarantee larger regions of attraction.

4. Linearly parametrized basis functions

Domain knowledge often gives information about the system to con-
trol. This is typically the case with electrical and mechanical systems
where first-principles laws (such as Lagrange’s equations of motion in
Example 1) tell us what ‘‘type’’ of dynamics we are dealing with. In this
section, we show how to incorporate this information into controller
design and improve over Taylor’s method.

To convey the idea in a simple manner, we consider a nonlinear
system in the form

𝑥+ = 𝑓 (𝑥) + 𝐵𝑢 + 𝐸𝑑. (21)

The general case of dynamics 𝑥+ = 𝑓 (𝑥, 𝑢) is addressed in De Persis
et al. (2023, Section V.B), Both 𝑓 (𝑥) and 𝐵 are regarded unknown but
we now assume that we know a continuous function 𝑍 ∶ R𝑛 → R𝑆

such that 𝑓 (𝑥) = 𝐴𝑍(𝑥) for some matrix 𝐴 ∈ R𝑛×𝑆 . Under such an
assumption, system (21) reads equivalently as

𝑥+ = 𝐴𝑍(𝑥) + 𝐵𝑢 + 𝐸𝑑 (22)

with 𝐴,𝐵 unknown.
This setup means that we know a library of functions capable to

describe the dynamics of the system. We allow 𝑍 to contain terms not
present in 𝑓 , which may arise from an imprecise knowledge of the
system dynamics. We will directly consider the case where 𝑍 contains
both linear and nonlinear functions, i.e.,

𝑍(𝑥) =
[

𝑥
𝑄(𝑥)

]

, (23)

where 𝑄 ∶ R𝑛 → R𝑆−𝑛 contains only nonlinear functions. The special
case where 𝑍(𝑥) = 𝑥 reduces the analysis to that of linear systems, see
Section 3.

The problem of interest is to determine, using D, a control law 𝑢 =
𝐾𝑍(𝑥) that stabilizes the system around the origin. With respect to Tay-
lor’s method, now the control law is nonlinear. In particular, the control
law implements a linear feedback on 𝑍(𝑥) rather than a generic nonlin-
ear feedback on 𝑥, and this is motivated by the specific approach that
we want to consider, namely nonlinearity cancellation/minimization.
Roughly, the idea is to find 𝐾 such that the closed-loop system behaves
nearly as a linear system, i.e., such that 𝐴𝑍(𝑥) + 𝐵𝑢 ≈ 𝑀𝑥, and we
choose 𝑢 = 𝐾𝑍(𝑥) to cancel out the nonlinearities that are present in
𝐴𝑍(𝑥).

The starting point of the analysis is to provide an analogue of
Lemma 3.
5

Lemma 4. Consider any matrices 𝐾 ∈ R𝑚×𝑆 , 𝐺 ∈ R𝑇×𝑆 satisfying
[

𝐾
𝐼𝑆

]

=
[

𝑈0
𝑍0

]

𝐺, (24)

where

𝑍0 ∶=
[

𝑍(0) 𝑍(1) ⋯ 𝑍(𝑇 − 1)
]

, (25)

and we set 𝑍(𝑘) ∶= 𝑍(𝑥(𝑘)). Let 𝐺 be partitioned as 𝐺 =
[

𝐺1 𝐺2
]

, where
𝐺1 ∈ R𝑇×𝑛. System (22) under the control law 𝑢 = 𝐾𝑍(𝑥) results in the
closed-loop dynamics

𝑥+ = 𝛹𝑥 + 𝛯𝑄(𝑥) + 𝐸𝑑, (26)

where 𝛹 ∶= (𝑋1 − 𝐸𝐷0)𝐺1 and 𝛯 ∶= (𝑋1 − 𝐸𝐷0)𝐺2.

The proof is analogous to the one of Lemma 3 and is therefore
omitted. The main difference between Lemma 3 and this lemma lies
in condition (24). In contrast with (5), this new condition involves 𝑍0
instead of 𝑋0, and this leads to a closed-loop representation that does
not involve any unknown remainder term.

We now proceed with the analysis. For clarity, we will discuss
noise-free case and noisy case separately.

4.1. Noise-free case and region of attraction

In the noise-free case, the closed-loop dynamics reads 𝑥+ = 𝛹𝑥 +
𝛯𝑄(𝑥) with 𝛹 = 𝑋1𝐺1 and 𝛯 = 𝑋1𝐺2. All we need is thus to set a design
program which makes 𝛹 Schur and renders 𝛯 as small as possible.

Theorem 4. Consider a nonlinear system as in (22) with 𝑑 ≡ 0 along
with the following SDP in the decision variables 𝑃 ∈ S𝑛×𝑛, 𝑌1 ∈ R𝑇×𝑛, and
𝐺2 ∈ R𝑇×(𝑆−𝑛):

minimize
𝑃 ,𝑌1 ,𝐺2

‖𝑋1𝐺2‖ (27a)

subject to 𝑍0𝑌1 =
[

𝑃
0(𝑆−𝑛)×𝑛

]

, (27b)
[

𝑃 (𝑋1𝑌1)⊤

𝑋1𝑌1 𝑃

]

≻ 0 , (27c)

𝑍0𝐺2 =
[

0𝑛×(𝑆−𝑛)
𝐼𝑆−𝑛

]

. (27d)

The following holds:

(i) If this SDP is feasible and the solution achieves zero cost (‖𝑋1𝐺2‖ =
0) then the control law 𝑢 = 𝐾𝑍(𝑥) with

𝐾 = 𝑈0
[

𝑌1𝑃−1 𝐺2
]

(28)

linearizes the closed-loop dynamics, and renders the origin a globally
asymptotically stable equilibrium.
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(ii) Assume that

lim
𝑥→0

|𝑄(𝑥)|
|𝑥|

= 0 . (29)

If the SDP is feasible then 𝑢 = 𝐾𝑍(𝑥), with 𝐾 as in (28), renders
the origin an asymptotically stable equilibrium.

Proof. Suppose that (27) is feasible. Let 𝐺1 = 𝑌1𝑃−1, and note that
he two constraints (27b) and (27d) together return 𝑍0

[

𝐺1 𝐺2
]

= 𝐼𝑆 .
his identity, along with (28), gives (24). By Lemma 4, the closed-loop
ynamics satisfies 𝑥+ = 𝛹𝑥+𝛯𝑄(𝑥) with 𝛹 = 𝑋1𝐺1 and 𝛯 = 𝑋1𝐺2, and
27c) ensures that 𝛹 is Schur. This gives the result. ■

Let 𝑉 (𝑥) ∶= 𝑥⊤𝑃−1𝑥, and note that

(𝑥+) − 𝑉 (𝑥) =

(𝛹𝑥 + 𝛯𝑄(𝑥))⊤𝑃−1(𝛹𝑥 + 𝛯𝑄(𝑥)) − 𝑥⊤𝑃−1𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ℎ(𝑥)

(30)

where the matrices 𝛹,𝛯, and 𝑃 are all known. Therefore, we immedi-
ately obtain the following result.

Corollary 3. Consider the same setting as in Theorem 4. Let  ∶=
{𝑥 ∶ ℎ(𝑥) < 0} with ℎ(𝑥) as in (30), and consider the Lyapunov function
𝑉 (𝑥) = 𝑥⊤𝑃−1𝑥. Then, any sub-level set 𝛾 ∶= {𝑥 ∶ 𝑉 (𝑥) ≤ 𝛾} of 𝑉
contained in  ∪ {0} is a positively invariant set for the closed-loop system
and gives an estimate of the RoA.

We make a number of comments before moving to discuss the
feedback linearization problem and the case of noisy data.

Item (i) of Theorem 4 gives a clear indication of the advantage
that we can have by knowing the basis functions of 𝑓 , namely global
instead of local asymptotic stability. Item (ii) aligns more with Taylor’s
method but with the substantial difference that it involves a known
quantity 𝑄(𝑥) instead of the unknown remainder term 𝑟(𝑥,𝐾𝑥), and
this difference turns out to be crucial when estimating the RoA. This
is evident once we note that the set  in Corollary 3 does not involve
any over-approximation, as is instead the case with Taylor’s method
(Corollary 1).

Another interesting feature of this approach is that the design
is fully modular in the sense that (27) treats linear and nonlinear
dynamics separately: the linear part is stabilized via (27c) while the
nonlinear part is minimized through (27a); further, the two consistency
constraints (27b), (27d) are independent of each other. This has some
interesting implications. Rewrite the dynamics as

𝑥+ = 𝐴𝑥 + 𝐴̂𝑄(𝑥) + 𝐵𝑢 (31)

where we partitioned 𝐴 as 𝐴 =
[

𝐴 𝐴̂
]

. Since linear and nonlinear
design are decoupled, a sufficient condition for (27) to admit a solution
is that [ 𝑈0

𝑍0
] is full row rank (data are rich) and (𝐴,𝐵) is stabilizable.

This result is formalized in De Persis et al. (2023, Theorem 5). This
is not possible with Taylor’s method as it treats the nonlinearity as an
uncertainty term, and for this reason the design of the linear part is cast
as a robust design problem.

We make a final comment on item (ii) of Theorem 4. Condition (29)
can be replaced by requiring that 𝑄(𝑥) is differentiable at 𝑥 = 0 and
satisfies 𝑄(0) = 0. In fact, in this case 𝑄(𝑥) admits a Taylor’s expansion
at 𝑥 = 0:

𝑄(𝑥) =
[

𝜕𝑄
𝜕𝑥

]

𝑥=0
⏟⏞⏞⏟⏞⏞⏟

=∶𝐹

𝑥 + 𝑟(𝑥),

with 𝑟 ∶ R𝑛 → R𝑆−𝑛 a differentiable function of the state such that
lim𝑥→0

|𝑟(𝑥)|
|𝑥| = 0. Accordingly, the dynamics can be rewritten as

+ = (𝐴 + 𝐴̂𝐹 )𝑥 + 𝐴̂𝑟(𝑥) + 𝐵𝑢. (32)
6

Thus Theorem 4 becomes applicable with 𝑄(𝑥) replaced by 𝑟(𝑥).1 In
act, this observation shows that item (ii) of Theorem 4 is conceptually
nalogous to Taylor’s method but with the key difference that the
onlinearity is known.

