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As seismic events continue to pose significant threats to urban infrastructure, leveraging smartphones 
equipped with accelerometers for real-time monitoring has gained prominence. To ascertain the 
reliability and sensitivity of smartphone-based measurements, an in-depth characterization of 
their response is essential. This article presents a thorough characterization of the performance of 
typical accelerometers installed on three distinct smartphone models. For this, a novel experimental 
apparatus has been developed to conduct a comparative study involving three different smartphones 
against a reference accelerometer. We determine each accelerometer’s transfer functions for Fourier 
frequencies 0.1–40 Hz, evidencing main differences and demonstrating a higher sensitivity than 
expected. Possible implementation in future distributed networks of heterogeneous and synchronized 
sensors, capable of independently generating and validating timely alerts in particular seismic events, 
are also discussed.

Present-day smartphones seamlessly integrate a broad spectrum of highly proficient sensors that are compact, 
economical, energy-efficient and boast remarkable performance. This ensemble of cutting-edge sensor 
technology plays a pivotal role in advancing the sophistication of smartphones. Specifically, smartphones have 
been equipped with an array of microelectromechanical sensors (MEMS) designed to collect data about the 
external environment, directly accessing real-time location, motion, and biometric data. The collection of the 
acquired data can be used in extensive applications across various fields, including earthquake early warning 
(EEW)1–10, structural health monitoring (SHM)11–15, clinical studies, and numerous other applications in daily 
human life.

Moreover, given the widespread use of smartphones with increased computational capabilities, together with 
future wireless 5G-6G connectivity, an unprecedented opportunity for real-time environmental and structural 
monitoring towards timely alert generation to ensure public safety, is today conceivable16–19. As a result, nowadays 
new smartphone applications towards this end are being developed20–24, improving the overall coverage and 
accuracy of earthquake detection and characterization. Given this advanced background, the implementation of 
a novel synchronized hybrid network is foreseen. In such a network, different sensors may interact to increase 
the effective overall sensitivity and accuracy in event detection, and may also independently generate and 
disseminate an alert. However, to ensure the correct merging of signals from different sensors, measuring the 
accelerometer responses and whether this response is constant over time is mandatory. A pioneering study of the 
smartphone’s accelerometer sensitivity is reported on15 where the excitation frequencies of interest were limited 
to 0.5 Hz–20 Hz, a range particularly relevant to civil engineering structures. Other work25 in this direction 
describes the comparison between smartphone accelerometers and low-cost global navigation satellite systems 
to monitor structural deformation.

In this work, we extend previous studies in this field, by using a slightly different measurement technique, 
to get an accurate determination of the smartphone’s accelerometer transfer functions (TF) over an extended 
range of frequencies, particularly focusing on the low-frequency regime (∼Hz), particularly interesting to the 
detection of seismic events. We repeated and verified the measurements over three different, latest smartphone 
generations. We compared them with a reference, high-precision low-frequency accelerometer, highlighting the 
main differences in sensors and software used for the data collection. Finally, we apply the measured smartphones 
TF, to simulate a dramatic event (the earthquake in L’Aquila, on 6-th April 2009) to observe the real smartphone 
capability in earthquake detection.
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In the remaining sections of the manuscript, the experimental setup and the methodology are first presented, 
then, after a careful analysis of the measured TF for each sensor, the reconstruction of the signal of an earthquake 
is studied, and finally, the future application to a novel synchronized network of sensors is presented.

Experimental setup
For the characterization of the transfer function of each accelerometer mounted in the three smartphones, we 
realized an experimental apparatus as depicted in Fig. 1a. To isolate the measurement breadboard from the 
seismic noise in the interesting frequency range 0.1–50 Hz, we used a vibration isolation platform (model 25BM-
4 from Minus K Technologies). The vibrational noise transmission from the supporting table follows a typical 
pattern, ranging from a reduction of −5 dB at a frequency of 0.1 Hz to a significant decrease of −80 dB at 50 Hz. 
On top of the isolated platform, an actuator is positioned, as depicted in Fig. 1a. The actuator is a commercially 
available 40 W (4 Ω) woofer, controlled by an arbitrary waveform generator (AWF), producing a clean tone with 
variable frequency, in the range of interest (0.1 Hz to 40 Hz). The typical peak-to-peak voltage employed during 
the experiment is 20 V for all sinusoidal functions produced.

