




Table of contents

List of acronyms vii

Introduction ix

1 General overview 1

1.1 Statistics of turbulence-induced aberrations . . . . . . . . . . . . . . . . . . . 2

1.1.1 Wavefront distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Modal expansion of wavefront distortions through Zernike polynomials 6

1.1.3 Temporal spectrum of wavefront aberrations . . . . . . . . . . . . . . 9

1.2 Principles of adaptive optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Wavefront sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Deformable mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Feedback control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Wavefront reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.5 Limitations of classical adaptive optics . . . . . . . . . . . . . . . . . . 21

1.2.6 Tip-tilt anisoplanatism in classical adaptive optics . . . . . . . . . . . 24

1.3 Multiconjugate adaptive optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.1 Tomographic reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.2 Limitations of multiconjugate adaptive optics . . . . . . . . . . . . . . 32

1.3.3 MORFEO at the Extremely Large Telescope . . . . . . . . . . . . . . . . 33

1.4 Ground-based astrometric observations . . . . . . . . . . . . . . . . . . . . . 34

1.4.1 Sources of astrometric error . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4.2 Effect of tip-tilt on astrometric precision . . . . . . . . . . . . . . . . . 38

2 Spatiotemporal statistics of the turbulent phase 41

2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Inter-aperture covariance of the piston-removed phase . . . . . . . . . . . . 44

2.3 Spatiotemporal cross power spectrum of the piston-removed phase . . . . . 47

2.4 Spatiotemporal cross power spectrum of Zernike coefficients . . . . . . . . . 53



iv Table of contents

2.5 A first application of CPSDs: time-filtered anisoplanatism in a SCAO loop . 56

2.5.1 Time-filtered anisoplanatism for a single-aperture telescope . . . . . 58

2.5.2 Time-filtered anisoplanatism for an interferometric telescope . . . . 60

2.6 Residual tip-tilt in SCAO-assisted astrometric observations . . . . . . . . . . 63

2.6.1 Characterization of tip-tilt PSDs . . . . . . . . . . . . . . . . . . . . . . 63

2.6.2 Tip-tilt residuals and differential tilt jitter . . . . . . . . . . . . . . . . . 65

3 Temporal power spectral density of MCAO residuals 71

3.1 Temporal transfer functions of an MCAO loop . . . . . . . . . . . . . . . . . . 72

3.2 Temporal spectrum of MCAO residual wavefront . . . . . . . . . . . . . . . . 77

3.2.1 Pseudo-Open Loop Control and MMSE reconstruction . . . . . . . . 80

4 Tip-tilt anisoplanatism in MCAO systems 83

4.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Characterization of tip-tilt residual PSDs . . . . . . . . . . . . . . . . . . . . . 84

4.3 On-axis tip-tilt residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Effect of the scientific integration time on tip-tilt residuals . . . . . . . . . . . 89

4.4.1 Inter-exposure residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Intra-exposure residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Differential tip-tilt residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Impact of MCAO tip-tilt residuals on future astrometric observations 101

5.1 Tip-tilt residuals within the astrometric error budget . . . . . . . . . . . . . . 101

5.2 Tip-tilt residuals in MORFEO-assisted observations . . . . . . . . . . . . . . . 103

5.2.1 Differential tilt jitter error . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Centroiding error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Error budget at 1" separation . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Tip-tilt residuals in MAVIS-assisted observations . . . . . . . . . . . . . . . . 111

5.3.1 Differential tilt jitter error . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.2 Centroiding error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.3 Error budget at 1" separation . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Testing astrometric capabilities of actual AO systems for future MCAO observa-

tions 117

6.1 Scientific framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Observational strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Conclusions and perspectives 121



Table of contents v

Appendices 124

A Numerical verifications 125

A.1 CPSDs of piston-removed phase and Zernike modes . . . . . . . . . . . . . . 125

A.2 Residual PSD from SCAO correction . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3 Residual PSD from MCAO correction . . . . . . . . . . . . . . . . . . . . . . . 127

B Relating the wavefront on a metapupil in altitude and on the telescope pupil

plane 129

B.1 Transformation coefficients from full aperture to subaperture Zernike modes129

B.2 Plate-scale distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C Residual distortions on a pupil plane 135

C.1 SCAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.2 MCAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 139





List of acronyms

AO Adaptive Optics

CPSD Cross Power Spectral Density

DM Deformable Mirror

ELT Extremely Large Telescope

FoV Field of View

FWHM Full Width at Half Maximum

GS Guide Star

LBT Large Binocular Telescope

LGS Laser Guide Star

LSE Least Square Estimator

MAD Multiconjugate Adaptive Optics Demonstrator

MAVIS Mcao Assisted Visible Imager and Spectrograph

MCAO MultiConjugate Adaptive Optics

MICADO Multi-AO Imaging CamerA for Deep Observations

MMSE Minimum Mean Square Estimator

MORFEO Multiconjugate adaptive Optics Relay For ELT Observations

NFIRAOS Narrow-Field InfraRed Adaptive Optics System

NGS Natural Guide Star

NTF Noise Transfer Function

OLTF Open-Loop Transfer Function

PFDM Post-Focal Deformable Mirror

PFRO Post-Focal Relay Optics

POLC Pseudo-Open Loop Control

PSD Power Spectral Density

PSF Point Spread Function

RTC Real Time Computer

RTF Rejection Transfer Function



viii List of acronyms

SCAO Single-Conjugated Adaptive Optics

SH Shack Hartmann

SNR Signal to Noise Ratio

SOUL Single conjugated adaptive Optics Upgrade for LBT

SVD Singular Value Decomposition

TMT Thirty Meter Telescope

TSVD Truncated Singular Value Decomposition

VLT Very Large Telescope

WFS WaveFront Sensor



Introduction

The new class of 25-40 m extremely large telescopes will provide unprecedented reso-

lutions to astronomical observations from the ground. The use of adaptive optics (AO)

is mandatory to overcome the effects of atmospheric turbulence on the images and to

fully exploit the capabilities of these telescopes by restoring their diffraction limit. In

particular, the use of multiconjugate adaptive optics (MCAO) is foreseen for near-infrared

observations at the Extremely Large Telescope (ELT) with the Multiconjugate adaptive

Optics Relay For ELT Observations (MORFEO) and at the Thirty Meter Telescope with the

Narrow Field InfraRed Adaptive Optics System (NFIRAOS). MCAO will also assist obser-

vations in the visible at the Very Large Telescope with the MCAO Assisted Visible Imager

and Spectrograph (MAVIS). The high angular resolution, the uniformity of the correction

over wide areas, the large number of reference sources with high image quality provided

and the control of the field distortions through the DMs conjugated in altitude are charac-

teristics that make MCAO a good candidate for astrometric observations. High-precision

differential astrometry is, indeed, among the main science drivers of the future instru-

ments equipped with MCAO. Among them, the near-infrared Multi-AO Imaging CamerA

for Deep Observations (MICADO) assisted by MORFEO is required to achieve 50 µas (goal

of 10 µas) of precision on the differential astrometry. Such challenging requirements ask

for accurate analyses of the astrometric error budget, that must include an estimation of

the impact of the MCAO control on astrometric measurements as well.

In this context, the aim of the present PhD project is to investigate the contribution

to the astrometric error of the residuals of atmospheric tip-tilt from an MCAO loop and

to include the results in the framework of the MORFEO project. The work is divided in

different steps that are below described.

First, an analytical formulation has been derived to estimate temporal cross power

spectral densities (CPSDs) of the turbulent phase: considering a general framework with

two different apertures each looking at a different object, the spatiotemporal correlation

between the two observed wavefronts has been computed. Analytical expressions have

been derived either considering the whole (piston-filtered) phase, either assuming the
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phase as decomposed into Zernike modes. The general framework allows to study different

aspects of actual and future AO systems. For our case study in particular, the configuration

with one aperture and two sources can help analyze the spatiotemporal statistics between

the multiple beams involved in MCAO-assisted observations.

Temporal CPSDs have then been used for the estimation of the residual phase from

an AO loop. The calculations have been performed first for the simpler SCAO case: the

residual phase in the direction of a scientific target on axis considering an off-axis guide

star has been derived and the AO control has been included. From the residual phase,

estimated in the temporal domain, the temporal PSD, as well as the variance of the

residuals, have been extracted. The formulation takes into account temporal and noise

errors, as well as the effect of anisoplanatism on the residuals.

The work on SCAO residuals has then been extended to the MCAO case: an analytical

formulation to estimate the residual phase from an MCAO loop in any direction of the

scientific field of view has been carried out. In this context, temporal transfer functions to

describe the MCAO control have been derived. The formulas are general and allows to

analyze specific frameworks depending on the telescope aperture, the turbulence profile,

the guide stars constellation, the number and conjugation heights of the deformable

mirrors and the modes of distortion, both sensed and corrected. Results have been

provided also considering different tomographic reconstruction algorithms.

The analytical derivation for the MCAO case has represented a basis for the analysis of

tip-tilt anisoplanatism in MCAO observations. Different aspects of MCAO tip-tilt residuals

have been analyzed: the dependence on the asterism of guide stars, on the position of

the target with respect to the asterism, as well as on the integration time of the scientific

exposure.

Thus, the impact of tip-tilt residuals on MCAO-assisted astrometric observations has

been investigated: analytical expressions for the computation of differential tilt jitter in

MCAO observations has been derived and an estimation of the centroiding error due to

tip-tilt residuals has been provided. The results have been applied to the MORFEO case,

to estimate the contribution of tip-tilt residuals within the astrometric error budget of the

system. The analysis has been carried out for MAVIS as well.

All the analytical derivations have been implemented into Python codes, that have

been included in the libraries of the AO group of INAF - Arcetri Astrophysical Observatory

(https://github.com/ArcetriAdaptiveOptics/arte) and that are going to be available for the

MORFEO project.

Finally, a proposal of observation of Jupiter’s light bending by means of differential as-

trometry with the Single conjugated adaptive Optics Upgrade for LBT (SOUL) at the Large

https://github.com/ArcetriAdaptiveOptics/arte
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Binocular Telescope has been submitted; the aim is to test the astrometric capabilities of

actual AO systems for a better comprehension of potential issues with future facilities like

MORFEO.





Chapter 1

General overview

The quality of astronomical observations through ground-based telescopes can be strongly

affected by atmospheric turbulence. The spatial and temporal variations in the refrac-

tive index induce fluctuations of the wavefront phase that can lead to blurry images of

the astronomical target. In 1953, Babcock [1] proposed an idea to compensate for the

turbulence-induced wavefront distortions, giving birth to the concept of adaptive op-

tics (AO). The basic principle foresees the measurement of the wavefront aberrations

through a wavefront sensor (WFS), the compensation for these aberrations by means of a

deformable mirror (DM) and a feedback control to update the shape of the DM depending

on the turbulence evolution. After about 40 years, technological advances allowed to

finally develop the first astronomical AO system [2], marking a new era of ground-based

astronomical observations. Several flavors of AO have been developed over the years,

giving the possibility to exploit the capability of bigger and bigger telescopes. The actual

class of telescopes of 8-10 m is going to be joined by a new generation of 25-40 m that will

increase the angular resolution of the astronomical images by a factor of º 5 at the most

at same wavelengths, allowing astronomers to look deeper and sharper at the Universe

than ever. Among the branches of astrophysical research, astrometry represents one

of the main science drivers of the future instruments. This is the case of the Multi-AO

Imaging CamerA for Deep Observations (MICADO) [3] at the Extremely Large Telescope

(ELT) [4] that will be equipped with the Multi-conjugate adaptive Optics Relay For ELT

Observations (MORFEO, formerly known as MAORY) [5].

In this chapter, we introduce the basic principles of AO and of astrometric observations

from ground-based telescopes equipped with AO systems: in Section 1.1, we review

the theory of statistics of turbulence-induced wavefront distortions; in Section 1.2, we

summarize the basics of AO; in Section 1.3, we introduce the concept of multiconjugate

adaptive optics and we briefly describe MORFEO system; and in Section 1.4, we introduce
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the main sources of astrometric error in ground-based observations, focusing on the

effects of tip-tilt residuals from AO correction.

1.1 Statistics of turbulence-induced aberrations

The modeling of optical turbulence represents an important step within the design of

an AO system. In the following, referring to [6–8], we will summarize the main elements

for a statistical description of turbulence and we will introduce the parameters that are

commonly used to characterize it.

1.1.1 Wavefront distortions

The optical effects of atmospheric turbulence are due to local temperature variations that

produce fluctuations in the air refractive index. These fluctuations are responsible for the

distortions induced on a flat wavefront passing through the Earth’s atmosphere.

To model the behavior of wavefront aberrations, we start from a statistical description

of the air refractive index fluctuations, by means of the difference between its value n(r )

at a point r and its value n(r +Ω) at a point with distance Ω = |Ω|. We introduce, from

Tatarski [6], the variance of the difference between the two values

Dn(Ω) =
≠
|n(r )°n(r +Ω)|2

Æ
=C 2

nΩ
2/3 , (1.1)

where Dn(Ω) is called the index structure function and hi represents an ensemble average.

C 2
n is called the index structure coefficient and gives a measure of the local amount of

inhomogeneities, showing a dependence on the atmospheric altitude (Fig. 1.1). To a first

approximation, the process is homogeneous (it depends only on the separation Ω but not

on the position r ) and isotropic (it depends on the modulus of the vector Ω).

Let us now consider a monochromatic plane wave propagating through the atmo-

sphere. The wavefront phase at position r on a surface that is perpendicular to the

propagation direction z can be described by the following expression:

'(r ) = k
Z

n(r , z)dz , (1.2)

where k is the wave number (k = 2º/∏, with ∏ the wavelength). However, we are not

interested in an absolute value of the wavefront phase, but rather in the difference of it

between a point x on a telescope entrance aperture and a nearby point a distance ª= |ª|
apart. The variance of the difference is called the structure function of the phase and it



1.1 Statistics of turbulence-induced aberrations 3

Fig. 1.1 Example of median C 2
n profile from Masciadri et al. [9]. Its behavior with the atmospheric

altitude is plotted, showing a major strength of the turbulence at the ground layer.

can be demonstrated that is given by

D'(ª) =
≠
|'(x)°'(x +ª)|2

Æ
º 2.91k2

Z
C 2

n(z)dz ª5/3 . (1.3)

As the atmosphere is generally considered to be stratified in plane parallel layers, C 2
n

depends only on the height h above the ground and Eq. (1.3) can be rewritten as

D'(ª) º 2.91k2(cos∞)°1
Z

C 2
n(h)dh ª5/3 , (1.4)

where ∞ is the angular distance of the source from zenith and the quantity (cos∞)°1 is

called the air mass. The structure function of the phase can also be described through the

Fried parameter r0:

D'(ª) º 6.88(ª/r0)5/3 , (1.5)

where

r0 º
∑

0.423k2(cos∞)°1
Z

C 2
n(h)dh

∏°3/5

. (1.6)

The Fried parameter defines a typical coherence length of the wavefront. Larger the

wavelength, larger r0 (r0 /∏6/5); smaller the air mass, larger r0 (r0 / cos∞3/5). From r0, a

definition of seeing can be found as

≤º ∏

r0
, (1.7)

that leads to the dependence on the wavelength as ≤ / ∏°1/5 and on the air mass as

≤/ cos∞°3/5. A seeing of 1" corresponds to r0 º 10 cm in V band (∏ = 0.5 µm).
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Two other parameters used to characterize turbulence, that are related to r0, are the

isoplanatic angle µ0

µ0 º 0.057∏6/5 cos∞8/5
µZ1

0
h5/3 C 2

n(h) dh
∂°3/5

, (1.8)

that represents the angular equivalent of r0, and the coherence time ø0

ø0 º 0.057∏6/5 cos∞3/5
µZ1

0
|v(h)|5/3 C 2

n(h) dh
∂°3/5

, (1.9)

that quantifies temporal correlation of turbulence-induced wavefront phase distortions,

where v(h) is the wind speed at height h. Equation (1.9) can also be written as

ø0 º 0.31
r0

vm
, (1.10)

with vm the mean wind speed defined as

vm =
∑R

C 2
n(h)v(h)5/3dhR

C 2
n(h)dh

∏3/5

. (1.11)

It is worth noting that the parameter r0 weights equally the turbulence at all heights in

the atmosphere, while µ0 and ø0 take into account the variations of turbulence and wind

speed with height as well.

Typical values are few arcseconds for µ0 and few milliseconds for ø0 in V band.

The mechanical structure of turbulence was investigated by Kolmogorov [10], whose

model assumes that energy is added to the system in the form of large-scale disturbances,

the outer scale, which then break down into smaller and smaller structures at which the

turbulent motion is finally dissipated by the viscosity of air. Kolmogorov theory predicted

a power spectral density (PSD) of the air refractive index fluctuations and derived the

following expression:

©n(∑) º 0.033C 2
n∑

°11/3 , (1.12)

where ©n is the PSD of air refractive index fluctuations, ∑ is the spatial wavenumber

defined as ∑= 2º/l , with l the scale size of turbulence. This spectrum holds within the

inertial range, that is, for l0 < l < L0, with L0 the outer scale and l0 the inner scale of

turbulence. For l < l0 (∑> ∑m , with ∑m = 2º/l0), the dissipation of energy due to viscous

forces results in a rapid drop in ©n(∑) that was included by Tatarski [6] in the following
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expression:

©n(∑) º 0.033C 2
n∑

°11/3e°∑2/∑2
m , (1.13)

where ∑m = 2º/l0. Equations (1.12)-(1.13) can not be used to model the spectrum of the

index of refraction fluctuations for ∑! 0 because of the non-integrable pole at ∑= 0. To

overcome this problem, an alternate form known as the Von Karman spectrum is often

used:

©n(∑) º
0.033C 2

n

(∑2 +∑2
0)11/6

e°∑2/∑2
m , (1.14)

where ∑0 = 2º/L0. In Fig. 1.2, both Kolmogorov and Von Karman PSD are shown.

Fig. 1.2 PSD of the air refractive index fluctuations from Goodman [11]. Both Kolmogorov (solid
line) and Von Karman (dashed line) spectra are shown.

Through proper conversion factors, from Eq. (1.12) an expression of the PSD of wavefront

phase distortions under Kolmogorov model can be derived:

©¡( f ) º 0.00969
µ

2º
∏

∂2

C 2
n f °11/3 , (1.15)
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where the spatial frequency f = ∑/2º has been considered. The equation can be modified

to derive the PSD of wavefront phase distortions under Von Karman model as well:

©¡( f ) º 0.00969
µ

2º
∏

∂2

C 2
n( f 2 + f 2

0 )°11/6 , (1.16)

where f0 = ∑0/2º.

1.1.2 Modal expansion of wavefront distortions through Zernike poly-

nomials

Wavefront turbulence-induced distortions are usually modeled through their expansion

in a series of orthogonal functions. Zernike polynomials are commonly used to describe

the wavefront aberrations on a telescope pupil, as they represent an orthogonal basis on

a circular aperture, which is the most common aperture shape in optical systems. For a

circular aperture without obstruction, using polar coordinates (r , µ), the Zernike modes

are defined by

Z j =

8
>>><
>>>:

p
n +1 Rm

n (r )
p

2 cos(mµ), even j , m 6= 0
p

n +1 Rm
n (r )

p
2 sin(mµ), odd j , m 6= 0

p
n +1 R0

n(r ), m = 0,

(1.17)

where we referred to the notation in Noll’s paper [12]. The radial part Rm
n (r ) is given by

Rm
n (r ) =

(n°m)/2X

s=0

(°1)s(n ° s)!
s![(n +m)/2° s]![(n °m)/2° s]!

r n°2s . (1.18)

Each Zernike polynomial is characterized by three indices: j is a mode ordering number

and is a function of n and m, that are the radial and azimuthal degree, respectively. The

values of n and m are always integral and satisfy the relationships m ∑ n, n ° |m| = even.

In Fig. 1.3, Noll’s ordering of Zernike modes is shown.

The definition in Eq. (1.17) allows to write the modal orthogonality relation:

Z1

0

Z2º

0
W (r ) Z j (r,µ) Z j 0(r,µ) r dr dµ = ± j j 0 , (1.19)

where W (r ) is a weight function defined as

W (r ) =

8
<
:

1/º, r ∑ 1

0, r > 1.
(1.20)
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Fig. 1.3 Noll’s ordering of Zernike polynomials: even j corresponds to the symmetric modes
defined by cos(mµ), while odd j corresponds to the antisymmetric modes given by sin(mµ). For a
given n, modes with a lower value of m are ordered first.

