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Abstract
Complex engineering and technological processes typically generate data with
a non-trivial hierarchical structure. To this end, in this article we propose a
full procedure for optimizing such processes through optimal experimental
designs and modeling. In order to study a hierarchical structure, several types of
experimental factors may arise, making the building of the experimental design
challenging. Starting from the analysis of a preliminary dataset and a pilot design
including nested, branching, and shared experimental factors, as well as a new
type of experimental factor called composite-form-factor, we build a hierarchical
D-optimal experimental design using genetic algorithms. We apply our proposal
to a real case-study in the rail sector aimed at optimizing the payload distribution
of freight trains. In this case-study we also achieve the best train configuration
by minimizing the in-train forces. The results are very satisfactory and confirm
that our full procedure represents a valid method to be successfully applied for
solving similar technological problems.
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1 INTRODUCTION

Engineering and technological processes usually involve hierarchical data which make the experimental planning chal-
lenging. Proper planning of the experiment requires an in-depth knowledge of the process under study regarding both
technical/engineering and statistical aspects. In case of partial knowledge, the experimental planning could be unsuit-
able, thus undermining the entire study. However, preliminary data are typically available, and an appropriate statistical
analysis may be performed to gain valuable quantitative information about the process under study. Such quantitative
information can be very useful for improving and validating the experimental planning. In particular, the analysis of pre-
liminary data contributes to better understanding the process by identifying the most relevant variables, checking initial
assumptions and the subsequent statistical modeling. The relevance of the information gained through the preliminary
analysis may be verified through the building of a pilot design. In this way the pilot design results provide evidence of
the validity of the experimental planning, and also help to define the most suitable statistical model. This point is of
core importance when considering the optimal design theory framework, given the model-dependent nature of optimal
designs.
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In this manuscript we define a full procedure for the design and analysis of experiments in complex engineering and
technological processes. Our proposal is motivated by a real case-study in the rail sector concerning the risk of derailment
and/or disruption of freight trains. The proposed full procedure includes the experimental planning at several hierarchical
levels for obtaining a hierarchical D-optimal design. In doing so, one of the main key points is the presence of several
types of experimental factors; more precisely, we deal with nested, branching, and shared factors as well as with a new
type of factor, which we call composite-form-factor (CFF). By considering the types of factors, a genetic algorithm (GA) is
also opportunely implemented for obtaining the final hierarchical D-optimal design. The final step of the full procedure
ends with the process optimization.

We apply our proposal to a real case-study in the rail sector where we aim to optimize the payload distribution of freight
trains, thus making it possible to minimize the in-train forces, and consequently to protect freight trains from derailment
and/or disruption. By applying the suggested procedure, we are able to achieve the best train configuration for minimiz-
ing the in-train forces. It must be noted that the responses in our case-study are obtained through computer simulations,
and we propose a general framework for the technological field based on the optimal design methodology and GAs, capa-
ble of managing complex data structures. The results obtained in the case-study are very satisfactory and confirm that the
proposed full procedure represents a valid method to be successfully applied for solving similar technological problems.

The article is organized as follows: Section 2 contains a brief literature review, Section 3 includes an outline of the full
procedure and details of the hierarchical optimal experimental design and statistical modeling, Section 4 illustrates the
results obtained in the case-study, the discussion follows in Section 5; final remarks conclude the article.

2 LITERATURE REVIEW

Optimal designs are widely used in several research fields, where the design optimality is achieved with respect to
a specific design criterion strictly related to the assumed statistical model(s). For instance, it emerges from previous
research1,2 that computer experiments and Kriging modeling play a relevant role in the payload distribution of freight
trains; as regards Kriging, optimal designs for prediction or efficient parameter estimation are widely developed in lit-
erature.3-6 In the general framework of this current study, we use linear mixed-effect models. In the context of optimal
designs for hierarchical linear mixed-effect models, in Reference 7 the authors study approximate D-optimal designs
for fixed effects, while in Reference 8 a systematic approach for finding optimal designs for linear as well as non-linear
mixed-effect models with correlated errors is proposed. In Reference 9, sequential D-optimal designs for generalized
linear mixed-effect models are investigated. In Reference 10, the authors study optimal designs for both an efficient esti-
mation of the fixed effect parameters and a prediction of the random effects in the context of multi-response linear mixed
models. Optimal designs for prediction in hierarchical linear models, based on the integrated mean-squared error cri-
terion, are considered in Reference 11. More recently, in Reference 12 the authors investigate optimal designs for the
fixed-effects estimation as well as for prediction of random effects in hierarchical linear models, while in Reference 13
optimal designs for hierarchical random effects models applied in the field of precision medicine are taken into account.
Moreover, by specifically considering the design of experiments with a particular type of factors, it is relevant to note that
in Reference 14 the design and analysis of computer experiments are addressed in the presence of nested and branching
factors, while more recently, in Reference 15 the authors investigate D-optimal designs when nested and/or branching
factors are present.

Lastly, when considering the study related to freight trains, previous research on this topic is related to the analysis
of the payload distribution of freight trains through computer experiments and Kriging modeling. More precisely, in
Reference 1 the payload distribution of freight trains is studied in terms of the overall train mass and length involving a
computer experiment with four hundreds trains. In Reference 2, the authors assume that a generic train could be divided
into five train sections, each characterized by its own overall mass; a suitable Latin Hypercube design, based on strong
orthogonal arrays,16 is planned for the computer experiment.

3 THEORY

In this section we outline the full procedure (Section 3.1), then we detail the hierarchical framework and the
types of experimental factors, as well as the hierarchical D-optimal design, and the related statistical modeling
(Section 3.3).
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F I G U R E 1 Flowchart of the full procedure

3.1 Outline of the full procedure

The full procedure we propose consists of four main steps, reported in detail in Figure 1. Along with these main steps, we
consider as a starting point (Step ♯1): (i) the statistical analysis of preliminary data, and (ii) the building of a pilot design.
Both the preliminary data analysis and the pilot design are of key importance since they allow for efficiently planning and
validating the experimental design. Step ♯2 consists of performing the experimental runs of the pilot design, and following,
the estimation of suitable statistical models is checked through diagnostic measures; this point makes it possible to estab-
lish the most suitable statistical model for building the optimal design. In Step ♯3 we consider the D-optimality design cri-
terion, and a GA is opportunely adapted for obtaining the hierarchical optimal design. Depending on the specific situation,
other possible design criteria and/or algorithms can also be applied in this step. Lastly, Step ♯4 relates to the achievement
of best configurations for the problem under study according to the target values of several response variables.

3.2 Types of experimental factors

Let’s start by considering a non-trivial technological problem with data structured at several hierarchical levels. Consider
a categorical factor with T levels (t = 1, … ,T) defined at any hierarchical level. Also, let D and E be two measurable
variables such that D takes the same value for each t, say dt (t = 1, … ,T), and E takes value in an interval which is the
same for each t, say ℰt (t = 1, … ,T):

ΩD = {dk(t) = dt ∶ ∀k, k = 1, … ,K; t = 1, … ,T},
ΩE = {ek(t) ∈ ℰt ∶ k = 1, … ,K; t = 1, … ,T}, (1)
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where k(t) denotes the kth observation such that the categorical factor takes value t. We define a CFF xc as follows:

xc =
K∑

k=1
dk(t) +

K∑

k=1
ek(t). (2)

Note that a CFF is defined at a higher hierarchical level with respect to the one of the categorical factor. For instance, the
total weight of stock consisting of several types of petrol cans is a CFF, where the type of petrol can is the categorical factor.
In fact, the tare is constant for each type, while the net weight of each can ranges within an interval of quantitative values
which depends on the type. Therefore, the CFF “total stock weight” equates the sum of the tares and the net weights of
the petrol cans.

