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Abstract

Impulsive-compulsive behaviors (ICB) are common non-motor symptoms of

Parkinson’s disease (PD) often associated with dopaminergic drugs (DD) ther-

apy. We investigated the acute effects of DD on decision-making in PD patients

with ICB (ICB+) and without it (ICB�), and in healthy controls (HC). Partici-

pants performed a risk-based decision-making task twice, with PD patients

tested before (DD OFF) and after (DD ON) DD intake. In DD OFF, all groups

developed a risk-averting strategy. In DD ON, ICB+ patients (but not ICB�
nor HC) reverted to riskier choices. We conclude that DD has a specific strong

acute effect on ICB+ patients’ decision-making.

Introduction

Parkinson’s disease (PD) is primarily characterized by

motor dysfunctions such as bradykinesia, rigidity, and

tremor, but presents also several non-motor symptoms.

Impulsive-compulsive behaviors (ICB) such as pathologi-

cal gambling, binge eating, hypersexuality, and compul-

sive buying occur in PD patients with a frequency close

to 15%.1 ICB has been linked to the intake of dopaminer-

gic drugs (DD) aimed at improving PD motor

symptoms.2 Several works showed dopamine neurons’

involvement in learning and decision processes,3,4 which

are altered in PD patients following DD therapy.5 Indeed,

long-term correlation between DD intake and the onset

of ICB was thoroughly investigated.6 Recent studies

focused on the acute effect of DD during behavioral

tasks,7–9 but the presence of a differential acute suscepti-

bility to DD in ICB remains unclear. While DD is an

important factor in inducing ICB, there is evidence sup-

porting the need for a sensitive neural substrate to

develop these disorders: demographic, neural, and genetic

risk factors have been associated with ICB.2,10–14

Here, we investigate the hypothesis of a differential

effect of DD in ICB patients by studying the acute effects

of DD intake in PD patients, both with (ICB+) and with-

out (ICB�) ICB, in an economic risk-decision task.

Materials and Methods

Participants

This study was approved by the ethical committee of Car-

eggi Hospital (Florence, Italy) and in accordance with the

Declaration of Helsinki. Fourteen Parkinsonian patients

diagnosed with ICB (ICB+) and 16 without ICB (ICB�)

were recruited by the Parkinson Unit of the Careggi
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Hospital. Only patients with a Mini-Mental State Exami-

nation (MMSE) >24 were included. There were no differ-

ences between groups regarding age, sex, education,

disease duration, MMSE, and L-dopa-equivalent daily

dose (LEDD) (Table 1). Moreover, groups showed no dif-

ference in motor severity, assessed with part three of the

Unified Parkinson’s Disease Rating Scale (UPDRS)

(Table 1). Groups differed only in the Questionnaire

for Impulsive-Compulsive Disorders in Parkinson’s

Diseases-Rating Scale (QUIP-RS, Table 1). We also tested

12 healthy controls (HC) matched with Parkinsonian

patients for age, sex, and education (Table 1).

Experimental procedure

All participants performed two sessions of economic risk-

decision-making tasks on the same day. PD patients per-

formed the first task session after overnight DD with-

drawal and the second task session after ~1 h from DD

intake. HC patients repeated the same task after the same

waiting time. Each session consisted of 40 trials in which

participants had to choose between two options: a

low-risk (LR) option with a high probability (80%) of

obtaining a low reward (6€) and a 20% probability of

obtaining no reward (expected value = 4.8); and a

high-risk (HR) option with a low probability (20%) of

obtaining a high reward (18€) and an 80% probability of

obtaining no reward (expected value = 3.6). In this task,

the LR option is the optimal choice to maximize reward.

Subjects were aware of the reward amount for both

options and unaware of the reward probabilities since

they had to learn this aspect empirically during the task.

After each decision, the outcome of both options was dis-

played (see Supplementary Materials for details).

Statistical analysis

We measured each subject’s post-learning risk aversion

(RA) as the fraction of LR choices in the last 20 trials.7

We used one-sample t-test to assess for each group and

session the difference from chance level (RA = 0.5),

applying FDR correction (Benjamini–Hochberg). We used

one-way ANOVA test to compare differences in RA

between groups, followed by post hoc comparisons (t-test,

Bonferroni correction). Statistics are reported as med-

ian � interquartile range unless otherwise specified. Nor-

mality and homogeneity of variance were assessed,

respectively, with Shapiro–Wilk’s test and Levene’s test.