The Fourier transform of Zernike polynomials can be defined as well. Given Q j ( f ,¡)

the Fourier transform of Z j (r,µ) so that

W (r )Z j (r,µ) =
Z

d f Q j ( f ,¡)e°2ºi f ·r , (1.21)

the transform can be written from Eq. (1.17) as

Q j ( f ,¡) =
p

n +1
Jn+1(2º f )

º f

8
>>><
>>>:

(°1)(n°m)/2i m
p

2cos(mµ), even j , m 6= 0

(°1)(n°m)/2i m
p

2sin(mµ), odd j , m 6= 0

(°1)n/2, m = 0,

(1.22)

where Jl (x) is the l th order Bessel function of the first kind.

A decomposition of an arbitrary wavefront over a circular aperture of arbitrary radius

R can be performed by means of Zernike polynomials. If ¡(r,µ) is some arbitrary function

representing a wavefront phase, its polynomial expansion over a circle of radius R is given

by

¡(RΩ,µ) =
X

j
a j Z j (Ω,µ) , (1.23)

with Ω = r /R and where the expansion coefficients a j are defined as

a j =
Z

dΩW (Ω)¡(RΩ,µ) Z j (Ω,µ) . (1.24)
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Since we are dealing with random wavefront aberrations, we are interested in their statisti-

cal properties. The covariance of Zernike coefficients can be computed as

D
a§

j a j 0
E
=

Z
dΩ

Z
dΩ000W (Ω)W (Ω0)Z j (Ω,µ)Z j 0(Ω

0,µ0)
≠
¡(RΩ)¡(RΩ0)

Æ
, (1.25)

where the coefficients a j have been considered to be Gaussian random variables with

zero mean. Equation (1.25) can be written in Fourier space as

D
a§

j a j 0
E
= 1

R2

ZZ
d f d f 000Q§

j ( f )©( f /R, f 0/R)Q j 0( f 0)±( f ° f 0) , (1.26)

where ©( f ) is derived from Eq. (1.15). Substituting Eq. (1.22) into Eq. (1.26), after some

calculations, the covariance of Zernike coefficients on a pupil of diameter D can be written

as D
a§

j a j 0
E
= c j j 0

µ
D
r0

∂5/3

, (1.27)

where the analytic expression for the coefficients c j j 0 was derived by Noll [12] as

c j j 0 º
0.046
25/3º

p
(n +1)(n0+1)(°1)(n+n0°2n)/2±mm0

Z
d f f °8/3 Jn+1(2ºk)Jn0+1(2ºk)

k2 , (1.28)

where the integral is tabulated:

Z
d f f °8/3 Jn+1(2ºk)Jn0+1(2ºk)

k2

= °(14/3)°[(n +n0 °14/3+3)/2]
214/3°[(°n +n0+14/3+1)/2]°[(n °n0+14/3+1)/2]°[(n +n0+14/3+3)/2]

,
(1.29)

for n,n 6= 0, where °(x) is Euler’s Gamma function. For n = n0 = 0, the integral diverges,

showing that the variance of the piston terms is infinite (under the assumption of an

infinite outer scale). From Eq. (1.27) and Eq. (1.28), it is shown that only Zernike terms with

the same azimuthal degree are correlated. In Fig. 1.4, the variance of Zernike coefficients

as a function of the Zernike index j is shown. It is worth noting that low-order modes

contribute for most of the error and, in particular, global tilt accounts for 87% of the

variance.

From the variance of Zernike coefficients the mean square wavefront phase fluctuation

can be derived as

æ2 =
øZ

W (r )¡2(r,µ)dr
¿
=

X

j=2

D
a2

j

E
, (1.30)

where the sum does not take into account the piston term since we are interested in the

deviation from the mean surface; moreover, considering the piston term would give an
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Fig. 1.4 Variance of Zernike coefficients as a function of the index j , assuming Kolmogorov model
of wavefront phase distortions. The variance is normalized to (D/r0)5/3.

infinite value. If we consider a system compensating for the first J modes, the corrected

phase can be written as

¡C =
JX

j=1
a j Z j (1.31)

and the mean square residual error becomes

¢J =
Z

dΩW (Ω)
D£
¡(RΩ)°¡C (RΩ)

§2
E
=

≠
¡2Æ°

JX

j=1

≠
|a j |2

Æ
=

X

j=J+1

D
a2

j

E
. (1.32)

where ha j i = 0 was considered. In Fig. 1.5, a table with the values of the mean square

residual error for the first 21 modes is shown.

1.1.3 Temporal spectrum of wavefront aberrations

A complete characterization of turbulence-induced wavefront distortions has to consider

the temporal evolution of atmospheric turbulence. For the derivation of temporal power

spectra of wavefront distortions, we refer to the work of Conan [13], who determined the

temporal PSD of phase-related quantities (e.g. Zernike coefficients).

The case of a plane wave and a single turbulent layer following Kolmogorov’s model

is considered. To derive the basic equations to compute the PSD of a phase-related

quantity G(r , t), with r the spatial coordinate vector (x, y) and t the time, we start from
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Fig. 1.5 Mean square residual error when J modes (J = 1, ...,21) are corrected. From Noll [12].

the expression for its spatial covariance

BG (Ω) =
≠
G(r , t )G(r +Ω, t )

Æ
, (1.33)

that leads, by means of Parseval’s theorem, to its spatial power spectrum WG

WG ( f ) =
Z

BG (Ω)e2iº f ·ΩdΩ , (1.34)

where f is the spatial frequency vector ( fx , fy ). If we consider that a phase-related quantity

can be expressed as the convolution of the phase ¡ with a spatial function MG (r )

G(r , t ) =
Z

MG (r °Ω)¡(Ω, t )dΩ = MG (Ω)§¡(r , t ) , (1.35)

the spatial power spectrum WG can be derived as

WG ( f ) = |M̃G ( f )|2W¡( f ) , (1.36)

where M̃G ( f ) is the Fourier transform of MG and W¡( f ) is the spatial power spectrum of

wavefront phase distortions given by Eq. (1.15). The spatial PSD WG ( f ) can be related to

the one-dimensional temporal PSD wG (∫), where ∫ is the temporal frequency:

wG (∫) = 1
v

Z+1

°1
WG

≥∫
v

, fy

¥
d fy , (1.37)
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where a wind v along the x axis has been considered and the Taylor’s frozen flow hy-

pothesis, stating that the whole phase screen is translated at the wind velocity v without

changing shape, has been assumed. By substituting Eq. (1.36) into Eq. (1.37), the temporal

PSD becomes

wG (∫) = 1
v

Z+1

°1

ØØØM̃G

≥∫
v

, fy

¥ØØØ
2

W¡

≥∫
v

, fy

¥
d fy

= 0.00969
µ

2º
∏

∂2 C 2
ndh

v

Z+1

°1

ØØØM̃G

≥∫
v

, fy

¥ØØØ
2
∑≥∫

v

¥2
+ f 2

y

∏°11/6

d fy ,
(1.38)

where we replaced W¡ with its expression in Eq. (1.15). As applications, we summarize

the results on the temporal PSD of the wavefront phase and of the Zernike modes as well.

Wavefront phase

The function G is in this case the direct measure of the phase:

G(r ) =¡(r ) . (1.39)

Then, from the integration of Eq. (1.38), the temporal phase PSD can be obtained as

w¡(∫) /C 2
n

dh
v

≥∫
v

¥°8/3
, (1.40)

where a -8/3 power law has been found for the dependence on temporal frequency.

Zernike modes

To derive the temporal PSD of Zernike modes, we have to consider

G(r ) = Z j (r )§¡(r , t ) . (1.41)

M̃G is in this case the Fourier transform of the Zernike polynomial, as defined in Eq. (1.22).

Through proper substitutions, we can retrieve the expression of the temporal PSD of

Zernike modes that was given in Roddier et al. [14]:

w¡(∫) / 1
v

Z
d fy (∫2v2 + f 2

y )°17/6
ØØØØJn+1

∑
2º

µ
∫2

v2 + f 2
y

∂1/2∏ØØØØ
2

£

8
>>><
>>>:

cos2(mµ), even j , m 6= 0

sin2(mµ), odd j , m 6= 0

1, m = 0.
(1.42)

Interesting properties of Zernike temporal PSD are:
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• the spectra are characterized by a cutoff frequency that depends on the radial

degree of the polynomial and on the ratio between the wind speed and the aperture

diameter

∫c º 0.3(n +1)
v
D

; (1.43)

• at high temporal frequencies, all the spectra follow a ∫°17/3 law;

• the behavior at low frequencies depends on the Zernike polynomial: both tip and

tilt follow a ∫°2/3 law, radially symmetric polynomials follow ∫0, the seventh and

eighth mode (two comas) follow a ∫0 and ∫2 law respectively. The other modes have

a 0, 4/3 and 2 power laws;

• radially symmetric polynomial spectra do not depend on the wind direction. For

other polynomials, the behavior at low frequencies is affected by wind changes.

In Fig. 1.6, the behavior of the temporal spectrum of Zernike modes with n = 1, 3, 9 is

shown.

Fig. 1.6 Mean temporal power spectrum of Zernike polynomials with n = 1, 3, 9, from Conan et al.
[13]. The ratio v/D is 10 Hz. The power laws and the cutoff frequencies are indicated.
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1.2 Principles of adaptive optics

A simplified scheme of the functioning of an AO system is shown in Fig. 1.7. The basic

principle foresees the measurements of the turbulence-induced wavefront distortions

by a WFS, the analysis of the signals from the WFS by a real-time computer (RTC) which

calculates an appropriate correction and sends the commands to a DM that properly

changes its shape in order to flatten the wavefront. This feedback loop typically works at ª
1 kHz, in order to follow the temporal evolution of turbulence-induced aberrations that is

represented by ø0. The reference target, whose wavefront is analyzed by the WFS, must be

Fig. 1.7 Simplified working scheme of AO. The light incoming to the telescope is sent to the DM that
reflects it to a beamsplitter. The flux is then split between the WFS and the scientific camera. The
WFS measures the wavefront aberrations from a reference source and the RTC analyzes the signals,
computes the correction and sends the commands to the DM. The DM changes its shape in order
to flatten the wavefront that is again observed by the scientific camera as a diffraction-limited
image.

a bright and point-like source in order to minimize the error on the WFS measurements. In

many cases, such a natural guide star (NGS) is not available near the astronomical object

and the use of a laser guide star (LGS) is foreseen, that is, an artificial guide star produced

by scattering of laser radiation by atmospheric particles. LGSs can be generated through

resonance scattering by atmospheric sodium that involves the use of a laser at 589 nm to

excite atoms in the atmospheric sodium layer at ª 90 km, or through Rayleigh scattering
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from air molecules sending light back to the telescope from altitudes up to ª 15 km. A

strong limitation of LGSs is tilt indetermination, though: LGSs are not able to provide a

useful signal for tilt correction, since the upward wandering of the laser beam is generally

unknown [15]. In the simple case of using the same telescope to project and sense the

laser beacon, the light encounters the same tilt in upward and downward directions and

the LGS will appear motionless. Then, tip-tilt measurement still requires the use of NGS

but, in this case, fainter magnitudes are allowed.

1.2.1 Wavefront sensors

The objective of a WFS is to measure wavefront aberrations. The basic functioning foresees

the conversion of either the phase or, most commonly, the spatial derivative of the phase

into an intensity variation that can be sensed by a detector. Without entering into detail,

as it is beyond the interest of this work, we will briefly review the most used WFSs in actual

AO systems: Shack-Hartmann (SH) [16] and Pyramid WFSs [17, 18].

Shack-Hartmann WFS

The principle of the SH WFS is to use an array of lenslets placed in a conjugate pupil plane

in order to sample the incoming wavefront. If the wavefront is flat, each lenslet forms

an image of the source at its focus; if the wavefront is aberrated, each lenslet receives

a tilted wavefront and forms an off-axis image in its focal plane (Fig. 1.8). The angle of

arrival of the wavefront over each lenslet can then be estimated from the measurement

of the position of the image formed by the lenslet. A common technique to measure

the positions of the SH images is to use a 2£2 detector (quad-cell) for each subaperture.

Referring to Fig. 1.9, each quad-cell measures a signal

Sx = I2 + I4 ° I1 + I3P
i Ii

Sy =
I1 + I2 ° I3 + I4P

i Ii
,

(1.44)

where Ii is the intensity on the i th pixel. It can be demonstrated that the signals depend

on the spatial derivative of the wavefront along x and y according to the relation

Sx = 2
µ

@W
@x

Sy =
2
µ

@W
@y

,
(1.45)
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Fig. 1.8 Basic scheme of the SH WFS. If the wavefront is flat, each lenslet forms an image of the
source in its focal plane along the lens axis (top); if the wavefront is locally tilted by an angle Æ,
the lenslet forms an image of the source at a distance Æ f from the focus, with f the focal length
(bottom).

where µ is the size of the spot on the quad-cell.

Fig. 1.9 Scheme of a SH WFS with a quad-cell detector.

Pyramid WFS

The Pyramid WFS uses a pyramidal prism placed in the image plane to create four sub-

beams that are then optically related to a detector (Fig. 1.10). If the wavefront is flat, the

beam is split into four identical images of the pupil; if the wavefront is distorted, the beam

is split into four images of the pupil with different flux. Any point of the pupil is imaged

on each of the four pupil images, so on four pixels of the detector. It can be demonstrated

that a signal proportional to the wavefront gradient is obtained if combining the intensity

of the four pixels in the same way as for quad-cell detectors.



16 General overview

Since the mentioned functioning provides information about the sign of the wavefront

inclination only, the Pyramid WFS usually uses the tilt modulation: a flat oscillating mirror

is positioned in a pupil-conjugated plane in order to steer the image in the focal plane and

to let the image perform a circular trajectory centered around the pyramid vertex with a

period equal to the detector integration time. It can be demonstrated that the measured

signal, whose computation takes the same form as Eq. (1.44), provides information about

the local inclination of the wavefront through the following expressions:

Sx = 2
º

∑
asin

µ
2
µM

@W
@x

∂∏

Sy =
2
º

∑
asin

µ
2
µM

@W
@y

∂∏
,

(1.46)

with µM the modulation angle.

Fig. 1.10 Basic scheme of the Pyramid WFS (left). A scheme with the tilt modulation is also shown
(right; from Esposito et al. [18]).

1.2.2 Deformable mirrors

The objective of DMs is to compensate for the wavefront aberrations introduced by

atmospheric turbulence. They usually consist of an array of actuators that are connected

to a thin optical surface that deforms under the expansion of the actuators. General

requirements for a DM concern spacing, stroke, response time and number of actuators.

Spacing, as projected onto the telescope aperture, and response time should agree with

the requirements set by r0 and ø0, whereas stroke and number of actuators depend on

aperture diameter. Without entering into detail, some of the most common technologies

are, for instance, piezo-stack DMs, voice-coil actuator DMs, MEMS [19].
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1.2.3 Feedback control loop

An AO system can be defined as a servo-loop system with the goal of compensating for the

incoming wavefront distorted by atmospheric turbulence. In its basic configuration, it is

made of a sensor, the WFS, a control device, the RTC, and a corrector, the DM. The input

and output of such a control loop are, respectively, the distorted wavefront phase and the

residual phase after compensation. The aim is the minimization of the residual phase.

The temporal behavior of an AO control loop is typically described by means of a

temporal transfer function representation [20]. Figure 1.11 gives a schematic view of an

AO control loop through a block diagram representation: ¡tur b is the input turbulent

phase,¡a is the compensating phase actuated by the DM, which is based on the correction

phase ¡cor r that is computed from the residual phase ¡r es . The phase is here intended as

the L - or Z -transform of the phase defined in the time domain, depending on whether a

continuous or discrete domain is considered.

Fig. 1.11 Block diagram representation of a basic AO control loop.

Basic expressions describing the above quantities are:

¡r es(∫) =¡tur b(∫)°¡a(∫) (1.47)

¡a(∫) = Hw f s(∫)
°
¡r es(∫)+¡n(∫)

¢
Hc (∫)Ha(∫) , (1.48)

where the noise ¡n is assumed to be injected in the loop at the level of the WFS integration

only (i.e. photon noise is considered). ∫ is the temporal frequency and Hx is the temporal

transfer function of the block x, where x = w f s represents the WFS, x = c the control

by the RTC and x = a the actuation by the DM. Assuming the linearity of the system, its

open-loop transfer function (OLTF) can be computed from the product of all the temporal
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transfer functions just defined:

Hol (∫) = Hw f s(∫)Hc (∫)Ha(∫) . (1.49)

An explicit expression of the OLTF can be derived, in the case of a simple pure integrator,

as [20]

Hol (s) = 1°e°sT

sT
e°sTd

g
sT

, (1.50)

where s = 2ºi∫ is the Laplace variable, g is the integrator gain, T is the WFS integration

time that defines the frequency frame rate of the loop (∫loop = 1/T ), Td is a delay (e.g. read-

out time) and where the transfer functions have been defined as Hw f s(∫) = (1°e°sT )/sT ,

Hc (∫) = e°sTd g /sT and Ha(∫) = 1.

Both the rejection transfer function (RTF) and noise transfer function (NTF) of the

loop can be derived by combining Eqs. (1.47), (1.48) and (1.49):

¡r es(∫) =¡tur b(∫)°¡a(∫)

=¡tur b(∫)°Hw f s(∫)
°
¡r es(∫)+¡n(∫)

¢
Hc (∫)Ha(∫)

=¡tur b(∫)°Hol (∫)
°
¡r es(∫)+¡n(∫)

¢
,

(1.51)

and grouping the terms related to ¡r es

°
1+Hol (∫)

¢
¡r es(∫) =¡tur b(∫)°Hol (∫)¡n(∫) . (1.52)

An alternative expression for ¡r es can then be obtained

¡r es(∫) = 1
1+Hol (∫)

¡tur b(∫)° Hol (∫)
1+Hol (∫)

¡n(∫)

= Hr (∫)¡tur b(∫)°Hn(∫)¡n(∫) ,
(1.53)

that leads to the following expressions for the RTF and the NTF:

Hr (∫) = 1
1+Hol (∫)

(1.54)

Hn(∫) = Hol (∫)
1+Hol (∫)

. (1.55)

The RTF is defined as the transfer function between the residual and turbulent phase

and represents the ability of the AO control to compensate for phase perturbations as a

function of frequency; the NTF is defined as the ratio between the residual phase due

to noise propagation and the measurement noise and characterizes the effect of noise
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on the residual phase. From Eq. (1.54) and Eq. (1.55), it can be seen that the following

relationship between RTF and NTF holds:

Hr (∫)+Hn(∫) = 1. (1.56)

In Fig. 1.12, RTF and NTF are shown for three different values of the loop frequency.

Fig. 1.12 RTF (left) and NTF (right) as a function of temporal frequencies. Three values of the loop
frequency are shown, corresponding to WFS integration time of 5 ms (blue), 2 ms (orange) and 1
ms (green). Delay from the WFS integration only is considered.

From Eq. (1.53), the temporal power spectrum of the residual wavefront on the guide star

can be obtained as

Sr es(∫) = |Hr (∫)|2Stur b(∫)+|Hn(∫)|2Sn(∫) , (1.57)

where Stur b and Sn are temporal spectra of, respectively, turbulence and noise and where

turbulence and noise are assumed to be uncorrelated.

1.2.4 Wavefront reconstruction

The reconstruction problem concerns the derivation of the commands to be applied to

the DM starting from the knowledge of the wavefront slopes in two directions x, y (SH

and Pyramid WFS produce, as seen in Section 1.2.1, signals proportional to the wavefront

slopes). The unknown quantity, a vector a of N commands must be calculated from the

data, that is, a measurement vector s of M elements of slopes. This translates into the
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solution of a set of linear equations

s1 = a1D11 +a2D12 + ...aN D1N

s2 = a1D21 +a2D22 + ...aN D2N

...

sM = a1DM1 +a2DM2 + ...aN DM N ,

(1.58)

that can be written in matrix representation as

s = D a , (1.59)

where the vectors are defined as

s =

0
BBBBB@

s1

s2
...

sM

1
CCCCCA

, a =

0
BBBBB@

a1

a2
...

aN

1
CCCCCA

(1.60)

and the interaction matrix D , that relates the DM commands and the WFS measurements,

is defined as

D =

0
BBBBBBB@

D11 D12 . . . D1N

D21 D22 . . . D2N

D31 D32 . . . D3N
...

...