.2. Feedback linearization

Stabilizing system (21) by cancelling the nonlinear term 𝑋1𝐺2𝑄(𝑥)
s done in Section 4.1 brings to mind feedback linearization techniques,
hich combine a nonlinear feedback with a suitable change of coor-
inates. In this subsection we discuss how feedback linearization can
e performed from data using the framework presented in this paper.
e sketch the main idea referring the reader to De Persis et al. (2023,

ection VII.B) for details.
We consider a single input single output system

+ = 𝑓 (𝑥, 𝑢) (33a)

𝑦 = ℎ(𝑥) (33b)

here 𝑢, 𝑦 ∈ R, ℎ(0) = 0 and, as before, 𝑓 (0, 0) = 0. We assume that
oth the state 𝑥 and the output 𝑦 are measured. The system of interest
s one for which a normal form – obtained from a change of coordinates
exists. To avoid keeping track of the set where such a normal form

s valid, we will work with a normal form that holds globally. For the
atter to exist, we assume that the condition
𝜕ℎ ◦ 𝑓 𝑖

0 ◦ 𝑓 (𝑥, 𝑢)
𝜕𝑢

= 0,∀(𝑥, 𝑢) ∈ R𝑛+1, 0 ≤ 𝑖 ≤ 𝑛 − 2 (34a)

𝜕ℎ ◦ 𝑓 𝑛−1
0 ◦ 𝑓 (𝑥, 𝑢)
𝜕𝑢

|

|

|

|

|

|𝑢=0

= constant ≠ 0,∀𝑥 ∈ R𝑛 (34b)

where 𝑓0(𝑥) = 𝑓 (𝑥, 0), 𝑓 𝑑
0 = 𝑓0 ◦ 𝑓0 ◦ ⋯ ◦𝑓0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑 𝑡𝑖𝑚𝑒𝑠

, holds and define

⎡

⎢

⎢

⎢

⎢

⎣

ℎ(𝑥)
ℎ ◦ 𝑓0(𝑥)

⋮
ℎ ◦ 𝑓 𝑛−1

0 (𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

=∶ 𝛷0(𝑥) (35)

as a continuous global change of coordinates (Isidori, 1995; Monaco &
Normand-Cyrot, 1987, p. 11).2 Under condition (34a), if we set

𝑤(𝑘) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑦(𝑘)
𝑦(𝑘 + 1)

⋮
𝑦(𝑘 + 𝑛 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝛷0(𝑥(𝑘)),

system (33) in the coordinates 𝑤 becomes

𝑤(𝑘 + 1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑤2(𝑘)
𝑤3(𝑘)
⋮

𝑤𝑛(𝑘)
ℎ ◦ 𝑓 𝑛−1

0 ◦ 𝑓 (𝑥(𝑘), 𝑢(𝑘))

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑦(𝑘) = 𝑤1(𝑘). (36)

In model-based control, at this stage one would determine a function
𝑢 = 𝛾(𝑥, 𝑣) such that ℎ ◦ 𝑓 𝑛−1

0 ◦ 𝑓 (𝑥, 𝛾(𝑥, 𝑣)) = 𝑣 by the Implicit Function
Theorem. This however requires a knowledge of ℎ ◦ 𝑓 𝑛−1

0 ◦ 𝑓 (𝑥, 𝑢) which
we do not have. To overcome this obstacle, we first consider a Taylor
expansion of the function ℎ ◦ 𝑓 𝑛−1

0 ◦ 𝑓 (𝑥, 𝑢) with respect to the variable
𝑢 at the point 𝑢 = 0, which in view of (34b) returns

ℎ ◦ 𝑓 𝑛−1
0 ◦ 𝑓 (𝑥, 𝑢) = ℎ ◦ 𝑓 𝑛

0 (𝑥) + 𝑏𝑢

1 As an example, consider the inverted pendulum system. If we take 𝑄(𝑥) =
sin(𝑥1) then condition (29) is not satisfied. Nonetheless, we can replace 𝑄(𝑥)
with 𝑟(𝑥) = sin(𝑥1) − 𝑥1.

2 (i) 𝛷0(𝑥) is invertible, i.e., there exists a function 𝛷−1
0 (𝑤) such that

−1 𝑛 −1
𝛷0 (𝛷0(𝑥)) = 𝑥 for all 𝑥 ∈ R , and (ii) both 𝛷0(𝑥), 𝛷0 (𝑤) are continuous.
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where 𝑏 ∶=
𝜕ℎ ◦ 𝑓𝑛−1

0 ◦ 𝑓 (𝑥,𝑢)
𝜕𝑢 |𝑢=0 ≠ 0 for all 𝑥 ∈ R𝑛. Second, in the spirit

f this section, we assume that the unknown nonlinearity ℎ ◦ 𝑓 𝑛
0 (𝑥) can

e expressed as a linear combination of a known vector 𝑍(𝑥) made of
inearly independent functions, that is

◦ 𝑓 𝑛
0 (𝑥) = 𝑎⊤𝑍(𝑥) (37)

or some 𝑎 ∈ R𝑆 and

(𝑥) =
[

ℎ(𝑥)
𝑄(𝑥)

]

. (38)

ence, under conditions (34), (37), the system in normal form is
+ = 𝐴𝑐𝑤 + 𝐵𝑐 (𝑎⊤𝑍(𝑥) + 𝑏𝑢), 𝑦 = 𝐶𝑐𝑤

here (𝐴𝑐 , 𝐵𝑐 , 𝐶𝑐 ) are matrices in Brunowsky form (Zeitz, 1989).
In what follows, we will design a feedback controller 𝑢 = 𝐾𝑍(𝑥).

ompared to (23), in 𝑍(𝑥) in (38) we are considering ℎ(𝑥) rather than
. This is because we are working with the normal form (36) whose
tate is 𝑤 and of which only the first component 𝑤1 = ℎ(𝑥) is available
or feedback.

We start defining the matrix of input samples 𝑈0 as in (4a), 𝑍0 as
n (25) and

0 ∶=
[

𝑤(0) 𝑤(1) ⋯ 𝑤(𝑇 − 1)
]

∈ R𝑛×𝑇 , (39a)

1 ∶=
[

𝑤(1) 𝑤(2) ⋯ 𝑤(𝑇 )
]

∈ R𝑛×𝑇 , (39b)

hich satisfy the identity 𝑊1 = 𝐴𝑐𝑊0 + 𝐵𝑐 (𝑎⊤𝑍0 + 𝑏𝑈0). Note that the
matrices 𝑊0,𝑊1 are known because they consist of output samples.

Corollary 4. Consider the nonlinear system (33). Assume that the
conditions (34), (37) hold and that 𝛷0 in (35) is a continuous global
change of coordinates. Consider the following SDP in the decision variables
𝐺1 ∈ R𝑇×𝑛, 𝐺2 ∈ R𝑇×(𝑆−𝑛) and 𝑘1 ∈ R:

minimize
𝐺1 ,𝐺2 ,𝑘1

‖(𝑊1 − 𝐴𝑐𝑊0)𝐺2‖ (40a)

subject to 𝑍0𝐺1 =
[

1
0(𝑆−1)×1

]

, (40b)

(𝑊1 − 𝐴𝑐𝑊0)𝐺1 = 𝐵𝑐𝑘1 , (40c)

𝑘1 ∈ (−1, 1) , (40d)

𝑍0𝐺2 =
[

01×(𝑆−1)
𝐼𝑆−1

]

. (40e)

(i) If the SDP is feasible and the solution achieves zero cost then 𝑢 =
𝐾𝑍(𝑥), with 𝐾 = 𝑈0𝐺, linearizes the closed-loop system and renders
the origin a globally asymptotically stable equilibrium.

(ii) If
[

𝑈0
𝑍0

]

has full row rank, then the SDP is feasible, the solution

achieves zero cost and the same conclusion as in (i) holds.

Proof. (i) Conditions (40b), (40e) along with the definition of the con-
troller gain 𝐾, show that the identity (24) holds. Thus, the closed-loop
system is of the form

𝑤+ = 𝐴𝑐𝑤 + 𝐵𝑐 (𝑎⊤𝑍(𝑥) + 𝑏𝐾𝑍(𝑥)) (41a)

= 𝐴𝑐𝑤 + 𝐵𝑐𝑎
⊤𝑍(𝑥) + 𝐵𝑐𝑏𝑈0𝐺𝑍(𝑥) (41b)

= 𝐴𝑐𝑤 + (𝑊1 − 𝐴𝑐𝑊0)𝐺𝑍(𝑥) (41c)

= 𝐴𝑐𝑤 + (𝑊1 − 𝐴𝑐𝑊0)𝐺1𝑒
⊤
1,𝑛𝑤 (41d)

= (𝐴𝑐 + 𝐵𝑐𝑘1𝑒
⊤
1,𝑛)𝑤 (41e)

where 𝑒𝑘,𝑝 represents the 𝑘th standard unit vector in R𝑝, hence 𝑒1,𝑛 =
[ 1 0 … 0 ]⊤ ∈ R𝑛. The equality (41c) follows from the identities 𝐵𝑐𝑏𝑈0𝐺
= 𝑊1𝐺 − 𝐴𝑐𝑊0𝐺 − 𝐵𝑐𝑎⊤𝑍0𝐺, (40b) and (40e), the equality (41d)
from (𝑊1 − 𝐴𝑐𝑊0)𝐺2 = 0 and (41e) from (40c). Hence, the controller
𝑢 = 𝐾𝑍(𝑥) linearizes the closed-loop system. Condition (40d) ensures
Schur stability of 𝑤+ = (𝐴𝑐 +𝐵𝑐𝑘1𝑒⊤1,𝑛)𝑤. As 𝑥 = 𝛷−1(𝑤), with 𝛷−1(𝑤) a

−1
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continuous function such that 0 = 𝛷 (0), the thesis follows. w
(ii) Under conditions (34), (37), in the coordinates 𝑤 system (33a)
takes the form 𝑤+ = 𝐴𝑐𝑤 + 𝐵𝑐 (𝑎⊤𝑍(𝑥) + 𝑏𝑢). As 𝑏 ≠ 0, there exists
𝐾 = 𝑏−1(−𝑎⊤ + 𝑘1𝑒⊤1,𝑆 ), where 𝑘1 ∈ (−1, 1). This results in the closed-
loop system 𝑤+ = (𝐴𝑐 + 𝐵𝑐𝑘1𝑒⊤1,𝑛)𝑤. For such matrix 𝐾, let 𝐺 be such
that

