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Abstract Smoking is a major risk factor for lung cancer, as well as for many other 
chronic diseases, and understanding smoking habits is essential to evaluate and com-
pare tobacco control policies. We developed a compartmental model to describe the 
evolution of smoking habits in Tuscany, a region of central Italy. Our model relies on 
flexible modelling of age and sex-dependent probabilities of starting, quitting, and 
relapsing from smoking. Furthermore, we considered smoking intensity as a risk 
factor affecting mortality. The resulting model has an intractable likelihood func-
tion, so we used Approximate Bayesian Computation, a powerful simulation-based 
inference method, to provide posterior estimates of the model’s parameters. Using 
these approximate posterior distributions, we predicted the prevalence of current, 
former, and never smokers in Tuscany up to 2043. The model results suggest that the 
prevalence of smokers will decrease over time. 

Keywords Compartmental model · Smoking prevalence · Approximate Bayesian 
Computation 

1 Introduction 

Smoking is a major risk factor for many common chronic diseases. It reduces length 
and quality of life, and over 85% of lung cancers are attributable to smoking [ 19]. 

The World Health Organization Framework Convention on Tobacco Control 
(WHO FCTC) emphasizes the importance of tobacco control policies (TCPs) to 
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reduce the prevalence of smokers in the population and the burden of mortality and 
morbidity associated with smoking [ 20]. 

Compartmental models have been shown to be a powerful tool to describe the 
dynamics of smoking habits in the population and to assess the effectiveness of 
alternative TCPs. These models start with an initial population, divided into non-
overlapping compartments according to observed smoking prevalence, and simulate 
the evolution of their sizes through a system of equations defined in discrete time. 
The mechanistic nature of these models allows for easy simulation of the system’s 
evolution under different scenarios. In the literature, several compartmental models 
have been developed to forecast future smoking prevalence [ 3, 4, 14– 16]. In par-
ticular, the SimSmoke model developed by Levy [ 15] has been widely used and 
applied to several countries, including Italy [ 14]. Carreras et al. [ 3, 4] extended the 
SimSmoke model to take into account that former smokers can relapse smoking and 
that the probability of this event depends on the time since cessation. 

In a previous study [ 12], we developed a compartmental model aimed at describing 
the evolution of smoking habits from 1993 to 2043 in Tuscany, a region of central 
Italy. We estimated the probabilities of starting, quitting, and relapsing from smoking 
and we forecast the prevalence of current, former, and never smokers. We introduced 
several novel elements by modelling the dependence of the probabilities of starting 
and quitting smoking on age in a flexible way. Furthermore, we included smoking 
intensity as a risk factor affecting mortality. The resulting model provided a more 
realistic description of smoking habits, but it also introduced several complexities in 
the system of difference equations that governs the dynamics, making the inference 
more challenging. 

The aim of this work is to provide a fully Bayesian estimate of a model largely 
inspired by the one presented in [ 12]. 

To overcome the intractability of the likelihood associated with the model, we 
exploited the easiness of simulating dynamics based on compartmental models and 
resorted to an Approximate Bayesian Computation approach. 

2 Smoking Habit Compartmental Model 

We consider a smoking habit compartmental (SHC) model in which people, classified 
by age (. a), are grouped into non-overlapping compartments based on their smoking 
status: current (. C), never (. N ), former (. F) smokers, and the related deaths compart-
ments. The compartments .C and .F are further divided into sub-groups denoted by 
.Ci and .Fi for .i ∈ {l,m, h}. Subscripts . l, .m and . h stand for smoke intensity levels: 
low (cig/day. <10), medium (10. ≤cig/day. ≤19), and high (cig/day. >19). 

Changes in smoking status are modelled through transitions of the individual from 
a given compartment to another. These transitions determine flows that modify the 
size of the involved compartments. The transitions allowed by the model occur with 
probabilities regulated by the probabilities of starting (. γ ), quitting (. ε), and relapsing 
(. η) smoking, and by the probabilities of deaths (. δ). The probabilities of starting
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and quitting smoking are assumed to be dependent on the age (. a) and are modelled 
through natural cubic splines with 2 equidistant internal knots: 

. ln
γ (a)

1 − γ (a)
= s(a;ψ) ln

ε(a)

1 − ε(a)
= s(a;φ), (1) 

where.ψ = (ψ0, ψ1, ψ2, ψ3) and.φ = (φ0, φ1, φ2, φ3) are vectors of unknown param-
eters governing the cubic splines .s(·; ·). 

The probability of smoking relapse is assumed to be a function of the time from 
cessation (. c): 

.η(c) = 1 − exp[−ω0ω1 exp(−ω1c)], (2) 

where .ω = (ω0, ω1) is a vector of unknown parameters, with .ω0 governing the life-
time probability of no relapse and .ω1 governing the decline of the relapse over time 
[ 10]. 