DM1 DM2 . . . DM N

1
CCCCCCCA

. (1.61)

The required solution is then an inversion of Eq. (1.59): when M < N , the system is

undetermined and cannot be solved uniquely; when M = N , the matrix D is square and

it can be directly inverted to solve the equation (a = D°1s), as long as it is not singular;

when M > N , the system is overdetermined and the problem reduces to the calculation of

the unknowns quantities such that the error between the measured parameters and the

actual values is small. The latter represents the most common case in AO control systems.

The least-squares estimator (LSE) approach can be used to solve overdetermined systems;

the method finds the minimum of

¬2 =
MX

i=1

∑
si °

NX

k=1
ak Di k

∏2

(1.62)
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and, by setting @¬2/@a = 0, computes the solution for the vector a as

a = (DT D)°1DT s , (1.63)

where DT is the transpose of the matrix D and (DT D)°1DT is the pseudo-inverse of D ,

that we denote as D+. In many cases, the inversion of the matrix (DT D)°1 is not possible,

since the matrix is either singular or close to singular, and singular value decomposition

(SVD) is used: the M £N matrix D can be broken into the product of three matrices

D =UßV T , (1.64)

where U is an M £N matrix, V T is an N £N square matrix and ß is an N £N diagonal

matrix. The diagonal elements of ß, æi , are called singular values of D . The columns

of U and the columns of V are called left-singular vectors and right-singular vectors

of D respectively and form two sets of orthonormal bases, in this case, of signals and

commands respectively. From Eq. (1.64), the inverse can be computed as

D+ =Vß°1U T , (1.65)

where ß°1 is a diagonal matrix with elements 1/æi . Equation (1.65) allows to derive the

command vector as

a = D+s

a =W s ,
(1.66)

where W = D+ is the reconstructor. The singular values æi represent the ability of the WFS

to measure the wavefront. An element ai that is related to a singular value æi = 0 (or close

to zero) produces a signal si = 0, that is, it is not seen by the WFS. The unseen (æi = 0),

or badly seen (æi close to zero) modes are typically discarded during the pseudo-inverse

operation, by setting the related value 1/æi equal to zero. A threshold of ª 1/100 of the

maximumæi is typically used. This method is commonly known as truncated SVD (TSVD).

1.2.5 Limitations of classical adaptive optics

We list here the major sources of error in AO systems.

• Fitting error: the spatial scale of turbulence goes down to the order of millimeters.

For apertures of a few meters, a perfect correction would mean DMs with hundreds

of thousands of actuators. Moreover, as seen in Section 1.1.1, the spatial power



22 General overview

spectrum of the input phase fluctuation goes down with increasing spatial frequency,

meaning that there is small interest in correcting higher and higher frequencies. The

residual phase due to spatial frequencies that are not corrected leads to the fitting

error:

æ2
f i t t i ng =

Z1

fc

©( f )d f , (1.67)

where fc is the cutoff frequency of the DM, that is, the maximum frequency that

the DM can compensate for ( fc = 1/2dDM , with dDM the inter-actuator pitch pro-

jected onto the pupil). It can be demonstrated that, for correction of Kolmogorov

turbulence, Eq. (1.67) becomes

æ2
f i t t i ng = aF

µ
d
r0

∂5/3

, (1.68)

where d is the subaperture size, r0 the Fried parameter (Eq. (1.6)) and aF is a coeffi-

cient that depends on the geometry of the corrector.

• Temporal error: as seen in Section 1.2.3, an AO control loop is inevitably char-

acterized by a delay between the WFS measurements and the application of the

correction by the DM, given at least by the integration time of the WFS. By the time

the correction is applied, the input perturbation will have changed and this will

result in an imperfect correction. This is called temporal (or servo-lag) error and

can be computed as

æ2
tempor al = K

µ
T
ø0

∂5/3

, (1.69)

where ø0 is the coherence time defined in Eq. (1.9), T is the loop sampling time (i.e.

WFS integration time) and K depends on the characteristics of the loop and control

law.

• WFS measurement error: the measurement noise of the WFS introduces an error

that reduces wavefront reconstruction accuracy. It can be demonstrated that the

variance depends on the inverse of SNR2 (where SNR is the signal-to-noise ratio).

• Aliasing error: in the case of wavefront measurements, there exist spatial fre-

quencies in the wavefront that are greater than the Nyquist frequency of the WFS

( fN yq = 1/2 fsamp , with fsamp the sampling frequency; e.g. for a SH WFS, it is deter-

mined by the lenslet spacing). These frequencies are not seen by the WFS, but can

appear in the measurement as low spatial frequencies and cause large errors in the

estimation of the wavefront.
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• Anisoplanatic error: if the scientific target is not a valid reference source for AO,

another reference must be used in the proximity of the scientific object. However,

in this case the cylinder of atmosphere seen and measured by the WFS does not

match perfectly the cylinder of atmosphere through which the science target beam

propagates (Fig. 1.13). The residual due to the uncorrected turbulence is commonly

Fig. 1.13 Scheme of classical AO with on-axis reference source and off-axis scientific target. The
turbulence sampled by the WFS is different from that in the imaging path, leading to a residual
turbulence that degrades the AO correction.

known as angular anisoplanatic error. Considering the scientific object and the AO

reference source separated by an angular distance µ, the error can be derived from

the equation for the structure function in Eq. (1.4):

æ2
ani so º 2.91k2(cos∞)°1

Z
C 2

n(h)dh
£
µh(cos∞)°1§5/3

, (1.70)

where the linear separation ª in Eq. (1.4) has been replaced by µz, with z = h(cos∞)°1.

Remembering the definition of µ0 in Eq. (1.8), Eq. (1.70) becomes

æ2
ani so =

µ
µ

µ0

∂5/3

, (1.71)
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showing the increasing of the anisoplanatic error with the target-reference separa-

tion µ.

Considering typical values of µ0, the anisoplanatic error strongly limits the AO cor-

rection to few arcseconds of field of view in V band, or tens of arcseconds in K

band.

1.2.6 Tip-tilt anisoplanatism in classical adaptive optics

The anisoplanatic error introduced in the previous section includes the effect of all the

turbulent phase. In this section, we report the results presented in Sandler et al. [21] on

the anisoplanatic error as limited to the contribution of tip and tilt modes only.

We consider the AO guide star (GS) at an angular separation µ from the scientific target.

The determination of tip-tilt correction through an off-axis GS introduces an error that

can be evaluated as

æ2
T T =

≠
(¡GS °¡t )(¡GS °¡t )†Æ , (1.72)

where æ2
T T is the mean-square error of tip-tilt, † denotes the conjugate-transpose and ¡GS

and ¡t are the phases from the GS and the target respectively. These can be decomposed

into Zernike modes as
¡GS =

X

j=2,3
a j Z j (r )

¡t =
X

j=2,3
b j Z j (r ) ,

(1.73)

where a j is the j th Zernike coefficient related to the measured phase, b j is the j th Zernike

coefficient related to the scientific phase, Z j is the j th Zernike modes and where we

limited the contribution to tip and tilt, considering the sum of j =2 and j =3 only. Equation

(1.72) can then be written as

æ2
T T =

X

j=2,3
2(1°° j )ha2

j i , (1.74)

where ha2
j i is the variance of the a j coefficient and ° j is the normalized correlation defined

as ° j = ha j b j i/ha2
j i. The calculations presented in Sandler et al. [21] allow to derive, from

Eq. (1.74), the following expressions for the anisoplanatic error related to tip and tilt:

æ2
“

(∏/D)2 º 0.0472
µ
µ

µ0

∂2µD
r0

∂°1/3

°0.0107
µ
µ

µ0

∂4µD
r0

∂°7/3

, (1.75)

æ2
?

(∏/D)2 º 0.0157
µ
µ

µ0

∂2µD
r0

∂°1/3

°0.00214
µ
µ

µ0

∂4µD
r0

∂°7/3

, (1.76)
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where æ2
“ is defined as longitudinal tilt error (i.e. along the axis joining the science object

and the GS) andæ2
? as the lateral tilt error (i.e. along the axis perpendicular to the target-GS

direction). The formulas, valid in the case of Kolmogorov turbulence, show a dependence

on the turbulence parameters r0 and µ0, on the telescope diameter D and on the angular

separation µ. In particular, the quadratic terms in µ are valid out to field angles µ ∑
0.5(D/r0)µ0, while the sum of the quadratic and the fourth-order terms is accurate out to

µ ∑ (D/r0)µ0. Another aspect, emerging from Eqs. (1.75)-(1.76) and shown in Fig. 1.14, is

that the longitudinal error is larger than the lateral one, due to a faster decorrelation of tip

than tilt (shown in Fig. 1.15). Moreover, the equations show that the errors do not depend

on the wavelength.

Fig. 1.14 Anisoplanatic error for tip (blue line) and tilt (orange line) as a function of the angular
separation between the scientific object and the AO reference source. Two aperture diameters are
considered, D = 8 m (left) and D = 40 m (right). A single-layer turbulence profile has been used,
with r0 = 16 cm, µ0 = 1 arcsec, infinite outer scale, wind speed of 10 m/s and altitude of 10 km.

Fig. 1.15 Normalized correlation parameter as a function of the angular separation between the
scientific object and the AO reference source. Both tip (blue line) and tilt (orange line) correlation
parameters are shown. The turbulence profile is the same as the one used in Fig. 1.14. The error is
shown for D = 8 m (left) and D = 40 m (right).
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1.3 Multiconjugate adaptive optics

We have reviewed the basic principles of classical AO systems so far. These systems, char-

acterized by a single WFS and a single DM are known as single-conjugated adaptive optics

(SCAO). As seen in the previous paragraph, SCAO systems are strongly affected by anisopla-

natism that limits the good quality of the AO correction to small fields of view. To overcome

this problem, in 1988 Beckers proposed the concept of multiconjugate adaptive optics

(MCAO) [22]. The basic idea, represented in Fig. 1.16, foresees the use of multiple GSs to

perform a 3D measurement of the turbulent volume and of multiple DMs conjugated to

different altitudes to compensate for different layers of the atmosphere. Indeed, it was

Fig. 1.16 Scheme of MCAO (from Rigaut et al. [23]). The volume of atmospheric turbulence is
probed by multiple WFSs (two in the figure), each looking at a different GS. The measurements are
processed through tomographic techniques and the correction phase is projected onto multiple
DMs (two in the figure), optically conjugated at various atmospheric layers above the telescope.

demonstrated [24] that the conjugation of N DMs to N layers of atmospheric turbulence

can increase the isoplanatic patch identified by µ0. In particular, the anisoplanatic error

becomes

æ2
ani so =

µ
µ

2µ0N

∂5/3

, (1.77)

the formula showing that the isoplanatic angle is reduced by a factor 2N with respect to

the case of a single DM conjugated to the ground.

The compensation for various layers of atmospheric turbulence clearly requires the

measurement of the turbulent layers conjugated at each DM, that is obtained through

the tomography approach. Several methods have been proposed for the tomographic

reconstruction through the use of multiple GSs, considering either a zonal approach [25],
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or a modal approach [26]. These works involved the use of LGSs only, thus overcoming

the AO problem of limited sky coverage. However, the tip-tilt indetermination problem

that characterizes LGS-based wavefront sensing has driven the use of NGSs as well. In

particular, typical configurations foresee the use of NGSs for tip-tilt measurements and of

LGSs to sense higher orders of distortion; such configurations do not reintroduce the sky

coverage problem, since a fainter NGS limiting magnitude is allowed by the small number

of modes that have to be measured by the NGS WFSs.

To date, the Gemini Multi-conjugated adaptive optics System (GeMS) [27, 28] at the

Gemini South Telescope is the only MCAO system operating on sky and new systems are

currently under design and realization. Some examples are the MCAO Assisted Visible

Imager and Spectrograph (MAVIS) [29] for the Very Large Telescope (VLT), the Narrow-

Field InfraRed Adaptive Optics System (NFIRAOS) [30] for the Thirty Meter Telescope

(TMT) and the Multiconjugate adaptive Optics Relay For ELT Observations (MORFEO)

[31] for the Extremely Large Telescope (ELT). A brief description of the latter will be

provided in Section 1.3.3.

1.3.1 Tomographic reconstruction

We review the basics to retrieve the 3D distribution of atmospheric turbulence from a set

of wavefront measurements in different directions. In particular, we report the modal

approach presented in Ragazzoni et al. [26] that shows that the deformations of several

DMs can be controlled by measuring a certain number of Zernike modes on LGSs (the

analysis can be applied to NGSs as well).

We consider that the wavefronts from M GSs are sensed through the telescope entrance

pupil of diameter D by M different WFSs. The incoming wavefront is assumed to be

perturbed by N layers located at different altitudes. The geometry is shown in Fig. 1.17.

Figure 1.18 shows the geometry of the footprints projected on a single layer j and defines

the metapupil, that is, the circular region encompassing all of the GSs beams. Assuming

that µ is the radius of the technical field of view (FoV) (i.e. the FoV identified by the GSs

asterism), the size of the metapupil on a layer j is D+2µH j , with H j the height of the layer.

The beam footprint diameter is equal to D if NGSs are considered, smaller than D in the

case of LGSs and varies depending on the altitude of the layer.
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Fig. 1.17 Geometry of the configuration (from Ragazzoni et al. [26]). The wavefronts from three GSs
(LGSs in the figure) pass the layers (three in the figure) of atmospheric turbulence before arriving
to the entrance pupil.

The wavefront for the i th GS can be expanded into a sum of n Zernike polynomials as

'GSi =

0
BBBBB@

a2

a3
...

an ,

1
CCCCCA

(1.78)

where the piston term has been omitted since it is not accessible and where, differently

from Ragazzoni et al. [26], we have included tip and tilt modes in order to extend the

analysis to the case of NGSs as well. 'GSi is the modal expansion of the wavefront coming

from the i th GS, integrated over the layers, i.e.:

'GSi =
NX

j=1
'GSi j , (1.79)
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Fig. 1.18 Geometry of the beams footprints on a layer j (from Ragazzoni et al. [26]). Li j , with i =1,
2, 3, represents the beam from the i th GS (defined as 'GSi j in the text); Wj is the metapupil ('DM j

in the text); WT j is the footprint from the scientific object that is assumed on axis ('O j in the text).

where 'GSi j is the expansion of the wavefront from the i th GS on a single layer j and can

be related to the wavefront defined on the metapupil:

'GSi j =
°
PGS

DM

¢
i j 'DM j , (1.80)

where
°
PGS

DM

¢
i j is a matrix of size n £n that contains information about the geometry

between the metapupil and the footprint and 'DM j is the expansion of the wavefront on

the metapupil. We considered to have a DM conjugated to each layer and to reconstruct

on each layer the same number of modes measured by each WFS. Combining Eq. (1.79)

and Eq. (1.80) leads to:

'GSi =
NX

j=1

°
PGS

DM

¢
i j 'DM j . (1.81)

This equation, for all GSs, can be combined in a single matrix equation including all the N

layers and all the M GSs in the same relationship

0
BBBBBBB@

'GS1

'GS2

'GS3
...

'GSM

1
CCCCCCCA
=

0
BBBBBBB@

P11 P12 . . . P1N

P21 P22 . . . P2N

P31 P32 . . . P3N
...

...

PM1 PM2 . . . PM N

1
CCCCCCCA

0
BBBBBBB@

'DM1

'DM2

'DM3
...

'DMN

1
CCCCCCCA

, (1.82)
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that can be written in compact form as

'GS = PGS
DM'DM . (1.83)

The equation takes the same form as Eq. (1.59), indeed it represents the relationship

between the wavefronts arriving on the WFSs and the wavefronts to be applied on the

DMs through the interaction matrix PGS
DM . However, differently from classical AO, the

interaction matrix contains information, for each layer, on the reaction of all WFSs to a

given Zernike mode on a metapupil in altitude.

In the same way, the wavefront expansion 'DM j from the metapupil can be projected

onto the smaller on-axis footprint of the scientific object on the j th layer:

'O j =
°
PO

DM

¢
j 'DM j , (1.84)

that leads to the compact form

'O = PO
DM'DM . (1.85)

It follows that the dimension of PGS
DM is (M ·n)£ (N ·n) and of PO

DM is n £ (N ·n). These

matrices contain coefficients that depend on the geometry of the problem. In Appendix

B.1, we report as an example the analytical computation of these coefficients that was

derived in Negro [32].

As seen in Section 1.2.4, as long as M ∏ N , the interaction matrix PGS
DM can be inverted

to derive the tomographic reconstructor:

Wtomo =
h°

PGS
DM

¢T
PGS

DM

i°1 °
PGS

DM

¢T
. (1.86)

Unseen modes and Minimum Mean Square Estimator approach

The geometry of the GSs asterism can introduce a fundamental limitation to the tomo-

graphic process, that is, the problem of unseen modes. A geometric scheme describing

the problem is shown in Fig. 1.19: the wavefront distortions are measured by two WFSs

looking at two different directions and a third direction (on axis) is observed. In this con-

figuration, the sum of the phase perturbations induced by the turbulent layers is exactly

zero in the GSs directions. Therefore, the WFSs provide a piston measurement only and no

information on the phase deformation is available; these aberrations are not estimated in

the reconstruction process. Clearly, in the GSs directions these modes are not important,

but they lead to wavefront distortions in other directions, limiting the goal of MCAO to

provide a good correction across the entire FoV.
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Fig. 1.19 Geometric scheme to represent the unseen modes problem (from Fusco et al. [33]). Two
WFSs measure turbulence-induced distortions from two different GSs. The sum of the phase
perturbations on the two layers is zero in the GSs directions, thus provides zero signal on the WFSs.
On the other hand, the wavefront deformations do not cancel out in the on-axis direction. Thus,
the modes unseen by the WFSs can still degrade the correction in other directions.

Unseen frequencies represent a strong limitation for the pure LSE reconstructor. In-

deed, the interaction matrix coefficients go to zero for these frequencies and the noise

is overamplified within the inversion operation. The badly-seen frequencies impact the

LSE reconstruction as well: for these frequencies, measurement is close to zero and falls

within the noise of the WFSs; thus, the same problem as for the unseen frequencies ap-

plies. One method to overcome the noise amplification is to use the truncated LSE (TLSE)

reconstructor (also identified as TSVD in Section 1.2.4), but at the price of uncorrected

frequencies. Moreover, the truncation is selected through a trial and error approach and

this choice can be not easy for real systems.

In this context, a solution was proposed that foresees a reconstruction through the Min-

imum Mean Square Estimator (MMSE) approach [34]. The MMSE estimator minimizes

the residual phase variance in each reconstructed layer between actual and estimated

phases:

æ2
r es =

DØØ'tur b °Wtomo
°
PGS

L 'tur b +'n
¢ØØ2

E
, (1.87)
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where 'tur b is the turbulent phase and PGS
L is the interaction matrix that projects the

turbulent layers seen in the GSs directions in the pupil plane (PGS
L = PGS

DM if considering

to have a DM conjugated at each layer). Differently from Eq.(15) of Neichel et al. [34],

we assumed a direct measurement of the phase by setting M = 1, with M the matrix that

models the wavefront sensing operation. The minimization process leads to the following

expression for the MMSE reconstructor:

WM MSE =
h°

PGS
L

¢T °
C'n

¢°1 PGS
L +

°
C't

¢°1
i°1 °

PGS
L

¢T °
C'n

¢°1 , (1.88)

where C't is the covariance of the turbulent phase and C'n is the covariance of the

noise. This reconstructor includes prior knowledge of the phase statistics and noise

power spectrum by means of C't and C'n . The noise term can be factorized under the

assumption of same noise æ2
n for all GSs and x and y directions and Eq. (1.88) can be

rewritten as

WM MSE =
h°

PGS
L

¢T
PGS

L +æ2
n
°
C't

¢°1
i°1 °

PGS
L

¢T
, (1.89)

showing the inverse of the SNR, i.e. æ2
n
°
C't

¢°1.

In contrast to the TLSE reconstructor, the MMSE reconstructor does not require any

truncation. Through the regularization term æ2
n
°
C't

¢°1, the MMSE reconstructor weights

the noise propagation and is able to optimize the reconstruction depending on the SNR:

for frequencies with good SNR, MMSE and TLSE are equivalent; for frequencies with small

SNR, the inverse of the interaction matrix is weighted by the regularization term, avoiding

noise amplification.

One issue of the MMSE tomographic reconstruction is that it makes use of a priori

information on the turbulent phase statistics but it has to deal with closed-loop config-

urations where the WFSs are after the DMs, hence only see the residual turbulence that

does not obey the same statistics. To overcome this problem, the concept of pseudo

open-loop control (POLC) was introduced [35]: the idea is to reconstruct the virtual open

loop measurements from a combination of the closed-loop measurements and the shape

of the DMs.