The definition of a CFF can be extended to any number of measured variables. Let’s suppose we have Q variables
of type D, that is, D1, … ,Dq … ,DQ, taking the same value for each t, and V measurable variables of type E, that is,
E1, … ,Ev … ,EV , taking value within an interval which is the same for each t:

ΩDq = {dq,k(t) = dq,t ∶ ∀k, k = 1, … ,K; t = 1, … ,T} q = 1, … ,Q,

ΩEv = {ev,k(t) ∈ ℰv,t ∶ k = 1, … ,K; t = 1, … ,T} v = 1, … ,V . (3)

In this general case, a CFF is defined as:

xc =
Q∑

q=1

K∑

k=1
dq,k(t) +

V∑

v=1

K∑

k=1
ev,k(t). (4)

We define the index i for the ith hierarchical level, i = 1, … , I, while Ji is the number of experimental factors at the ith
level. Within each hierarchical level, we may have the following different situations:

• only fixed effects, only random effects or both fixed and random effects, also including first-order interactions between
fixed and random effects;

• several sets of experimental factors:

1. Xc = {xc1, … , xcj, … , xJc} includes the CFFs, where xcj denotes the jth one, j = 1, … , Jc.
2. Xs = {xs1, … , xsj, … , xsJs}, j = 1, … , Js contains the shared factors;14

3. Xb = {xb1, … , xbj, … , xbJb}, j = 1, … , Jb comprises the branching factors;14

4. Xr = {xr1, … , xrj, … , xrJr}, j = 1, … , Jr includes the nested factors.

In our setting, hierarchical variables differ from nested variables. A variable is defined as hierarchical when it refers
to a predefined and binding hierarchical structure. Instead, a nested variable in an operational framework relates to a
hierarchical structure which is not binding a priori. Based on the hierarchical structure defined above, and by indicating
with Xi and Zi the sets for the fixed and random effects respectively at the i th level, we can specify the following general
linear mixed-effect model:17

y =
I∑

i=1
Xi𝜷 i +

I∑

i=1
Zi𝜸i + 𝜺, (5)

where y is the [n × 1] vector for the dependent variable, Xi is the matrix for fixed effects at the i th hierarchical level
with dimension [n × pi] , and Zi is the matrix for random effects, with dimension [n × pi] ; 𝜷 i is the column vector of the
unknown coefficients for the fixed effects with dimension [pi × 1] , while 𝜸i is the vector of the unknown coefficients for
the random effects, dimension [pi × 1] ; lastly 𝜺 is the vector [n × 1] for the random errors.

3.2.1 Some general examples

The theoretical proposal could be applied to several technological, and similar situations. The generalization is primarily
related to a hierarchical structure, in which composite-form, shared, branching, and nested factors could be involved at
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any hierarchical level. In addition to the case-study, illustrated in details in the following Section 4.2, some examples can
be also outlined here. A first example is related to the field of electronic engineering; particularly, we could be interested
to study different printed circuit boards-PCB through different combinations of surface finishes, with several component
packages, and the correspondent solder joints, including the geometry of the joint. Therefore, in this case, we may have
three hierarchical levels: at the 1st level the PCB is defined through the CFF “soldering alloy,” where each level is defined
as the sum of a basic alloy element plus different alloy elements; the 2nd level is then studied through different electronic
components, for example, “component package type.” Finally the 3rd level is then determined by the size of pin for each
component type. In this example, the CFF is the “soldering alloy,” the shared factors are the component package type
and the pin size.

A second hierarchical example could be suggested thinking to the detection of harmful gases, and to the study for
improving electronic sensors. In this case, the hierarchical study could be articulated at several levels, involving fixed as
well as random effects. More specifically, we may have three levels: the 1st level is here characterized by environmen-
tal variables, also random, such as humidity, external (environmental) temperature, while the gas concentration is at
the 2nd level. The 3rd level is characterized by the chamber, in which several and different material types are involved.
Each material type is a chemical powder, formed by different chemical substances, but with a common fixed amount
of basic chemical elements, for example “Yttrium plus Cobalt.” At the 3rd level an additional factor could be the work-
ing temperature, used to analyze a change in response, which is the electrical resistance. In this example, the CFF is the
“material type,” which is also nested within the chamber. The working temperature is also a nested factor, while the gas
concentration is a branching random factor; the others are shared factors.

3.3 The hierarchical optimal design and modeling

In this section we describe in detail the hierarchical D-optimal design and statistical modeling. Without any loss of gener-
ality, we consider three hierarchical levels (i.e., i = 1, 2, 3 ): the highest one (level-1), a middle one (level-2), and the lowest
one (level-3). Among the various possible technological situations, we evaluate a general framework including factors
with fixed effects at level-1 and level-3 (i.e., X1 = {x11, … , x1j, … , x1J1} and X3 = {x31, … , x3j, … , x3J3} ), and random
factors at level-2 (i.e., Z2 = {z21, … , z2j, … , z2J2} ), as also reported in Figure 2. To simplify the notation, we omit the sub-
script 1 identifying the first hierarchical level. Therefore, we consider a linear mixed-effect model17 defined for a single
response variable Y , and for a single observation u , ( u = 1, … ,n ) as follows:

yu(X1,X3,Z2) = 𝛽0 +
Jc∑

j=1
𝛽cjxcju +

Js∑

j=1
𝛽sjxsju +

Jb∑

j=1
𝛽bjxbju

+
Jr∑

j=1
𝛽rjxrju +

J3∑

j=1
𝛽3jx3ju +

J2∑

j=1
𝛾2jz2ju + 𝜀u. (6)

Model (6) can be expressed in matrix notation according to formula (5) as follows:

y = X1𝜷1 + X3𝜷3 + Z2𝜸2 + 𝜺, (7)

F I G U R E 2 A three-level hierarchical data structure and related set of factors following model (6)
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where y is the [n × 1] vector for the dependent variable, X1 is the [n × p1] model matrix related to the subset X1 of
composite-form, shared, branching and nested factors (level-1), while 𝜷1 is the [p1 × 1] vector that contains the corre-
sponding unknown coefficients; X3 is the [n × p3] model matrix related to the subset X3 of experimental factors with 𝜷3
the [p3 × 1] vector of unknown coefficients. The matrix Z2 of dimension [n × p2] is related to the set of random factors
(subset Z2), while 𝜸2 is the corresponding vector of unknown coefficients, dimension [p2 × 1]. Thus, the total number of
unknown coefficients is equal to p = p1 + p2 + p3. We assume that both 𝜺 and 𝜸2 are i.i.d. Normally distributed with mean
zero, variance 𝜎2

𝜺In and 𝜎2
𝜸2

Ip2 , respectively, and Cov(𝜸2, 𝜺) = 0p2×n.
Therefore, the variance-covariance matrix V of y is defined as follows:

V = Z2GZ′2 + R, (8)

where the first term Z2GZ′2 relates to the random effects, and the second term, the matrix R, relates to the
variance-covariances of the error estimates. The generalized least square (GLS) estimator for the unknown coefficient
vector for the fixed effects [𝜷1 ∶ 𝜷3] is given by:17

[
𝜷1 ∶ 𝜷3

]
GLS =

[
[X1 ∶ X3]′V−1 [X1 ∶ X3]

]−1[X1 ∶ X3]′V−1y, (9)

where [𝜷1 ∶ 𝜷3] denotes the horizontal concatenation of the vectors 𝜷1 and 𝜷3, while [X1 ∶ X3] denotes the horizontal
concatenation of the matrices X1 and X3.