The probabilities of death (.δCi (a), .δFi (a, c), and.δN (a)) are assumed to be depen-
dent from the smoking status, the age.a ∈ {1, ..., 100}, and also from smoking inten-
sity and.c ∈ {1, ..., 15+} for former smokers. Accordingly, the dynamic of the popu-
lation is described by the following system of difference equations defined in discrete 
time .t ∈ {1, ..., T }, with the year as time-unit: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (t; 0) = ν(t − 1)
(
1 − δN (0)

)

N (t; a) = N (t − 1; a − 1)
(
1 − δN (a)

)(
1 − γ (a)

)
∀ a ∈ {1, ..., 100}

Ci (t; 0) = 0

Ci (t; a) = Ci (t − 1; a − 1)
(
1 − δCi

(a)
)(

1 − ε(a)
)

+ N (t − 1; a − 1)
(
1 − δN (a)

)
γi (a)+

+ ∑

c≥1
Fi (t − 1; a − 1, c − 1)

(
1 − δFi

(a, c)
)
η(c) ∀ i ∈ {l,m, h} , a ∈ {1, ..., 100}

Fi (t; 0, c) = 0

Fi (t; a, 0) = Ci (t − 1; a − 1)
(
1 − δCi

(a)
)
ε(a) ∀ i ∈ {l,m, h} , a ∈ {1, ..., 100}

Fi (t; a, c) = Fi (t − 1; a − 1, c − 1)
(
1 − δFi

(a, c)
)(

1 − η(c)
)

∀ i ∈ {l,m, h} , a ∈ {1, ..., 100} ,
c ∈ {1, ..., 15+}

DN (t; 0) = DN (t − 1; 0) + ν(t − 1)δN (0)

DN (t; a) = DN (t − 1; a) + N (t − 1; a − 1)δN (a) ∀ a ∈ {1, ..., 100}
DCi

(t; 0) = 0

DCi
(t; a) = DCi

(t − 1; a) + Ci (t − 1; a − 1)δCi
(a) ∀ i ∈ {l,m, h} , a ∈ {1, ..., 100}

DFi
(t; 0, c) = 0

DFi
(t; a, c) = DFi

(t − 1; a, c) + Fi (t − 1; a − 1, c − 1)δFi
(a, c) ∀ i ∈ {l,m, h} , a ∈ {1, ..., 100} ,

c ∈ {1, ..., 15+}.
(3) 

In Eq. (3), .γi (a) is defined as .πCi γ (a) and .πCi represents the percentage of new 
current smokers that have a smoking intensity . i . .ν(t) denotes the number of new 
births at time . t , which along with the sizes of the compartments at .t = 0, is taken 
from the observed data.
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Some of the more relevant assumptions underlying the model are: 
(1) Each individual experiences at most one event per year (starting, quitting, 

relapsing, or death); (2) The population is closed to immigration and emigration but 
open to newborns and deaths; (3) The transition rates do not change over calendar 
time; (4) The distribution of smokers by smoke intensity,.(πCl , πCm , πCh ), is constant 
over calendar time during the study period; (5) Smokers do not change their smoke 
intensity during their entire life and if a former smoker of intensity . i returns to 
smoking, he/she returns to being a current smoker of intensity. i ; (6) The probabilities 
of quitting and relapsing into smoking do not depend on the level of smoking intensity, 
but only on age; (7) People can start smoking between the ages of 14 and 34; (8) 
People can quit smoking only after 20 years of age; (9) The relapsing rate depends 
only on time since smoking cessation, but not on age; (10) The mortality rate of 
current smokers does depend on age but does not consider the time from starting 
smoking. 

2.1 The Probabilistic Model 

For identifiability reasons, we fix the parameters .πCi , .δCi (a), .δFi (a, c), and . δN (a)

to values provided by the “National Institute of Statistics” (ISTAT) [ 7]. Let . θ =
(ψ,φ,ω) be the vector of parameters object of our inference. We chose to set on them 
non-informative prior distributions. In particular, we define the prior distributions 
for the spline parameters in Eq. (1) as  .U [−10, 10], and the parameters in Eq. (2) 
as .U (0, 10]. Note that, exploiting some knowledge about .η(c), we impose that the 
parameters governing the probability of smoking relapse assume positive values. In 
particular, .ω1 > 0 guarantees that .η(c) is a decreasing function of the time from 
cessation and .ω0 > 0 ensures that the rate of smoking relapse (.ω0ω1 exp(−ω1c)) 
assumes positive values. 

