
PU. M. A. Vol. 30 (2022), No.1, pp. 63 – 67

Preimages under a popqueue-sorting algorithm

Lapo Cioni
Dipartimento di Matematica e Informatica “U. Dini”

Università degli Studi di Firenze
Firenze, Italy

email: lapo.cioni@unifi.it

(Received: March 31, 2022, and in revised form May 15, 2022.)

Abstract. Following the footprints of what has been done with other sorting devices, we study a popqueue and define
an optimal sorting algorithm, called Cons. Our results include a description of the set of all the preimages of a given
permutation, an enumeration of the set of the preimages of permutations with some specific properties and, finally, the
exact enumeration of permutations having 0, 1 and 2 preimages, respectively, with a characterization of permutations
having 3 preimages.

Mathematics Subject Classification(2020). 05A05, 05A10, 05A15,
Keywords: sorting algorithm, permutation, popqueue, preimage.

1 Introduction
Stacksort is a classical and well-studied algorithm that attempts to sort an input permutation by
(suitably) using a stack. It has been introduced and first investigated by Knuth [8] and West [9], and it
is one of the main responsible for the great success of the notion of pattern for permutations. Among the
many research topics connected with Stacksort, a very interesting one concerns the characterization
and enumeration of preimages of the associated map, which is usually denoted with s (so that s(π)
is the permutation which is obtained after performing Stacksort on π). More specifically, given a
permutation π, what is s−1(π)? How many permutations does it contain? These questions have been
investigated first by Bousquet-Melou [2], and more recently by Defant [6] and Defant, Engen and
Miller [7].

The problem of studying the preimages of a sorting map has also been tackled for other sorting
algorithms, such as Queuesort [4] and Bubblesort [3] [1].

In this paper we will consider another sorting device, namely a popqueue. A popqueue is a sorting
device in which we can insert and extract elements, following some restrictions. These are the allowed
operations, which can be seen in Figure 1:

• enqueue, insert the current element from the input into the popqueue, in the rightmost position;

• pop, remove all the elements currently in the popqueue, from left to right, sending them into the
output;

• bypass, send the current element from the input directly into the output.

DOI: 10.2478/puma-2022-0010
© 2022 Cioni. This is an open access article licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

63

64 L. CIONI

Q

output input

bypass

enqueuepop

Figure 1: A popqueue.

These operations resemble those of a queue. Indeed, the sole difference is the fact that pop removes
all the elements instead of removing only the leftmost one, which is the reason for the name “popqueue”.
This device is introduced and studied in [5]. Notice that, in the same fashion as with queues, we could
instead have considered a sorting device consisting of two popqueues in pararallel, without bypass.
Indeed, it is not difficult to see that such a device would have the same sorting power as the one we
considered, since both are able to sort a permutation if and only if it avoids the patterns 321 and
2413.

To the best of our knowledge there is not a standard sorting algorithm for a popqueue. Below we
describe the algorithm Cons, which takes its name from the fact that, during its execution, the con-
tent of the popqueue consists of consecutive values at all times. In the following description of Cons,
Front(Q) and Back(Q) are the leftmost and the rightmost elements of the popqueue Q, respectively.

Cons
input: a permutation π = π1 · · ·πn
output: a permutation C(π)

for i = 1, . . . , n do:

• if πi = Back(Q) + 1, then enqueue;

• else, compare πi and Front(Q);

– if Front(Q) > πi, then bypass;
– else, pop and enqueue.

Finally, pop.

Cons has some useful properties. First of all, it is an optimal sorting algorithm. This means that
Cons sorts every permutation that can be sorted using a popqueue, which are all the permutations
that avoid the patterns 321 and 2413 [5]. Also, recalling that a left-to-right maximum (LTR maximum
for short) of a permutation π = π1 . . . πn is an element πi such that πi > πj for every j < i, we have
that the elements that enter the popqueue during the sorting of π are precisely the LTR maxima of π.

In this work we will study the preimages of C. Specifically, we will describe a procedure to find
the preimages of an arbitrary permutation and we will also count them in some special cases. In order
to do this, we need to give an alternative description of Cons, which focuses on the LTR maxima of
the input permutation. Define LTR(π) to be the set of LTR maxima of a permutation π.