The D-optimality design criterion is one of the most commonly used for building optimal designs,18,19 and is also the
most versatile in our context. When considering the efficient estimation for the fixed effects [𝜷1 ∶ 𝜷2] in model (7), the
specific D-optimal design maximizes the determinant of the information matrix M defined as:

M = [X1 ∶ X3]′V−1[X1 ∶ X3], (10)

thus minimizing the variance-covariance matrix of the GLS parameter estimates, formula (9).
As regards the variance-covariance matrix V in formula (8), specific structures could be assumed for both

G and R matrices, such as variance-components, compound-symmetry, or others. In what follows, we assume a
variance-components structure for both G and R matrices. Thus, when considering the case-study it is possible to obtain
an equivalent expression for the information matrix M (formula 10), which is particularly useful when computing the
hierarchical D-optimal design. Let us define by li the generic experimental unit at the i th hierarchical level, i = 1, 2, 3 , so
that we denote by Li the total number of experimental units within level i . Thus, at level-1 we have a total of L1 experimen-
tal units ( 1, … , l1, … ,L1 ). Within each unit l1 , we deal with a total of L2 units at level-2, (1(l1), … , l2(l1), … ,L2(l1)) ,
and m(l2) experimental observations within each unit l2 ; without any loss of generality, let m(l2) = m . For the case-study,
we assume a block-diagonal structure for the matrix V (formula 8), that is, V = diag[V1, … ,Vl1 , … ,VL1] . Further-
more, for each matrix Vl1 , we assume the following structure: Vl1 = diag[V1(l1), … ,Vl2(l1), … ,VL2(l1)] , where each Vl2(l1)
, (1(l1), … , l2(l1), … ,L2(l1)) , is defined as follows:

Vl2(l1) = 𝜎
2
𝜺Im + 𝜎2

𝜸2
1m1′

m,

and 1m is an m × 1 vector of 1’s.
According to such assumptions, the equivalent expression of the information matrix M (formula 10) for the case-study,

is expressed as follows:

M = 1
𝜎2
𝜀

[
[X1 ∶ X3]

′ [X1 ∶ X3] −

(
𝜎2
𝜸2

𝜎2
𝜀 +m𝜎2

𝜸2

)
(
[X1 ∶ X3]

′Z2
) (
[X1 ∶ X3]

′Z2
)′
]
. (11)

The detailed derivation for the information matrix M (formula 11) is included in the Appendix. Moreover, by considering
the full procedure and the corresponding case-study, the building of the hierarchical D-optimal design is carried out
through the implementation of a GA.

Several algorithms are available in the literature for building optimal designs. In a first group, we can include
well-known and basic algorithms, as for instance the Wynn-Fedorov algorithm,18,20 the DETMAX algorithm,21 the
KL-exchange algorithm,22 and the coordinate-exchange algorithm.23 All allow for dealing with irregular design spaces;
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however, they are often too time-consuming since an exhaustive search over all candidate points has to be performed.
Some recent improvements, as for example multiplicative-type algorithms,24 are aimed at overcoming this drawback. In
a second group, we can consider meta-heuristic algorithms, which receive considerable attention in research literature.
Among the different types of meta-heuristic algorithms, GAs are the most popular. GAs, which trace back to Holland,25

are very flexible, potential and relatively easy to implement. Two characteristics are relevant for a GA, strictly related to
its meta-heuristic nature:26 (i) the intensification which relates to the local and intensive search around the best solution,
and (ii) the diversification which assures that the algorithm explores the design space globally.

GAs are highly powerful for building optimal designs where some kinds of irregularities exist in the design space, for
example, constraints when dealing with mixture experiments and similar. Since the GA does not need to specify an explicit
candidate-set of points, it is particularly suitable for design problems with medium-large numbers of factors in constrained
regions.26-29 In our setting, we select the GA by specifically considering the non-trivial hierarchical structure, the types
of experimental factors defined, and the specific engineering problem under study. More specifically, the choice to use a
GA arises from the presence of the CFF, the new type of experimental factor (Section 3.2). In building the optimal design
through a GA, we are able to efficiently deal with the CFF, due to the peculiar characteristics of this type of experimental
factor, and by also considering its similarities with mixture variables; for instance, the two examples for CFFs reported
in Section 3.2.1, for example, the soldering alloy and the material type. Even though there is no guarantee of converging
to the true optimum, GAs represent a powerful alternative for building optimal designs, since they have been proven to
be effective in solving complex problems in several engineering and technological areas.27,29 A detailed review on the
application of GAs for optimal designs can be found in References 30 and 29. The specific GA implemented here is detailed
in Section 4.3 in relation to the case-study.

4 THE CASE-STUDY

In this section we describe the application of the full procedure to the case-study in the rail sector. In particular, we
discuss engineering issues (Section 4.1) and provide the outline of the full procedure (Section 4.2). Afterwards, we report
the GA for building the hierarchical D-optimal design (Section 4.3), the models results (Section 4.4), and the best train
configuration minimizing the in-train forces (Section 4.5).

4.1 Engineering issues in the rail freight sector

One of the most important challenges to be addressed, when a new type of trainset is put in service, is the determination
of risk in case of train derailment or disruption due to excessive in-train forces during braking. Such forces arise because
train braking is not homogeneous for classic freight trains: it starts from the wagons closest to the traction units, and
propagates to the wagons further away. The reason for this behavior is the progressive venting of the brake pipe running
along the train, which results in progressive filling of the brake cylinders and, therefore, in nonsynchronous braking of
the wagons. During braking, this lack of synchronicity results in a longitudinal oscillation of the wagons along the train,
which in turns creates in-train forces between two consecutive wagons. If excessive in-train compressive forces are exerted
on a wagon running a curve, the wagon can derail (i.e., it exits from the track); if excessive in-train tensile forces occur, the
draw gears can fail, and the train breaks into two parts. Both events must be avoided: the first is dangerous for transported
goods, and the railway track, the second causes service interruptions and delays. To this end, specific simulators are
used by railway undertakings to determine the in-train forces, since physical experimentation is time consuming, very
expensive, and thus unfeasible. TrainDy* is one of such simulators31 that can be considered state-of-the-art software for
the computation of in-train forces, in accordance with the International Union of Railways (UIC).32