Observed data are the vectors of the prevalence of each smoking status, 
.pobs(a, t)=(pobsC (a, t), pobsF (a, t), pobsN (a, t)), for each age . a and year . t . Hereafter, 
for the sake of simplicity, the collection of all vectors .pobs(a, t) will be denoted by 
.yobs. 

Let us denote by. X the number of individuals who transit from a generic compart-
ment to another one. We assume .X ∼ Binomial(nx , qx ), where .nx is the number 
of individuals being allowed to transition and.qx is the probability of that transition. 
As an example, consider the number of smokers of age . a with a low intensity that 
quit smoking at time . t : .nx is the number of current smokers with low intensity and 
age . a that do not die during the year . t , and .qx is equal to .ε(a). The same reasoning 
applies to the number of individuals relapsing smoking and the number of deaths. 
While the number of individuals who start smoking at age. a is distributed according 
to a Multinomial distribution with the vector of probabilities .(γl(a), γm(a), γh(a)).
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2.2 Approximate Bayesian Computation for the SHC Model 

In the Bayesian framework, the mathematical object of interest is the posterior dis-
tribution.p(θ |yobs) ∝ p(θ)p(yobs|θ), derived through Bayes’s formula starting from 
the prior distribution (.p(θ)) and the likelihood function (.p(yobs|θ)). The analytical 
expression for the posterior distribution is often not available, but Monte Carlo or 
Markov Chain Monte Carlo methods [ 22] allow obtaining samples from the poste-
rior distribution to produce an approximation of the posterior quantities of interest. 
However, these methods require multiple point-wise evaluations of the likelihood 
function .p(yobs|θ). When dealing with complex models these evaluations may be 
computationally prohibitive or impossible. In such cases, a possible solution is to 
resort to likelihood-free methods. In particular, Approximate Bayesian Computation 
(ABC) is a broad class of likelihood-free algorithms that allow Bayesian inference 
for complex models. They do not require exact likelihood computation since they 
only require the ease of simulation of the data generative process. Compartmen-
tal models are classical examples of models with intractable likelihood functions 
and easy-to-simulate generative processes [ 2, 11]. In particular, in the SHC model, 
the intractability of the likelihood comes from the high number of involved com-
partments, the complexity of the model that expresses transition probabilities as a 
function of the age and time from cessation, and the presence of high-dimensional 
latent variables. Indeed, in our model observed data, .yobs, are only the collection of 
vectors of prevalence .pobs(a, t) for each . a and . t . The number of transitions, as well 
as the size of all compartments at each point in time, represent latent variables. 

The key idea behind ABC is to use Bayes’ Theorem, as interpreted by Rubin in 
[ 23], to convert samples from the prior distribution into samples from the posterior 
distribution through comparisons between observed data and pseudo-data generated 
from a computer program reproducing the data generative process—i.e. the simula-
tor. The basic ABC algorithm [ 21, 26] proceeds as follows: (1) draw . S parameter 
proposals from the prior distribution; (2) for each .s ∈ {1, ..., S} give the parameter 
proposal.θ (s) as an input to the simulator to produce pseudo-data.y(s); (3) retain only 
parameter proposals such that .ρ(y(s), yobs) ≤ e, where .ρ(·, ·) is a distance function 
and. e is a positive tolerance threshold. The output of the algorithm is a sample from 
an approximate posterior distribution, the accuracy of which depends on the toler-
ance threshold. For a comprehensive description of the method, we refer the reader 
to [ 25]. The literature includes more advanced sampling schemes, such as the Popu-
lation Monte Carlo ABC presented in [ 1] and some adaptive versions inspired by it 
(see Algorithm 1).
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Algorithm 1 Adaptive Population Monte Carlo ABC 
1: for j in 1 : M do 
2: Simulate θ (1) j ∼ p(θ ) and y ∼ p(y|θ (1) j ) until ρ(y, yobs) <  e 

3: Set w (1) j = 1 
M 

4: end for 
5: for s in 2 : S do 
6: for j in 1 : M do 
7: Set τ 2 s = 2Var(θ (s−1) 

j ) 

8: Pick θ ∗j from θ (s−1) 
j with probabilities w (s−1) 

j 

9: Gen θ (s) j |θ ∗j ∼ MV  N  (θ ∗j , τ  2 s ) and y
(s) 
j ∼ p(y|θ (s) j ) 

10: Set w (s) j ∝ 
p(θ (s) j ) 

M∑

m=1 
w (s−1) 
m φ{τ −1 

s (θ (s) m − θ (s−1) 
m )} 

1{ρ(y(s) 
j , yobs) <  es } 

11: end for 
12: Select es+1 using an adaptive strategy. 
13: end for 

Here, we relied on the strategy proposed in [ 13, Algorithm 5], where the threshold 
is automatically selected during the execution of the algorithm in a way ensuring that 
the tolerance level decreases from one iteration to the next. 