PREIMAGES UNDER A POPQUEUE-SORTING ALGORITHM 65

2 The algorithm Cons

We now give a different description of Cons, which highlights how it behaves on the LTR maxima of
a permutation. Let π = π1 · · ·πn. Mark π1, and repeat the following steps until there are no marked
elements:

• if there are no elements to the right of the (necessarily unique) block of consecutive marked
elements, then unmark all marked elements;

• otherwise, compare the rightmost element µ of the block of consecutive marked elements with
the element α to its right;

– if µ > α, then swap α with the entire block of marked elements;
– if µ = α− 1, then mark α;
– if µ < α− 1, then mark α, and unmark all other elements of π.

Let’s see how this procedure operates on a permutation, for example π = 3241687. The marked
elements are indicated in bold.

3241687 → 2341687 → 2341687 → 2134687 → 2134687 → 2134687 → 2134678 → 2134678

It is easy to see that the marked elements are always LTR maxima of the permutation. They are
moved to the right until they reach the next LTR maximum; if this happens, they are glued together
and continue moving to the right if and only if they are consecutive.

2.1 Preimages
We are interested in the preimages of C. Specifically, given a permutation π, we want to describe the
set C−1(π) of the permutations whose output under Cons is π. We will start by stating some properties
of the preimages and then we will give a procedure to find the preimages of any permutation π. Lastly,
we will find some enumerative results about the number of permutations with exactly k preimages,
for k = 0, 1, 2, 3.

Consider a permutation σ and set π = C(σ). Then the rightmost element of π is n. Indeed, if
a permutation does not end with n, then it has no preimages under C. Also, from the alternative
description of Cons, we can see that LTR(σ) ⊆ LTR(π), because the algorithm preserves the existing
LTR maxima. Actually, there is a link between the subsets of LTR(π) and the preimages of π, as we
can describe the set C−1(π) by looking at all the subsets of LTR(π) and finding all the preimages (if
any) with those LTR maxima. Notice that it is possible that there exists more than one preimage of π
with the same set of LTR maxima, or there may not exist any at all. For example, 3421 and 3214 are
both preimages of 2134 whose LTR maxima are 3 and 4. On the other hand, there are no preimages
of 213 whose LTR maxima are both 2 and 3.

The following definition is the last tool that will allow us to describe all the preimages of a
permutation having an arbitrary set of LTR maxima.

Definition 2.1 Let L = l1 · · · lp and A = a1 · · · ar be two sequences of positive integers. Then we
define the mix of L and A as the set mix(L,A) of the shuffles of L and A whose first element is l1.

66 L. CIONI

For example, the mix of 245 and 13 is the set containing 24513, 24153, 24135, 21453, 21435, 21345.

Proposition 2.2 Let π be a permutation ending with n. Let B ⊆ LTR(π) such that n ∈ B.
If there exist two elements µ, λ ∈ B such that λ = µ + 1 and they are not consecutive in position

in π, then there are no preimages of π whose set of LTR is B.
Otherwise, we can express π as π = A1L1A2L2 · · ·AkLk, where the blocks Li are maximal sequences

of consecutive elements of B. The blocks Ai contain the remaining elements of π, and may be empty.
Then, all the preimages of π whose set of LTR maxima is B are those of the form π = ρ1ρ2 · · · ρk,
with ρi ∈ mix(Li, Ai) for every i = 1, . . . , k.

For example, for π = 3245617, if we select the subset B = {4, 5, 7} we have that the corresponding
preimages are 4532761, 4352761, 4325761. If we look at all the subsets of LTR(π) = {3, 4, 5, 6, 7} we
obtain the following preimages, which are all the preimages of π:

{7}: 7324561
{3, 7}: 3724561
{4, 7}: 4327561
{5, 7}: 5324761
{3, 5, 7}: 3524761
{4, 5, 7}: 4532761, 4352761, 4325761

3 Enumerative results
The correspondence between subsets of LTR(π) and preimages of π would be simpler if there were
no consecutive LTR maxima in π. Indeed, in that case there would be only one preimage for every
subset. However this cannot happen, because a permutation has preimages if and only if it ends with
its maximum n, therefore n − 1 is always a LTR maximum. Nonetheless we still have a simple case,
described by the next proposition.