The sensors are placed on the speaker using a very thin aluminum surface (< 1 mm). The three different 
smartphones (Apple iPhone 8, Apple iPhone 13Pro and Xiaomi Mi9T) are placed on the top, with the screen 
facing upwards, of this surface close together with a force balance accelerometer (EpiSensor ES-T Kinemetrics). 
This latter high-precision sensor acts as a reference accelerometer for determining the actual vibration applied 
by the woofer. The transfer function of this accelerometer is given by the formula26:

	
TFEpiS =

k1 k2
(s− p1)(s− p2)(s− p3)(s− p4)

� (1)

where s is the Laplace transform variable, k1 = 2.46× 1013, k2 = 80 V/g used to convert the signal expressed 
in V into acceleration units (where g = 9.81m/s2 is the gravitational acceleration). The pi are the poles 
(p1 = −981 + i1009, p2 = −981− i1009, p3 = −3290 + i1263, p4 = −3290− i1263). The coefficient values 
are available in the instrument manual26. We notice that the transfer function is flat in the frequency range 
considered in this work (from 0.1 Hz to 40 Hz). On the contrary, accelerometers mounted on smartphones share 
quite different characteristics (see Table 1), respectively of the Bosch Sensortec accelerometer (mounted on the 
two iPhones) and the TDK-Invensense accelerometer (mounted on the Mi9T).

We note that while the actuator mainly applies vertical accelerations to the whole measurement breadboard, 
residual acceleration along the two axes along the horizontal plane is observed. To take into account this 
additional effect, the whole set of 3D accelerations in m/s2 of the smartphone is acquired using the Matlab 
application, which also offers the flexibility to choose the acquisition rate ranging from 1 to 100 Hz (typically set 
at 100 Hz). We first checked that along the horizontal plane (x and y-axis) the average value is zero and along 
the z-axis, the average value is equal to the local gravitational acceleration. After acquiring a time trace, in post-

Figure 1.  (a) Sketch of the apparatus used to characterize the different smartphone’s accelerometers. From 
bottom to top: the isolation stage in grey (Minus-K platform), and the actuator (a woofer); on top of it, a 
breadboard is placed to host all the accelerometers (EpiSensor Es-T for calibration and the smartphones, 
SP). The z-axis of all the accelerometers is aligned with the vertical direction. The woofer is driven by a sine 
function generator (arbitrary wave function, AWF), shown on the left side of the panel. The EpiSensor signals 
(for each axis) are acquired by using an oscilloscope and a computer, meanwhile, the SP signal is sent to the 
PC thanks to the Matlab and Phyphox cloud. (b) Recorded time traces of the acceleration measured by each 
smartphone’s sensor along the z-axis (vertical axis), for a typical actuator signal at 40 Hz, violet line: actuator 
sinusoidal signal,  blue line: Apple iPhone 8 time trace, yellow line: Apple iPhone 13Pro time trace, green line: 
Mi9T time trace, and red line EpiSensor time trace.

 

Scientific Reports |        (2024) 14:23017 2| https://doi.org/10.1038/s41598-024-72929-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 3.  Dots show the value of the peak amplitude as a function of the measured Fourier frequencies. The 
mean noise level obtained from background signals within the frequency range 0.1 Hz–40 Hz is represented 
respectively for each sensor with lines. The observed frequency dependence of the peak amplitude is due to the 
different responses of the actuator as a function of frequency.

 

Figure 2.  The acquired spectra at four different frequencies with the available smartphones also using the 
two apps. In the four subplots excitation frequency is equal to 30 Hz, 20 Hz, 10 Hz, and 4 Hz, for (a–d), 
respectively. Further details are provided in the text.

 

 Sensor type  Range (m/s2)  Resolution (m/s2) Meas. rate (Hz)  Average (m/s2)  St. dev. (m/s2)

EpiSensor Es-T ±0.25 g – 200 – –

TDK Invensense 157 0.0048 500.1 9.814 0.016

Table 1.  Main characteristics of accelerometers mounted on the smartphone Mi9T. Bandwidth for acceleration 
standard deviation estimation is not available. Bosch Sensortech information is not available. The EpiSensor 
range is expressed in terms of the gravitational acceleration g = 9.81m/s2.
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processing, the Fourier spectra can be calculated. To compare two applications available in the store we also 
measure the acceleration with the iPhone 13Pro using a second app called Phyphox (with an acquisition rate set 
at 100 Hz). Simultaneously, the acceleration of the EpiSensor is captured using an oscilloscope with a maximum 
bandwidth of 100 MHz (Tektronix MDO3014). The acquired time traces are converted into acceleration 

Figure 5.  Estimated smartphone’s transfer functions normalized to the EpiSensor transfer functions. The lines 
are the interpolation of the experimental data..