[𝐾
𝐼
]

=
[

𝑈0
𝑍0

]

𝐺. Hence, (40b), (40e) hold. Thanks to this identity,
the closed-loop system 𝑤+ = 𝐴𝑐𝑤 + 𝐵𝑐 (𝑎⊤ 𝑍(𝑥) + 𝑏𝐾𝑍(𝑥)) can be
written as 𝑤+ = [𝐴𝑐 + (𝑊1 − 𝐴𝑐𝑊0)𝐺1𝑒⊤1,𝑛]𝑤 + (𝑊1 − 𝐴𝑐𝑊0)𝐺2𝑄(𝑥), by
the same arguments used to obtain (41b)–(41c). By comparing it with
𝑤+ = (𝐴𝑐 +𝐵𝑐𝑘1𝑒⊤1,𝑛)𝑤, we conclude that it must hold ((𝑊1−𝐴𝑐𝑊0)𝐺1−
𝐵𝑐𝑘1)ℎ(𝑥) + (𝑊1 − 𝐴𝑐𝑊0)𝐺2𝑄(𝑥) = 0. By structure of the matrices
𝐴𝑐 , 𝐵𝑐 and 𝑊0,𝑊1, the matrix 𝑊1 − 𝐴𝑐𝑊0 is made of all zero entries
except for the last row. Hence, the previous identity is equivalent to the
scalar identity (𝑒⊤𝑛,𝑛(𝑊1 −𝐴𝑐𝑊0)𝐺1 − 𝑘1)ℎ(𝑥) + 𝑒⊤𝑛,𝑛(𝑊1 −𝐴𝑐𝑊0)𝐺2𝑄(𝑥) =
0. By the linear independence of the functions in 𝑍(𝑥), this implies
𝑒⊤𝑛,𝑛(𝑊1 − 𝐴𝑐𝑊0)𝐺1 − 𝑘1 = 0 and 𝑒⊤𝑛,𝑛(𝑊1 − 𝐴𝑐𝑊0)𝐺2 = 0. Bearing in
mind once again that 𝑊1 −𝐴𝑐𝑊0 is made of all zero entries except for
the last row, we conclude that (𝑊1 − 𝐴𝑐𝑊0)𝐺1 = 𝐵𝑐𝑘1, which is (40c),
and (𝑊1 − 𝐴𝑐𝑊0)𝐺2 = 0. This ends the proof. ■

The result shows that for systems that are feedback linearizable,
under conditions on the richness of data, the approach outlined in
Section 4.1 leads to a feasible SDP, hence to a feedback linearizing
controller.

4.3. Noisy case and robust invariance

We now turn our attention to extend the results of Section 4.1 to
the case of noisy data, which involves minor changes. It is sufficient to
note that (42c) below replaces (27c) to account for noise. In fact, (42c)
is the same as (7a), corresponding to the robust design of the linear
part of the dynamics.

Theorem 5. Consider a nonlinear system as in (22), with 𝑄(𝑥) satisfying
the condition (29), and let D be a dataset. Let  ∶= {𝐷 ∈ R𝑠×𝑇 ∶ 𝐷𝐷⊤ ⪯
𝛥𝛥⊤} where the matrix 𝛥 ∈ R𝑠×𝑞 is chosen by the designer, and suppose
𝐷0 ∈ . Consider the following program:

minimize
𝑃 ,𝑌1 ,𝐺2

‖𝑋1𝐺2‖ (42a)

subject to (27b), (27d), (42b)

⎡

⎢

⎢

⎣

𝑃 −𝛺 (𝑋1𝑌1)⊤ 𝑌 ⊤
1

𝑋1𝑌1 𝑃 − 𝜖𝐸𝛥𝛥⊤𝐸⊤ 0𝑛×𝑇
𝑌1 0𝑇×𝑛 𝜖𝐼𝑇

⎤

⎥

⎥

⎦

≻ 0, (42c)

where 𝛺 ≻ 0 is chosen by the designer.
If the design program is feasible then the control law 𝑢 = 𝐾𝑍(𝑥) with 𝐾

given by (28) renders the closed-loop system (locally) asymptotically stable.

The estimate of RPI sets is straightforward. As before, let 𝑉 (𝑥) =
𝑥⊤𝑃−1𝑥 and note that

𝑉 (𝑥+) − 𝑉 (𝑥) ≤
−𝑥⊤𝛷𝑥 + (2𝛹𝑥 + 𝛯𝑄(𝑥) + 𝐸𝑑)⊤𝑃−1(𝛯𝑄(𝑥) + 𝐸𝑑), (43)

where 𝛷 = 𝑃−1𝛺𝑃−1, 𝛹 = (𝑋1−𝐸𝐷0)𝐺1, and where 𝛯 = (𝑋1−𝐸𝐷0)𝐺2.
Accordingly, we have

𝑉 (𝑥+) − 𝑉 (𝑥) ≤
−𝑥⊤𝛷𝑥 + 𝓁1(𝑥) + 𝓁2(𝑥) + 𝓁3(𝑥) + 𝓁4(𝑥)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝓁(𝑥)

+𝑔(𝑍(𝑥), 𝜈) (44)

where 𝑔 is as in (15), with 𝐻 replaced by the matrix 𝐸, 𝜈 a known
bound on |𝑑|, and where

𝓁1(𝑥) ∶= (2𝑋1𝐺1𝑥 +𝑋1𝐺2𝑄(𝑥))⊤𝑃−1𝑋1𝐺2𝑄(𝑥),

𝓁2(𝑥) ∶= ‖𝛥‖|(2𝑋1𝐺1𝑥 +𝑋1𝐺2𝑄(𝑥))⊤𝑃−1𝐸||𝐺2𝑄(𝑥)|,

𝓁3(𝑥) ∶= ‖𝛥‖|2𝐺1𝑥 + 𝐺2𝑄(𝑥)||𝐸⊤𝑃−1𝑋1𝐺2𝑄(𝑥)|,

𝓁4(𝑥) ∶= ‖𝛥‖2‖𝐸⊤𝑃−1𝐸‖|2𝐺1𝑥 + 𝐺2𝑄(𝑥)||𝐺2𝑄(𝑥)|,
hich are all known quantities.
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Fig. 2. Results for Example 2. (Left) Method with known basis functions. (Right) Taylor’s method. See Fig. 1 for the definition of the various sets displayed.
Corollary 5. Consider the same setting as in Theorem 5, and let 𝜈 be a
known bound on |𝑑|. Let 𝑉 (𝑥) = 𝑥⊤𝑃−1𝑥, and define 𝛾 ∶= {𝑥 ∶ 𝑉 (𝑥) ≤
𝛾}, with 𝛾 > 0 arbitrary. Finally, let  ∶= {𝑥 ∶ 𝓁(𝑥) + 𝑔(𝑍(𝑥), 𝜈) ≤ 0}
where 𝑔(𝑧, 𝜂) is defined in (15), with 𝐻 replaced by the matrix 𝐸, and
 ∶= 𝛾 ∩ 𝑐 where 𝑐 denotes the complement of  ( is the subset of
𝛾 for which the Lyapunov difference can be positive). If

𝑉 (𝑥) + 𝓁(𝑥) + 𝑔(𝑍(𝑥), 𝜈) ≤ 𝛾 ∀𝑥 ∈  (46)

then 𝛾 is an RPI set for the closed-loop system.

A direct comparison with Corollary 2 shows that the uncertainty
term 𝑔(𝑥, (𝛿(𝑥), 𝜈)) in Taylor’s method (recall that 𝛿(𝑥) is the bound on
the remainder and 𝜈 is the bound on the disturbance) has now reduced
to 𝑔(𝑍(𝑥), 𝜈), and 𝑔(𝑍(𝑥), 𝜈) ≈ 𝑔(𝑥, 𝜈) whenever ‖𝑋1𝐺2‖ is sufficiently
small, leading to an improved estimate of the RPI sets.

In relation with this aspect, (44) suggests that it might be convenient
to regularize the objective function in (42) so as to mitigate the effect
of the disturbances. As shown in Example 2 below, a convenient choice
is the following one:

minimize
𝑃 ,𝑌1 ,𝐺2

‖𝑋1𝐺2‖ + 𝜆1‖𝑃‖ + 𝜆2‖𝐺2‖ (47a)

subject to (27b), (27d), (42c), (47b)

with 𝜆1, 𝜆2 ≥ 0 weighting parameters. Penalizing ‖𝑃‖ increases the
smallest eigenvalue of 𝛷, while penalizing ‖𝐺2‖ decreases the various
terms 𝓁𝑖 in (44). Note that penalizing ‖𝑃‖ might increase the terms
𝓁𝑖, but while these quantities depend on 𝑃−1, 𝛷 depends on 𝑃−2, so
penalizing ‖𝑃‖ can still be advantageous.

4.4. Example 2

Consider the same experimental setting as Example 1. This time we
collect 𝑇 = 30 datapoints so as to emphasize that we do not need the
experiment to be carried out close to the equilibrium (with 10 samples
𝑥1 never exceeds 12◦ while 30 samples lead 𝑥1 beyond 45◦). We choose
𝑄(𝑥) = sin 𝑥1 − 𝑥1, and solve (47) with 𝜆1 = 𝜆2 = 0.1.

The design program is feasible and gives the controller 𝐾 =
[

−23.9436 −11.4581 −9.8564
]

, which generates the term −9.8564
(sin 𝑥1 − 𝑥1) that approximately cancels out the nonlinearity. This extra
term improves the estimate of RoA and RPI sets, as reported in Fig. 2.

5. Special classes of systems

In the previous sections we have treated fairly general classes of
nonlinear systems. In the first case, we have Taylor expanded the non-
linear vector field and treated the remainder as a perturbation. In the
second case, we have expressed the nonlinear vector field in terms of a
known basis of nonlinear functions. In both cases we could design the
controller from data. However, the difference in the priors available for
the two cases leads to a noticeable change when estimating the region
8

of attraction. The two methods have in common the design strategy:
since the nonlinearities are general and no specific structure on how
they affect the dynamics is assumed to be known to the designer,
the control stabilizes the linear part and approximately cancels the
nonlinearities. This strategy has the additional advantage of providing
the designer with the flexibility and power of linear robust control
methods, which help dominating the nonlinearities of the system.