Proposition 3.1 Let π ∈ Sn be a permutation ending with n such that the only consecutive elements
in LTR(π) are n − 1 and n. Suppose that n − 1 and n are not consecutive in position in π, and let
k = |LTR(π)|. Then |C−1(π)| = 2k−2 and there is a bijection between C−1(π) and the subsets of
LTR(π) containing n but not n− 1.

Notice that the case described in the previous proposition gives a result that is analogous to the
general result that counts the preimages of a permutation under Bubblesort [3]. In that case the
number of preimages is 2k−1, because the LTR maximum n − 1 does not give troubles and can be
selected, and the way in which the preimages are constructed is the same. On the other hand, if there
are consecutive elements in LTR(π) other than n−1 and n, the analogy fails and there does not seem
to be any link between the two situations.

Lastly, we provide results concerning permutations with a given number of preimages. Define
c
(k)
n as the number of permutations with length n which have exactly k preimages under Cons. We

already noticed that a permutation has preimages if and only if it ends with its maximum, therefore
c
(0)
n = (n− 1)(n− 1)! for every n ≥ 1, and c

(0)
0 = 0.

The following propositions deal with permutations with exactly 1, 2 or 3 preimages.

PREIMAGES UNDER A POPQUEUE-SORTING ALGORITHM 67

Proposition 3.2 Let π = π1 · · ·πn ∈ Sn. Then π has exactly one preimage under C if and only if
πn = n and π1 = n− 1, for every n ≥ 3.

Therefore c
(1)
n = (n− 2)! for every n ≥ 3, and c

(1)
0 = 1, c(1)1 = 1, c(1)2 = 0.

Proposition 3.3 Let π = π1 · · ·πn ∈ Sn. Then π has exactly two preimages under C if and only if
πn = n, n− 1 ̸= π1, πn−1 and LTR(π) = {π1, n− 1, n}, for every n ≥ 4.

Therefore c
(2)
n = (n− 2)!

∑n−3
j=1

1
j for every n ≥ 4, and c

(2)
0 = 0, c(2)1 = 0, c(2)2 = 1, c(2)3 = 0.

Proposition 3.4 Let π = π1 · · ·πn ∈ Sn. Then π has exactly three preimages under C if and only
if πn = n, LTR(π) = {n − 3, n − 2, n − 1, n} and there are no LTR maxima which are positionally
consecutive, for every n ≥ 4.

Looking at the previous results, we may wonder whether every number of preimages is allowed.
That is, does there exist a permutation π such that |C−1(π)| = k, for every k?

For Stacksort, Queuesort and Bubblesort the answer is negative, so we could expect that also
Cons may have some forbidden number. Surprisingly this is not the case, as a permutation of length
k − 1 with k preimages is (k − 3)ρ(k − 2)(k − 1), with ρ ∈ Sk−4, for k ≥ 5. Since 3152647 has four
preimages, every cardinality for the set of preimages is allowed.

References
[1] M. H. Albert, M. D. Atkinson, M. Bouvel, A. Claesson and M. Dukes, On the inverse

image of pattern classes under bubble sort, J. Comb., 2 (2011) 231–243.

[2] M. Bousquet-Mélou, Sorted and/or sortable permutations, Discrete Math., 225 (2000)
25–50.

[3] M. Bouvel, L. Cioni and L. Ferrari, Preimages under the bubblesort operator,
arXiv:2204.12936.

[4] L. Cioni and L. Ferrari, Preimages under the Queuesort algorithm, Discrete Math., 344
(2021) 112561.

[5] L. Cioni and L. Ferrari, Sorting with a popqueue, in preparation.

[6] C. Defant, Postorder preimages, Discrete Math. Theor. Comput. Sci., 19(1) (2017) #3.

[7] C. Defant, M. Engen and J. A. Miller, Stack-sorting, set partitions, and Lassalle’s se-
quence, J. Combin. Theory Ser. A, 175 (2020) 105275.

[8] D. Knuth, The Art of Computer Programming, Volume 1, Boston: Addison-Wesley, 1968.

[9] J. West, Permutations with forbidden subsequences and Stack sortable permutations, PhD
thesis, Massachusetts Institute of Technology, 1990.

	Introduction
	The algorithm Cons
	Preimages

	Enumerative results