 

Figure 4.  (a) Sensitivity level with different integration times measured in a bandwidth of 50 Hz. (b) 
Calibration curve of the EpiSensor acceleration on smartphones. (c) Sensor responses (normalized) as a 
function of the amplitude of the sine wave driving the woofer. (d) Frequency shift (∆f ) between EpiSensor and 
smartphone..

 

 Sensor type  Amplitude (m/s2)  Frequency (Hz)

EpiSensor 0.0296± 0.0001 40.0± 0.003

iPhone 8 0.233± 0.003 40.039± 0.004

iPhone 13Pro 0.338± 0.004 40.150± 0.003

Mi9T 0.021± 0.003 40.035± 0.004

Table 2.  Measured amplitude and Fourier frequency of the signal acquired around 40 Hz for the different 
sensors. The error on the amplitude is estimated as the standard deviation over the repeated measurements, 
and the error on the frequency is the sum in quadrature of the standard deviation and the resolution 
bandwidth (RBW) of the spectra, equal to 2.5 mHz.
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time traces using the TF described above, given the measurement range of the EpiSensor. The length of the 
time traces is set to 400 s. The sample rate is kept constant at 1 Ms/s for all the measurements. An example of 
z-axis acceleration acquisition as a function of time for all the sensors is shown in Fig. 1b. The vertical scale is 
represented in arbitrary units (a.u.) for comparison purposes across different acquisitions. In the figure, the 
violet line represents the sinusoidal signal sent to the woofer, at a frequency modulation of 40 Hz. The signals 
acquired from the three smartphones (iPhone 8, iPhone 13 Pro, and Mi9T) are depicted in blue, yellow, and 
green, respectively. Finally, in red, it is shown the signal from the EpiSensor.

The EpiSensor accelerometer constitutes a reference for both the frequency and amplitude of the vibration 
applied. The EpiSensor is chosen as a reference because its transfer function is well known26. This sensor has a 
superior signal-to-noise ratio over a much broader frequency range compared to the accelerometers under test. 
Moreover, the Episensor is one of several field instruments that have been utilized for decades in the geo-seismic 
field for detecting and monitoring. The objective is to gain insights into the accuracy of two critical parameters: 
the precision of the time base and the absolute accelerometer’s calibration in m/s2. These parameters are crucial 
when utilizing smartphones for seismic measurements or in the field of structural health monitoring.

Figure 7.  Sketch of the cluster of a synchronized network of mobile sensors. Each cluster is independent but 
it is interconnected to each other and a central station for calibration purposes (image freely modified from 
www.freepik.com contents).

 

Figure 6.  (a) The red line represents the time track of the 2009 L’Aquila earthquake as recorded by a precision 
accelerometer. Blue, yellow, and green lines depict the signals that would have been observed by the iPhone 
8, iPhone 13 Pro, and Mi9T, respectively. (b,c) A zoom of the signals at around 2 s and 5 s. (b) The horizontal 
light-blue area represents the level under which the smartphones are not sensitive, more details in the text.
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Data analysis and estimation of the transfer function
Our focus is specifically on studying acceleration in the vertical direction (z-axis) at various frequencies, from 
0.1 to 40 Hz.

For this, the acquired traces are transformed into the Fourier space using a post-processing algorithm. A 
general description of the Fourier Transform (FT) follows:

	
f̃ (ν) =

∫ ∞

−∞
e−i2πνtf (t)dt.� (2)

where f̃ (ν) is the FT of f(t) (the time-domain signal) with respect to frequency ν. The FT helps analyze the signal 
in the frequency domain, providing valuable insights into the behavior of the accelerometer response at different 
frequencies. The calculated spectra for four different excitation frequencies, 30 Hz, 20 Hz,10 Hz and 4 Hz, are 
illustrated in Fig. 2, for different accelerometers, as detailed in the figure caption. In Fig. 2, we also compare the 
measurements performed using two different Apps, Matlab and Phyphox, and reported in green and light blue, 
respectively.