In-train forces depend on train mass and length, train operation (emergency braking, service braking and so on),
train braking regime (time to reach the maximum air pressure in brake cylinders), type of wagons used (tare, length,
mechanical characteristics of coupling devices, friction characteristics of braking devices, relationship between braked
weight and mass), railway track, and wagon arrangements. In general, higher in-train forces arise when the initial speed
is between 20 and 40 km/h. In simulating the in-train forces, we consider the speed of 30 km/h, since it is the customary

*TrainDy-International Union of Railways (UIC)
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T A B L E 1 Description of the experimental factors and variables

Variables Symbol Coded levels

Subset X1 (level-1)

Train mass xc1 [−1, 1]

Train length xs1 [−1, 1]

Mass shape xb1f
f = 1, 2, 3, 4

Wagon arrangement for mass shape 1 xr1a(1)
a = 1, 2, 3

Wagon arrangement for mass shape 2 xr1a(2)
a = 1, 2, 3

Wagon arrangement for mass shape 3 xr1a(3)
a = 1, 2, 3

Wagon arrangement for mass shape 4 xr1a(4)
a = 1, 2, 3

Subset Z2 (level-2)

Pairs of wagons z21h
h = 1, … , 35

Subset X3 (level-3)

Type of wagon x1t
t = 1, … , 7

speed in many programs of in-train force assessment, and the track radius of horizontal curvature, because it affects
the permissible longitudinal compressive force. Moreover, even though several environmental conditions may have an
effect on longitudinal train dynamics, such as the degraded performance of braking devices, they are not involved in the
case-study due to being beyond the scope.

In some cases, railway undertakings cannot change any of the characteristics listed before; therefore, they must decide
whether to allow a train to operate (computing the in-train forces or checking observance of established rules for the
specific train set). In other cases, they can manage the position of wagons in the trainset, adjusting the mass along the
train to reduce the in-train forces. In fact, among all the factors affecting the in-train forces, this is the parameter that
can be most easily managed. The problem under study is particularly challenging, especially when considering the plan-
ning of the experiment. More precisely, each train is composed of a large number of wagons; each type of wagon has its
own mass, it can be located in any position along the train, and each wagon allocation impacts the in-train forces in a
different way. It follows that there is an extremely high number of possible wagon arrangements, each having a different
impact on the in-train forces. This particularly challenging point can be successfully handled through the full procedure
we propose.

4.2 Outline of the full procedure for the case-study

According to our full procedure (Figure 1), we start with the analysis of existing data containing information about a large
number of trains which are used for building the pilot design. Each train in the pilot design is composed of K = 36 wagons
because most trains consist of this number in the preliminary dataset. Once the pilot design runs are performed, suitable
linear mixed-effect models are estimated and checked with diagnostic measures. The satisfactory results obtained confirm
the validity of the experimental planning. More precisely, we consider the following three hierarchical levels: (i) level-1
related to the entire train, (ii) level-2 related to two consecutive wagons (in the rest of the article, we will also use pairs of
wagons), and (iii) level-3 related to each individual wagon. A description of the experimental factors for each hierarchical
level is reported in Table 1. Namely, at level-3 the subset X3 is composed of one categorical factor, that is, type of wagon
x1t at seven levels, t = 1, … , 7. At level-2, the subset Z2 consists of one categorical factor z21h , h = 1, … , 35, that is the
pairs of wagons. It must be noted that in our case-study, the number of levels H for the categorical factor z21h is equivalent
to L2 (i.e., H = L2). Rather, if there are two or more random factors, we may have H ≠ L2; for instance, as in the second
general example related to the study for improving electronic sensors (Section 3.2.1), in which we deal with two random
factors. At level-1, the subset X1 is composed of:

• one CFF: xc1 representing the total train mass, with one variable of type D, the tare of wagons, and one type-E variable,
the mass of wagons;
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T A B L E 2 Mass shapes and examples of wagon arrangements

Type of mass shape Wagon arrangement for each mass shape

f = 1: ascending scalene triangle a = 1: (1, 1, 3, 1, 1, 1, 1, 4, 1, … , 6, 7, 4, 7, 7, 7, 7, 2, 1)

a = 2: (1, 2, 1, 1, 1, 1, 1, 4, 1, … , 3, 7, 7, 1, 7, 7, 7, 7, 1)

a = 3: (2, 1, 4, 1, 1, 1, 1, 1, 4, … , 7, 7, 4, 7, 6, 7, 7, 7, 7)

f = 2: descending scalene triangle a = 1: (1, 7, 1, 6, 7, 4, 7, 7, 7, … , 1, 1, 1, 1, 4, 1, 1, 1, 1)

a = 2: (3, 4, 7, 3, 7, 7, 1, 7, 7, … , 1, 1, 1, 1, 4, 1, 1, 3, 1)

a = 3: (4, 1, 3, 7, 7, 4, 7, 6, 7, … , 1, 1, 1, 1, 1, 4, 1, 1, 1)

f = 3: trapezoidal a = 1: (1, 4, 4, 4, 1, 1, 1, 4, 3, … , 4, 1, 1, 1, 4, 3, 4, 7, 1)

a = 2: (4, 1, 7, 1, 1, 2, 4, 1, 5, … , 1, 1, 2, 4, 1, 5, 2, 4, 2)

a = 3: (2, 3, 1, 3, 2, 4, 7, 1, 1, … , 3, 2, 4, 7, 1, 1, 1, 1, 2)

f = 4: uniform a = 1: (1, 1, 1, 4, 2, 7, 4, 7, 1, … , 4, 2, 7, 4, 7, 1, 4, 5, 4)

a = 2: (7, 1, 7, 1, 7, 4, 2, 1, 1, … , 1, 7, 4, 2, 1, 1, 1, 4, 1)

a = 3: (6, 2, 2, 7, 1, 1, 7, 4, 4, … , 7, 1, 1, 7, 4, 4, 1, 5, 3)

T A B L E 3 Assignment of tare, length, and mass to a wagon, depending on its type

Type Tare (tons) Length (m) Mass (tons)

1 12.500 14.61 (1, 2, … , 12)

2 13.000 14.61 (13, 14, 15)

3 13.800 14.02 (16, 17, 18, 19)

4 14.400 14.22 (20, 21, 22, 24, … , 28)

5 14.932 15.50 23

6 17.800 17.25 (29, 30, 31, 32)

7 20.000 17.00 (33, 34, … , 70)

Note: The mass of a wagon must be randomly selected from among all the values included in the set.

• one shared quantitative factor: xs1, that is the train length;
• one branching factor: xb1f , that is, the mass shape (form) with four levels, f = 1, … , 4;
• one nested factor: xr1a(f ) which is the type of wagon arrangement for each mass shape. For each mass shape, we define

three types of wagon arrangement, that is, a = 1, 2, 3.

In Table 2, we report in detail the four types of mass shapes, that is, ascending scalene triangle, descending scalene
triangle, trapezoidal, and uniform. For each mass shape we also report the three types of wagon arrangement; for the
sake of brevity we only report the first nine and last nine wagons for each arrangement (Table 2). We also point out that
the wagon arrangement for each mass shape, defined in terms of type of wagon, is identified by considering the analysis
of the preliminary data, and the pilot design; as regards the characteristics of each type of wagon (e.g., mass, tare, and
length) reference must be made to Table 3. Following, we proceed to build the D-optimal hierarchical design through a
GA, described in detail in the following section.