1.3.2 Limitations of multiconjugate adaptive optics

We summarize the main MCAO-specific error sources, without entering into detail on the

limitations due to the use of LGSs as it is beyond the interest of this work.

• Generalized fitting error: in Section 1.3.1, we assumed to have a DM conjugated at

each turbulent layer. In real cases, this is not the case and only a limited number of
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DMs is available to compensate for the turbulent volume. The residual wavefront

due to the uncorrected layers leads to the generalized fitting error.

• Tomographic error: the use of multiple GSs does not ensure a complete covering of

the turbulent volume. Some part of the turbulence above the telescope will always

be probed by one GS only and this will limit the tomography as it can not determine

at which altitude the perturbation is located in this part of the beam. Another

limitation of tomography comes from unseen modes that have been described in

Section 1.3.1.

• Generalized aliasing error: turbulent layers above and below the altitude control

domain of the MCAO system are seen and wrongly interpreted as layers inside the

control domain and this causes an error that is commonly called generalized aliasing

error. Unlike classical spatial aliasing (see Section 1.2.5), that is due to the WFS, the

generalized aliasing is caused by the tomographic process.

1.3.3 MORFEO at the Extremely Large Telescope

MORFEO [5, 31, 36, 37] is the MCAO system of the 39-m ELT [38, 39] that will provide

large diffraction-limited correction to the near-infrared Multi-AO Imaging Camera for

Deep Observations (MICADO) [3] and to a second instrument still to be defined. The

primary observing mode of MICADO is astrometric imaging with either a large FoV of

50£50 arcsec, or a small FoV of 18£18 arcsec, with wavelength coverage from 0.8 µm to

2.4 µm [40]. Jointly with the MICADO consortium, MORFEO will provide a SCAO system

as well.

From the opto-mechanical point of view, MORFEO consists of an optical relay that

re-images the telescope focal plane for the science instruments (Fig. 1.20). The relay is

supported by an optical bench mounted on the telescope Nasmyth platform in gravity

invariant configuration (Fig. 1.21) and consists of six mirrors and a dichroic beam-splitter

separating the light for the science path from the light for the LGS WFSs. MORFEO will

provide two DMs in the optical relay (DM1 = M9 conjugated at 6-12 km, DM2 = M10

conjugated at 17-20 km) that will work together with the adaptive (M4)[41] and tip-tilt

(M5) mirrors of the ELT.

The tomographic reconstruction relies on the measurements from three NGS WFSs

and six LGS WFSs. The former are 2£2 SH WFSs, working in H band and measuring five

modes (tip, tilt, focus and the two astigmatisms) at a frame rate of 100-1000 Hz on stars

with magnitude in H band up to 21; the latter are 68£68 SH WFSs and sense the higher

orders of distortion at a frame rate of 500 Hz. An asterism of up to three NGSs can be
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Fig. 1.20 Functional overview of MORFEO in relation to ELT and MICADO (from Ciliegi et al. [5]).
MORFEO is divided in the figure into the post-focal relay optics (PFRO), the LGS and NGS modules.
The PFRO contains the two post-focal DMs (PFDMs) conjugated in altitude (6-12 km and 17-20
km) and a dichroic feeding the six LGS WFSs in the LGS module. The light coming out of the PFRO
module is sent to the NGS module, where is split between the NGS WFSs (LORWFS in the scheme)
and the MICADO instrument. The measurements from LGS WFSs and NGS WFSs are collected by
MORFEO RTC which drives the DMs (M4/M5 and the two PFDMs).

selected in a technical FoV with a diameter of 160 arcsec; the LGS asterism radius is kept

fixed at 45 arcsec for any telescope elevation.

The adaptive correction is given by ELT’s M4 and by the two MORFEO’s DMs, these

DMs providing more than 5000 modes controlled.

1.4 Ground-based astrometric observations

To date, astrometry is one of the main science drivers of actual and future instruments

either observing from the ground or from space. Indeed, astrometric measurements

represent the starting point for a wide variety of topics in astrophysical research: the

detection of intermediate-mass black holes (IMBHs) in cluster centers, the analysis of

Galactic globular clusters (spatial distribution, cluster proper motions and orbits around

the Milky Way, internal kinematics, ...) and more accurate studies of our Galactic center,

as well as the one of nearby galaxies, are just few examples. The Gaia satellite [42] has
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Fig. 1.21 General overview of MORFEO as installed on the ELT’s Nasmyth platform.

provided astrometry of single stellar sources out to large distances with exceptional accu-

racy. The limited telescope diameter strongly affects the measurements in crowded fields,

though. Thanks to the implementation of AO systems, ground-based telescopes are now

valid competitors to space-based ones and most of the future AO-assisted instruments are

designed with high-precision astrometry among their requirements. In this context, it is

worth pointing out that ground-based observations aim at providing high precision on

differential astrometry, that is, on the measurement of the distance of different science

objects in the field relative to each other (or relative to other objects in the scientific field).

Absolute astrometry, as it is intended for space-based observations, is not feasible from

the ground since it would require to observe sources with large separations (ª 1 rad)

in order to control the uncertainties. Requirements for ground-based instruments on

absolute astrometry do exist, but they actually refer to the estimation of a science object

position in the sky coordinate system, where the position measurement is again intended

as obtained through differential measurements with respect to reference sources with

known coordinates (e.g. from Hipparcos or Gaia catalogs) that are in the science field.

MCAO is a good candidate for astrometric observations with ground-based telescopes.

Indeed, as seen in Section 1.3, it aims at providing uniform correction over wide areas

reducing the high spatial variability of the point spread function (PSF) in the field that

limits the accuracy of the data reduction. Moreover, thanks to the DMs conjugated in

altitude, MCAO is able to compensate for the field distortions induced by atmospheric

turbulence. In addition, it provides a large number of reference sources in the science field
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that have good image quality (in classical AO, reference sources are likely outside the small

corrected FoV). These characteristics help understand why GeMS and the Multiconjugate

Adaptive Optics Demonstrator (MAD [43]; temporarily installed at the VLT in 2007), though

not optimized for astrometric observations, led to several publications on astrometry

topics (e.g. [44, 45]) and why future instruments equipped with MCAO modules have

high precision astrometry as one of the main science drivers. In particular, the following

requirements of precision have been set on the differential astrometry: 50µas for MORFEO

(goal of 10 µas)[46], 150 µas for MAVIS (goal of 50 µas)[47] and 50 µas for NFIRAOS (goal of

10 µas)[48]. These systems will be fully relevant to complement astrometric observations

with space-based systems like Gaia. Indeed, one of the main observational limits of such

system is its "blindness" in very crowded regions, in particular down to faint magnitudes.

The high spatial resolution of ground-based observations, for instance with MORFEO at

the ELT, will allow to access these regions with high-precision astrometry. This will bring

advantage to scientific cases requiring astrometric measurements in the very center of

globular clusters, for example (e.g. to unveil the presence of IMBHs).

1.4.1 Sources of astrometric error

In order to exploit the astrometric capabilities of future ground-based instruments, a

great effort has been made to understand and model all possible sources of error that can

affect astrometric measurements from the ground [49–51]. In the following, referring to

Trippe et al. [51], we summarize the main sources of error that have been identified in the

literature.

• Sampling and pixel scales: in order to have a good measurement of the detector

position of a point source, the PSF must be sufficiently sampled. If the pixel scale

of the detector (i.e. the angular field sampled by a single pixel) is too large, any

displacement of the source within the pixel does not involve a flux variation in the

adjacent pixels and position information is lost. The choice of the pixel scale plays

an important role during the instrument design.

• Instrumental distortion: any real optical system suffers from geometric distortions

that can be linear and non-linear. The former include terms like shifts, rotations,

scaling and can be caused by telescope instabilities that change the plate scale, or

by rotator instabilities that can introduce systematic frame-to-frame rotation; the

latter can be caused by gravitational flexure of the telescope, by misalignment of the

optics, etc.
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• Differential atmospheric refraction: any ground-based position measurement is

affected by atmospheric refraction. Differential astrometry is affected by differential

refraction that is due to the slight difference in zenith angles of the two sources

that leads to different deviation between physical and observed zenith angle for the

sources. Therefore, the observed distance between the two objects deviates from

the physical one.

• Guide star measurement errors: in MCAO systems, the use of multiple NGSs for

the low-order correction makes use of the guide star positions and the knowledge

of the relative positions is required. The measurements of guide stars positions

will suffer from uncertainties due to atmospheric fluctuations that will introduce

time-variable distortion into the AO corrected FoV.

• Differential tilt jitter: as introduced in Section 1.2.6, the fact that the light from a

science target and the light from the GS travel through different columns of atmop-

sheric turbulence leads to a non-perfect correction on the target. Considering the

correction of tip-tilt, the result is a fluctuation of the target position. Considering the

measurement of the distance between two targets, the effect translates into random,

achromatic and anisotropic fluctuations of the measured distance [49].

• Anisoplanatism: the anisoplanatic error introduced in Section 1.2.5 causes the PSF

shape to vary in the FoV, depending on the position of the target with respect to

the AO reference. Tip-tilt modes determines, in classical AO systems, typical PSF

elongation effects that increase with the target-GS angular separation.

• Calibration of projected pixel scale: among the steps of a typical astrometric data

reduction, one needs to calibrate the pixel scale as projected on sky in order to

convert measured positions from pixel to angular units. Astrometric references in

the FoV are required to compute the scaling factors and errors on the reference

positions propagate into the positions calculated from the data.

On top of these error sources, a statistical limit to astrometric precision is set by photon

noise that introduces an intrinsic uncertainty in the position measurement. This error,

identified as centroiding error, was modeled for a circular diffraction-limited telescope of

diameter D as [52]

æ= 1
º

∏

D
1

p
N

(1.90)

where ∏ is the observation wavelength and N is the number of photons collected from the

object.
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Among the error sources listed, the focus of the present thesis is on differential tilt

jitter and tip-tilt anisoplanatism, that is, in general, on the impact of tip-tilt atmospheric

residuals on astrometric precision. In the following, we give a more detailed description

of the effect of tip-tilt on differential astrometry.

1.4.2 Effect of tip-tilt on astrometric precision

Tip-tilt residuals can affect astrometric precision as they introduce fluctuations of the

position of a source with respect to its nominal position on the detector. On the one hand,

the amount of fluctuations integrated during an individual exposure can determine an

increasing of the size and a change in shape of the PSF, with typical PSF elongation effect;

on the other hand, if the fluctuations are not totally integrated within the exposure time of

the image, a jitter of the source position can also be observed between successive frames

(Fig. 1.22). Differential astrometry can be affected by both effects: the former contributes

to the centroiding error, while the latter leads to the differential tilt jitter error.

Fig. 1.22 Schematic representation of the effects of tip-tilt residuals on exposures of integration
time T. The fluctuations integrated during an exposure can result in an elongation of the PSF
(yellow spots); the fluctuations that are not integrated can determine a variation of the PSF position
between successive frames (black crosses).

Clearly, the knowledge of the spatial and temporal dependence of tip-tilt residuals is

needed to characterize the behavior of the related astrometric errors. For SCAO systems,

tip-tilt anisoplanatism is well known and has been thoroughly modeled: as shown in

Section 1.2.6, the measurement of tip-tilt through a GS that is separated by the scientific

object by an angle µ leads to tip-tilt residuals that, at first order, linearly depend on the

separation (æ/ µ). Moreover, the error along the axis joining the science object and the

GS is larger than the error along the perpendicular direction. These characteristics explain

the behavior of the PSF elongation effect, as well as of the differential tilt jitter, observed
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in SCAO-assisted observations (examples are shown in Fig. 1.23). For MCAO systems the

characterization is more elaborate, since the geometry with multiple GSs and multiple

DMs needs to be taken into account and can lead to complex behaviors that may not be

easily parameterized. As pointed out in Trippe et al. [51], tip-tilt anisoplanatism is not

well understood for this flavour of AO.

In Carlà et al. [53, 54], we proposed our analysis of tip-tilt anisoplanatism in MCAO

systems and its impact on astrometric precision, that we report in Chapters 3, 4, 5. The

study is based on the derivation of analytical expressions to estimate the residual phase,

hence the PSD, from an MCAO system in any direction of the scientific field of view.

These formulas can provide a fast evaluation of the residuals without the need for time-

consuming simulations, by assuming a statistics of turbulence-induced distortions and

considering the temporal filtering from the MCAO loop. In this context, in Plantet et

al. [55], we first derived general expressions to model spatiotemporal statistics of the

turbulent phase that allow to take into account spatiotemporal cross-correlations between

all directions involved in an MCAO configuration. We present these first results in the next

chapter.

Fig. 1.23 PSF elongation observed from FLAO [56] data at the Large Binocular Telescope (LBT; left).
Differential tilt jitter observed from NACO data at the Very Large Telescope (right; from Trippe et al.
[51]).





Chapter 2

Spatiotemporal statistics of the turbulent

phase

In the context of AO for astronomy, one can rely on the statistics of the turbulent phase to

assess and optimize a part of the system’s performance. Many studies of the turbulence

statistics have been done considering a wavefront decomposition on the Zernike modes

[12–14, 32, 57–65]. These studies mostly focus on the temporal statistics of the turbulence

seen from one source to one aperture [13, 14, 66] or the spatial covariance from one or

two sources to one or two apertures [12, 13, 57, 58, 64, 65]. Though, the knowledge of both

temporal and spatial statistics in a general framework can be useful for the development of

new analytical expressions to estimate the adaptive optics performance. These tools can

help in the analysis of existing SCAO or Wide-Field AO (WFAO) systems [67–70] and future

systems that are going to equip the next generation of telescopes [71–76]. Indeed, the

classical approach for the analysis of the performance of an AO system is to decompose

the overall residual in several sources of errors (temporal, anisoplanatism, noise, aliasing,

fitting. . . ), considering them uncorrelated [20, 21, 34, 77–79]. In that case, most of the

error computations do not take into account the temporal filtering of the AO loop, while

alternative approaches [80–83] apply the AO control in the whole performance analysis,

highlighting for example the correlation between the temporal and the anisoplanatism

errors. These methods to evaluate the AO performance often rely on an analysis in the

spatial frequency domain [34, 77–81].

In this chapter, we present the analytical formulation that we proposed in Plantet

et al. [55] to derive temporal Cross Power Spectral Densities (CPSDs) of the turbulent

phase for two different sources and two different apertures. We first considered the whole

(piston-filtered) phase and then its decomposition into Zernike modes. To our knowledge,

this framework is the only one that offers the possibility to directly take into account the
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following aspects altogether in a single formula, while allowing the application of a time

filtering: distinct apertures of different size, distinct sources at finite or infinite distance,

direction of the wind. We then present a case study that makes use of the CPSDs to derive

the anisoplanatism error for a SCAO system and for an interferometer such as the Large

Binocular Telescope Interferometer (LBTI) [84]. We show that a simple computation from

covariances would overestimate the anisoplanatism error with respect to a more precise

computation that takes into account the temporal filtering of the AO loop. Finally, we

make use of CPSDs to provide a first analysis of tip-tilt anisoplanatism in SCAO systems,

that will be then extended to MCAO in the next chapter.

In Section 2.1, we present the aperture-source geometry used throughout the analytical

derivation. In Section 2.2, we give the expression of the inter-aperture spatial covariance of

the piston-removed phase, that we then use to compute the corresponding spatiotemporal

CPSDs in Section 2.3. In Section 2.4, we use the formalism introduced in Section 2.3

to derive the expression of Zernike coefficients CPSDs. In Section 2.5, we present an

application of CPSDs to analyze anisoplanatism as filtered by a SCAO loop on either a

single-aperture or a two-aperture interferometric telescope. Finally, in Section 2.6, we use

CPSDs to model and analyze atmospheric tip-tilt residuals in SCAO systems.

2.1 Geometry

The aperture-source geometry we consider here is the one introduced in Whiteley et al.

[65], that is reproduced in Fig. 2.1. We have two apertures of radii R1 and R2 (located by

the vectors ra1 and ra2) observing two different sources (located by the vectors rs1 and

rs2) through a turbulent layer at altitude zl . A ray coming from the first (respectively the

second) source and arriving at a point located by the vector R1ΩΩΩ1 (resp. R2ΩΩΩ2) with respect

to the first (resp. the second) aperture center will pass by the point located by q1l (resp.

q2l ) in the aperture footprint in the turbulent layer. The projected vectors q1l and q2l are

expressed as

q1l = (1° A1l )R1ΩΩΩ1 , (2.1)

q2l = (1° A2l )R2ΩΩΩ2 , (2.2)

where A1l and A2l are the layer scaling factors

A1l =
zl ° ra1 · ẑ

(rs1 ° ra1) · ẑ
, (2.3)

A2l =
zl ° ra2 · ẑ

(rs2 ° ra2) · ẑ
. (2.4)
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If ra1 = ra2 = 0, then Eq. (2.3) and Eq. (2.4) simplify into:

A1l =
zl

z1
(2.5)

A2l =
zl

z2
, (2.6)

with z1 and z2 the altitudes of the sources.

Fig. 2.1 Geometry used to compute the spatiotemporal CPSDs.

In the following, we will need to express the vector joining two points of the apertures

footprints in the turbulent layer

¢sl = q2l °q1l +sl , (2.7)

with sl the vector joining the centers of the footprints

sl = ra2 ° ra1 +
zl ° ra2 · ẑ

r0s2 · ẑ
r0s2 °

zl ° ra1 · ẑ
r0s1 · ẑ

r0s1 , (2.8)
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with r0s1 = rs1°ra1
|rs1°ra1| (resp. r0s2 = rs2°ra2

|rs2°ra2| ) the unitary vector from the center of aperture 1

(resp. 2) to source 1 (resp. 2). This formula allows to take into account the case of sources

either at finite or infinite distance. In the following, we derive the covariance of the

piston-removed phase, in order to then find the temporal CPSD of this same quantity.

2.2 Inter-aperture covariance of the piston-removed phase

In this section, we consider the whole phases ¡1 and ¡2 in the respective apertures 1

and 2, without any decomposition on wavefront modes. We define their piston-filtered

covariance as

C¡1,¡2 =E
ΩZ

dΩΩΩ
µ
¡1(R1ΩΩΩ)°

Z
dΩΩΩ0¡1(R1ΩΩΩ

0)P (ΩΩΩ0)
∂

£
µ
¡2(R2ΩΩΩ)°

Z
dΩΩΩ00¡2(R2ΩΩΩ

00)P (ΩΩΩ00)
∂

P (ΩΩΩ)
æ

,
(2.9)

where ΩΩΩ =ΩΩΩ1 =ΩΩΩ2 if one refers to Fig. 2.1. E{ } is the mathematical expectation and P (ΩΩΩ) is

the aperture weighting function:

P (ΩΩΩ) =

8
><
>:

1
º

if |ΩΩΩ|∑ 1

0 otherwise.
(2.10)

We develop Eq. (2.9):

C¡1,¡2 =
Z

dΩΩΩE
©
¡1(R1ΩΩΩ)¡2(R2ΩΩΩ)

™
P (ΩΩΩ)

°
Z

dΩΩΩ
Z

dΩΩΩ0E
©
¡1(R1ΩΩΩ

0)¡2(R2ΩΩΩ)
™

P (ΩΩΩ0)P (ΩΩΩ)

°
Z

dΩΩΩ
Z

dΩΩΩ00E
©
¡1(R1ΩΩΩ)¡2(R2ΩΩΩ

00)
™

P (ΩΩΩ00)P (ΩΩΩ)

+
Z

dΩΩΩ P (ΩΩΩ)
Z

dΩΩΩ0
Z

dΩΩΩ00E
©
¡1(R1ΩΩΩ

0)¡2(R2ΩΩΩ
00)

™

£P (ΩΩΩ0)P (ΩΩΩ00) .

(2.11)

We notice that the second, the third and the last integral are equivalent, given thatR
dΩΩΩ P (ΩΩΩ) = 1. Besides, C¡1,¡2 depends on the phase cross-correlation that, when consid-

ering independent turbulent layers, can be expressed as

E
©
¡1(R1ΩΩΩ1)¡2(R2ΩΩΩ2)

™
=

X

l
B¡l (q1l ,q2l ) , (2.12)
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with q1l and q2l as defined by Eq. (2.1) and Eq. (2.2). Assuming that the turbulent phase is

spatially stationary, the cross-correlation B¡l (q1l ,q2l ) only depends on the vector separat-

ing the two considered points:

B¡l (q1l ,q2l ) = B¡l (¢sl ) = B¡l (q2l °q1l +sl ) . (2.13)

We then have:

C¡1,¡2 =
X

l
C¡1,¡2,l =

X

l

∑
1

R1(1° A1l )

Z
dq1l

£B¡l (q2l °q1l +sl )P
µ

q1l

R1(1° A1l )

∂

° 1
R1R2(1° A1l )(1° A2l )

Z
dq1l

Z
dq0

2l

£B¡l (q0
2l °q1l +sl )P

√
q0

2l

R2(1° A2l )

!