On the other hand, we have seen that if more priors are known
about the system, for instance, if it is feedback linearizable, then
stronger control results are obtainable. In this section, we continue
along this line of arguments and see what is achievable for systems
for which extra information is available about the nonlinearities. We
examine systems that are in Lur’e form and bilinear systems.

5.1. Systems in Lur’e form

In Section 4 we took advantage of a linear parametrization of the
vector field 𝑓 to design feedback controllers that make the closed-loop
system dominantly linear by minimizing the nonlinearities. In many
practical cases, the vector field 𝑓 can be separated into a linear part
and a nonlinear part that satisfies particular constraints (Yakubovich,
Leonov, & Gelig, 2004). For these cases, one can provide a more refined
analysis than for a system with a general nonlinear vector field, as we
discuss in this section.

We consider system (21) where the vector field 𝑓 (𝑥) is replaced by
𝐴𝑥 + 𝜑(𝑡,𝐻𝑥), namely

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐿𝑣 + 𝐸𝑑
𝑧 = 𝐻𝑥
𝑣 = 𝜑(𝑡, 𝑧)

(48)

where 𝐴,𝐵,𝐸 are defined as before, 𝜑 ∶ R≥0×R𝑝 → R𝑞 is a memoryless,
possibly time-varying, function in 𝑧 and 𝐿 ∈ R𝑛×𝑞 ,𝐻 ∈ R𝑝×𝑞 are known
matrices. Here the variable 𝑧 and the matrix 𝐻 should not be confused
with the one used in (15).

We are interested in functions that satisfy the constraint
[

𝑧
𝜑(𝑡, 𝑧)

]⊤ [

𝑄̂ 𝑆̂
𝑆̂⊤ 𝑅̂

] [

𝑧
𝜑(𝑡, 𝑧)

]

≥ 0, (49)

which holds for all the pairs (𝑡, 𝑧) ∈ R≥0 × R𝑝 with 𝑧 ∈ im𝐻 , where
𝑄̂ ∈ S𝑝×𝑝, 𝑆̂ ∈ R𝑝×𝑞 and 𝑅̂ ≺ 0 ∈ S𝑞×𝑞 are known matrices. Since 𝑅̂ ≺ 0
then 𝑧 = 0 implies that 𝜑(𝑡, 𝑧) = 0 for all 𝑡 ≥ 0. In the analysis to follow
we will make use of the matrices 𝑄,𝑆,𝑅 defined as
[

𝑄 𝑆
𝑆⊤ 𝑅

]

∶=
[

𝐻 0
0 𝐼

]⊤ [

𝑄̂ 𝑆̂
𝑆̂⊤ 𝑅̂

] [

𝐻 0
0 𝐼

]

. (50)

For any (𝑥, 𝑣), where 𝑣 = 𝜑(𝑡,𝐻𝑥), it holds that
[

𝑥
]⊤ [

𝑄 𝑆
⊤

] [

𝑥
]

≥ 0. (51)

𝑣 𝑆 𝑅 𝑣
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Thanks to the specific form of system (48) and the constraint
(49), one can aim at asymptotic stabilization taking into account the
nonlinearity rather than minimizing it, namely one can aim at uniform
global asymptotic stabilization of (48), or, to adopt a term consistent
with the literature, at the absolute stabilization of (48) (cf. Khalil, 2001,
Definition 10.2).

Definition 2. System (48) with 𝑑 = 0 is absolutely stabilizable via
linear state-feedback 𝑢 = 𝐾𝑥 if there exists a matrix 𝐾 such that
𝑥 = 0 is a globally uniformly asymptotically stable equilibrium for the
closed-loop system

𝑥+ = (𝐴 + 𝐵𝐾)𝑥 + 𝐿𝑣
𝑧 = 𝐻𝑥
𝑣 = 𝜑(𝑡, 𝑧)

(52)

or any function 𝜑 that satisfies the inequality (49). ■

In the definition above we are assuming that 𝑑, which is present
uring the data acquisition phase, is absent during the execution of the
ontrol task. We will remark later about the case when 𝐸𝑑 ≠ 0 appears
n (52).

As in the previous sections, to carry out the analysis we rely on
data-based representation of the closed-loop system. In Section 4, it
as considered the case in which the vector of nonlinearities 𝑍(𝑥) was
nown, which allows the designer to compute the matrix 𝑍0 in (25).
he nonlinearity 𝜑(𝑡, 𝑧) considered here satisfies (49), but its precise
nalytic expression may not be known. What we assume instead is that
amples of the nonlinearity can be measured during the experiment,
amely that the data matrix

0 ∶=
[

𝑣(0) 𝑣(1) ⋯ 𝑣(𝑇 − 1)
]

∈ R𝑞×𝑇 (53)

s available to the designer in addition to the matrices 𝑈0, 𝑋0, 𝑋1 given
n (4). Hence, in this section the dataset (2) is extended as

∶= {𝑥(𝑘), 𝑢(𝑘), 𝑣(𝑘), 𝑘 = 0, 1,… , 𝑇 } (54)

here by an abuse of notation we continue to use the same symbol D
s in (2). Then, similarly to Lemma 2, we have the following:

emma 5. Consider any matrices 𝐾 ∈ R𝑚×𝑛, 𝐺 ∈ R𝑇×𝑛 such that (5)
olds. System (48) with 𝑢 = 𝐾𝑥 results in the closed-loop dynamics
+ = (𝑋𝐿 − 𝐸𝐷0)𝐺𝑥 + 𝐿𝑣 + 𝐸𝑑
𝑧 = 𝐻𝑥
𝑣 = 𝜑(𝑡, 𝑧)

(55)

here

𝐿 ∶= 𝑋1 − 𝐿𝑉0. (56)

Having obtained the data-based representation (55), we can con-
ider the absolute stabilization problem for system (48).

heorem 6. Consider system (48) along with the dataset D in (54). Let
∶= {𝐷 ∈ R𝑠×𝑇 ∶ 𝐷𝐷⊤ ⪯ 𝛥𝛥⊤} where the matrix 𝛥 ∈ R𝑠×𝑞 is chosen by

the designer, and suppose 𝐷0 ∈ . Suppose that there exist two matrices
𝑌 ∈ R𝑇×𝑛, 𝑃 ∈ R𝑇×𝑛 and two scalars 𝜖, 𝜏 > 0 such that (7b) holds and

1. (𝑄 ⪰ 0)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 − 𝜏𝛺 𝑃𝑆 (𝑋𝐿𝑌 )⊤ 𝑃𝑄1∕2 𝑌 ⊤

𝑆⊤𝑃 −𝑅 𝐿⊤ 0𝑞×𝑛 0𝑞×𝑇
𝑋𝐿𝑌 𝐿 𝑃 − 𝜖𝐸𝛥𝛥⊤𝐸⊤ 0𝑛×𝑛 0𝑛×𝑇
𝑄1∕2𝑃 0𝑛×𝑞 0𝑛×𝑛 𝐼𝑛 0𝑛×𝑇
𝑌 0𝑇×𝑞 0𝑇×𝑛 0𝑇×𝑛 𝜖𝐼𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≻ 0 (57)

or
2. (𝑄 = 0 or 𝑄 ⪯ 0)

⎡

⎢

⎢

⎢

⎢

𝑃 − 𝜏𝛺 𝑃𝑆 (𝑋𝐿𝑌 )⊤ 𝑌 ⊤

𝑆⊤𝑃 −𝑅 𝐿⊤ 0𝑞×𝑇
𝑋𝐿𝑌 𝐿 𝑃 − 𝜖𝐸𝛥𝛥⊤𝐸⊤ 0𝑛×𝑇

⎤

⎥

⎥

⎥

⎥

≻ 0 (58)
9

⎣

𝑌 0𝑇×𝑞 0𝑇×𝑛 𝜖𝐼𝑇 ⎦

𝛹

with 𝛺 ≻ 0 chosen by the designer and 𝑋𝐿 defined in (56). Then, the
controller 𝐾 = 𝑈0𝑌 𝑃−1 renders 𝑥 = 0 a globally uniformly asymptotically
stable equilibrium of the closed-loop system (52) for any function 𝜑 that
satisfies the inequality (49).

Proof. 1. Bearing in mind that 𝑄 ⪰ 0, by the Schur complement,
condition (57) can be rewritten as

⎡

⎢

⎢

⎢

⎢

⎣

𝑃 − 𝜏𝛺 𝑃𝑆 (𝑋𝐿𝑌 )⊤ 𝑃𝑄1∕2

⋆ −𝑅 𝐿⊤ 0𝑞×𝑛
⋆ ⋆ 𝑃 0𝑛×𝑛
⋆ ⋆ ⋆ 𝐼𝑛

⎤

⎥

⎥

⎥

⎥

⎦

𝜖−1

⎡

⎢

⎢

⎢

⎢

⎣

𝑌 ⊤

0𝑞×𝑇
0𝑛×𝑇
0𝑛×𝑇

⎤

⎥

⎥

⎥

⎥

⎦

[

𝑌 0𝑇×𝑞 0𝑇×𝑛 0𝑇×𝑛
]

𝜖

⎡

⎢

⎢

⎢

⎢

⎣

0𝑛×𝑠
0𝑞×𝑠
𝐸
0𝑛×𝑠

⎤

⎥

⎥

⎥

⎥

⎦

𝛥𝛥⊤ [

0𝑠×𝑛 0𝑠×𝑞 𝐸⊤ 0𝑠×𝑛
]

≻ 0

hich, by Lemma 1, is equivalent to

−𝑃 + 𝜏𝛺 𝑃𝑆 −[(𝑋𝐿 − 𝐸𝐷)𝑌 ]⊤ −𝑃𝑄1∕2

⋆ 𝑅 𝐿⊤ 0𝑞×𝑛
⋆ ⋆ −𝑃 0𝑛×𝑛
⋆ ⋆ ⋆ −𝐼𝑛

⎤

⎥

⎥

⎥

⎥

⎦

≺ 0

or all 𝐷 ∈ . By left- and right-multiplying by diag(𝑃−1, 𝐼𝑞 , 𝐼𝑛, 𝐼𝑛),
erforming the change of variable 𝐺 ∶= 𝑌 𝑃−1 and applying again the
chur complement, the previous inequality is rewritten as