4.3 The genetic algorithm for building the hierarchical D-optimal design

The GA defined for building the hierarchical D-optimal design consists of four main steps: generation of the initial pop-
ulation, selection, crossover, and mutation. Also, it requires the following inputs: (i) the number of designs in the initial
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population g, set to 100; (ii) the crossover probability 𝜋c, set to 0.8; (iii) the mutation probability 𝜋m, set to 0.3; (iv) the
number of iterations R, set to 1000. In what follows the steps of the algorithm are detailed.

4.3.1 Generation of the initial population

The algorithm begins by randomly generating an initial population of g experimental designs, say = {D1, … ,Dg}. Each
of these g designs has a fixed structure consisting of 72 trains, given the previous study on this topic,2 with 36 wagons each.
A starting design matrix composed of 72 trains is defined by considering the experimental factors previously described
(Section 4.2 and Table 1). For a given mass shape, each wagon’s arrangement is represented in terms of types of wagon,
as established in Step no.1 of the full procedure, and validated through the pilot design. Thus, tare, length, and mass of
each wagon are assigned on the basis of the type, as indicated in Table 3. Following, the CFF, that is, the train mass, is
obtained as the sum of tares and mass for each wagon. Once the initial population of designs is generated, the fitness of
each design is computed as the determinant of the information matrix in formula (11).

4.3.2 Selection step

Once the initial population of designs  has been generated, a group of fittest designs is selected with probability pro-
portional to the fitness. These fittest designs act as chromosomes designed to generate the next generation. The selected
designs constitute the population of good parents 0, which will undergo crossover and mutation processes in the next
steps to create a new offspring.

4.3.3 Crossover step

Designs in the population of good parents 0 are selected with probability 𝜋c as candidates for crossover. The selected
designs are paired and one crossover process is carried out for each pair. Let D be a design with matrix including the trains
𝒯1, … ,𝒯72 , and D′ another design with matrix including the trains𝒯 ′

1 , … ,𝒯 ′
72 . The crossover process between designs

D and D′ consists of randomly selecting an integer number l1 ∈ [1, 72] and of generating two new designs, one with matrix
including the trains {𝒯1, … ,𝒯l1 ,𝒯

′
l1+1, … ,𝒯 ′

72} , and the other including the trains {𝒯 ′
1 , … ,𝒯 ′

l1
,𝒯 ′

l1+1, … ,𝒯 ′
72} . In

practice, the trains act as genes, thus the two designs (chromosomes) undergoing crossover exchange two portions of
genes. All the new designs generated by the crossover processes are included in the initial population  . Afterwards, a
new population ∗ is obtained by selecting the g designs in  with the highest fitness.

4.3.4 Mutation step

Each design in the population ∗ undergoes a mutation process with probability 𝜋m. A mutation process generates a
new design equal to the original one, except that one of its trains (genes) is randomly selected and replaced by another
randomly selected train (gene) of a randomly selected design (chromosome) in ∗. All the new designs generated by
mutation processes are included in the population ∗. Afterwards, a new population ∗∗ is obtained by selecting the g
designs with the highest fitness. The new population ∗∗ acts as a new initial population and the algorithm is repeated
from the selection step. When the algorithm has been repeated R times, population ∗∗ is returned as the set of designs.

The GA, detailed above, is employed as a design construction algorithm for searching for the hierarchical D-optimal
design. After performing 1000 iterations, the GA returns the final hierarchical D-optimal design which maximizes the
determinant of the information matrix M (formula 11).

4.4 Model results

The main aim of the case-study is to improve the payload distribution of freight trains for guaranteeing emergency braking
with the minimum in-train compressive and tensile forces among wagons (Section 4.1). To this end, we consider the



BERNI et al. 11

T A B L E 4 Description of the response variables

Variables Symbol Target 𝝉l

Compressive forces at 10 m y1 𝜏1 < 400 (kN)

Tensile forces at 2 m y2 𝜏2 < 550 (kN)

following two quantitative response variables, also reported in Table 4: (i) compressive forces at 10 m ( y1 ), and (ii) tensile
forces at 2 m ( y2 ). By taking into account the obtained hierarchical D-optimal design (Section 4.3), the true values of
compressive and tensile forces are simulated through the TrainDy software,31 which is considered state-of-the-art software
for this type of computation by the UIC. The linear mixed-effect model for the three subsets of experimental factors X1,Z2,
and X3, for a single response variable Y , and for a single observation u ( u = 1, … ,n ) is defined as follows:

yu(X1,X3,Z2) = 𝛽0 + 𝛽c1xc1u + 𝛽s1xs1u +
F−1∑

f=1
𝛽b1f xb1fu

+
F∑

f=1

A−1∑

a=1
𝛽r1a(f )xr1a(f )u

+
T−1∑

t=1
𝛽31t x31tu

+
H∑

h=1
𝛾hz21hu

+ 𝜀u. (12)

In formula (12), xc1 is the CFF (i.e., the train mass); xs1 is the shared factor (i.e., the train length), while xb1f and
xr1a(f ) are the branching and the nested factors respectively. There are a total of L1 = 72 trains, each composed of K = 36
wagons. Thus, in our setting H = L2 = 35 pairs of wagons with m = 2 (total number of observations n = L1 × L2 ×m =
72 × 35 × 2). When considering Section 3.3 and model (7), we have the following structures:

• the matrix X1 is related to level-1, with a dimension of:

[n × p1] = [(L1 × L2 ×m) × p1] = [(72 × 35 × 2) × 14];

• at level-2, the matrix Z2 related to the random effects has a dimension of:

[n × 𝛾2] = [(L1 × L2 ×m) × p2] = [(72 × 35 × 2) × 35];

• the matrix X3 is related to level-3 with the following dimension:

[n × p3] = [(L1 × L2 ×m) × p1] = [(72 × 35 × 2) × 6];

• the vectors 𝜷1, 𝜸2, and 𝜷3, related to the unknown coefficients for level-1, level-2, and level-3, have dimensions: [p1 ×
1] = [14 × 1], [p2 × 1] = [35 × 1], and [p3 × 1] = [6 × 1], respectively.

Model (12) is estimated for each response variable, by applying the GLIMMIX procedure of the SAS software (ver-
sion 9.4, Windows Platform). A variance-components structure is assumed for both the G and R matrices in formula
(8). In Table 5 we report the GLS estimates of model (12) for each response variable. By observing Table 5 we note that
large numbers of the estimated coefficients are significant and/or highly significant, and for all of them very small stan-
dard errors occur. The CFF xc1 is highly significant for both models, with the lowest standard error compared to all
the other estimates. We do not report the estimates for the random effects. We only point out that similar to the esti-
mates for the fixed effects, most of the random coefficient estimates are highly significant, with standard errors close
to zero.