£P
µ

q1l

R1(1° A1l )

∂∏
,

(2.14)

with q0
2l = (1° A2l )R2ΩΩΩ

00. Since ΩΩΩ =ΩΩΩ1 =ΩΩΩ2, we must have:

q2l = (1° A2l )R2ΩΩΩ = (1° A2l )R2

(1° A1l )R1
q1l = K q1l . (2.15)

We evaluate the first integral using the variable change q = (K °1)q1l :

T1 =
1

R1(1° A1l )

Z
dq1l B¡l (q2l °q1l +sl )P

µ
q1l

R1(1° A1l )

∂

= 1
R1(1° A1l )(K °1)

Z
dqB¡l (q+sl )

£P
µ

q
R1(1° A1l )(K °1)

∂
.

(2.16)

Using Parseval’s theorem, we can write T1 as

T1 =
1

R1(1° A1l )(K °1)

Z
df FT{B¡l (q+sl )}§

£FT
Ω

P
µ

q
R1(1° A1l )(K °1)

∂æ
,

(2.17)
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where FT{ } is the Fourier transform (from q to f in this case). The Fourier transform of the

phase correlation is given by Wiener-Khinchin’s theorem

FT
©
B¡l (q+sl )

™
=W¡l (f)exp[2iºf ·sl ] , (2.18)

where W¡l is the spatial power spectrum of the turbulent phase in the layer l , often

assumed to follow Von Karman model [58]

W¡l ( f ) =
∑

24
5
°

µ
6
5

∂∏ 5
6 °

°11
6

¢2

2º
11
3

r
° 5

3
0l

√
f 2 + 1

L2
0

!° 11
6

, (2.19)

with °( ) the gamma function, r0l the Fried parameter for the layer l and L0 the outer scale.

Hence, we finally have

T1 =
Z

df W¡l (f)exp[°2iºf ·sl ]
J1

°
2ºR1(1° A1l )(K °1) f

¢

ºR1(1° A1l )(K °1) f
, (2.20)

with J1 the Bessel function of the first kind and order 1. The second integral to evaluate is

T2 =
1

R1R2(1° A1l )(1° A2l )

Z
dq1l

Z
dq0

2l B¡l (q0
2l °q1l +sl )

£P

√
q0

2l

R2(1° A2l )

!
P

µ
q1l

R1(1° A1l )

∂
.

(2.21)

Again, using Parseval’s and Wiener-Khinchin’s theorems with a Fourier transform on q0
2l ,

we find

T2 =
1

R1(1° A1l )

Z
dq1l

Z
df W¡l (f)exp[2iºf · (q1l °sl )]

£
J1

°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f
P

µ
q1l

R1(1° A1l )

∂
.

(2.22)

When re-ordering the integrals, one finds a Fourier transform in q1l , leading to

T2 =
Z

df W¡l (f)exp[°2iºf ·sl ]
J1

°
2ºR1(1° A1l ) f

¢

ºR1(1° A1l ) f

£
J1

°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f

. (2.23)
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The piston-filtered covariance for the layer l is then

C¡1,¡2,l =T1 °T2 =
Z

df W¡l (f)exp[°2iºf ·sl ]

£
∑

J1
°
2ºR1(1° A1l )(K °1) f

¢

ºR1(1° A1l )(K °1) f

°
J1

°
2ºR1(1° A1l ) f

¢

ºR1(1° A1l ) f

J1
°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f

∏
.

(2.24)

For a single aperture and sources at infinity, the last term of the integral becomes the

classical filter function for piston removal 1°
h

J1(2ºR f )
ºR f

i2
[57] (we remind that J1(0)

0 = 1).

When integrating over the angle, we find

C¡1,¡2,l =2º
Z1

0
f d f W¡l ( f )J0

°
2º f sl

¢

£
∑

J1
°
2ºR1(1° A1l )(K °1) f

¢

ºR1(1° A1l )(K °1) f

°
J1

°
2ºR1(1° A1l ) f

¢

ºR1(1° A1l ) f

J1
°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f

∏
.

(2.25)

2.3 Spatiotemporal cross power spectrum of the piston-

removed phase

We now consider that we observe the first source at a time t = 0 and the second source

at t = ø. Here, we assume a motion of the turbulent layer following Taylor’s frozen flow

hypothesis along the wind vector vl (Fig. 2.1), while the sources and apertures remain

fixed. We can then define the effective footprint separation as a function of ø in the layer l :

s0l (ø) = sl °vlø . (2.26)

The spatiotemporal cross-correlation is then (from Eq. (2.24))

R¡1,¡2,l (ø) =
Z

df W¡l (f)exp[°2iºf ·s0l (ø)]

£
∑

J1
°
2ºR1(1° A1l )(K °1) f

¢

ºR1(1° A1l )(K °1) f

°
J1

°
2ºR1(1° A1l ) f

¢

ºR1(1° A1l ) f

J1
°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f

∏
.

(2.27)
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If ø= 0, one retrieves C¡1,¡2,l . The spatiotemporal CPSD of the piston-removed phase is

the Fourier transform of its cross-correlation:

S¡1,¡2,l (∫) =
Z

dø R¡1,¡2,l (ø)exp[2iº∫ø] , (2.28)

S¡1,¡2,l (∫) =
Z

dø
Z

df W¡l (f)exp[°2iºf ·s0l (ø)]

£
∑

J1
°
2ºR1(1° A1l )(K °1) f

¢

ºR1(1° A1l )(K °1) f

°
J1

°
2ºR1(1° A1l ) f

¢

ºR1(1° A1l ) f

J1
°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f

∏

£exp[2iº∫ø] ,

(2.29)

where ∫ is the temporal frequency. We replace s0l (ø) with sl °vlø:

S¡1,¡2,l (∫) =
Z

df W¡l (f)exp[°2iºf ·sl ]

£
∑

J1
°
2ºR1(1° A1l )(K °1) f

¢

ºR1(1° A1l )(K °1) f

°
J1

°
2ºR1(1° A1l ) f

¢

ºR1(1° A1l ) f

J1
°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f

∏

£
Z

dø exp[2iº(∫+ f ·vl )ø] .

(2.30)

We now consider the components of f, f? and f“, so that f? is orthogonal to vl and f“ is

parallel to vl (see Fig. 2.2). We also define the unitary vector along the wind direction

û = vl
vl

. Equation (2.30) can be written as

S¡1,¡2,l (∫) =
Z

df?

Z
df“ W¡l (f“, f?)exp[°2iºf ·sl ]

£
∑

J1
°
2ºR1(1° A1l )(K °1) f

¢

ºR1(1° A1l )(K °1) f

°
J1

°
2ºR1(1° A1l ) f

¢

ºR1(1° A1l ) f

J1
°
2ºR2(1° A2l ) f

¢

ºR2(1° A2l ) f

∏

£
Z

dø exp
∑

2iº
µ
∫

vl
+ f“ · û

∂
vlø

∏
.

(2.31)

The last integral is a Dirac function. If we consider that f“ is positive when f“ is pointing
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Fig. 2.2 Vectors and angles defined in the CPSD computation. Two lines represent the loci of
f ·vl = ∫ (dashed line on right-hand side) and f ·vl =°∫ (solid line), considering a positive ∫. For a
given frequency, the Dirac defined in Eq. (2.32) reduces the CPSD expression to the sum of 2 points,
either on the left or the right side of the figure, that are indicated by f and the dashed vectors. In
this figure, we have f = f1 (see Eq. (2.33)).

towards the same direction as vl and negative otherwise, then:

Z
dø exp

∑
2iº

µ
∫

vl
+ f“ · û

∂
vlø

∏
= 1

vl

Z
dt exp

∑
2iº

µ
∫

vl
+ f“

∂
t
∏

= 1
vl
±

µ
f“+

∫

vl

∂
,

(2.32)

where we made the variable change t = vlø. We also define the sign of f?: it is positive

when the cross product vl £ f? points towards the reader, and negative otherwise. Hence,

replacing f“ with ° ∫
vl

and considering both signs for f?, we find two frequency vectors that
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satisfy the Dirac condition, f1 and f2, with a norm f = f1 = f2 =
r

f 2
?+

≥
∫
vl

¥2
and respective

angles µ1 = µ0 +µvl and µ2 =°µ0 +µvl , with µ0 = acos
≥

f“
f

¥
= acos

≥
° ∫

f vl

¥
and µvl the angle

between vl and the X axis. Equation (2.31) then becomes

S¡1,¡2,l (∫) = 1
vl

Z1
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æ
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(2.33)

By definition, W¡l is a radial quantity, so W¡l

≥
° ∫

vl
, f?

¥
=W¡l

≥
° ∫

vl
,° f?

¥
=W¡l ( f ). We can

thus write the final expression of the piston-removed phase CPSD as

S¡1,¡2,l (∫) = 1
vl
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0
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°2iº f sl cos(µ1 °µsl )
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°2iº f sl cos(µ2 °µsl )

§o
,

(2.34)

with µsl the angle between sl and the X axis. We can also write the CPSD value at the

corresponding negative frequency:

S¡1,¡2,l (°∫) = 1
vl

Z1
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d f? W¡l ( f )
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°2iº f sl cos(µ4 °µsl )

§o
,

(2.35)

with µ3 =º+µ1 =º+µ0 +µvl and µ4 =º+µ2 =º°µ0 +µvl .

One can easily show that S¡1,¡2,l (°∫) is the conjugate of S¡1,¡2,l (∫). We then haveR1
°1d∫S¡1,¡2,l (∫) =

R1
0 d∫S0

¡1,¡2,l (∫) = C¡1,¡2,l , with S0
¡1,¡2,l (∫) = 2Re

£
S¡1,¡2,l (∫)

§
, where
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Re[ ] is the real part, that is:
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(2.36)

Using the classical trigonometry formulas for the combination of sinusoids, we can write

Eq. (2.36) as

S0
¡1,¡2,l (∫) = 4
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or equivalently:
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(2.38)

with ¢µ = µvl °µsl .

In Fig. 2.3, we show the CPSD of the piston-removed phase as derived from Eq. (2.38).

We considered a single-layer turbulent profile with r0 = 16 cm, L0 =1, zl = 10 km, vl = 10

m/s, µvl = 0± and both a single 8-m aperture and two 8-m apertures looking at one source

at infinity. We retrieve the ∫°8/3 power law at high frequencies, as shown in Section 1.1.3

for the full turbulent phase (the piston contribution is negligible at high frequencies). At

low temporal frequencies, we get a ∫°2/3 power law that reflects the major contribution of

tip-tilt due to the piston filtering. We also note that the frequencies ∫0, representing the

transition from correlation to anti-correlation (and vice versa), show a dependence on the
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apertures separation. From the formula, we also find a dependence on the wind velocity

and ¢µ. The complete expression is: ∫0 =
1
4

vl

sl

1
cos(¢µ)

(1+2k), for any integer k.

In Appendix A.1, we verify our results through a comparison with end-to-end simula-

tions.

Fig. 2.3 CPSD of the piston-removed phase plotted in logarithmic (top) and linear (bottom) scales,
for one aperture (green) and two apertures with a separation of 10 m (orange) and 20 m (blue)
along the x-axis. The source is at (0", 0±, 1) in cylindrical coordinates.
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2.4 Spatiotemporal cross power spectrum of Zernike coeffi-

cients

We now use the geometry introduced in Fig. 2.2 to develop Whiteley et al.’s [65] equation

describing the spatiotemporal CPSD of the Zernike coefficients:

Sa1 j ,a2k ,l (∫) =
Z

dø
Z

df W¡l (f)exp[°2iºf ·s0l (ø)]

£Q j (R1(1° A1l )f)Q§
k (R2(1° A2l )f)exp[2iº∫ø] ,

(2.39)

where a1 j and a2k are the coefficients representing, respectively, the phases ¡1 and ¡2 in

the apertures 1 and 2:

a1 j =
Z

dΩΩΩ1¡1(R1ΩΩΩ1)Z j (ΩΩΩ1)P (ΩΩΩ1) , (2.40)

a2k =
Z

dΩΩΩ2¡2(R2ΩΩΩ2)Zk (ΩΩΩ2)P (ΩΩΩ2) , (2.41)

and Q j (f) is the Fourier transform of Z j (ΩΩΩ)P (ΩΩΩ):

Q j ( f ,µ) =i m j
q

n j +1(°1)(n j°m j )/2
p

2
1°±m j 0

£
Jn j+1(2º f )

º f
cos

n
m jµ+

º

4
(1°±m j 0)[(°1) j °1]

o
,

(2.42)

with n j and m j the radial and azimuthal orders of Z j and ±m j 0 the Kronecker delta (= 1 if

m j = 0, = 0 otherwise).

Following the reasoning in Section 2.3, we find:

Sa1 j ,a2k ,l (∫) = 1
vl

Z1

0
d f? W¡l ( f )

h
exp[°2iºf1 ·sl ]

£Q j (R1(1° A1l )f1)Q§
k (R2(1° A2l )f1)

+exp[°2iºf2 ·sl ]Q j (R1(1° A1l )f2)

£Q§
k (R2(1° A2l )f2)

i
.

(2.43)

We now replace the expressions of Q j and Q§
k from Eq. (2.42), in order to find the final
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formula of Zernike coefficients CPSD. We obtain:

Sa1 j ,a2k ,l (∫) = (°1)mk i n j+nk
q
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(2.44)

In the specific case of one aperture of radius R, one source only at infinity, j = k and a

wind along the X axis, we have:

Sa j ,a j ,l (∫) =
°
n j +1

¢ 22°±m j 0

vlº2R2

Z1

0

d f?
f 2 W¡l ( f )Jn j+1

°
2ºR f

¢2

£cos2
n

m jµ0 +
º

4
(1°±m j 0)[(°1) j °1]

o
,

(2.45)

that is equivalent to the combination of Eqs.(8) and (27) in Conan et al. [13], with f? = fy .

Keeping the same assumptions, we also derive the PSD of the differential piston be-

tween two apertures of same radius. Assuming a homogeneous and isotropic turbulence,

one can demonstrate that this PSD is equal to (with j = k = 1 for the piston)

Sd pi st ,l (∫) = Sa11,a11,l (∫)°Sa11,a21,l (∫)°Sa21,a11,l (∫)+Sa21,a21,l (∫)

= 2
©
Sa11,a11,l (∫)°Re

£
Sa11,a21,l (∫)

§™
,

(2.46)

that is

Sd pi st ,l (∫) = 4
vlº2R2

Z1

0

d f?
f 2 W¡l ( f )J1

°
2ºR f

¢2 [1°cos(2º f sl )] , (2.47)

hence

Sd pi st ,l (∫) = 8
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d f?
f 2 W¡l ( f )J1

°
2ºR f

¢2 sin
µ
º∫

sl
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∂2

, (2.48)

which is equivalent to Eq. (19) in Conan et al. [13] with sl = B .
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As in section 2.3, we also compute S0
a1 j ,a2k ,l , defined in the same way as S0

¡1,¡2,l . Indeed,

in this case as well, one can verify that Sa1 j ,a2k ,l (°∫) = Sa1 j ,a2k ,l (∫)§. The expression of

S0
a1 j ,a2k ,l depends on the parity of n j +nk :

• if n j +nk is even:
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(2.49)

• if n j +nk is odd:
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(2.50)
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We derive the general formula:
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(2.51)

In Fig. 2.4, we show the CPSDs of tip-tip ( j = 2, k = 2) and tip-defocus ( j = 2, k = 4).

In Fig. 2.5, we show the CPSDs of coma-coma ( j = 8, k = 8) and coma-tip ( j = 8,

k = 2). We used the same parameters as in Fig. 2.3. The curves behavior is in agreement

with Conan et al. [13], indeed we retrieve the following power-laws: ∫°17/3 at the high

frequencies for both S0
2,2 and S0

8,8 and, at the low frequencies, ∫°2/3 for S0
2,2 and ∫+2 for

S0
8,8. The CPSDs zeros are at ∫0 =

1
2

vl

sl

Ω
1
2
° 1

4

£
(°1)n j+nk °1

§
+k

æ
, for any integer k. This

expression holds only for ¢µ = 0, as we were unable to derive a general expression for

¢µ 6= 0. It is also worth noting that the cutoff frequency of Zernike temporal PSD derived

in Conan et al. and reported in Eq. (1.43) is still valid for CPSDs.

In Appendix A.1, we verify our results through a comparison with end-to-end simula-

tions.

2.5 A first application of CPSDs: time-filtered anisopla-

natism in a SCAO loop

In this section, we propose an analytical method that requires the CPSDs to estimate

the wavefront residuals that are left by a SCAO system sensing the turbulence-induced

distortions from an off-axis reference star. The approach allows to estimate residuals that
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Fig. 2.4 CPSD of tip-tip (top) and tip-defocus (bottom), plotted in logarithmic (left) and linear
(right) scales. The aperture-source configuration and the turbulence profile are the same as Fig. 2.3.

Fig. 2.5 CPSD of coma-coma (top) and coma-tip (bottom), plotted in logarithmic (left) and linear
(right) scales. The aperture-source configuration and the turbulence profile are the same as Fig. 2.3.
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are due to anisoplanatism, to temporal filtering of the AO control and to WFS noise. We

neglect other sources of error (fitting error, aliasing error, ...), as they are beyond the scope

of our application.

Though some approaches consider the correlation between anisoplanatism and tem-

poral errors [80–83], these two terms are often studied separately [20, 21, 34, 77–79]. The

former is usually evaluated from the covariances of the turbulent phase [21, 77, 85]. The

latter is determined from the AO control filtering of the temporal Power Spectral Density

(PSD) of the turbulence (Eq. (6.36) in Madec [20]) and it represents the error left on the

guide star. Through the CPSDs though, we are able to study the temporal and the spatial

errors together and estimate anisoplanatism as affected by the temporal filtering of the

adaptive optics correction.

In the following, we develop these computations and we show the difference between

the anisoplanatism error as computed through the covariances or using the CPSDs. We

consider either a single-aperture or a two-aperture interferometric telescope.

2.5.1 Time-filtered anisoplanatism for a single-aperture telescope

We consider an aperture observing a target on axis and sensing the phase aberrations

from an off-axis NGS.

The residual phase on target is given by the difference between the turbulent phase on

target and the correction phase estimated from the NGS:

¡Ær es(∫) =¡Ætur b(∫)°¡cor r (∫) , (2.52)

where Æ identifies the direction of the target. The correction phase can be derived as

¡a(∫) =¡µtur b(∫)°¡µr es(∫)

=¡µtur b(∫)°Hr (∫)¡µtur b(∫)+Hn(∫)¡n(∫)

= Hn(∫)
≥
¡µtur b(∫)+¡n(∫)

¥
.

(2.53)

where ¡µtur b is the turbulent phase in the direction of the NGS, ¡n is the WFS noise, Hn is

the NTF and where we used Eq. (1.53) to express ¡µr es . Substituting Eq. (2.53) in Eq. (2.52)

leads to:

¡Ær es(∫) =¡Ætur b(∫)°Hn(∫)
≥
¡µtur b(∫)+¡n(∫)

¥

= (Hr (∫)+Hn(∫))¡Ætur b(∫)°Hn(∫)¡µtur b(∫)°Hn(∫)¡n(∫)

= Hr (∫)¡Ætur b(∫)+Hn(∫)
≥
¡Ætur b(∫)°¡µtur b(∫)°¡n(∫)

¥
,

(2.54)
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where ¡Ætur b is the turbulent phase in the direction of the target and where we used

the relationship for the transfer functions defined in Eq. (1.56). It is worth noting that

anisoplanatism, described in the equation by the difference between ¡Ætur b and ¡µtur b , is

filtered as a noise by the AO loop.