−𝑃−1 + 𝜏𝛷 +𝑄 𝑆 −[(𝑋𝐿 − 𝐸𝐷)𝐺]⊤

⋆ 𝑅 𝐿⊤

⋆ ⋆ −𝑃

⎤

⎥

⎥

⎦

≺ 0,

here we recall that 𝛷 = 𝑃−1𝛺𝑃−1. One more application of the Schur
omplement yields

𝛹𝐿(𝐷)⊤𝑃−1𝛹𝐿(𝐷) − 𝑃−1 + 𝜏𝛷 𝛹𝐿(𝐷)⊤𝑃−1𝐿
⋆ 𝐿⊤𝑃−1𝐿

]

+
[

𝑄 𝑆
𝑆⊤ 𝑅

]

≺ 0 ∀𝐷 ∈ 

𝑃 ≻ 0

here 𝛹𝐿(𝐷) ∶= (𝑋𝐿 −𝐸𝐷)𝐺. Multiplying by 𝜏−1 and setting 𝑃 ∶= 𝜏𝑃 ,
̂ ∶= 𝜏−1, the inequality becomes

𝛹𝐿(𝐷)⊤𝑃−1𝛹𝐿(𝐷) − 𝑃−1 +𝛷 𝛹𝐿(𝐷)⊤𝑃−1𝐿
⋆ 𝐿⊤𝑃−1𝐿

]

+𝜏
[

𝑄 𝑆
𝑆⊤ 𝑅

]

≺ 0 ∀𝐷 ∈ 

𝑃 ≻ 0.

s 𝐷0 ∈ , the inequality holds in particular for 𝐷 = 𝐷0 and it implies
hat, for all (𝑥, 𝑣),

𝑥
𝑣

]⊤ [

𝛹⊤
𝐿𝑃

−1𝛹𝐿 − 𝑃−1 +𝛷 𝛹⊤
𝐿𝑃

−1𝐿

⋆ 𝐿⊤𝑃−1𝐿

]

[

𝑥
𝑣

]

𝜏
[

𝑥
𝑣

]⊤ [

𝑄 𝑆
𝑆⊤ 𝑅

] [

𝑥
𝑣

]

≤ 0

here, for the sake of simplicity, we denote (𝑋𝐿−𝐸𝐷0)𝐺 by 𝛹𝐿 instead
f 𝛹𝐿(𝐷0). For 𝑣 = 𝜑(𝑡, 𝑧), with 𝑧 = 𝐻𝑥,
[

𝑥
𝑣

]⊤ [

𝑄 𝑆
𝑆⊤ 𝑅

] [

𝑥
𝑣

]

≥ 0 (59)

n view of (49) and (50). Condition (7b) and 𝐾 = 𝑈0𝑌 𝑃−1 show that
⊤ ̂−1
𝐿 = 𝐴 + 𝐵𝐾 by Lemma 5. Choose 𝑉 (𝑥) = 𝑥 𝑃 𝑥. Then, along the
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trajectories of (52), we have

𝑉 (𝑥+) − 𝑉 (𝑥)

= (𝛹𝐿𝑥 + 𝐿𝜑(𝑡,𝐻𝑥))⊤𝑃−1(𝛹𝐿𝑥 + 𝐿𝜑(𝑡,𝐻𝑥)) − 𝑥⊤𝑃−1𝑥
[

𝑥
𝑣

]⊤ [

𝛹⊤
𝐿𝑃

−1𝛹𝐿 − 𝑃−1 𝛹⊤
𝐿𝑃

−1𝐿
𝐿⊤𝑃−1𝛹𝐿 𝐿⊤𝑃−1𝐿

] [

𝑥
𝑣

]

≤ −𝑥⊤𝛷𝑥

or all (𝑥, 𝑣), which shows the thesis. The proof of 2. is similar and is
mitted. ■

Compared to Theorem 5, the last result allows us to obtain a uniform
lobal asymptotic stabilization result versus a local one, provided that
he nonlinearity 𝑣 = 𝜑(𝑡, 𝑧) satisfies (49) and that the samples (53) are
easured during the experiment. For other results on the data-driven

bsolute stabilization problem we refer the reader to Luppi, De Persis,
nd Tesi (2022).

emark 1. Conditions (57) and (58) are indebted to the S-procedure.
n fact, the proof underscores that the global uniform stabilization of
= 0 for system (52) with 𝜑 any function that satisfies the inequality

49) is tackled via the condition

(𝑥+) − 𝑉 (𝑥) + 𝑥⊤𝛷𝑥 =
𝑥
𝑣

]⊤ [

𝛹⊤
𝐿𝑃

−1𝛹𝐿 − 𝑃−1 +𝛷 𝛹⊤
𝐿𝑃

−1𝐿

⋆ 𝐿⊤𝑃−1𝐿

]

[

𝑥
𝑣

]

≤ 0

hich is required to hold for all (𝑥, 𝑣), that satisfy (59), with 𝑣 =
(𝑡,𝐻𝑥). By the lossless S-procedure (Yakubovich et al., 2004, pp. 67–
8), under the condition that the constraint (49) is regular, which im-
lies that the constraint (59) is also regular, the condition is equivalent
o the existence of 𝜏 ≥ 0 such that

𝛹⊤
𝐿𝑃

−1𝛹𝐿 − 𝑃−1 +𝛷 𝛹⊤
𝐿𝑃

−1𝐿

⋆ 𝐿⊤𝑃−1𝐿

]

+ 𝜏

[

𝑄 𝑆

𝑆⊤ 𝑅

]

⪯ 0.

f 𝜏 = 0, then 𝐿⊤𝑃−1𝐿 ⪯ 0, which is a contradiction, since 𝑃 ≻ 0 and
≠ 0. Hence, 𝜏 ≠ 0 without loss of generality, and the condition above

s equivalent to

> 0,

[

𝛹⊤
𝐿𝑃

−1𝛹𝐿 − 𝑃−1 + 𝜏𝛷 +𝑄 𝛹⊤
𝐿𝑃

−1𝐿 + 𝑆

⋆ 𝐿⊤𝑃−1𝐿 + 𝑅

]

⪯ 0

here 𝑃 = 𝜏𝑃 ≻ 0 and 𝜏 = 𝜏−1. As 𝐷0 in 𝛹𝐿 is unknown, instead of the
bove, one can consider the condition

𝜏 > 0
𝛹𝐿(𝐷)⊤𝑃−1𝛹𝐿(𝐷) − 𝑃−1 + 𝜏𝛷̂ 𝛹𝐿(𝐷)⊤𝑃−1𝐿

⋆ 𝐿⊤𝑃−1𝐿

]

+
[

𝑄 𝑆
𝑆⊤ 𝑅

]

⪯ 0 𝐷 ∈ .

etracing the same steps of the proof of the previous result and apply-
ng a nonstrict version of Lemma 1 (Bisoffi, De Persis, & Tesi, 2022,
act 2), one arrives at nonstrict versions of conditions (57) and (58).

If the disturbance term 𝐸𝑑 is present during the execution of the
ontrol task, namely, the closed-loop system is
+ = (𝐴 + 𝐵𝐾)𝑥 + 𝐿𝑣 + 𝐸𝑑
𝑧 = 𝐻𝑥
𝑣 = 𝜑(𝑡, 𝑧),

(60)

hen the evolution of 𝑉 (𝑥) = 𝑥⊤𝑃−1𝑥, where 𝑃 = 𝜏𝑃 , along the solutions
f (60) satisfies

(𝑥+) − 𝑉 (𝑥) ≤ −𝑥⊤𝛷𝑥 + [2(𝛹𝐿𝑥 + 𝐿𝜑(𝑡,𝐻𝑥))
+𝐸𝑑]⊤𝑃−1𝐸𝑑.

efore proceeding further, we observe that, although the analytic ex-
ression of 𝜑 may not be known to the designer, we do have a bound
(𝑡,𝐻𝑥)⊤𝜑(𝑡,𝐻𝑥) ≤ 𝑐𝑥⊤𝐻⊤𝑆̂𝑆̂⊤𝐻𝑥, with 𝑐 > 0 known, for all (𝑡, 𝑥) ∈
10
≥0×R𝑛, thanks to (49).3 We return to consider the Lyapunov difference
bove. As in (14) and (15), we have

(𝑥+) − 𝑉 (𝑥) ≤ −𝑥⊤𝛷𝑥 + 𝑞(𝑥, 𝜈), (61)

here 𝜈 > 0 is the known bound on 𝑑, i.e. |𝑑(𝑡)| ≤ 𝜈 for all 𝑡 ≥ 0, and

(𝜁, 𝜂) ∶= 𝑟1(𝜁 )|𝜂| + 𝑟2(𝜁 )|𝜂| + 𝑟3(𝜁 )|𝜂| + 𝑟4|𝜂|
2, (62a)

1(𝜁 ) ∶= 2|(𝑋𝐿𝐺𝜁 )⊤𝑃−1𝐸|, (62b)

2(𝜁 ) ∶= 2‖𝛥‖‖𝐸⊤𝑃−1𝐸‖|𝐺𝜁 |, (62c)

3(𝜁 ) ∶= 2‖𝐿⊤𝑃−1𝐸‖

√

𝑐|𝑆̂⊤𝐻𝜁 |, (62d)

𝑟4 ∶= ‖𝐸⊤𝑃−1𝐸‖. (62e)

Then, the analogue of Corollary 5 can be given.

Corollary 6. Consider the same setting as in Theorem 6, and let 𝜈
be a known bound on |𝑑|. Let 𝑉 (𝑥) = 𝑥⊤𝑃−1𝑥, where 𝑃−1 = 𝜏−1𝑃−1,
nd define 𝛾 ∶= {𝑥 ∶ 𝑉 (𝑥) ≤ 𝛾}, with 𝛾 > 0 arbitrary. Finally, let
∶= {𝑥 ∶ −𝑥⊤𝛷𝑥 + 𝑞(𝑥, 𝜈) < 0} where 𝑞(𝜁, 𝜂) is defined in (62), and
∶= 𝛾 ∩ 𝑐 where 𝑐 denotes the complement of  ( is the subset of
𝛾 for which the Lyapunov difference can be positive). If

(𝑥) − 𝑥⊤𝛷𝑥 + 𝑞(𝑥, 𝜈) ≤ 𝛾 ∀𝑥 ∈  (63)

hen 𝛾 is an RPI set for the closed-loop system (60) for any function 𝜑
that satisfies the inequality (49).