We estimate the transfer function (TF) for each sensor by measuring the peak amplitude (and Fourier frequency) 
observed in the Fourier transform of the acquired time trace when the woofer applies a sinusoidal monochromatic 
vibration. Additionally, we capture time traces when vibration ceases, to estimate the noise floor of each detector 
and get an estimation of the minimum monochromatic signal that can be detected (sensor absolute sensitivity). 
Through FT analysis of the background signal, we also estimate mean noise amplitude within the frequency 
range of 0.1–40 Hz. Results are depicted in Fig. 3, showcasing vibration amplitudes with and without vibration, 
across different frequencies for each sensor. All these spectra are calculated over an integration time of 400 s.

Moreover, at the Fourier frequency of 40 Hz, we repeated 5 measurements to estimate the error in the 
measured quantities and, to ensure the repeatability of the measurements. The results are shown in Table 2, 
where the mean and standard deviation for both the measured amplitude and Fourier frequency for each sensor 
are reported.

As shown in Fig. 3, at Fourier frequencies below 2 Hz, smartphones are no longer able to detect the modulation 
applied, and the signal is around the noise level, as shown from the recorded spectra.

While it is still possible to observe the vibration below this frequency on the EpiSensor, we plan to improve 
the electronics to increase the woofer modulation amplitude, which at this frequency is capable of applying 
only an acceleration of about 10−4m/s2, with the present setup. However, these data are sufficient to extract the 
effective sensitivity of the smartphone-mounted accelerometer in the range of 2 Hz - 40 Hz.

Contrary to the declared sensitivities of only ∼ 10−2m/s2 (see Table 1), as shown in Fig. 3, it is remarkable 
that the smartphone’s accelerometers can indeed observe a signal with an amplitude two order of magnitude 
smaller, just above the 10−4m/s2 level.

To explore the sensor’s sensitivity further, we delve into how their sensitivity levels, when unmodulated 
by external signals, evolve over different integration times. Following this procedure, we estimated the sensor 
sensitivity as the mean amplitude of the noise floor measured in a fixed bandwidth as a function of the integration 
time. Our analysis, detailed in Fig. 4a), showcases sensitivity measured within a 50 Hz bandwidth across various 
integration times for all four sensors. Each data point, accompanied by error bars representing standard 
deviations, reflects the mean value derived from 10 consecutive acquisitions. This mean value is obtained by 
averaging the spectrum over 50 Hz bandwidth and subsequently averaging the results of the 10 measurements. 
The standard deviation is then calculated based on these 10 measurements. Notably, Fig. 4a reveals a distinct 
trend in smartphone sensitivity, converging toward 10−4m/s2 as integration time lengthens, while sensitivity 
diminishes with shorter integration periods.

Turning our attention to overall sensor linearity, we scrutinize the relationship between measured acceleration 
at 40 Hz and the amplitude of the sinusoidal signal transmitted to the actuator. Mean acceleration and standard 
deviations (depicted as error bars) are calculated for each voltage value over 10 traces. The linear trend observed 
across all sensors, as depicted in Fig. 4c, is evident with measured accelerations normalized to the maximum 
value. This finding serves to mitigate concerns regarding potential nonlinear effects in our measurements.

In Fig. 4b, the plot illustrates a calibration comparison, with EpiSensor amplitudes plotted against those of 
smartphones. Notably, a linear trend emerges in the Log-Log scale for three sensors, offering a correction curve 
crucial for precise smartphone acceleration calibration. The calibration slope values for iPhone 8, iPhone 13 Pro, 
and Mi9T are recorded as 0.87, 0.79, and 0.69, respectively. Furthermore, precision in frequency measurement 
stands as another critical parameter. As demonstrated in Fig. 4d, Fourier frequency shifts (∆f ) are depicted 
by comparing measured frequencies of smartphones against those of EpiSensor. Linear trends are observed 
in measurements with iPhone 8 and Mi9T, exhibiting similar patterns. However, higher frequency shifts are 
apparent in iPhone 13 Pro measurements across all frequencies. Slope values from linear fits are determined 
as 0.9 mHz/Hz for iPhone 8, 3.8 mHz/Hz for iPhone 13 Pro, and 1.1 mHz/Hz for Mi9T. These trends highlight 
additional delays present in smartphones, likely stemming from imperfections in the design (hardware) or 
handling (delay coming from software) of a precise time base.