From Eq. (2.54), we can compute the temporal PSD of the phase residuals on target as

SÆr es(∫) =
D
¡Ær es(∫) ¡Ær es(∫)†

E

= |Hr (∫)|2Stur b(∫)+|Hn(∫)|2Sn(∫)+2Re
h

Hn(∫)
≥
Stur b(∫)°Sµ,Æ

tur b(∫)
¥i

,
(2.55)

where
≠
·
Æ

is the mean, Stur b is the PSD of the turbulence, SÆ,µ
tur b is the CPSD between the

phase on the NGS and the phase on target and where we assumed no correlation between

noise and turbulent phase. By assuming homogeneous and isotropic atmospheric tur-

bulence, we considered SÆ,Æ
tur b = Sµ,µ

tur b = Stur b and SÆ,µ
tur b = Sµ,Æ

tur b . The formula has been

verified through a comparison with end-to-end simulations (see Appendix A.2). The first

two terms of the equation represent the residual PSD left in the direction of the NGS (see

Eq. (1.57)):

Stemp (∫) = |Hr (∫)|2Stur b(∫)+|Hn(∫)|2Sn(∫) , (2.56)

where Stemp denotes the residual PSD due to the temporal error. The last two terms

represent the residual PSD due to anisoplanatism as filtered by the AO control:

Sani so(∫) = 2Re
h

Hn(∫)
≥
Stur b(∫)°Sµ,Æ

tur b(∫)
¥i

, (2.57)

where Sani so denotes the residual PSD due to anisoplanatism. If the latter is integrated

with respect to the temporal frequencies, it provides the anisoplanatism error

æ2
ani so =

Z
d∫ 2Re

h
Hn(∫)

≥
Stur b(∫)°Sµ,Æ

tur b(∫)
¥i

, (2.58)

that is generally computed through the spatial covariances of the phase as [21, 77, 85]

æ2
ani so = 2

∑
(ætur b)2 °

≥
æµ,Æ

tur b

¥2
∏

. (2.59)

In Fig. 2.6, we investigate the difference between the anisoplanatism error computed

through the CPSDs (Eq. (2.58)) or through the covariances (Eq. (2.59)). We show the results

for the phase and we use Eq. (2.38) to compute the CPSDs, in order to limit the integration

to the temporal frequency range [0,1) and thus gain computation time. As a case study,

we considered the LBT [86] observing with one of the two 8.2-m pupils and compensating
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the turbulence-induced distortions through a SCAO correction, where the control is a pure

integrator with ∫loop = 500 Hz, g = 0.2 and d = 2 (d is the delay in frames). The turbulence

profile we used to compute the CPSDs is a four-layer profile taken from Agapito et al.

[87]. The parameters are shown in Table 2.1. We computed every CPSD as sum of the

Height [m] 103 725 2637 11068

C 2
N fraction 0.70 0.06 0.14 0.10

Wind speed [m/s] 2 4 6 25

Seeing [arcsec] 0.66

Zenith angle [±] 40

Table 2.1 Parameters of the atmospheric turbulence profile. The seeing and layer altitudes are
given at zenith and are scaled with respect to the airmass in the simulation.

single-layer CPSDs, assuming that the phase perturbations at each layer are not correlated.

As expected, the anisoplanatism error computed through the CPSD method is smaller

than the one computed through the covariances, as it includes the temporal filtering by

the AO control. We note that this behavior is valid within the whole range of L0, which is

between limit values of 1 m and 1. For the typical values (10 m - 50 m), measuring the

anisoplanatism error through the covariances leads to an overestimation of º 40 nm at º
2" off axis.

2.5.2 Time-filtered anisoplanatism for an interferometric telescope

We now consider a two-aperture interferometric telescope. The off-axis NGS is needed to

sense the differential phase between the two sides of the telescope, that is the signal to be

minimized in interferometric observations.

In this case, we have to determine the residual PSD from the difference between the

residual phases on the two sides of the interferometer. Thus, we define the temporal PSD

in the direction of the target as

SÆr es(∫) =
D°
¡Æ1

r es(∫)°¡Æ2
r es(∫)

¢ °
¡Æ1

r es(∫)°¡Æ2
r es(∫)

¢†
E

= 2
Ω
|Hr (∫)|2

≥
Stur b(∫)°Sµ1,µ2

tur b (∫)
¥

+2Re
h

Hn(∫)
≥
Sµ1,Æ1

tur b (∫)°Stur b(∫)
¥i

+Re
h

Hn(∫)
≥
2Sµ1,µ2

tur b (∫)°Sµ1,Æ2
tur b (∫)°Sµ2,Æ1

tur b (∫)
¥iæ

,

(2.60)
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Fig. 2.6 Difference between the anisoplanatism error computed through the CPSD or with the
covariance method, as a function of the angular off-axis distance of the NGS and for several values
of the turbulence outer scale. The assumed telescope is the LBT.

where ¡Æ1
r es and ¡Æ2

r es are the residual phases on the first and the second aperture of the

interferometer, both given by Eq. (2.54), Stur b is the PSD of the turbulent phase in a given

line of sight seen by a single aperture and S
xi ,y j

tur b is the CPSD between the turbulent phases

seen from two directions (x, y) by two apertures (i , j ). Here, x and y can either be µ

for the NGS or Æ for the target. By assuming homogeneous and isotropic atmospheric

turbulence, we used the following relationships for the CPSDs: SÆ1,Æ1
tur b = SÆ2,Æ2

tur b = Sµ1,µ1
tur b =

Sµ2,µ2
tur b = Stur b , SÆ1,µ1

tur b = SÆ2,µ2
tur b , SÆ1,Æ2

tur b = SÆ2,Æ1
tur b = Sµ1,µ2

tur b = Sµ2,µ1
tur b , SÆ1,µ2

tur b = Sµ2,Æ1
tur b . The two AO

systems equipping each side of the interferometer work independently from one another,

but as they see the same atmospheric conditions and the same star, we assumed that

they have the same control law (e. g. the same integrator gain and delay), hence they

are characterized by the same RTF and NTF. As in the single-aperture case, we note that

the first two terms represent the residual PSD left in the direction of the NGS, while the

last five terms, if integrated on the temporal frequencies, represent the anisoplanatism

error as filtered by the AO loops. This last source of error is usually computed through the

spatial covariances of the phase, as we find in Esposito et al. [88]. The formula, presented
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for the differential piston errors but still valid for the differential phase in general, is

æ2
ani so = 2

∑
2(ætur b)2 °2

≥
æÆ1,µ1

tur b

¥2
°2

≥
æµ1,µ2

tur b

¥2
+

≥
æÆ1,µ2

tur b

¥2
+

≥
æÆ2,µ1

tur b

¥2
∏

. (2.61)

In Fig. 2.7, we show the difference between the anisoplanatism error computed

through the CPSDs or through the covariances. As an interferometric telescope, we

considered the LBTI, that is characterized by two 8.2-m pupils and a center-to-center

distance of 14.4 m. We used the same parameters as in the previous paragraph for the

AO loop and the turbulence profile. As in the single-aperture case, we note that the AO

temporal filtering has a significant effect in reducing the contribution of anisoplanatism,

with a difference greater than 200 nm at 10" off axis for typical L0 values. This applica-

Fig. 2.7 Difference between the anisoplanatism error computed through the CPSD or with the
covariance method, as a function of the angular off-axis distance of the NGS and for several values
of the turbulence outer scale. The assumed interferometric telescope is the LBTI.

tion shows that the two beams of a small-baseline interferometer are likely to be highly

correlated. This correlation between adjacent beams can be of interest for the study of

segmented telescopes. For example, the Giant Magellan Telescope (GMT) [74], that has a

primary composed of 7 segments and a deformable secondary segmented in the same

way, could be considered as a 7-aperture interferometer, since each pair primary segment

- secondary segment is equivalent to one side of the LBT.
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2.6 Residual tip-tilt in SCAO-assisted astrometric observa-

tions

The analysis carried out in Section 2.5.1 on the piston-filtered phase anisoplanatism can

be applied to tip-tilt as well. Indeed, considering the CPSDs of Zernike modes derived in

Section 2.4, Eq. (2.55) can be specialized to tip and tilt and provide tip-tilt residual PSD

in a direction Æ of the field of view in case of an off-axis NGS at position µ. The residual

variance can be evaluated as well, through the integration of Eq. (2.55) over temporal

frequencies:

°
æÆr es

¢2 =
Z

d∫
n
|Hr (∫)|2Stur b(∫)+|Hn(∫)|2Sn(∫)+2Re

h
Hn(∫)

≥
Stur b(∫)°Sµ,Æ

tur b(∫)
¥io

.

(2.62)

In the following, we analyze tip-tilt residuals from a SCAO loop on a single-aperture

telescope.

2.6.1 Characterization of tip-tilt PSDs

PSD of turbulent tip-tilt

The CPSDs (and PSDs) of Zernike modes derived in Section 2.4 allow to consider either

Kolmogorov or Von Karman profiles of turbulence, as well as either single-layer or multi-

layer profiles with generic wind direction. The temporal PSDs computed in Conan et al.

[13], and reported in Section 1.1.3, are instead limited to the case of Kolmogorov model of

turbulence and, in the analysis of a single-layer profile, to a wind direction along the x

axis. Under these assumptions, tip-tilt temporal PSDs have been demonstrated to follow a

∫°2/3 law at low temporal frequencies.

In Fig. 2.8, we show tip-tilt temporal PSDs derived for a single-layer Von Karman

turbulence profile, with wind direction either along the x axis or along the y axis. The plots

show a different behavior at low temporal frequencies with respect to the Kolmogorov

assumption, the behavior of each mode depending on the wind direction.

In real cases, multi-layer Von Karman turbulence profiles have to be taken into account

and the dependence on the wind direction is almost canceled out. Indeed, the effect due to

different wind directions of the layers averages out, unless there is a particularly dominant

layer. This is shown in Fig. 2.9, where tip-tilt temporal PSDs are derived for the 35-layers

ELT median profile reported in Sarazin et al. [89]. Both tip and tilt curves show a flat

behavior at low temporal frequencies. Moreover, it is worth noting that in this case the
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Fig. 2.8 Temporal PSDs of tip (solid blue line), tilt (solid orange line) and the sum of tip and tilt
(dotted black line) for a single-layer profile with wind direction of 0± (top) and 90± (bottom), wind
speed of 10 m/s, r0 = 16 cm, L0 = 25 m, zenith angle of 0±. The aperture diameter is 40 m.

Fig. 2.9 Temporal PSDs of tip (solid blue line), tilt (solid orange line) and the sum of tip and tilt
(dotted black line) for the multi-layer profile of Sarazin et al. [89], with mean wind speed of 9.2
m/s, r0 = 16 cm, L0 = 25 m, zenith angle of 0±. The aperture diameter is 40 m.
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cutoff frequency of tip-tilt temporal PSDs can be approximately still evaluated as

∫c º 0.6vm/D , (2.63)

where, considering Eq. (1.43), the mean wind speed vm (given in Eq. (1.11)) has replaced

the single-layer wind speed and where we considered n = 1 for tip and tilt.

PSD of residual tip-tilt

We now specialize to multi-layer turbulence profile and we analyze tip-tilt residual PSDs

from Eq. (2.55), and the contribution of temporal and anisoplanatic errors from, respec-

tively, Eq. (2.56) and Eq. (2.57). We do not consider noise.

In Fig. 2.10, we show the total residual PSD, as well as the ones due to temporal and

anisoplanatic errors, for three different angular separations between the GS and the

science object. The plots show, as expected, the contribution of only the temporal error

to the residual PSD when the target corresponds to the GS (d = 0"). In this case, the flat

behavior of the input PSD is filtered by the RTF and the amount of filtered power depends

on the AO control (e.g. loop frequency frame rate). For larger separations, an increasing

contribution of the anisoplanatic error is observed. In particular, it is worth noting that

the flat behavior at low frequencies is conserved. This derives from the fact that, as shown

in Eq. (2.57), anisoplanatism is filtered by the NTF, which acts as a low-pass filter.

This characterization will help explain tip-tilt residuals dependence on the integration

time of the scientific exposure, that will be analyzed in Section 4.4.

2.6.2 Tip-tilt residuals and differential tilt jitter

In the context of AO-assisted astrometric observations, in Section 1.4.1 we showed that tip-

tilt residuals can affect astrometric precision on distance measurements through tip-tilt

anisoplanatic error and differential tilt jitter error. Here we present our first understanding

to model the two effects, that will be applied in the next chapters to MCAO as well.

Tip-tilt anisoplanatic error is directly given by tip-tilt residual phase in Eq. (2.52), thus

represents the difference between the turbulent phase on the target and the correction

phase estimated from the GS. It depends on the AO control; if the AO control is ideal

(i.e. Hr = 0, Hn = 1, no noise), as assumed in Sandler et al.’s [21] formulation presented

in Section 1.2.6, the correction phase is exactly the turbulent phase in the direction of

the GS and the residual phase becomes the difference between the turbulent phases in

the two directions. On the other hand, differential tilt jitter represents the difference

between the residual phases for any pair of astrometric targets in the FoV; since, in the



66 Spatiotemporal statistics of the turbulent phase

Fig. 2.10 Temporal PSDs of tip-tilt residuals (dotted black line) and of the only contribution of
temporal error (solid blue line) and anisoplatic error (solid orange line). The sum of tip and tilt is
considered. The curves are obtained with three values of the target-GS angular separation: d = 0"
(top), 1" (center), 10" (bottom). The spectra are computed with the multi-layer profile of Sarazin et
al. [89], with mean wind speed of 9.2 m/s, r0 = 16 cm, L0 = 25 m, zenith angle of 0±. The aperture
diameter is 40 m.
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SCAO case, the correction phase is common to all directions of the FoV, the difference

between residual phases becomes the difference between turbulent phases. Thus, for two

targets at positions Æ and Ø, the differential tilt jitter phase is

¡
Æ,Ø
DT J (∫) =¡Ær es(∫)°¡Ør es(∫)

=
≥
¡Ætur b(∫)°¡cor r (∫)

¥
°

≥
¡
Ø
tur b(∫)°¡cor r (∫)

¥

=¡Ætur b(∫)°¡Øtur b(∫) .

(2.64)

For the sake of completeness, we also derive the differential tilt jitter PSD:

SÆ,Ø
DT J (∫) =

D
¡
Æ,Ø
DT J (∫) ¡Æ,Ø

DT J (∫)†
E

=
ø≥
¡Ætur b(∫)°¡Øtur b(∫)

¥≥
¡Ætur b(∫)°¡Øtur b(∫)

¥†
¿

= 2
≥
Stur b(∫)°SÆ,Ø

tur b(∫)
¥

,

(2.65)

where, assuming homogeneous and isotropic turbulence, we considered SÆ,Æ
tur b = SØ,Ø

tur b =
Stur b . The differential tilt jitter variance is then

≥
æ
Æ,Ø
DT J

¥2
= 2

Z
d∫

≥
Stur b(∫)°SÆ,Ø

tur b(∫)
¥

. (2.66)

Thus, in SCAO configurations, residual tip-tilt and differential tilt jitter are equivalent

in case an "ideal" AO control is considered, as we find in the literature (e.g. Sandler’s

et al. [21]). In case a real AO control is taken into account, the contribution of the AO

temporal error is also included and it will be dominant at small angular target-NGS

separations where anisoplanatism is not relevant. This behavior is shown in Fig. 2.11,

where we consider two values of the loop frequency frame rate, 100 Hz and 1000 Hz. In

the "slow" loop case, it can be seen the contribution of the AO temporal error at small

angular distances where anisoplanatism is not the dominant factor. The errors derived

from Sandler et al.’s equations are shown for comparison.

In Fig. 2.12, we show another comparison between Sandler’s formula and Eq. (2.62),

where we consider Von Karman turbulence profile. We assume two values of the outer

scale, L0 = 25 m and 50 m. The curves show larger values of tip-tilt residuals obtained from

Sandler’s equations, as they are limited to Kolmogorov spectrum of turbulence, that is, to

infinite outer scale that brings a larger amount of power into tip-tilt components. Smaller

the outer scale, larger the difference.
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Fig. 2.11 Tip (blue)-tilt (red) residual from SCAO correction, as a function of the angular separation
between the NGS and the science target. Solid lines are obtained from Sandler et al.’s equations
(reported in Eq. (1.74)) and dotted lines are obtained from Eq. (2.62) applied to tip and tilt modes.
For the latter case, two values of the loop frequency frame rate are considered: 100 Hz (top)
and 1 kHz (bottom). The NGS-target separation is considered along the x-axis, so as Sandler’s
longitudinal and lateral errors correspond to, respectively, tip and tilt errors. A telescope with
aperture of D = 40 m is considered. A single-layer Kolmogorov turbulence profile is used, with r0 =
16 cm, µ0 = 1 arcsec, wind speed of 10 m/s and altitude of 10 km.
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Fig. 2.12 Tip (blue)-tilt (red) residual from SCAO correction, as a function of the angular separation
between the NGS and the science target. Solid lines are obtained from Sandler’s equations (reported
in Eq. (1.74)) and dotted lines are obtained from Eq. (2.62) applied to tip and tilt modes. For the
latter case, Von Karman atmospheric profile has been considered, with outer scale L0 = 25 m
(top) and 50 m (bottom). The other atmospheric parameters, as well as telescope and sources
configuration, are the same as Fig. 2.11. The loop frequency frame rate is 1 kHz.





Chapter 3

Temporal power spectral density of MCAO

residuals

In this chapter, we present an analytical formulation to derive the temporal PSD of the

residual phase from an MCAO correction in a generic direction of the scientific field of

view. This has been object of publication in Carlà et al. [53]. The method is based on the

approach presented in Section 2.5 to compute wavefront residuals in a SCAO configu-

ration and is extended to the MCAO case. The formulas allow to estimate tomographic,

noise and temporal errors.

In the following, we consider the configuration in Fig. 3.1: the target is at positionÆ and

the guide stars are at positions µ = [µ1,µ2, ...,µN ] with respect to the axis of the telescope.

The light from the sources passes through Nl layers of atmospheric turbulence before

arriving at the pupil of the telescope. We assume the turbulent layers to follow Taylor’s

frozen flow hypothesis. We consider the turbulence-induced distortions as decomposed

on to wavefront modes (e.g. Zernike modes) and measured by N wavefront sensors,

each sensing n modes, and corrected by M deformable mirrors, optically conjugated at

altitudes hM
j=1 and compensating for a total of m =PM

k=1 mk modes. We will denote the

turbulent and residual phase in the direction of the target as ¡Ætur b and ¡Ær es respectively,

the turbulent and residual phase in the direction of the guide stars as ¡µtur b and ¡µr es

respectively and the phase applied on the deformable mirrors as ¡DM . It follows that

¡Ætur b and ¡Ær es are vectors of n elements, ¡µtur b and ¡µr es are vectors of (n ·N ) elements

and ¡DM is a vector of m elements.
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Fig. 3.1 Scheme of the system geometry. In the example, there are two DMs conjugated at h1 (DM1)
and h2 (DM2) and one at the ground layer (DM0), two guide stars at coordinates µGS1 and µGS2

and the scientific target at Æ. The wavefront distortion is measured by WFS1 and WFS2 looking at
GS1 and GS2, respectively.

3.1 Temporal transfer functions of an MCAO loop

We write the residual phase along µ as

¡µr es(∫) =¡µtur b(∫)°¡µcor r (∫)

=¡µtur b(∫)°Pµ
DM¡DM (∫) ,

(3.1)

where ∫ is the temporal frequency and Pµ
DM is a matrix of size (n ·N )£m that projects

onto the pupil the modes on the DMs as seen in the directions µ.

We define ¡DM as

¡DM (∫) = Hol (∫)W
≥
¡µr es(∫)+¡n(∫)

¥
, (3.2)
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where Hol is the open-loop transfer function of the AO feedback loop, W is the reconstruc-

tion matrix, with dimension m£(n ·N ), relating the modes measured by the WFSs and the

ones to be applied by the DMs and ¡n(∫) is the WFSs measurement noise on the modes.

We assumed ideal WFSs, meaning that they perform a direct measurement of the phase.

We replace Eq. (3.2) in Eq. (3.1):

¡µr es(∫) =¡µtur b(∫)°Pµ
DM Hol (∫)W

≥
¡µr es(∫)+¡n(∫)

¥
, (3.3)

we group the terms related to ¡µr es :

≥
I d +Pµ

DM Hol (∫)W
¥
¡µr es(∫) =¡µtur b(∫)°Pµ

DM Hol (∫)W¡n(∫) , (3.4)

where I d is an (n ·N )£ (n ·N ) identity matrix, and we obtain an expression of the residual

phase on the guide stars:

¡µr es(∫) =
≥
I d +Pµ

DM Hol (∫)W
¥°1

¡µtur b(∫)

°
≥
I d +Pµ

DM Hol (∫)W
¥°1

Pµ
DM Hol (∫)W¡n(∫)

= Hr (∫)¡µtur b(∫)°Hn(∫)¡n(∫) ,

(3.5)

where we have defined

Hr (∫) =
≥
I d +Pµ

DM Hol (∫)W
¥°1

(3.6)

as the RTF and

Hn(∫) =
≥
I d +Pµ

DM Hol (∫)W
¥°1

Pµ
DM Hol (∫)W (3.7)

as the NTF of the MCAO loop. Both are matrices of dimension (n ·N )£(n ·N ). The extended

form of Eq. (3.5) is

0
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¡µ2
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...