As a final remark, the technique adopted in this section can be useful
for the design of a stabilizer for systems of the form (21) even when the
vector field 𝑓 (𝑥) is not described by 𝐴𝑥+𝜑(𝑡,𝐻𝑥). Similar to Section 3.1,
we can expand 𝑓 (𝑥) via Taylor’s series and write system (21) as

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐿𝑟(𝑥) + 𝐸𝑑

where 𝑟(𝑥) is the remainder and the matrix 𝐿 specifies which compo-
nents of 𝑓 are actually nonlinear. The (coarse) knowledge of a Lipschitz
bound on the gradient of the components of 𝑓 valid on a convex set
 ⊆ R𝑛 makes sure that 𝑟(𝑥)⊤𝑟(𝑥) ≤ 𝑐𝑥⊤𝑥 for 𝑥 ∈  and for some known
constant 𝑐. Then condition (59), where 𝑄 = 𝑐𝐼𝑛, 𝑆 = 0𝑛×𝑛 and 𝑅 = −𝐼𝑛,
holds for 𝑣 = 𝑟(𝑥), 𝑧 = 𝑥 and 𝑥 ∈  and the results of this section are
applicable. Theorem 6 will return a controller that makes the origin a
locally asymptotically stable equilibrium and for which any Lyapunov
sublevel set contained in  is an estimate of the RoA. If the conditions
of Corollary 6 are satisfied for a sublevel set 𝛾 contained in , then
𝛾 is an RPI for the closed-loop system. Compared with the results in
Section 3.1, here the remainder is explicitly taken into account in the
controller design, at the price of more complex conditions.

5.2. Bilinear systems

Another important class of nonlinear systems for which the previous
methods can be tailored to account for the nonlinearity is the class of
bilinear systems

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐿𝑥𝑢 + 𝐸𝑑. (64)

The importance of these systems is manifold. In the continuous time
case, they are universal approximators of general nonlinear systems
and they have been extensively considered for the control of nonlinear
systems via Carleman linearization. More recently, they have been
studied in connection with Koopman operator theory (Fu & You, 2022;
Goswami & Paley, 2021). In our setting, they are also relevant from

3 By (49) 𝜑(𝑡, 𝑧)⊤(−𝑅̂)𝜑(𝑡, 𝑧) ≤ 𝑧⊤𝑄̂𝑧+𝑧⊤𝑆̂𝜑(𝑡, 𝑧)+𝜑(𝑡, 𝑧)⊤𝑆̂⊤𝑧. For any 𝜇 > 0,
𝑧⊤𝑆̂𝜑(𝑡, 𝑧) + 𝜑(𝑡, 𝑧)⊤𝑆̂⊤𝑧 ≤ 2𝜇𝜑(𝑡, 𝑧)⊤𝜑(𝑡, 𝑧) + 2𝜇−1𝑧⊤𝑆̂𝑆̂⊤𝑧. Set 2𝜇 < 𝜆min(−𝑅̂).
Then, 𝜑(𝑡, 𝑧)⊤𝜑(𝑡, 𝑧) ≤ 2𝜇−1

𝜆min(−𝑅̂)−2𝜇
𝑧⊤𝑆̂𝑆̂⊤𝑧, which implies 𝜑(𝑡,𝐻𝑥)⊤𝜑(𝑡,𝐻𝑥) ≤

2𝜇−1
𝑥⊤𝐻⊤𝑆̂𝑆̂⊤𝐻𝑥.
𝜆min(−𝑅̂)−2𝜇
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a methodological point of view because the state dependence of their
input vector fields can be dealt with by an ingenious application of
Petersen’s lemma (Khlebnikov, 2016).

For the sake of simplicity and brevity, we examine here the case
in which 𝑢 ∈ R is a scalar, 𝑑 = 0 and 𝐿 ∈ R𝑛×𝑛 is known. All these
simplifying assumptions can be relaxed and we refer the interested
reader to Bisoffi, De Persis, and Tesi (2020).

We collect the dataset (2) and define the matrices 𝑈0, 𝑋0, 𝑋1 as in
(4a)–(4c). We compute the samples

𝑣(𝑘) ∶= 𝑥(𝑘)𝑢(𝑘), 𝑘 = 0, 1,… , 𝑇 − 1

and assemble the matrix

𝑉0 ∶=
[

𝑣(0) 𝑣(1) ⋯ 𝑣(𝑇 − 1)
]

∈ R𝑞×𝑇 . (65)

The samples 𝑣(𝑘) and the matrix 𝑉0 introduced here should not be
confused with the homonymous symbols used in Section 5.1.

The following result is easily understood from the analogous results
of the previous sections and its proof is omitted.

Lemma 6. Consider any matrices 𝐾 ∈ R1×𝑛, 𝐺 ∈ R𝑇×𝑛 such that (5)
holds. System (64) with 𝑑 = 0 and 𝑢 = 𝐾𝑥 results in the closed-loop
dynamics

𝑥+ = (𝑋𝐿 + 𝐿𝑥𝑈0)𝐺𝑥 (66)

where

𝑋𝐿 ∶= 𝑋1 − 𝐿𝑉0. (67)

Note that the bilinearity of the system is preserved due to the
presence of 𝑥 between 𝐿 and 𝐺 in the term 𝐿𝑥𝐺𝑥. As in the previous
sections, a Lyapunov based design of the controller is carried out. In
the Lyapunov difference computed along the solutions of (66) the term
𝐿𝑥𝑈0𝐺𝑥 gives rise to cubic terms that we tackle by applying Lemma 1
on a bounded set. This approach has the additional value of providing
an explicit estimate of the RoA of the closed-loop system at the design
stage, without any further analysis.

Theorem 7. Consider system (64) with 𝑑 = 0, along with the dataset D
in (2). Suppose that there exist two matrices 𝑌 ∈ R𝑇×𝑛, 𝑃 ∈ R𝑇×𝑛 and a
scalar 𝜖 > 0 such that (7b) and

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 0𝑛×𝑛 (𝑈0𝑌 )⊤ (𝑋𝐿𝑌 )⊤

⋆ 𝜖−1𝑃 0𝑛×1 𝜖−1𝑃𝐿⊤

⋆ ⋆ 𝜖−1 01×𝑛
⋆ ⋆ ⋆ 𝑃

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≻ 0 (68)

with 𝑋𝐿 defined in (67). Then, the controller 𝐾 = 𝑈0𝑌 𝑃−1 renders 𝑥 = 0
n asymptotically stable equilibrium of the closed-loop system 𝑥+ = (𝐴 +
𝐾)𝑥+𝐿𝑥𝐾𝑥 and its RoA contains the set 𝑃 ∶= {𝑥 ∈ R𝑛 ∶ 𝑥⊤𝑃−1𝑥 ≤ 1}.

roof. We left- and right-multiply (68) by diag(𝑃−1, 𝜖𝑃−1, 1, 𝐼𝑛), set
∶= 𝑌 𝑃−1 and obtain

𝑃−1 0𝑛×𝑛 (𝑈0𝐺)⊤ (𝑋𝐿𝐺)⊤

⋆ 𝜖𝑃−1 0𝑛×1 𝐿⊤

⋆ ⋆ 𝜖−1 01×𝑛
⋆ ⋆ ⋆ 𝑃

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≻ 0.

pplying the Schur complement twice, this is equivalent to

𝑃−1 − 𝛹⊤𝑃−1𝛹 𝛹⊤𝑃−1𝐿 (𝑈0𝐺)⊤ 0𝑛×1
⋆ 𝜖𝑃−1 0𝑛×1 𝐿⊤𝑃−1

⋆ ⋆ 𝜖−1 0
−1

⎤

⎥

⎥

⎥

⎥

⎥

≻ 0
11

⋆ ⋆ ⋆ 𝑃
⎦

r

here 𝛹 ∶= 𝑋𝐿𝐺. By rearranging rows and columns, we arrive at

⎡

⎢

⎢

⎢

⎢

⎣

𝑃−1 − 𝛹⊤𝑃−1𝛹 0𝑛×1 𝛹⊤𝑃−1𝐿 (𝑈0𝐺)⊤

⋆ 𝑃−1 𝑃−1𝐿 0𝑛×1
⋆ ⋆ 𝜖𝑃−1 0𝑛×1
⋆ ⋆ ⋆ 𝜖−1

⎤

⎥

⎥

⎥

⎥

⎦

≻ 0.

nother application of the Schur complement returns the equivalent
ondition

𝛹⊤𝑃−1𝛹 − 𝑃−1 0𝑛×1
⋆ −𝑃−1

]

+ 𝜖−1
[

𝛹⊤𝑃−1𝐿𝑃
1
2

𝑃−1𝐿𝑃
1
2

]

⋅

⋅

[

𝛹⊤𝑃−1𝐿𝑃
1
2

𝑃−1𝐿𝑃
1
2

]⊤

+ 𝜖
[

(𝑈0𝐺)⊤

0𝑛×1

] [

(𝑈0𝐺)⊤

0𝑛×1

]⊤

≺ 0

𝜀 > 0, 𝑃 ≻ 0.