We conducted further investigation into the source of the frequency shift observed in the iPhone 13 Pro 
measurements. To do this, we compared the spectra obtained using two different apps available in the store: 
Matlab version 9.3 and Phyphox version 1.1.12. The comparison of spectra is illustrated in Fig. 2, as described in 
the caption. For instance, in Fig. 2a, the Matlab acquisition (green) exhibits a peak at 40.15 Hz, while the peak 
frequency is 40.01 Hz for spectra acquired with the Phyphox App (light blue). In Fig. 4d, all the frequency shifts 
measured with the Phyphox app are depicted with light blue dots. It is evident from the figure that the frequency 
shift error is less pronounced compared to the Matlab results obtained with the same smartphone. The measured 
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slope is 0.2 mHz/Hz, much smaller than the 3.8 mHz/Hz measured with Matlab. Based on these findings, it 
is plausible to conclude that the observed frequency error mostly stems from software imprecision (possibly 
introducing a fixed time delay) rather than the smartphone hardware. This underscores the significance of 
developing real-time applications with a well-defined time, which constitutes a crucial parameter, particularly 
for the conception of synchronized and hybrid networks.

Application to seismic events detection
After conducting these characterizations, we analyze the data presented in Fig. 3 to derive the full TF for each 
smartphone normalized by the TF of the EpiSensor, because its TF is well known and the sensitivity is higher 
than those of the smartphones in the interested bandwidth26. The interpolated normalized smartphones TF 
are shown in Fig. 5. As clearly represented in the Figure, the three transfer functions appear not flat and very 
different from each other, given this fact, differences and relative distortion of the signal acquired are expected.

This normalized TF reflects the effectiveness of each smartphone in detecting earthquake ground motion 
at different frequencies. As an application of the measured TF, we show how each smartphone can detect a 
major earthquake, evidencing the differences with the actual vibration in m/s2. To do so, we applied these TFs 
to the ground motion data of a major earthquake that occurred in Italy on April 6th, 2009, recorded at station 
AQA, obtained from the Engineering Strong Motion database (ESM)27. The Fourier transform is applied on the 
earthquake trace, as per Eq. (2). On this signal, we individually multiply the smartphone’s transfer functions. 
At this point, the earthquake signal (as perceived by every smartphone) was recreated using an inverse Fourier 
transform on the modified data.

In Fig.6, the acceleration amplitude of the earthquake event (red line) and the corresponding smartphone 
traces are shown. Notably, distinct effects of the TFs are visible in two zooms Fig. 6b at around 2 s from the 
beginning of the event and Fig. 6c after 5 s nearly at the maximum amplitude of the event.

In Fig. 6b two areas are also shown: the black area, corresponding to the average sensitivity of the smartphones 
(∼ 0.01m/s2), and the light blue area, representing the average plus one standard deviation of the earthquake 
amplitude signal. These values, an average of 0.012 m/s2 and a standard deviation of 0.028 m/s2 were obtained 
from Italian earthquakes spanning from 1976 to 2016, downloadable from the ESM website27.

This indicates that the sensitivity of smartphones is significantly higher than expected (see Table 1), allowing 
for the observation of the most common and significant seismic events. Through the outlined process, we have 
effectively showcased how smartphones can be leveraged for earthquake identification.

Towards a synchronized distributed network of sensors
In the above analysis, we showed how off-the-shelves accelerometers reach high sensitivity levels and a reasonably 
large bandwidth to observe low-frequency seismic events. This is a key result towards the development of 
synchronized sensor networks, e.g., in the field of mobile crowdsensing applications28–33. Accurate calibration 
of each sensor would greatly help efficiently merge data acquired from the many heterogeneous sources, and 
precise knowledge of each sensor transfer function is necessary.

However, we want to remark that implementing a coherent synchronized sensing system built out of low-
cost off-the-shelf sensing devices is an orthogonal problem compared to the contribution and, therefore, out of 
the scope of this paper, which focuses on the calibration of such individual devices and studying their possible 
application. Having this in mind, in the rest of the Section, we briefly outline the framework and the main design 
idea of a novel synchronized sensor network, discussing potential sensitivity and possible issues that might be 
tackled by future theoretical and experimental work.