In Table 6, three diagnostic measures (−2 residual log-likelihood, Akaike information criterion-AIC, Bayesian infor-
mation criterion-BIC) are reported. The residual diagnostics for both the estimated models are evaluated by considering
three types of residuals: raw, studentized, and Pearson. For each estimated model, the results are very satisfactory
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T A B L E 5 GLS estimates for fixed effects of model (12) for each response

ŷ1 ŷ2

Coefficient Estimate Std. Err. p-value Coefficient Estimate Std.Err. p-value

𝛽0 −0.4055 0.0437 < 0.0001 𝛽0 0.2510 0.0375 < 0.0001

𝛽c1 −0.0236 0.0019 < 0.0001 𝛽c1 0.0726 0.0035 < 0.0001

𝛽s1 −0.0674 0.0301 0.0253 𝛽s1 0.0436 0.0549 0.4266

𝛽b11
−0.0184 0.0179 0.3037 𝛽b11

−0.1416 0.0325 < 0.0001

𝛽b12
0.0140 0.0179 0.4346 𝛽b12

0.0301 0.0325 0.3537

𝛽b13
0.0649 0.0076 < 0.0001 𝛽b13

0.0476 0.0138 0.0006

𝛽b14
0 - - 𝛽b14

0 - -

𝛽r11(1)
0.0053 0.0233 0.8200 𝛽r11(1)

−0.0017 0.0425 0.9685

𝛽r12(1)
−0.0042 0.0194 0.8295 𝛽r12(1)

0.1050 0.0352 0.0029

𝛽r13(1)
0 - - 𝛽r13(1)

0 - -

𝛽r11(2)
−0.0603 0.0235 0.0104 𝛽r11(2)

0.0427 0.0428 0.3188

𝛽r12(2)
0.1050 0.0194 < 0.0001 𝛽r12(2)

0.1004 0.0352 0.0044

𝛽r13(2)
- - - 𝛽r13(2)

0 - -

𝛽r11(3)
−0.0847 0.0180 < 0.0001 𝛽r11(3)

−0.0917 0.0327 0.0050

𝛽r12(3)
−0.0290 0.0063 < 0.0001 𝛽r12(3)

0.0597 0.0115 < 0.0001

𝛽r13(3)
0 - - 𝛽r13(3)

0 - -

𝛽r11(4)
−0.1696 0.0439 0.0001 𝛽r11(4)

0.1291 0.0799 0.1061

𝛽r12(4)
0.1140 0.0090 < 0.0001 𝛽r12(4)

0.2069 0.0180 < 0.0001

𝛽r13(4)
0 - - 𝛽r13(4)

0 - -

𝛽311
0.0255 0.0029 < 0.0001 𝛽311

−0.0373 0.0053 < 0.0001

𝛽312
0.0141 0.0043 0.0010 𝛽312

−0.0381 0.0078 < 0.0001

𝛽313
0.0119 0.0051 0.0201 𝛽313

0.0023 0.0093 0.8055

𝛽314
0.0156 0.0035 < 0.0001 𝛽314

−0.0189 0.0063 0.0028

𝛽315
0.0180 0.0069 0.0087 𝛽315

−0.0109 0.0125 0.3820

𝛽316
0.0201 0.0073 0.0061 𝛽316

−0.0086 0.0133 0.5168

𝛽317
0 - - 𝛽317

0 - -

T A B L E 6 Diagnostic statistics for model (12), for each response

Diagnostic statistic ŷ1 ŷ2

−2 residual log-likelihood −11172.2 −5222.72

Akaike information criterion-AIC −11168.2 −5218.72

Bayesian information criterion-BIC −11165.1 −5215.61

especially in view of the histogram of residuals with the overlay of the Normal density curve, the Q-Q plot, and the box-plot
of the corresponding residuals.

4.5 The best train configuration for minimizing the in-train forces

Referring to Figure 1, the final step ♯4 corresponds to finding the best train configuration by considering the experi-
mental factors and variables involved (reported in Table 1), and allowing for minimizing the in-train forces in order to
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decrease, or better, to avoid the risk of derailment and disruption. To this end, the two response variables, for example, the
in-train forces (compressive at 10 m, tensile at 2 m), must be minimized taking the roles of both forces into account, also
considering the target values, for example, 𝜏1 < 400 (kN) and 𝜏2 < 550 (kN), according to the STB-smaller the better situ-
ation. As technically detailed in Section 4, the simultaneous involvement of both forces during the train braking requires
the definition of an objective function able to evaluate all the technical parameters (e.g., train length, mass, shape, and
wagon arrangements), also including the random effects. Moreover, the relative importance of the compressive forces
with respect to the tensile forces has to be considered when finding the optimal setting for the train configuration. In
other words, when computing the optimal setting, the predominant importance of compressive forces with respect to the
tensile ones must be fixed.

Undoubtedly, the best train configuration can primarily be settled with respect to the mass and length of a train,
conditioned to the mass shape and wagon arrangement (categorical variables), and also to the random effects related to the
pair of wagons. In this respect, and accounting for all the previously mentioned issues, the objective function expression
to be minimized is defined as the following:

min
𝜒

Fobj = (Y|X1,Z2,X3,wy1 ,wy2 , 𝜏)

Y = (y1, y2)
𝜏 = (𝜏1, 𝜏2)

wy1 + wy2 = 1. (13)

By considering the two estimated models, and the specific independent variables (fixed and random) involved, the
objective function becomes:

min
𝜒

Fobj = (ŷ1, ŷ2|xc1 , xs1 , 𝛾, xb1f = f , xr1a(f ) = a,wy1 ,wy2 , 𝜏1, 𝜏2)

= [wy1(ŷ1 − 𝜏1)2 + wy2(ŷ2 − 𝜏2)2|𝜷, 𝜸];
and

wy1 + wy2 = 1
𝜸 = 𝜸y1

, 𝜸y2
. (14)

In Tables 7 and 8 we illustrate several scenarios, according to the train mass and length, at pre-specified values for
the mass shape and arrangement (the latter nested within the mass shape), and the random effects related to the pairs
of wagons. The results are satisfactory when considering the choice of defining a set of variable weights, for example,
wy1 ,wy2 , without specifying a-priori weight values. As we can observe, the weights obtained make it possible to satisfy
the technical requirements, generally achieving greater importance for the in-train force at 10 m with respect to the
in-train force at 2 m. Moreover, the minimization of the objective function, as defined in formulas (13) and (14), achieves
good performances for the global scenarios, also considering the simultaneous minimization of both responses. In the
following section, the scenarios will be discussed by emphasizing the technical and engineering aspects, and highlighting
the notable achievements.

5 DISCUSSION

In this article a general procedure for building hierarchical optimal designs for engineering and technological processes
is suggested, and applied to the rail freight sector. The main aim of our case-study is to minimize the in-train forces, for
example, compressive forces at 10 m and tensile forces at 2 m, that are the main cause of risk for derailment and disruption
respectively.