¡µN
r es

1
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0
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1
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0
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tur b
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¡µN
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1
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BBBBB@

(Hn)11 (Hn)12 . . . (Hn)1(n·N )
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...

...

(Hn)(n·N )1 (Hn)(n·N )2 . . . (Hn)(n·N )(n·N )

1
CCCCCA

0
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¡µ1
n

¡µ2
n
...

¡µN
n

1
CCCCCA

,

(3.8)
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where ¡µi
r es , ¡µi

tur b and ¡µi
n are vectors of n elements (i = 1, ..., N ) and where we omitted the

dependence on temporal frequency. It is worth noting that Eq. (3.5) has the same form of

Eq. (1.53) that holds for the SCAO case, but it includes a dependence on the tomographic

reconstruction through RTF and NTF. If taking the SCAO limit of Eq. (3.6) and Eq. (3.7),

Pµ
DM and W become equal to one and the classical definitions of RTF (given in Eq. (1.54))

and NTF (given in Eq. (1.55)) are retrieved.

In Fig. 3.2, we show the diagonal terms of the RTF matrix for three different asterisms

of three NGSs, where each NGS is used to measure tip and tilt. In this case, ¡µi
r es , ¡µi

tur b

and ¡µi
n are vectors of two elements (i.e. ¡µr es , ¡µtur b and ¡n are vectors of six elements)

and the coefficients (Hr )i j and (Hn)i j are vectors of two elements. The diagonal term

(Hr )i i represents the rejection function of tip and tilt modes acting on the turbulent

wavefront from the i th NGS. The plots show a different rejection of tip and tilt on each

NGS depending on the geometry of the asterism. Our understanding is that the signal

from the better sensed mode is more rejected, where the better measurement depends

on the amount of overlap between NGSs footprints. For instance, the first row of the plot

shows a better rejection of tip for the NGS at 0± and of tilt for the NGSs at 120± and 240±: at

the first direction, the major overlap occurs along the x axis, thus tip is better sensed and

more rejected; at the other two directions, the major overlap occurs along the y axis, thus

the rejection is better on tilt.

In Fig. 3.3, we show the diagonal terms of the NTF matrix for the same configuration

of Fig. 3.2 and we observe the opposite behavior with respect to the RTF case. This is

compatible with the trade-off between RTF and NTF characterizing AO loops: the better

the disturbance is rejected, the more the noise is propagated within the loop.

Finally, we can replace Eq. (3.5) in Eq. (3.2) and we get

¡DM (∫) = Hol (∫)W
≥
Hr (∫)¡µtur b(∫)°Hn(∫)¡n(∫)+¡n(∫)

¥

= Hol (∫)W Hr (∫)
≥
¡µtur b(∫)+¡n(∫)

¥

= Hn,tomo(∫)
≥
¡µtur b(∫)+¡n(∫)

¥
,

(3.9)

where we used the relation Hr (∫)+Hn(∫) = I d , as derived from the sum of Eq. (3.6) and

Eq. (3.7), and where we defined the matrix

Hn,tomo(∫) = Hol (∫)W Hr (∫) (3.10)
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Fig. 3.2 RTF for an MCAO loop as a function of temporal frequencies, as obtained from Eq. (3.6).
The three rows represent three equilateral asterisms, all with radius of 40" but with a different
orientation. In particular, the first asterism has positions (40", 0±), (40", 120±), (40", 240±); the
second asterism (40", 45±), (40", 165±), (40", 285±); the third asterism (40", 90±), (40", 210±), (40",
330±). Each plot of the row represents a different NGS of the asterism. A telescope aperture
diameter of 39 m has been considered, as well as one DM at 600 m compensating for tip-tilt and
one DM at 17 km compensating for focus-astigmatisms. The loop frequency frame rate is 500 Hz.

as a tomographic NTF. Equation (3.9) takes the same form as Eq. (2.53) and becomes equal

to it if considering the SCAO limit. Indeed, in this case the reconstructor would become

equal to one and Hn,tomo = Hol (∫)Hr (∫) = Hn(∫).
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Fig. 3.3 NTF for an MCAO loop as a function of temporal frequencies, as obtained from Eq. (3.7).
The three rows represent three equilateral asterisms, all with radius of 40" but with a different
orientation. In particular, the first asterism has positions (40", 0±), (40", 120±), (40", 240±); the
second asterism (40", 45±), (40", 165±), (40", 285±); the third asterism (40", 90±), (40", 210±), (40",
330±). Each plot of the row represents a different NGS of the asterism. A telescope aperture
diameter of 39 m has been considered, as well as one DM at 600 m compensating for tip-tilt and
one DM at 17 km compensating for focus-astigmatisms. The loop frequency frame rate is 500 Hz.
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3.2 Temporal spectrum of MCAO residual wavefront

We intend to derive the residual phase produced by an MCAO loop in the direction of the

target Æ. From this quantity, the temporal PSD of the residuals can be derived as

SÆr es(∫) =
D
¡Ær es(∫)¡Æ†

r es(∫)
E

, (3.11)

where h·i is the ensemble average, † denotes the conjugate-transpose and ¡ represents

the L - or Z -transform of the phase, depending on whether a continuous or discrete-time

domain is considered. From the integration of SÆr es , the variance of the residual phase can

be computed as well:
°
æÆr es

¢2 =
Z

d∫SÆr es(∫) . (3.12)

We write the residual phase along Æ as

¡Ær es(∫) =¡Ætur b(∫)°¡Æcor r (∫)

=¡Ætur b(∫)°PÆ
DM¡DM (∫) ,

(3.13)

where ¡Ær es and ¡Ætur b are, respectively, the residual and turbulent phases in the direction

of the target,¡Æcor r is the correction phase in the direction of the target and PÆ
DM is a matrix

of size n£m that projects onto the pupil the modes on the DMs as seen in the direction Æ.

We substitute Eq. (3.9) in Eq. (3.13) and we derive the expression of the residual phase

along Æ:

¡Ær es(∫) =¡Ætur b(∫)°PÆ
DM

h
Hn,tomo(∫)

≥
¡µtur b(∫)+¡n(∫)

¥i

=¡Ætur b(∫)°HÆ
n,tomo(∫)

≥
¡µtur b(∫)+¡n(∫)

¥
,

(3.14)

where

HÆ
n,tomo(∫) = PÆ

DM Hn,tomo(∫) (3.15)

is the tomographic NTF projected along Æ. The diagram of the control loop that we have

analytically described is shown in Fig. 3.4.
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Fig. 3.4 Diagram of the control loop. The phase on the DMs is controlled in closed loop from the
measurements on the guide stars and its projection along Æ determines the residual phase on the
target in Æ. The Pµ and PÆ blocks have been introduced as projections of the turbulent phase onto
µ (¡µtur b = Pµ¡tur b) and Æ (¡Ætur b = PÆ¡tur b) respectively. The HT block represents the temporal
filtering by the scientific instrument, as it will be shown in Section 4.4

.

From Eq. (3.11) and Eq. (3.14), we can compute the temporal power spectral density

of the residual phase along the direction of the target:

SÆr es(∫) =
D
¡Ær es(∫) ¡Æ†

r es(∫)
E

=
øh
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h
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≥
HÆ

n,tomo(∫)Sµ,Æ
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¥
,

(3.16)
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where we assumed turbulence and noise to be uncorrelated and where SÆtur b is the tempo-

ral PSD of the turbulence, Sµtur b is the temporal PSD of the turbulence on the guide stars

directions, Sn is the temporal PSD of the noise and Sµ,Æ
tur b is the CPSD of the turbulence

between the guide stars and the target.

The derived expression can provide a fast evaluation of the MCAO residuals in the

field of view, given a statistics of turbulence and noise and the temporal filtering operated

by the MCAO loop. It is worth noting that the SCAO limit of Eq. (3.16) gives the same

expression as Eq. (2.55). Indeed, in this case HÆ
n,tomo = Hn and µ = µ, and the equation

becomes

SÆr es(∫) = SÆtur b(∫)+|Hn(∫)|2
≥
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¥
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¥
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¥
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Hn(∫)
≥
Stur b(∫)°Sµ,Æ

tur b(∫)
¥i

,

(3.17)

where we assumed homogeneous and isotropic turbulence, then SÆtur b = Sµtur b = Stur b

and where we used the property of AO transfer functions in Eq. (1.56).

Another version of Eq. (3.14) and Eq. (3.16) can be obtained if not only one target, but

a set of targets equaling the number of guide stars is considered (Æ= [Æ1,Æ2, ...,ÆN ]). In

this case, we can modify Eq. (3.14) as

¡Ær es(∫) =¡Ætur b(∫)°HÆ
n,tomo(∫)

≥
¡µtur b(∫)+¡n(∫)

¥

= I d ¡Ætur b(∫)°HÆ
n,tomo(∫)

≥
¡µtur b(∫)+¡n(∫)

¥

= HÆ
r,tomo(∫)¡Ætur b(∫)°HÆ

n,tomo(∫)
≥
¡µtur b(∫)°¡Ætur b(∫)+¡n(∫)

¥
,

(3.18)

where HÆ
r,tomo is the tomographic RTF projected along Æ, defined so that the relation

HÆ
r,tomo(∫)+ HÆ

n,tomo(∫) = I d holds. This expression allows to differentiate the various

contributions due to the rejection of turbulence (first term), to generalized anisoplanatism

that is filtered as a noise by the AO loop (second plus third term) and to noise (last term).
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This is also shown by deriving the related temporal power spectrum:

SÆr es(∫) = HÆ
r,tomo(∫)SÆtur b(∫)HÆ†

r,tomo(∫)

+HÆ
n,tomo(∫)Sn(∫)HÆ†

n,tomo(∫)

+HÆ
n,tomo(∫)

≥
Sµtur b(∫)°SÆtur b(∫)

¥
HÆ†

n,tomo(∫)

+2Re
h

HÆ
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≥
SÆtur b °Sµ,Æ

tur b

¥i
,

(3.19)

where the first and second term leads, respectively, to the temporal and noise error, while

the remaining terms quantify the tomographic error as well as its temporal filtering by the

MCAO loop.

In Appendix A.3, we show a comparison of our analytical results with end-to-end

simulations.

3.2.1 Pseudo-Open Loop Control and MMSE reconstruction

In the previous calculations, we considered a closed-loop control, that is, the reconstruc-

tion is performed on the residual measurements as shown in Eq. (3.2). The reconstruction

matrix W is then intended as the pseudo-inverse of the projection matrix Pµ
DM , as de-

rived in the Least Square Estimator (LSE) approach (Section 1.2.4). However, as shown in

Section 1.3.1, it has been demonstrated not to be the optimal approach to deal with the

problem of badly and unseen modes [33, 34, 90, 91] characterizing MCAO correction and

that the Minimum Mean Square Error (MMSE) approach can lead to better performance,

even if compared to the Truncated LSE (TLSE) [92]. As the MMSE reconstructor operates

on the pseudo-open loop measurements of the turbulent phase, it has to be included in

a Pseudo-Open Loop control (POLC) [35]. In this context, we provide the expressions to

derive the performance of MCAO systems also in the case of POLC and MMSE.

We modify Eq. (3.2) in order to consider a reconstruction acting on the pseudo-open

loop measurements [93]:

¡DM (∫) = Hol (∫)
≥
WM MSE ¡

µ
OL(∫)°¡DM (∫)

¥
, (3.20)

where WM MSE is the MMSE reconstructor and ¡µOL are the open-loop measurements that

we write as

¡µOL(∫) =¡µr es(∫)+¡n(∫)+Pµ
DM¡DM (∫) . (3.21)
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We replace this expression in Eq. (3.20):

¡DM (∫) = Hol (∫)
h

WM MSE

≥
¡µr es(∫)+¡n(∫)+Pµ

DM¡DM (∫)
¥
°¡DM (∫)

i

= Hol (∫)WM MSE

≥
¡µr es(∫)+¡n(∫)

¥
+Hol (∫)

≥
WM MSE Pµ

DM ° I d
¥
¡DM (∫) .

(3.22)

We group the terms related to ¡DM :

h
I d °Hol (∫)

≥
WM MSE Pµ

DM ° I d
¥i
¡DM (∫) = Hol (∫)WM MSE

≥
¡µr es(∫)+¡n(∫)

¥
, (3.23)

and we obtain a final expression of the DMs phase:

¡DM (∫) =
h

I d °Hol (∫)
≥
WM MSE Pµ

DM ° I d
¥i°1

Hol (∫)WM MSE

≥
¡µr es(∫)+¡n(∫)

¥

=
≥
I d +Hol (∫)K

¥°1
Hol (∫)WM MSE

≥
¡µr es(∫)+¡n(∫)

¥

= Hpolc (∫)WM MSE

≥
¡µr es(∫)+¡n(∫)

¥
,

(3.24)

where we defined the matrices K = I d°WM MSE Pµ
DM and Hpolc =

≥
I d+Hol (∫)K

¥°1
Hol (∫).

It follows that the results in Eqs. (3.14) and (3.16) can still be used to compute the residual

phase and PSD on target, but considering Hol = Hpolc and W =WM MSE when taking into

account POLC+MMSE.





Chapter 4

Tip-tilt anisoplanatism in MCAO systems

The challenging requirements of astrometric precision that have been set for the future

MCAO modules ask for an accurate analysis of the astrometric error budget. Among the

classical sources of astrometric error introduced in Section 1.4.1, we are interested in

investigating the effect of tip-tilt atmospheric residuals in MCAO-assisted observations.

In this context, we first need to have an understanding of the spatial and temporal depen-

dence of tip-tilt residuals in order to characterize the behavior of the related astrometric

errors. As shown in Section 1.4.2, tip-tilt anisoplanatism is well known and has been

thoroughly modeled for SCAO systems. However, the characterization is more elaborate

for the MCAO case, since the geometry with multiple guide stars and multiple DMs can

lead to complex behaviors. As pointed out in Trippe et al. [51], tip-tilt anisoplanatism is

not well understood for this flavour of adaptive optics and, to our knowledge, an analysis

does not exist yet. In this context, in Carlà et al. [53, 54], we presented a study of MCAO

tip-tilt anisoplanatism. The analysis has been carried out by means of the analytical

formulation derived in Chapter 3. Indeed, since the presented approach assumes the

phase as decomposed on to wavefront modes, we can derive the temporal PSD and the

variance of tip-tilt residuals from Eq. (3.16) and Eq. (3.12) respectively, by applying both

equations to tip and tilt modes.

In Section 4.1, we present the framework that we use to analyze MCAO tip-tilt residuals

(i.e. choice of GSs, DMs, atmospheric profile, etc.); in Section 4.2, we analyze MCAO tip-

tilt residuals PSDs; in Section 4.3, we characterize the behavior of MCAO on-axis tip-tilt

residuals; in Section 4.4, we model the effect of the scientific integration time on tip-tilt

residuals; finally, in Section 4.5, we derive an expression to estimate differential tilt jitter

in MCAO systems.
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4.1 Framework

All the analysis is carried out within a MORFEO-like configuration, that is, we consider a

39-m telescope, with the DM0 conjugated at 600 m and the DM1 at 17 km. We assume the

ELT median turbulence profile reported in Sarazin et al. [89], with a seeing of 0.644" and

an average wind speed of 9.2 m/s. We consider the contribution of all the modes to the

turbulence-induced wavefront distortions and a reconstruction of tip-tilt with the DM0

and focus-astigmatisms with the DM1, based on the tip-tilt measurements from three

NGSs in equilateral asterisms. Such NGS loop can be used for the control of null modes

[94] in MCAO systems using a split tomography approach [95]. We assume the equilateral

asterism of NGSs centered at the origin of the field of view and the diameter of the NGSs

technical FoV of 160".

It is worth pointing out that this configuration does not include the compensation for

focus-astigmatisms at the pupil plane, thus it would provide an out of focus and astigmatic

PSF; indeed, from the results in Appendix B.1 can be deduced that a focus (or astigmatisms)

applied on a meta-pupil in altitude introduces (thus, helps compensate for) tip and tilt

on the telescope pupil, but also a focus scaled by the squared ratio between the pupil

and meta-pupil radii that should be corrected. However, since we are interested in tip-tilt

variations in the field, not considering the compensation for focus and astigmatisms at

the telescope pupil plane does not represent a limitation for our analysis.

Among the contributors to the temporal PSD of the residuals shown in Chapter 3, for

this analysis we are mainly interested in the tomographic error. Thus, we neglect the noise

assuming NGSs with infinite flux, as well as we minimize the temporal error considering a

loop with a frequency frame rate of 1 kHz and where the control is a pure integrator with a

delay given by the WFSs exposure time only. Finally, we use the LSE-closed loop approach.

Indeed, using MMSE-POLC would not bring any advantage in this case: as shown in

Section 1.3.1, the MMSE reconstructor takes the same form as the LSE reconstructor if

the measurements are characterized by high SNR (that is infinite under our assumptions).

This is verified in Fig. 4.1, where tip-tilt maps and related tip-tilt errors are shown in the

two cases.

4.2 Characterization of tip-tilt residual PSDs

In this section, we use the analytical results of the previous chapter to analyze the behavior

of temporal PSDs of tip-tilt residuals from an MCAO correction. In Section 2.6.1, we

showed that, for SCAO configurations, anisoplanatism leads to a flat behavior of the
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Fig. 4.1 Tip-tilt maps in case of equilateral asterism of NGSs with radius of 30 arcsec and for
LSE (top left) and MMSE (top right) reconstruction. The NGSs are assumed to have infinite flux,
that is, the noise is not considered in the computation. The values of tip-tilt residuals at each
position are also plotted (bottom). It is shown that, in this configuration, the residuals from an LSE
reconstruction are the same as the residuals from an MMSE reconstruction.

residual tip-tilt PSD at low temporal frequencies and that the PSD cutoff frequency has a

linear dependence on the ratio between the mean wind speed of the turbulence profile

and the diameter of the telescope. In Fig. 4.2, we show temporal PSDs of MCAO tip-tilt

residuals computed at the barycenter of the correction (i.e. for a target at polar coordinates

(0", 0±)) and for different values of the radius of the NGSs asterism. Since we are limiting

the contribution of temporal error and we are neglecting noise, the results are mostly

related to the contribution from MCAO anisoplanatism. The PSDs still show a flat behavior

at low temporal frequencies. Moreover, the amount of energy at low temporal frequencies

increases with increasing asterism radius. Indeed, larger asterisms determine smaller

cross-correlations between the GSs and the on-axis target, then a worse correction. This
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aspect is also evident from Eq. (3.16), that shows that the cross-correlation term Sµ,Æ
tur b

might help reduce the residual power on the target.

In Fig. 4.3, we plot MCAO tip-tilt residuals PSD for three different values of the telescope

diameter, then of the ratio between the mean wind speed of the atmospheric profile and

the diameter. The curves show that the cutoff frequency of the MCAO residual PSDs still

has an approximately linear dependence on the ratio vm/D .

Fig. 4.2 Temporal PSDs of MCAO tip-tilt residuals for an on-axis target. The sum of tip and tilt
PSDs is shown. The different colors represent different values of the radius of the NGSs asterism.

Fig. 4.3 Temporal PSDs of MCAO tip-tilt residuals for an on-axis target. The sum of tip and tilt
PSDs is shown. The different colors represent different values of the telescope aperture diameter.
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4.3 On-axis tip-tilt residuals

We want now to analyze the dependence of MCAO tip-tilt residuals on parameters like the

radius of the NGS asterism and the distance from the barycenter of the correction, and

also compare the results with the SCAO case.

In Fig. 4.4, we show the dependence on the asterism radius of tip-tilt residuals for

a target on axis. The errors are computed from the square root of Eq. (3.12), where the

residual PSD is obtained from Eq. (3.16) as applied to tip-tilt. The MCAO residuals are

shown in comparison to the errors derived from the SCAO case, where the radius of the

asterism becomes the angular separation between the target and the off-axis NGS. As

Fig. 4.4 Tip-tilt residuals for a target at the origin of the field of view, as functions of the radius of
the NGS asterism. The SCAO limit is also shown for comparison (dotted line); in this case, the
values on the x axis represent the angular separation between the target and the NGS.

expected from the larger isoplanatic patch provided by the MCAO correction, MCAO

residuals are reduced with respect to the SCAO ones. Moreover, differently from the SCAO

case, whose errors linearly depend on the off-axis separation, MCAO residuals show a

quadratic dependence on the NGSs separation. We can explain the different behaviors as

follows: the turbulence-induced distortions that are observed on the pupil plane can be

described by a combination of polynomials with increasing degree:

¢x = a1 +a2x +a3 y +a4x2 +a5x y +a6 y2 + ...