A sketch of the proposed implementation of a cluster architecture for real-time interferometry of different 
sources is represented in Fig. 7. Here we envision a set of sensors, organized in independent clusters that 
are interconnected to each other with the possibility of linking to central stations from time to time for re-
calibration. For a real-time, synchronized network, we expect an increase in the sensitivity of each cluster by a 
factor of 

√
N , where N is the number of sensors in the cluster. Given the minimum acceleration sensitivity of the 

sensors we tested, a single cluster composed of only N=10 sensors would in this case allow reaching sensitivities 
well beyond 0.1 Gal (1 mm/s2), leading to a network that could access the observation of small seismic events, 
at an intensity well beyond the level felt by the population. In the future, this proposed network could add value 
to the current high-precision sensor networks, allowing for a low-cost capillary study of microseismic events or 
bradysism.

Moreover, in this concept network, the direct intercomparison with higher sensitivity and better long-term 
stability classical (or quantum) inertial sensors, would help in reducing the typical noise at low frequencies of 
mobile sensors (long-term changes and drift of the response function) while keeping the high repetition-rate 
real-time detection. This, in turn, might help in reducing the detrimental effects and non-seismic motion signals 
coming from the daily use of smartphones, including changes in position and different surfaces of support. 
While techniques have been developed to filter out similar sources of noise34, real-time analysis and continuous 
re-calibration capability would help in removing more effectively time-changing noise sources.

Specifically, synchronization between devices can be achieved by timestamping events at each node. 
Timestamps can be made consistent among nodes by exploiting standard global time synchronization protocols, 
such as the Network Time Protocol (NTP). In any case, the data gathered by each device in isolation would have 
to be collected by a central entity (e.g., residing in the cloud), which would analyze and correlate them together 
to extract refined knowledge from the individual devices’ sensing logs. If individual logs are timestamped using 
a global reference source (such as NTP), it would be straightforward for such a centralized system to align the 
timelines of data sensed by the different nodes, thus achieving synchronization. Finally, it should be noted that a 
certain degree of imprecision in the synchronization, within the typical limits guaranteed by the NTP protocol, 
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would not be an issue, as such effects would be easily overcome by correlating data sensed by a large number of 
low-cost devices.

Together with the already well-known problems as the existing variable delays in data transmission and 
difficulties that arise in data merging from heterogeneous sources, in this work, we show the importance of a 
precise calibration of the actual transfer function of each sensor and the importance of how the data are extracted 
from the sensor itself, before being distributed over the network. In this field, poor programming strategies 
can induce internal delays eventually resulting in frequency shifts of Fourier components and distortion of the 
measured signal. As a result, variations in sensor types, models, and calibration levels can lead to inconsistencies 
in data collection and interpretation, undermining the reliability and accuracy of the network as a whole.

Despite these challenges, the potential applications of such synchronized sensor networks are vast. From early 
warning systems for natural disasters to structural health monitoring in critical infrastructure, these networks 
offer invaluable insights and capabilities, particularly in densely populated areas where the risk is heightened. 
Moreover, the integration of quantum and classical sensor systems presents an intriguing avenue for further 
advancement. By harnessing the reliability of quantum sensors over long timescales and the rapid response rates 
of classical sensors, hybrid systems can achieve unparalleled performance in risk detection and alert generation.

Conclusion
We thoroughly characterized the accelerometers mounted on board three different mobile phones. The calibration 
we did evidenced a difference in the actual sensitivity in the peak-to-peak amplitudes and a different reading 
of the actual signal frequency introduced by a poor time base used in some of the applications running on the 
mobile phone itself. However, our work can be improved by modifying the apparatus with a more performing 
actuator pin and extending the number of smartphones. This work is in line with existing literature, such as15,25, 
which highlights uncertainties in amplitude and frequency measurements when using smartphones, often 
revealed through comparisons with reference sensors as like as we did. Furthermore, we studied the smartphone’s 
transfer function which is crucial for deepening knowledge about their response characteristics and improving 
measurement accuracy. We also apply this knowledge to retrieve a seismic signal with no distortion.

This work represents an important step towards the future realization of a synchronized network of 
sensors. While the network topology can help in solving part of the problems that arise in data merging from 
heterogeneous sources, we shed light on the importance of knowing precisely the transfer function of each 
sensor. This represents a fundamental requirement towards the realization of a low-cost, capillary, and high-
sensitivity network of sensors, capable of observing micro-events, for enhancing safety and with potential 
application in various areas.

Data availability
Experimental data produced and analyzed during the current study are available from the corresponding author 
upon request.
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