The results reported in Tables 7 and 8 are related to some of the possible scenarios considering the random and fixed
effects involved in the computer experiment. We select the specific scenarios that can be exhaustive for the technical
discussion. In fact, as it can be observed, we obtain very satisfactory results, also taking into account the weight values
achieved for the mass shape ♯2 and ♯3, even though for the mass shape ♯3 and arrangement a = 3 we do not achieve the
desired weighting for the in-train force at 10 m.
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T A B L E 7 Best train configuration and force results: Some scenarios

Variables Symbol Optimal setting

Scenario ♯1: mass shape ♯1, a = 2

Compressive forces at 10 m y1 −77.15 (kN)

Tensile forces at 2 m y2 98.95 [kN]

Train mass xc1 1421.98 (t)

Train length xs1 549.69 (m)

Weight wy1
= 0.6460 wy2

= 0.3540

Scenario ♯2: mass shape ♯1, a = 3

Compressive forces at 10 m y1 −71.64 [kN]

Tensile forces at 2 m y2 52.05 [kN]

Train mass xc1 1505.90 (t)

Train length xs1 546.03 (m)

Weight wy1
= 0.3342 wy2

= 0.6658

Scenario ♯3: mass shape ♯2, a = 1

Compressive forces at 10 m y1 −78.60 [kN]

Tensile forces at 2 m y2 113.54 [kN]

Train mass xc1 1414.78 (t)

Train length xs1 550.11 (m)

Weight wy1
= 0.8024 wy2

= 0.1976

Furthermore, when considering and comparing the results (Tables 7 and 8), we can confirm the experience of railway
undertakings for classic freight trains: uniform payload distributions (i.e., mass shape ♯4) are not able to give the best
train configuration, and therefore, they are not even reported. On the contrary, the mass shape ♯2, corresponding to a
descending scalene triangle, is able to provide low values for the longitudinal compressive forces, similar to the mass
shape ♯3, for example, the trapezoidal mass distribution. The ascending scalene triangle (mass shape ♯1) is more suitable
for low longitudinal tensile forces. Specific mass arrangements can change this behavior, as the results show, emphasizing
the need for an analysis able to discriminate between the reciprocal position of different wagons: some arrangements are
better than others and keep the same mass shape. The fact that the refined method suggested here is able to replicate
some of the results already known is encouraging for other more complex applications in which there is no (or little) prior
knowledge, for example, the trains obtained by coupling two or more trains and communicating by radio or wire.

However, it must be noted that each scenario depends exclusively by the arrangement involved, for example, by the
wagon types used to make up the freight train, and therefore each train configuration is strictly related to empirical (and
real) constraints.

The analysis shows that further best train compositions can be obtained by changing the relative weight of compressive
and tensile forces. This makes the method suitable for general applications. For freight trains, it is usually preferable to
find the best train configuration by considering a higher weight for the compressive forces than for the tensile forces,
but this can be a useful feature when the type of railway track, train operation, or train braking regime causes very high
tensile forces that could be of concern: in this case the two weights can be very similar. Therefore, the best configuration
with respect to in-train forces may depend by the arrangement involved, for example, by the wagon types used to make
up the freight train, but also by the specific setting of all the technical features (length, mass, mass shape), according to
the operators’ requirements.

6 FINAL REMARKS

In this manuscript we illustrate a general procedure for design and analysis of experiments in complex technologi-
cal processes. A core part of the proposal is the building of a hierarchical D-optimal design in a general framework of
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T A B L E 8 Best train configuration and force results: Some scenarios

Variables Symbol Optimal setting

Scenario ♯4: mass shape ♯2, a = 2

Compressive forces at 10 m y1 −32.51 please note that in Table 7 the symbols
and numbers are reported in different fonts.

Tensile forces at 2 m y2 279.44 [kN]

Train mass xc1 1478.86 [t]

Train length xs1 548.07 (m)

Weight wy1
= 0.8066 wy2

= 0.1934

Scenario ♯5: mass shape ♯3, a = 1

Compressive forces at 10 m y1 −55.21 [kN]

Tensile forces at 2 m y2 103.85 [kN]

Train mass xc1 1398.93 (t)

Train length xs1 549.68 (m)

Weight wy1
= 0.8621 wy2

= 0.1379

Scenario ♯6: mass shape ♯3, a = 3

Compressive forces at 10 m y1 −39.06 [kN]

Tensile forces at 2 m y2 120.75 [kN]

Train mass xc1 1505.79 [t]

Train length xs1 546.22 (m)

Weight wy1
= 0.4008 wy2

= 0.5992

complex data structures. The suggested procedure may be applied by also considering other possible design criteria and/or
statistical models, according to the specific problem under study.

The method is applied in this specific case-study by considering the wagon mass as a governing factor for the opti-
mization. In any case, the wagon mass determines the wagon’s braked weight as well as the corresponding percentage of
braked weight, via its specific braking devices. The best train configuration, in terms of longitudinal forces, can also be
found by considering the percentage of braked mass, which is a quantity commonly used in railway applications. Another
possible further development of the method, for application in the railway sector, could be a search for the best train
configuration by optimizing the ratios between the longitudinal forces, and their admissible counterparts (immediately
known from the type of wagon and railway track). Moreover, the proposed case-study assumes a fixed number of wag-
ons, shapes, and arrangements, but the methodology we propose can be applied to trains with general characteristics,
including trains with multiple sections.

ACKNOWLEDGMENT
Our thanks to Ms. Susan Mary Cadby for her revision of the English language aspects of the article.

Rossella Berni contributed to this research also as University of Florence Vice-Coordinator for the Competence Center
ARTES4.0. Open Access Funding provided by Universita degli Studi di Firenze within the CRUI-CARE Agreement.

DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.

ORCID
Rossella Berni https://orcid.org/0000-0002-7782-1777
Luciano Cantone https://orcid.org/0000-0001-7416-1040
Alessandro Magrini https://orcid.org/0000-0002-7278-5332
Nedka D. Nikiforova https://orcid.org/0000-0002-5948-5917

https://orcid.org/0000-0002-7782-1777
https://orcid.org/0000-0002-7782-1777
https://orcid.org/0000-0001-7416-1040
https://orcid.org/0000-0001-7416-1040
https://orcid.org/0000-0002-7278-5332
https://orcid.org/0000-0002-7278-5332
https://orcid.org/0000-0002-5948-5917
https://orcid.org/0000-0002-5948-5917


16 BERNI et al.

REFERENCES
1. Arcidiacono G, Berni R, Cantone L, Placidoli P. Kriging models for payload-distribution optimization of freight trains. Int J Prod Res.

2017;55:4878-4890.
2. Nikiforova ND, Berni R, Arcidiacono G, Cantone L, Placidoli P. Latin hypercube designs based on strong orthogonal arrays and Kriging

modelling to improve the payload distribution of trains. J Appl Stat. 2021;48:498-516.
3. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Stat Sci. 1989;4:409-423.
4. Baldi Antognini A, Zagoraiou M. Exact optimal designs for computer experiments via kriging metamodelling. J Stat Plan Infer.

2010;140:2607-2617.
5. Müller WG, Pronzato L, Rendas J, Helmut W. Efficient prediction designs for random fields. Appl Stoch Model Bus Ind. 2015;31:178-194.
6. Jones B, Silvestrini RT, Montgomery DC, Steinberg DM. Bridge designs for modeling systems with low noise. Technometrics.