To characterize the learning phase, we computed the

fraction of LR choices in each group for each trial,

obtaining three curves per session. We used logarithmic

regression analysis for each session to assess the effect of

groups (HC, ICB�, ICB+) (see Supplementary Materials).

We used the model intercept to measure the initial bias

Values Test p-values

HC ICB� ICB+

HC vs

ICB�
HC vs

ICB+

ICB� vs

ICB+

Dunn test

Age 67.50 � 12.75 68.00 � 6.25 69.00 � 13.75 1.0 1.0 1.0

Education

(years)

13.00 � 5.00 13.00 � 1.75 13.00 � 4.25 0.82 1.0 1.0

Fisher exact test

Sex M (F) 7 (5) 10 (6) 9 (5) 1.0 1.0 1.0

Mann–Whitney

U test

Disease

duration

(years)

– 12 � 9.75 9 � 7.75 – – 0.41

MMSE 28.35 � 3.07 26.70 � 3.80 0.32

QUIP-RS – 0.00 � 4.25 8.00 � 13.25 – – 0.011

UPDRS III DD

OFF

– 36.50 � 28.25 26.00 � 14.5 – – 0.49

UPDRS III DD

ON

– 14.50 � 20.25 18.50 � 14.00 – – 0.56

LEDD (mg) – 582.00 � 321.5 572.5 � 596.5 – – 1.0

Demographic data: Dunn test and Fisher exact test with Bonferroni correction were used respectively

for continuous and categorical variables. Clinical data: The Mann–Whitney U test was used. Values

of variables are shown in terms of median and interquartile range, except for sex where the number

of males (number of females) are reported.

Table 1. Demographic and clinical data of

HC, ICB�, and ICB+ groups.
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toward one of the two options, while the effect of trials

was employed to quantify the slope of the learning curves.

T-test was used to assess the significance of bias and

slope, applying Bonferroni correction separately for each

parameter and session. The same procedure was applied

for the pairwise comparison of bias and slope

interactions.

Next, we evaluated how DD affected the slope of differ-

ent subjects. To estimate individual subjects’ slopes, we

employed a generalized linear mixed-effects model with

the logit function as a link function and the binomial dis-

tribution for decision distribution. This model was fitted

only on Parkinsonian patients, and, to avoid introducing

a group effect on slope estimation, the group was not

included as a regressor. Finally, we investigated the effect

of LEDD, as well as demographic and clinical scores (see

Supplementary Materials), and group on both estimated

slopes and RA in drugs ON condition, employing linear

regression analysis.

Results

We evaluated behavioral differences between ICB� and

ICB+ groups of PD patients in an economic risk-based

decision-making task before and after the prescribed DD

dose intake (see Methods). Results were compared with

those of an age-matched HC group.

All groups started without significant bias toward one

of the two choices (see Supplementary Material). As the

session progressed, we observed a significant increase in

LR choices for all groups (slope, HC: CI: [0.01, 0.10],

p = 0.0055, Fig. 1A; ICB�: CI: [0.049, 0.14], p = 4e-6,

Figure 1B; ICB+: CI: [0.004, 0.095], p = 0.028, Fig. 1C; t-

test, Bonferroni correction; slope-group interaction

p > 0.05, t-test, Bonferroni correction). No significant dif-

ference was found between groups in terms of final strat-

egy (RA) (Fig. 1D, F(2,38) = 2.36, p = 0.1, one-way

ANOVA test). However, while both HC and ICB� groups

displayed a significant preference for LR options

Figure 1. Behavioral analysis of HC (cyan), ICB� (orange), and ICB+ (black) subjects during two sessions of risk-based decision-making task. (A)

Probability of choosing the LR option across trials for HC. The shaded area is the prediction’s standard deviation of the logarithmic model (see

methods). Texts indicate the p-values of bias (vs PLR = 0.5) and slope. (B and C) same as (A) but for ICB� and ICB+. (D) Comparison of RA in the

first session among the three groups. Asterisks above the boxplots indicate significance against chance level (t-test, FDR correction; *p < 0.05,

**p < 0.01, ***p < 0.001). (E–G) same as (A–C) respectively, but for the second session. (H) Same as (D) but for the second session. The asterisks

on the line above the boxplots show significant differences between the indicated groups (t-test, Bonferroni correction, **p < 0.01). (I and J)

Effect of LEDD on RA and slope, respectively, in the second session for ICB� and ICB+. The text shows the p-values of the LEDD effects on RA

and slope for both groups.
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(RA >0.5) at the end of the session, the ICB+ group did

not (Fig. 1D, HC: RA = 0.775 � 0.15, t (11) = 6.13,

p = 0.0002; ICB�: RA = 0.775 � 0.225, t (15) = 4.77,

p = 0.0004; ICB+: RA = 0.65 � 0.3, t (12) = 2.08,

p = 0.07, t-test, FDR correction).