Note that for each 𝑥 ∈ 𝑃 , |𝑃− 1
2 𝑥| ≤ 1. By Lemma 1, the previous

condition is equivalent to
[

𝛹⊤𝑃−1𝛹 − 𝑃−1 0𝑛×1
⋆ −𝑃−1

]

+
[

(𝑈0𝐺)⊤

0𝑛×1

]

𝑥⊤𝑃− 1
2 ⋅

⋅
[

−𝑃
1
2 𝐿⊤𝑃−1𝛹 𝑃

1
2 𝐿⊤𝑃−1

]

+ [⋆]⊤ ≺ 0 ∀𝑥 ∈ 𝑃

where

[⋆]⊤ =
[

−𝑃
1
2 𝐿⊤𝑃−1𝛹 𝑃

1
2 𝐿⊤𝑃−1

]⊤
𝑃− 1

2 𝑥
[

(𝑈0𝐺)⊤

0𝑛×1

]⊤

hich is compactly written as

 (𝑈0𝐺)⊤(𝐿𝑥)⊤𝑃−1

⋆ −𝑃−1

]

≺ 0 ∀𝑥 ∈ 𝑃

here

∶= 𝛹⊤𝑃−1𝛹 − 𝑃−1 + (𝑈0𝐺)⊤(𝐿𝑥)⊤𝑃−1𝛹

+𝛹⊤𝑃−1𝐿𝑥𝑈0𝐺

r, by the Schur complement, equivalently as

≻ 0,  + (𝑈0𝐺)⊤(𝐿𝑥)⊤𝑃−1(𝐿𝑥)(𝑈0𝐺) ≺ 0 ∀𝑥 ∈ 𝑃

ondition (7b) and the choice 𝐾 = 𝑈0𝐺 allows us to apply Lemma 6.
ence, the closed-loop dynamics 𝑥+ = (𝐴+𝐵𝐾)𝑥+𝐿𝑥𝐾𝑥 results in the

ystem 𝑥+ = 𝛹𝑥+𝐿𝑥𝑈0𝐺𝑥, where we recall that we have set 𝛹 = 𝑋𝐿𝐺.
et 𝑉 (𝑥) ∶= 𝑥⊤𝑃−1𝑥 and compute the Lyapunov difference along the
olutions of the closed-loop dynamics 𝑥+ = 𝛹𝑥 + 𝐿𝑥𝑈0𝐺𝑥 to obtain

𝑉 (𝑥+) − 𝑉 (𝑥)
𝑥⊤

(

 + (𝑈0𝐺)⊤(𝐿𝑥)⊤𝑃−1(𝐿𝑥)(𝑈0𝐺)
)

𝑥
.

ence, we conclude that 𝑉 (𝑥+)−𝑉 (𝑥) = 0 for 𝑥 = 0 and 𝑉 (𝑥+)−𝑉 (𝑥) < 0
or all 𝑥 ∈ 𝑃 ⧵ {0}, which proves the thesis. ■

The result can be strengthened in a few aspects. One is to slightly
odify condition (68) to guarantee exponential stability rather than

symptotic stability as done in the previous sections. Another one is
o maximize the volume of the ellipsoid 𝑃 by minimizing the cost
unction − log det(𝑃 ) subject to constraints (7b), (68). See Bisoffi et al.
2020, Corollary 1) for details.

. Discussion

.1. Features of the methods and extensions

Our framework features some nice properties. The first and most
vident is the generality of applicability: it can be applied to linear
nd nonlinear systems, including the case where the vector field has a
eneric structure. At the same time, our framework is flexible enough to
e tailored whenever the system of interest belong to some special class,
s detailed in Section 5. Another interesting feature of our framework

egards the design complexity, meant as the number of samples needed



Annual Reviews in Control 56 (2023) 100915C. De Persis and P. Tesi

b
q
a
a
o

v
F
s
r
c
r
P
2
A
s

a
i
w
t
f
M
A
K
I
t
f
o
r

t
t
s
o
i
i
a
t
o
d
t
d
a

for controller design as well as the type of design programs. Regarding
the first aspect, all the results we presented rest on the fulfilment of
certain rank conditions (cf. Lemma 2) on the data matrices that can
e fulfilled even with a small number of samples, highlighting that the
uality of data generally counts more than the quantity. The second
spect refers to the fact that all the design programs we discussed
mount to convex programming, which can be easily solved for datasets
f moderate size.

To our best knowledge, De Persis and Tesi (2019) and its extended
ersion (De Persis & Tesi, 2020) were the first works to exploit the
undamental Lemma to explicitly derive data-dependent controller de-
ign programs. There are now numerous other studies, also from other
esearch groups, that have produced comparable results. An interesting
lass of systems that admit a similar treatment are polynomial and
ational systems (Ahmadi, Chaudhry, Sindhwani, & Tu, 2023; Guo, De
ersis, & Tesi, 2020; Guo et al., 2022a; Luppi, Bisoffi, De Persis, & Tesi,
023; Nejati, Zhong, Caccamo, & Zamani, 2022; Strässer, Berberich, &
llgöwer, 2021). These classes of systems can actually be treated using
pecialized design tools such as sum-of-squares (SOS) programming,

which can reduce conservativeness. Close to the analysis of Section 5.1
is van Waarde and Camlibel (2021), which considers data-dependent
SDP for the stabilization of Lur’e systems. Still in the domain of SDP
are Guo et al. (2022b) and Martin, Schön, and Allgöwer (2022) that
combine Taylor approximation methods with SOS programming. Re-
garding approximation methods and in connection with the discussion
after Corollary 6, we also mention (Cheah, Bhattacharjee, Hemati, &
Caverly, 2022), which considers robust state-feedback design for sys-
tems in Taylor’s form with unknown nonlinearities but known 𝐴 and 𝐵,
nd the technical tool involved is Yakubovich’s 𝑆-lemma. In this regard,
t is also worth mentioning (van Waarde, Camlibel, & Mesbahi, 2022),
hich introduces a matrix version of the 𝑆-lemma with application

o data-driven control. In the category of convex programming, we
inally mention the recent works (Dai & Sznaier, 2023; Nortmann &
ylvaganam, 2023; Rotulo, De Persis, & Tesi, 2022; Verhoek, Tòth, &
bbas, 2023) which tackle time-varying systems, and Cetinkaya and
ishida (2021) which proposes a method for stabilizing periodic orbits.

n this paper, we decided to present our main results for discrete-
ime systems. Some of the aforementioned works have been developed
or continuous-time systems. While continuous-time systems have their
wn peculiarities, many of the results presented here can indeed be
ephrased for that, see for instance (De Persis et al., 2023).

Taking up the question of sample-complexity, it is worth remarking
hat the analysis pursued here does not rely on any statistical assump-
ions about the noise signals. When the noise signals have suitable
tatistics it is possible to improve the results in the traditional sense
f sample complexity. This means that collecting more data can show
mproved stability and performance properties, as recently popularized
n Dean et al. (2020) and Recht (2019). In the present context, this
nalysis has been tackled in De Persis et al. (2023) which shows
hat averaging datasets from multiple experiments permits to filter
ut noise for certain statistical models like Gaussian and uniformly
istributed models. Specifically, the analysis shows that the norm of
he noise matrix 𝐷0, which is a key component of the design programs,
ecreases as the number 𝑁 of experiments increases. This implies that
stabilizing controller is eventually found by taking 𝑁 sufficiently

large. The results are given in probability, which follows by utilizing
statistical concentration bounds on the norm of the matrix 𝐷0 (De Persis
et al., 2023, Section V-C).

A final extension that is worth mentioning regards the case of
measurement noise, namely the case in which we measure 𝑦 = 𝑥 + 𝑤
instead of 𝑥 where 𝑤 is a noise signal. For linear systems this problem
has been addressed in De Persis and Tesi (2020, Section V-A), where
we show that the case of measurement noise can be related to that
of process noise, as we consider in this paper. It is actually simple to
see that the extension of De Persis and Tesi (2020, Section V-A) to
nonlinear systems does not pose any difficulties, at least in the case
of linearly parametrized models studied in Section 4, thus whenever
we know the ‘‘type’’ of dynamics we are dealing with (e.g., polynomial
12

dynamics). We omit the technical details.
6.2. Connections with other methods

Data-driven control is currently one of most popular topics in con-
trol theory and showcases many interesting methods, some of which
are substantially different from what has been discussed so far. Among
this variety of methods, we mention the approaches based on dual Lya-
punov theory (Dai & Sznaier, 2020), adaptive control (Astolfi, 2020),
and Koopman linearization (Fu & You, 2022; Kaiser, Kutz, & Brunton,
2021; Lian, Wang, & Jones, 2021). Iterative methods like adaptive
control have the intrinsic capability to handle time-varying dynamics
and environments, but they typically provide only asymptotic results.
A boost in this direction may come indeed from recent results on
statistical learning methods, as we were mentioning. This is essentially
the idea of most of recent iterative methods, usually presented under
the heading of reinforcement learning (Fazel, Ge, Kakade, & Mesbahi,
2018; Recht, 2019). Koopman theory is interesting especially because
it returns a linear approximation of the system, enabling us to use all
the tools for controller design that are available for linear systems.
However, this theory is not yet systematically developed, and the main
difficulty is related to give theoretical guarantees on the quality of the
approximation model (Kaiser et al., 2021).

Another interesting research line regards kernel-based methods (Hu,
Persis, & Tesi, 2023; Lederer, Umlauft, & Hirche, 2019; Umlauft, Pöhler,
& Hirche, 2018; von Rohr, Neumann-Brosig, & Trimpe, 2021). As with
Koopman linearization, the idea is to determine a model of the system
and then apply some controller design technique. The main difference
is that the system model is typical nonlinear. Model error bounds, either
probabilistic or deterministic, can be determined (Lederer et al., 2019;
Maddalena, Scharnhorst, & Jones, 2021). The challenge is related to the
nonlinearities of the system model that are determined by the choice
of the kernel functions (typical choices are Gaussian and polynomial
kernels). While certain kernels may systematically lead to accurate
models, such models need not be ‘‘optimal’’ for controller design in the
sense that there might be no clear way to exploit the nonlinearities
when designing the controller and all one can do is to try to cancel
out such nonlinearities with feedback. The interest for the so-called
control-oriented identification is motivated precisely by issues of this
kind (Formentin & Chiuso, 2021).

The discussion made in the previous paragraph suggests other two
observations. The first one is related to the debate regarding indirect
(sequential system identification and model-based controller design)
versus direct data-driven control. This question seems overemphasized,
though. As an example, the Fundamental Lemma can be viewed as
a system identification result, but offers an alternative representation
to parametric modelling that is suitable for direct controller design,
as we showed in this paper. In some contexts, differences between
indirect and direct control have been however observed. We refer the
reader to Dörfler, Coulson and Markovsky (2023) and Krishnan and
Pasqualetti (2021) for works addressing this point.