2015;57:155-163.
7. Schmelter T. Considerations on group-wise identical designs for linear mixed models. J Stat Plan Infer. 2007;137:4003-4010.
8. Dette H, Pepelyshev A, Holland-Letz T. Optimal designs for random effect models with correlated errors with applications in population

pharmacokinetics. Ann Appl Stat. 2010;4:1430-1450.
9. Sinha SK, Xu X. Sequential D-optimal designs for generalized linear mixed models. J Stat PlanInference. 2011;141:1394-1402.

10. Liu X, Yue R-X, Wong WK. D-optimal designs for multi-response linear mixed models. Metrika. 2019;82:87-98.
11. Prus M, Schwabe R. Optimal designs for the prediction of individual parameters in hierarchical models. J Royal Stat Soc Ser B.

2016;78:175-191.
12. He L, Yue R-X. D-optimal designs for hierarchical linear models with intraclass covariance structure. Stat Pap. 2021;62:1349-1361.
13. Prus M, Norbert B, Schwabe R. Optimal design in hierarchical random effect models for individual prediction with application in precision

medicine. J Stat Theory Pract. 2020;14:24-36.
14. Hung Y, Joseph VR, Melkote SN. Design and analysis of computer experiments with branching and nested factors. Technometrics.

2009;51:354-365.
15. Goos P, Jones B. Optimal experimental design in the presence of nested factors. Technometrics. 2019;61:533-544.
16. He Y, Tang B. Strong orthogonal arrays and associated Latin hypercubes for computer experiments. Biometrika. 2013;100:254-260.
17. Searle SR, Casella G, McCulloch CE. Variance Components. John Wiley & Sons; 1992.
18. Fedorov VV. Theory of Optimal Experiments. Academic Press; 1972.
19. Atkinson AC, Donev AN, Tobias RD. Optimum Experimental Designs, with SAS. Oxford University Press; 2007.
20. Wynn HP. The sequential generation of D-optimal experimental designs. Ann Math Stat. 1970;41:1055-1064.
21. Mitchell T. An algorithm for construction of D-optimal experimental designs. Technometrics. 1974;16:203-210.
22. Atkinson A, Donev A. The construction of exact D-optimum experimental designs with application to blocking response surface designs.

Biometrika. 1989;3:515-526.
23. Meyer RK, Nachtsheim CJ. The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics.

1995;37:60-69.
24. Torsney B, Martín-Martín R. Multiplicative algorithms for computing optimum designs. J Stat Plan Infer. 2009;139:3947-3961.
25. Holland JH. Adaptation in Natural and Artificial Systems. MIT Press; 1975.
26. Martín-Martín R, García Camacha I, Torsney B. Efficient algorithms for constructing D- and I-optimal exact designs for linear and

non-linear models in mixture experiments. Stat Oper Res Trans. 2019;43:163-190.
27. Heredia-Langer A, Carlyle W, Montgomery D, Borror C, Runger G. Genetic algorithms for the construction of D-optimal designs. J Qual

Technol. 2003;35:28-46.
28. Limmun W, Borkowski JJ, Chomtee B. Using a genetic algorithm to generate D-optimal designs for mixture experiments. Qual Reliab Eng

Int. 2013;29:1055-1068.
29. Lin CD, Anderson-Cook CM, Hamada MS, Moore LM, Sitter RR. Using genetic algorithms to design experiments: a review. Qual Reliab

Eng Int. 2015;31:155-167.
30. Pradubsri W, Chomtee B, Borkowski JJ. Using a genetic algorithm to generate D-optimal designs for mixture-process variable experiments.

Qual Reliab Eng Int. 2019;35:2657-2676.
31. Cantone L. TrainDy: the new Union internationale des Chemins de Fer software for freight train interoperability. J Rail Rapid Trans.

2011;225:57-70.
32. IRS 40421. Rules for the consist and braking of international freight trains: new IRS 40421; 2021.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Berni R, Cantone L, Magrini A, Nikiforova ND. Hierarchical optimal designs and
modeling for engineering: A case-study in the rail sector. Appl Stochastic Models Bus Ind. 2022;1-18. doi:
10.1002/asmb.2707



BERNI et al. 17

APPENDIX

Derivation of the information matrix M (formula 11)
As already defined in Section 3.3, for the case-study we assume a block-diagonal structure for the matrix V (formula
8), that is, V = diag[V1, … ,Vl1 , … ,VL1]. Furthermore, for each matrix Vl1 , (1, … , l1, … ,L1), we assume the fol-
lowing structure: Vl1 = diag[V1(l1), … ,Vl2(l1), … ,VL2(l1)], where each Vl2(l1), (1(l1), … , l2(l1), … ,L2(l1)), is given by the
following:

Vl2(l1) = 𝜎
2
𝜺Im + 𝜎2

𝜸2
1m1′

m, (A1)

and 1m is an m × 1 vector of 1’s.
Recall that for two nonzero constants a and b, I being an n × n identity matrix, and J being an n × n matrix having

every element unity, the following general result holds17(p. 443):

(aI + bJ)−1 = 1
a

{
I −

(
b

a + nb

)
J
}
.

Thus, with a = 𝜎2
𝜺 , b = 𝜎2

𝜸2
, I = Im, and J = 1m1′m, it follows that:

V−1
l2(l1)

= 1
𝜎2
𝜺

{
Im −

(
𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

)
1m1′

m

}
. (A2)

From formula (A2), since V−1
l1
= diag[V−1

1(l1)
, … ,V−1

l2(l1)
, … ,V−1

L2(l1)
], it follows that:

V−1
l1
= 1
𝜎2
𝜺

{
ImL2 −

(
𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

)
Z2l1

Z′

2l1

}
, (A3)

where Z2l1
= diag[1m, … 1m, … , 1m], with dimension [(mL2) × L2]. Furthermore, since V−1 =

diag[V−1
1 , … ,V−1

l1
, … ,V−1

L1
] and given formula (A3), it follows that:

V−1 = 1
𝜎2
𝜺

{
In −

(
𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

)
Z2Z′

2

}
,

where Z2 = diag[Z21 , … Z2l1
, … ,Z2L1

], and n = L1 × L2 ×m.
Without any loss of generality, let [X1 ∶ X3] = X. Thus, starting from formula (10):

M = [X1 ∶ X3]′V−1[X1 ∶ X3]

= X′
{

1
𝜎2
𝜺

[
In −

(
𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

)
Z2Z′2

]}
X

= 1
𝜎2
𝜺

{
X′

[
In −

(
𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

)
Z2Z′2

]
X

}

= 1
𝜎2
𝜺

{
X′X − X′

[(
𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

)
Z2Z′2

]
X

}

= 1
𝜎2
𝜺

{
X′X −

𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

[
X′

(
Z2Z′2

)
X
]
}
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= 1
𝜎2
𝜺

{
X′X −

𝜎2
𝜸2

𝜎2
𝜺 +m𝜎2

𝜸2

(
X′Z2

) (
X′Z2

)′
}
.

Given that [X1 ∶ X3] = X, it follows that:

M = 1
𝜎2
𝜀

[
[X1 ∶ X3]

′ [X1 ∶ X3] −

(
𝜎2
𝜸2

𝜎2
𝜀 +m𝜎2

𝜸2

)
(
[X1 ∶ X3]

′Z2
) (
[X1 ∶ X3]

′Z2
)′
]
.
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