In the second session, all groups started with a bias

toward LR (RA >0.5, see Supplementary Materials) thanks

to the experience of the first session. As expected, HC

retained their risk-averting strategy (slope CI: [�0.056,

0.069], p = 1.0, t-test Bonferroni correction, Figure 1E).

Interestingly, the same occurred for ICB� in the DD ON

condition (slope, CI: [�0.088, 0.037], p = 0.96, t-test

Bonferroni correction, Figure 1F). ICB+ patients, instead,

during the DD ON session gradually reduced the fraction

of LR choices, showing a significant negative slope

(Fig. 1G, slope, p = 0.0036, CI: [�0.149, �0.023], t-test

Bonferroni correction), significantly lower than the one of

HC (interaction, p = 0.039, t-test, Bonferroni correction).

The final strategy indeed was associated with a RA signifi-

cantly above 0.5 for HC and ICB� but not for ICB+
(Fig. 1H, HC: RA = 0.8 � 0.17, t (11)=8.9, p = 1.38e-5;

ICB�: RA = 0.725 � 0.15, t (11)=4.89, p = 7.13e-4;

ICB+: 0.575 � 0.2, t (13)=1.01, p = 0.32, t-test, FDR cor-

rection) and a significant difference between HC and

ICB+ (p = 0.0016, Cohen’s d = 1.570, t-test, Bonferroni

correction).

Finally, we examined if the behavior of ICB groups

during the DD ON session was related to the specific DD

therapy followed by the patient, summarized by the

LEDD. A linear regression model showed a significant

effect of LEDD on RA on ICB+ but not on ICB�
(Fig. 1I, interaction LEDD-group: p = 0.016; LEDD effect:

ICB+: p = 0.017; ICB�: p = 0.70, t-test, Bonferroni cor-

rection). Consistently, we found a significant effect of

LEDD on learning slope for ICB+ but not for ICB�
(Fig. 1J, interaction LEDD-group p = 0.033; LEDD effect:

ICB+: p = 0.014; ICB�: p = 1.0, t-test, Bonferroni correc-

tion). RA and learning slope displayed instead no relevant

condition-dependent relationship with clinical or demo-

graphic scores (see Supplementary materials).

Discussion

Our results show that after DD assumption, ICB+
patients (but not ICB�) progressively worsen their per-

formance during a decision-making task. This suggests

that DD intake has a strong acute effect on ICB+
patients’ decision-making processes, to the point of dis-

rupting previously developed efficient strategies. During

the first DD OFF session of the task, ICB+ patients pro-

gressively increased the fraction of LR choices, as ICB�
and HC groups did, indicating correct learning of the

options’ expected values. However, after DD intake, ICB+

patients progressively decreased the probability of choos-

ing the LR option, eventually reaching a nonsignificant

RA. Conversely, ICB� patients, similarly to HC, did not

alter their strategy. Notably, for ICB+ patients, but not

for ICB�, the LEDD correlated with the increased ten-

dency for risky choices at the individual level, indicating

an interplay between chronic therapy and acute effects

which again is specific to ICB+ subjects.

DD-induced modifications have been observed in vari-

ous nodes of the decision-making neural circuitry, includ-

ing the ventral-medial prefrontal and orbitofrontal

cortex,15,16 dorsal and ventral striatum,9,17 and subthala-

mic nucleus.18,19 These alterations are hypothesized to

affect outcome evaluation, reducing the weight given to

losses5,8,16,20 and increasing that given to gains.9,21 Our

results are consistent with this mechanism, which might

cause the ICB+ individuals to drift toward suboptimal

choices with high potential gains but also high risks.

However, the DD effect alone does not account for the

behavioral data, as ICB� patients have taken comparable

doses without noticeable behavioral alterations. Our

results support the hypothesis that DD per se does not

cause learning and decision-making impairment but

rather seems to act as a trigger when it finds a

dopamine-hypersensitive neural substrate. In particular, if

the cognition-related ventral region of the STN of a PD

patient is particularly preserved in terms of local

activity10,12 and connectivity,14 a dopaminergic treatment

could lead to hyperdopaminergic dysregulation of behav-

ior. Further investigation is needed to assess how this

substrate might be related to genetic11,13 and

demographic1,2 factors associated with ICB onset.
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Supporting Information
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in the Supporting Information section at the end of the
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