In the case at hand, the comparison between observed and simulated trajectories 
of the vector of prevalence is based on the following average of Hellinger distances 
[ 9] denoted by .H(·, ·): 

. 
1

t × a

∑

t,a

H

(

pθ (t, a), pobs (t, a)

)

= 1

t × a × √
2

∑

t,a

[
|
|
|

∑

i∈{C,F,N }

(/

pθ
i (t, a) −

/

pobsi (t, a)

)2
,

where.pθ (t, a) is the vector of prevalence computed from the sizes of compartments 
at time . t for the age . a, outputted by the simulator when the vector of parameter . θ is 
given as an input. 

3 Results 

We used data collected by ISTAT in the Multipurpose Surveys “Aspect of Daily 
Life” (AVQ) [ 6]. They include fundamental information related to the daily life of 
individuals and families in Italy. Each yearly survey enrols about 24,000 families and 
54,000 persons distributed in about 850 Italian municipalities of different population 
sizes. We estimated the model described in Sect. 2.1 using data collected in Tuscany, a 
region in central Italy. In particular, our observed data are the vectors of the prevalence 
of never, current, and former smokers for each year from .1993 to .2019 and in each 
of the following age classes: 14–17, 18–19, 20–24, 25–34, 35–44, 45–54, 55–59, 
60–64, 65–74, and 75+.
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Fig. 1 Maximum a posteriori estimates along with.90% credible intervals for the model parameters 
for males (in blue) and females (in red) 

We estimated separate models for each gender and simulated the evolution of the 
system up to 2043. We ran the ABC algorithms in parallel on 50 cores getting final 
effective sample sizes of 534 and 515 with ABC tolerance thresholds of 0.073 and 
0.078, respectively for males and females. 

Figure 1 reports the approximate posterior estimates of . θ . 
Using the approximate posterior distribution derived for. θ , we estimated the preva-

lence of each compartment from 1993 to 2043, both for males and females, see 
Fig. 2 (Panel (a)). Looking at the observed data (blue and pink dots), we observe an 
adequate model fitting. The forecasts suggest a decrease in smoking prevalence over 
the next 24 years. 

Panel (b) shows the posterior estimates of the probabilities of starting, quitting, 
and relapsing from smoking. They reveal that males are more likely to start and stop 
smoking, but also more likely to relapse, compared to females. 

4 Discussion 

Previous literature has used compartmental models to forecast future smoking rates 
and evaluate the impact of tobacco control policies (TCPs) [ 3, 4, 14, 15]. However, 
these models have relied on strong assumptions and have only provided point esti-
mates without any uncertainty quantification. In [ 12], we introduced several novel 
elements to obtain more realistic trajectories, but also encountered a more complex
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Fig. 2 Maximum a posteriori estimates and .90% credible intervals of the prevalence for never, 
current, and former smokers (Panel (a)). Maximum a posteriori estimates and.90% credible intervals 
of.γ (a), .ε(a), and.η(c), for males in blue and females in red (Panel (b)) 

compartmental model with an intractable likelihood. In [ 12], we provided both point 
estimates and frequentist confidence intervals using an optimization and bootstrap 
procedure [ 5, 8], respectively. 

In this study, we employed a fully Bayesian approach using ABC to overcome the 
limitations of calibration methods based on optimization, such as the risk of getting 
stuck in local minima, as discussed in [ 5]. ABC allowed us to obtain point estimates 
as well as a quantification of uncertainty around parameter estimates and prevalence 
forecasts. 

The presented model may be a valuable tool for evaluating the impact of tobacco 
control policies (TCPs) on future smoking habits and determining the population 
attributable fraction, which measures the proportion of deaths that could be avoided 
if smoking were completely eliminated or reduced to specific counterfactual levels. 

However, it has several limitations. To address identifiability issues, we fixed cer-
tain parameters to values obtained from the literature or from local surveys. Addition-
ally, the model relies on strong assumptions (closure of the population to immigration 
and emigration, constant mortality and new births, and constant transition probabil-
ities over time). Some of them are strictly related to the Italian context. In particular, 
the assumptions regarding the age at which people can start or quit smoking are based 
on several research studies which show that very few people start smoking after 34 
and quit before 20 years of age [ 17, 18]. This evidence is also supported by the data 
regarding our study period that are made available by ISTAT [ 7]. 

Global sensitivity analysis approaches [ 24] should be conducted to evaluate the 
robustness of the model results to different specifications of the fixed parameters and 
the impact of the structural assumptions. 

Future developments, should also include prior sensitivity analyses. Finally, we 
plan to conduct a simulation study to evaluate the performance of the employed ABC 
algorithm.
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