The second observation regards controller design at large. Nonlinear
controller design is a difficult topic, even in a model-based context.
Taylor and Koopman linearization have received considerable atten-
tion because they can be combined with simple and computationally
efficient controller design tools. Different from Taylor and Koopman
linearization, feedback linearization has produces less results. In par-
ticular, existing results either lack stability guarantees (Gadginmath,
Krishnan, & Pasqualetti, 2022; Westenbroek et al., 2020), or assume
the knowledge of the state coordinates that render the system lin-
earizable (Alsalti, Lopez, Berberich, Allgöwer and Müller, 2023; De
Persis et al., 2023; Shenoy, Saradagi, Pasumarthy, & Chellaboina, 2023;
Tabuada, Ma, Grizzle, & Ames, 2017; Umlauft & Hirche, 2020), which
limits the range of applicability. Needless to say, advances in this
direction would provide major contributions for data-driven control,
including a better understanding of related techniques like immersion,

Carleman or Koopman linearization.
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Obvious, but anyway important to remark is that this discussion
has been restricted to pure stabilization problems. There is a vast
and fruitful body of work on data-driven control in other important
areas like optimal (Baggio, Katewa, & Pasqualetti, 2019; Dörfler, De
Persis and Tesi, 2023; Yuan & Cortés, 2022), predictive (Berberich,
Köhler, Müller, & Allgöwer, 2022; Coulson, Lygeros, & Dörfler, 2019,
2022; Hewing, Wabersich, Menner, & Zeilinger, 2020), and networked
control (Allibhoy & Cortés, 2020; Baggio, Bassett, & Pasqualetti, 2020).
Regarding predictive control and the general domain of safety, the
results of this paper can be used to obtain an initial safe policy (with a
safe RoA) that can be used in iterative learning methods (Hewing et al.,
2020).

7. Concluding remarks

Data-driven control is one of the most important topics in modern
control theory. We have discussed a line of work that combines ideas
from nonparametric modelling and convex optimization. While fruitful,
this line of work should be expanded in many directions. A main
challenge common to all data-driven control methods is how to deal
with input–output data, rather than input-state data. This problem
has been studied also in the context of nonlinear systems (Campi &
Savaresi, 2006; Fagiano & Novara, 2016; Safonov & Tsao, 1997) but
there remain certain difficulties with regard to providing theoretical
guarantees, especially finite-sample guarantees, difficulties shared by
traditional adaptive control techniques. Assuming that the nonlinear-
ities can be expressed via a dictionary of known functions and under
suitable observability properties, an extension of the ideas presented in
the paper to input–output data has been recently discussed in Dai, De
Persis, Monshizadeh, and Tesi (2023).

On a more general perspective, we believe that the interest to-
wards data-driven control can be an opportunity to rethink nonlin-
ear controller design in the most broad sense, including model-based
approaches.
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Appendix. Methods for data processing

After Theorem 1 we have briefly remarked on the set  to which
the matrix 𝐷0 belongs. In the case of deterministic disturbances with
known instantaneous bound 𝛿, the matrix 𝛥 appearing in the condition
𝐷𝐷⊤ ⪯ 𝛥𝛥⊤ that defines  is chosen as 𝛥 = 𝛿

√

𝑇 𝐼𝑛. Borrowing ideas
rom Bisoffi et al. (2021), a different choice of 𝛥, which is independent
f 𝑇 and has some advantages that are highlighted later on, is possible.
or the sake of generality, we present the discussion for the class of
onlinear systems with linearly parametrized basis functions studied in
ection 4.

The starting point is a set of matrices of ‘‘synthetic’’ data 𝑈0, 𝑋0,
𝑋1, 𝑍0, 𝛥, obtained from an ellipsoidal overapproximation of the set

of systems’ matrices that are consistent with the data measured from
ystem (22). To be precise, let us define the set  as

∶=
𝑇−1
⋂

{

(𝐴̂, 𝐵̂)∶ 𝑥(𝑖 + 1) = 𝐴̂𝑍(𝑖) + 𝐵̂𝑢(𝑖) + 𝑑, |𝑑| ≤ 𝛿
}

13

𝑖=0
where 𝑍(𝑖) ∶= 𝑍(𝑥(𝑖)) as in (25). Following Bisoffi et al. (2021), an
llipsoidal over-approximation  of  is defined as the matrix ellipsoid

 =
{

(𝐴̂, 𝐵̂)∶
[

𝐼 𝐵̂ 𝐴̂
]

[

𝐂 𝐁
⊤

𝐁 𝐀

]

⎡

⎢

⎢

⎣

𝐼
𝐵̂
𝐴̂

⎤

⎥

⎥

⎦

⪯ 0
}

(A.1)

here the matrices 𝐀 ∈ R(𝑚+𝑆)×(𝑚+𝑆),𝐁 ∈ R(𝑚+𝑆)×𝑛,𝐂 ∈ R𝑛×𝑛 are defined
as the solution of the optimization problem

min. − log det 𝐀 (over 𝐀, 𝐁, 𝜏1, . . . , 𝜏𝑇−1) (A.2a)

s. t.
⎡

⎢

⎢

⎢

⎣

−𝐼𝑛 −
∑𝑇−1

𝑖=0 𝜏𝑖𝛾𝑖 ⋆ ⋆

𝐁 −
∑𝑇−1

𝑖=0 𝜏𝑖𝛽𝑖 𝐀 −
∑𝑇−1

𝑖=0 𝜏𝑖𝛼𝑖 ⋆

𝐁 0 −𝐀

⎤

⎥

⎥

⎥

⎦

⪯ 0 (A.2b)

𝐀 ≻ 0, 𝜏𝑖 ≥ 0 for 𝑖 = 0, 1,… , 𝑇 − 1 (A.2c)

and 𝐂 ∶= 𝐁
⊤
𝐀
−1
𝐁 − 𝐼𝑛. In the optimization problem above, for 𝑖 =

0,… , 𝑇 − 1, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 are the data-dependent quantities

𝛾𝑖 ∶= −𝛿2𝐼𝑛 + 𝑥(𝑖 + 1)𝑥(𝑖 + 1)⊤ ∈ R𝑛×𝑛,

𝑖 ∶= −
[

𝑢(𝑖)
𝑍(𝑖)

]

𝑥(𝑖 + 1)⊤ ∈ R(𝑚+𝑆)×𝑛,

𝑖 ∶=
[

𝑢(𝑖)
𝑍(𝑖)

] [

𝑢(𝑖)
𝑍(𝑖)

]⊤

∈ R(𝑚+𝑆)×(𝑚+𝑆).

(A.3)

Based on Bisoffi et al. (2021, Section 5), it can be shown that  is
bounded, it overapproximates , i.e.  ⊇ , and its size is minimized.

Next, we define the matrices of synthetic data 𝑋1, 𝑍0, 𝑈0, 𝛥 as those
matrices that satisfy the equation

[

𝐂 𝐁
⊤

𝐁 𝐀

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋1𝑋
⊤
1 − 𝛥𝛥

⊤
−𝑋1

[

𝑈0
𝑍0

]⊤

−

[

𝑈0
𝑍0

]

𝑋
⊤
1

[

𝑈0
𝑍0

][

𝑈0
𝑍0

]⊤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (A.4)

A solution to this equation exists and is given by
[

𝑈0
𝑍0

]

= 𝐀
1∕2

∈ R(𝑚+𝑆)×(𝑚+𝑆)

𝑋
⊤
1 = −

[

𝑈0
𝑍0

]+

𝐁 ∈ R(𝑚+𝑆)×𝑛

𝛥 = 𝐼𝑛

(A.5)

here
[

𝑈0
𝑍0

]+
denotes the left inverse of

[

𝑈0
𝑍0

]

and to obtain the last

dentity we used that 𝑋1𝑋
⊤
1 = 𝐁

⊤
𝐀
−1
𝐁 and 𝐂 = 𝐁

⊤
𝐀
−1
𝐁 − 𝐼𝑛. Hence,

the over-approximation  in (A.1) can be explicitly written as

 =
{

(𝐴̂, 𝐵̂)∶

[

𝐼 𝐵̂ 𝐴̂
]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋1𝑋
⊤
1 − 𝛥𝛥

⊤
−𝑋1

[

𝑈0
𝑍0

]⊤

−

[

𝑈0
𝑍0

]

𝑋
⊤
1

[

𝑈0
𝑍0

][

𝑈0
𝑍0

]⊤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝐼

𝐵̂
𝐴̂

⎤

⎥

⎥

⎥

⎦

⪯ 0
}

.
(A.6)

Following the same arguments of Bisoffi et al. (2022, Section 2.3), the
set in (A.6) is equivalently rewritten as

 =
{

(𝐴̂, 𝐵̂) ∶ 𝑋1 = 𝐴̂𝑍0 + 𝐵̂𝑈0 +𝐷,𝐷 ∈ R𝑛×𝑇 ,

[ 𝐼 𝐷 ]
[

−𝛥𝛥
⊤

0
0 𝐼

] [

𝐼
𝐷
⊤

]

⪯ 0
}

,

with 𝛥 = 𝐼𝑛.

Since the ground truth matrices 𝐴,𝐵 belong to the over-approximation
, it is true that

𝑋 = 𝐴𝑍 + 𝐵𝑈 +𝐷
1 0 0 0
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G

H

H
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K
K

K

L

L

L

L

L

L

for some 𝐷0 such that 𝐷0 𝐷
⊤
0 ⪯ 𝛥𝛥

⊤
= 𝐼𝑛. Hence, the results discussed

in the paper can be given in terms of 𝑋1, 𝑍0, 𝑈0, 𝛥 instead of 𝑋1, 𝑍0,
𝑈0, 𝛥 (similar matrices of processed data can be obtained for linear
systems and nonlinear systems with state-dependent input matrices).
This offers a few advantages. First, the bound 𝛥 is now independent
of the length of the dataset 𝑇 . Second, as the matrices of synthetic
data 𝑋1, 𝑍0, 𝑈0, 𝛥 describe the set , they might positively impact the
feasibility of the control design problems, as discussed in Bisoffi et al.
(2021, Section 5). Finally, as the dimensions of matrices 𝑋1, 𝑍0, 𝑈0, 𝛥
re also independent of 𝑇 (in fact, the only depend on the dimension of
he state, the control input and the vector 𝑍(𝑥)), using synthetic data

is convenient when the SDPs presented in the paper are implemented
with a dataset of considerable length 𝑇 .

A second option, detailed in De Persis et al. (2023, Section VI.C),
s to perform multiple experiments, each of length 𝑇 , and then average
he data resulting from each of the experiments. This permits us to keep

at moderate values and benefit from large datasets. In particular,
veraging reduces the noise variance, hence this method is particularly
ffective for zero-mean disturbances. For important classes of noise
uch as Gaussian noise, it is actually possible to explicitly upper bound
he norm of the disturbance matrix as a function of the number of
xperiments. This permits us to give high-probability guarantees that
stabilizing controller is found, in line with sample-complexity results

vailable for linear systems (Recht, 2019).
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