¢y = b1 +b2 y +b3x +b4 y2 +b5 y x +b6x2 + ... ,
(4.1)
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where the zeroth order coefficients (a1, b1) represent a global tip-tilt, that is a shift in x and

y common to all directions of the field of view, the first order coefficients (a2, a3, b2, b3)

represent the plate-scale distortions produced by the projection of focus and astigmatisms

in altitude onto the tip-tilt in pupil (see Appendix B.2), and so on for the higher orders. The

covariance matrix of the distortions is h¢r¢r T i, with¢r = (¢x, ¢y). The SCAO, correcting

with only a DM at the ground and using a single WFS, is able to compensate for the zeroth

order of the distortions (i.e. overall pointing), leaving residual distortions that are then

dominated by the first order (i.e. plate-scale variations). The MCAO, in our NGS-based

configuration, removes a global tip-tilt with the DM0 and, in addition, is able to control

the first order distortions by compensating for focus and astigmatisms with the DM1

conjugated in altitude. The residual distortions are, in this case, dominated by the second

order. The sum of the diagonal terms of the residual distortions covariance matrix leads,

for the SCAO case, to the following expression:

X

i=1,2
h¢r¢r T ii i = (a2x +a3 y + ...)2 + (b2 y +b3x + ...)2

= u(x2 + y2)+ ... ,
(4.2)

and, for the MCAO case, to:

X

i=1,2
h¢r¢r T ii i = (a4x2 +a5x y +a6 y2 + ...)2

+ (b4 y2 +b5 y x +b6x2 + ...)2

= v(x2 + y2)2 + ... ,

(4.3)

where the simplification in the coefficient u for the former and v for the latter is obtained

by replacing the coefficients of the polynomial series with the proper coefficients that

relate tip-tilt on the pupil plane with the higher orders on a meta-pupil in altitude. If we

consider (x, y) as the position of the target with respect to the NGS, we find a dependence

of the variance on the second power of the separation for the SCAO case and on the fourth

power for the MCAO case. In Appendix C, we provide detailed calculations.

In Fig. 4.5, we show the spatial distribution of tip-tilt residuals in the field of view.

The errors are computed for targets at different radial separations from the origin (that

also represents the barycenter of the asterism) and the final values are obtained from

the average over several polar angles in order not to be affected by the geometry of the

asterism. The errors show similar values for targets within the NGS asterism and increase

outside of the asterism, where tip-tilt is indeed not controlled. The minimum of the curves

is not exactly at a distance equal to the asterism radius value, depending on the fact that
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the targets at an angular separation equal to the asterism radius fall outside of the NGSs

triangle (except the ones with the same exact polar angles as the NGSs ones), where tip-tilt

is worse controlled.

Fig. 4.5 Tip-tilt residuals as functions of the radial distance of the target with respect to the origin.
The curves are shown for different values of the NGS asterism radius (rast ) and the SCAO limit is
also shown (dotted line).

4.4 Effect of the scientific integration time on tip-tilt resid-

uals

As mentioned in Section 1.4.2, tip-tilt residuals can introduce uncertainties in the astro-

metric measurements, either with a PSF elongation effect due to the residuals that are

integrated during a single exposure, either with a jitter of the position of the target ob-

served between successive frames due to the amount of fluctuations that is not integrated

within the exposure. The results shown in Section 4.3, obtained from a pure integration of

Eq. (3.16), represent the case where the fluctuations in position are fully integrated within

the exposure and thus impact entirely on the PSF elongation effect. In this section, we

introduce the effect of the scientific integration time in order to be able to estimate both

the PSF elongation and the residual jitter effects.

We identify the residuals leading to the PSF elongation effect as intra-exposure and

the residuals leading to the position jitter between successive frames as inter-exposure.
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The sum of intra- and inter-exposure residuals spectra gives the total residual spectrum of

residual tip-tilt:

SÆr es(∫) = SÆi ntr a(∫)+SÆi nter (∫) , (4.4)

where S denotes the temporal PSD of tip-tilt and Æ indicates a specific direction of the

field of view.

4.4.1 Inter-exposure residuals

We start with the computation of inter-exposure residuals by still following an approach

that makes use of temporal transfer functions, as in Chapter 3. We write the expression of

the phase residuals that are left after a scientific integration of length T as

¡Æi nter (∫) = HT (∫)¡Ær es(∫) , (4.5)

where ¡Ær es is given by Eq. (3.14) for the MCAO case and HT is the temporal transfer

function of the scientific camera, that is, the L - or Z -transform of the time-average

operation. In the Laplace case, the expression is given by

HT (∫) = 1
T

e¶T (∫)

= sinc(º∫T )e°iº∫T ,
(4.6)

where e¶T denotes the transform of the rectangular function¶T .

From Eq. (4.5), we can get the expression of the residual PSD for scientific frames of

length T :

SÆi nter (∫) =
D
¡Æi nter (∫)¡Æ†

i nter (∫)
E

= |HT (∫)|2SÆr es(∫)

= HT,i nter (∫)SÆr es(∫) ,

(4.7)

where we have identified HT,i nter as the temporal transfer function of inter-exposure

residuals.

In Fig. 4.6, we plot inter-exposure temporal transfer functions for different values

of the exposure time. The curves show that low temporal frequencies are passed and

high temporal frequencies are filtered, starting from the cutoff frequency of the transfer

function, ∫H = 1/T .
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Fig. 4.6 Temporal transfer function of inter-exposure tip-tilt residuals as a function of the temporal
frequencies. The colors represent different exposure times in a range from 0.1 to 100 s. The cutoff
frequency ∫H = 1/T determines when the inter-exposure transfer function starts filtering the
temporal PSD of tip-tilt residuals.

In Fig. 4.7, we plot the temporal PSD of both total and inter-exposure tip-tilt residuals,

for values of the exposure time ranging from 0.001 to 100 s. It is evident the effect of

low-pass filtering from the inter-exposure transfer function, that depends on the exposure

time.

In Fig. 4.8, we show inter-exposure residuals (from the square root of the integral of

Eq. (4.7)) as a function of the exposure time. The curves show a flat behavior at small

integration times (T . 0.1 s) and a T °1/2 law for larger times. The impact of the scientific

exposure depends on the relation between the cutoff frequency of the camera transfer

function and the one of the residual PSD (∫S º v/D, as shown in Section 4.2): if ∫H is

either larger or about the same as ∫S , the scientific integration is not long enough to

average the residuals and the position jitter observed between different exposures is at its

maximum. Indeed, in this case, the camera is either unable to filter any frequency of the

PSD, or it filters only the frequencies that are larger than ∫S , where the energy falls rapidly

to zero. At these frequencies, inter-exposure residuals do not depend on the integration

time (the curve follows a power law T 0). As the integration time increases, ∫H becomes

smaller than ∫S and the inter-exposure transfer function passes the frequencies where

the PSD is flat, leaving then a residual power spectrum that is proportional to 1/T . Thus,

the RMS is proportional to T °1/2. It is worth noting that this dependence holds for SCAO

tip-tilt residuals as well since, as shown in Section 2.6, also SCAO tip-tilt residuals PSDs

are characterized by a flat behavior at low temporal frequencies.
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Fig. 4.7 Temporal PSD of total (black line) and inter-exposure (red line) tip-tilt residuals as a
function of the temporal frequencies. The exposure time ranges from 0.001 (top left) to 100 s
(bottom right). The PSDs are computed for a source on axis.

4.4.2 Intra-exposure residuals

From Eq. (4.4) and Eq. (4.7), we derive an expression to estimate the temporal PSD of the

intra-exposure residuals temporal spectrum as well:

SÆi ntr a(∫) =
°
1° |HT (∫)|2

¢
SÆr es(∫)

= HT,i ntr a(∫)SÆr es(∫) ,
(4.8)

where we have introduced HT,i ntr a as the temporal transfer function of the intra-exposure

residuals.
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Fig. 4.8 Inter-exposure tip-tilt error as a function of the exposure time, for an on-axis target. Three
different values of the asterism radius are considered.

In Fig. 4.9, we plot the intra-exposure temporal transfer functions for different values

of the exposure time. The curves show that the intra-exposure transfer function acts as a

high-pass filter with cutoff frequency ∫H = 1/T .

Fig. 4.9 Temporal transfer function of intra-exposure tip-tilt residuals as a function of the temporal
frequencies. The colors represent different exposure times in a range from 0.1 to 100 s. The cutoff
frequency ∫H = 1/T determines when either the intra-exposure transfer function stops filtering.
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In Fig. 4.10, we plot the temporal PSD of both total and intra-exposure tip-tilt residuals,

for values of the exposure time ranging from 0.001 to 100 s. It is evident the effect of

high-pass filtering of the tip-tilt residuals PSD from the intra-exposure transfer function.

Fig. 4.10 Temporal PSD of total (black line) and intra-exposure (red line) tip-tilt residuals as a
function of the temporal frequencies. The exposure time ranges from 0.001 (top left) to 100 s
(bottom right). The PSDs are computed for an on-axis source.

In Fig. 4.11, we show intra-exposure residuals (square root of the integral of Eq. (4.8))

as a function of the exposure time. In this case, we observe a dependence of the errors

on the exposure time through a T 1 law for small times (T . 0.1 s) and a flat behavior for

larger times. The flat behavior is motivated by the fact that, for large integration times,

most frequencies are passed and almost all the energy is integrated. For smaller times, all

frequencies where the PSD is flat are filtered, and a residual PSD whose maximum value

depends on T 2 is left. Thus, the variance is proportional to T 2 and the RMS to T 1. As seen
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Fig. 4.11 Intra-exposure tip-tilt error as a function of the exposure time, for an on-axis target. Three
values of the asterism radius are considered.

for inter-exposure residuals, switching from one power law to the other one depends on

the relationship between the camera transfer function and the AO residual PSD cutoff

frequencies.

4.5 Differential tip-tilt residuals

The results in Section 4.3 give information about the repeatability of the position measure-

ment of a single source. However, the science cases of future instruments show a major

interest in differential astrometry, that is, in measuring the distance between sources. To

be able to estimate the precision in the distance measurements, we extend the analysis to

differential tilt jitter. This effect is well known for the SCAO case but, to our knowledge, is

less well understood and no expression has been presented in the literature to compute

this error for the MCAO case. In this section, we derive an analytical expression that allows

to estimate differential tilt jitter for this flavor of adaptive optics as well and that takes into

account both spatial and temporal aspects. The derivation makes use of the results in

Chapter 3.

We define the differential tilt jitter phase as the difference between the residual phases

in the directions Æ and Ø of the two astrometric targets:

¡
Æ,Ø
DT J (∫) =¡Ær es(∫)°¡Ør es(∫) , (4.9)
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where ¡Æ,Ø
DT J is the phase describing the differential tilt jitter between the two sources, ¡Ær es

is the residual phase along Æ and ¡
Ø
r es is the residual phase along Ø. The temporal PSD of

differential tilt jitter is

SÆ,Ø
DT J (∫) =

D
¡
Æ,Ø
DT J (∫)¡Æ,Ø†

DT J (∫)
E

=
ø≥
¡Ær es(∫)°¡Ør es(∫)

¥≥
¡Ær es(∫)°¡Ør es(∫)

¥†
¿

.
(4.10)

In Section 2.6.2, we showed that this equation leads, for the SCAO case, to the following

expression of differential tilt jitter PSD:

SÆ,Ø
DT J (∫) = 2

≥
Stur b(∫)°SÆ,Ø

tur b(∫)
¥

, (4.11)

and of differential tilt jitter variance:

≥
æ
Æ,Ø
DT J

¥2
= 2

Z
d∫

≥
Stur b(∫)°SÆ,Ø

tur b(∫)
¥

. (4.12)

For MCAO systems, we derive an expression of the differential tilt jitter PSD by replac-

ing ¡Ær es and ¡
Ø
r es with the expression in Eq. (3.14) applied to Æ and Ø respectively:

SÆ,Ø
DT J (∫) =

D
¡
Æ,Ø
DT J (∫)¡Æ,Ø†

DT J (∫)
E

=
ø≥
¡Ær es(∫)°¡Ør es(∫)

¥≥
¡Ær es(∫)°¡Ør es(∫)

¥†
¿

=
ø≥
¡Ætur b(∫)°¡Øtur b(∫)

¥≥
¡Ætur b(∫)°¡Øtur b(∫)

¥†
¿

°2Re
ø
¢HÆ,Ø

n,tomo(∫)
≥
¡µtur b(∫)+¡n(∫)

¥≥
¡Ætur b(∫)°¡Øtur b

¥†
¿

+¢HÆ,Ø
n,tomo(∫)

ø≥
¡µtur b(∫)+¡n(∫)

¥≥
¡µtur b(∫)+¡n(∫)

¥†
¿
¢HÆ,Ø

n,tomo(∫)†

= 2
≥
Stur b(∫)°SÆ,Ø

tur b(∫)
¥
+¢HÆ,Ø

n,tomo(∫)
≥
Sµtur b(∫)+Sn(∫)

¥
¢HÆ,Ø

n,tomo(∫)†

°2Re
h
¢HÆ,Ø

n,tomo(∫)
≥
Sµ,Æ

tur b(∫)°Sµ,Ø
tur b(∫)

¥i
,

(4.13)

where we defined ¢HÆ,Ø
n,tomo(∫) = HÆ

n,tomo(∫)°HØ
n,tomo(∫), we assumed noise and turbu-

lence to be uncorrelated and where we considered SÆtur b=SØtur b=Stur b . The variance of
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MCAO differential tilt jitter is then

≥
æ
Æ,Ø
DT J

¥2
=

Z
d∫

Ω
2
≥
Stur b(∫)°SÆ,Ø

tur b(∫)
¥

+¢HÆ,Ø
n,tomo(∫)

≥
Sµtur b(∫)+Sn(∫)

¥
¢HÆ,Ø

n,tomo(∫)†

°2Re
h
¢HÆ,Ø

n,tomo(∫)
≥
Sµ,Æ

tur b(∫)°Sµ,Ø
tur b(∫)

¥iæ
.

(4.14)

If we take the SCAO limit of Eq. (4.13), we get HÆ
n,tomo = HØ

n,tomo (i.e. ¢HÆ,Ø
n,tomo = 0) and

we retrieve the results for the SCAO case in Eq. (4.11). Equation (4.13) shows that the

differential tilt jitter PSD in MCAO systems is given by the SCAO case PSD (first two terms)

and additional terms that depend on the correction (asterism/targets geometry, temporal

filtering of the AO loop, noise) and on spatiotemporal cross-correlations of turbulence.

These additional terms might reduce the error with respect to the SCAO case. In Fig. 4.12,

we analyze this aspect from the RMS of the difference between the variances obtained

from Eq. (4.12) and Eq. (4.14) (denoted as ¢æDT J in the plot) as a function of the outer

scale. It is shown that the discrepancy between the SCAO and the MCAO values increases

Fig. 4.12 RMS of the difference between SCAO and MCAO differential tilt jitter variances (Eq. (4.12)
and Eq. (4.14), respectively) as a function of the outer scale. The angular separation of the targets
is 5" and the asterism radius is 40".

with the outer scale, as a larger outer scale leads to larger cross-correlations that help

reduce the differential tilt jitter error in the MCAO correction.
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In Fig. 4.13, we plot the MCAO differential tilt jitter error as a function of the radius

of the NGS asterism. The smaller cross-correlations given by larger asterisms determine

an increasing of the differential tilt jitter error with the asterism radius. This is evident

when the distance is small and both targets are included within the asterism (d = 1", 5");

for larger distances, the errors are about constant up to an asterism radius comparable to

the targets’ separation and then show the increasing behavior.

In Fig. 4.14, we show the differential tilt jitter error as a function of the distance be-

tween the two astrometric sources. In the MCAO case, the dependence of the differential

tilt jitter error on the distance is influenced by the position of the sources with respect to

the asterism of guide stars and it becomes approximately linear when the asterism radius

is significantly larger than the scientific field.

Fig. 4.13 MCAO differential tilt jitter error as a function of the NGS asterism radius. The colors
show different values of the distance between the astrometric targets. For each curve, the SCAO
case is shown as comparison (dotted lines).

Finally, we can take into account the effect of the scientific integration time as well.

Since differential tilt jitter is caused by the residual (differential) tip-tilt that is left between

successive frames, it can be modeled as inter-exposure residuals. The time-averaged

differential tilt jitter phase can then be written as

¡
Æ,Ø
DT J ,T (∫) = HT (∫)

≥
¡Ær es(∫)°¡Ør es(∫)

¥
. (4.15)
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Fig. 4.14 Differential tilt jitter error as a function of the angular separation of the sources. The
colored solid lines represent different values of the asterism radius. The errors for the SCAO case
are shown in comparison (black dotted line).

Thus the PSD of time-averaged differential tilt jitter becomes

SÆ,Ø
DT J ,T (∫) = |HT (∫)|2SÆ,Ø

DT J (∫) , (4.16)

and the variance ≥
æ
Æ,Ø
DT J ,T

¥2
=

Z
d∫|HT (∫)|2SÆ,Ø

DT J (∫) , (4.17)

where SÆ,Ø
DT J is given by Eq. (4.13) for MCAO and by Eq. (4.11) for SCAO. It follows that

differential tilt jitter can be reduced with proper integration times, thanks to the T °1/2 law

of inter-exposure residuals.





Chapter 5

Impact of MCAO tip-tilt residuals on

future astrometric observations

In this chapter we study the contribution of tip-tilt atmospheric residuals to the astromet-

ric error budget of future MCAO-assisted astrometric observations. In particular, we give

results on MORFEO at the ELT and on MAVIS at the VLT.

In Section 5.1, we show how tip-tilt residuals contribute to the astrometric error budget

through differential tilt jitter and centroiding error terms; in Section 5.2 and in Section 5.3,

we estimate the errors for future observations of differential astrometry with, respectively,

MORFEO and MAVIS.

5.1 Tip-tilt residuals within the astrometric error budget

As introduced in Section 1.4.2, tip-tilt residuals can affect the precision on the differential

astrometric measurements through both differential tilt jitter and centroiding error. If

considering the measurement of the distance between two objects at positions Æ and Ø,

the uncertainty on the differential astrometric measurements due to tip-tilt residuals can

be estimated as [49]:

≥
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Æ,Ø
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¥2
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≥
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°
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¢2 +
≥
æ
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, (5.1)

where
≥
æ
Æ,Ø
d

¥2
is the variance of the distance measurements between Æ and Ø,

≥
æ
Æ,Ø
DT J

¥2

is the variance of differential tilt jitter and
°
æx

cent

¢2 indicates the variance due to the

centroiding error in a direction x (x = Æ, Ø) of the field of view.
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The variance of differential tilt jitter can be estimated through Eq. (4.17), where the

differential tilt jitter PSD can be computed by means of Eq. (4.13) for MCAO.

The centroiding error, i.e. the theoretical limit to the astrometric precision that is due

to the photon noise, can be estimated from [52]

æcent º
1
º

FW H M
SN R

. (5.2)

thus, depends on both the dimension of the PSF, through its FWHM, and the SNR. The

FWHM can be affected by intra-exposure tip-tilt residuals as they can lead to PSF elonga-

tion effects and then have an impact on the PSF shape and size. In this case, the effect has

to be taken into account within the computation of the centroiding error.

Assuming tip-tilt residuals approximated through Gaussian statistics [96], we can

estimate the elongated PSF from the convolution between the diffraction-limited PSF

and the gaussian kernel due to tip-tilt residuals (Fig. 5.1). In this case, the FWHM can be

Fig. 5.1 Scheme of the convolution operation between the diffraction-limited PSF (left) and the
tip-tilt kernel (center), derived from tip-tilt covariance matrices, to obtain the elongated PSF (right)
due to the effect of tip-tilt residuals.

derived as

FW H M =
q

f 2
conv,x + f 2

conv,y , (5.3)

where

fconv,x =
q

f 2
DL + f 2

t i p

fconv,y =
q

f 2
DL + f 2

t i l t .
(5.4)

We defined fconv as the FWHM of the convolved PSF (x and y indicate the two axes), fDL

as the FWHM of the diffraction-limited PSF and ft i p(t i l t ) as the FWHM computed from
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the standard deviation related to the intra-exposure tip(tilt) residuals. Thus, Eq. (5.2) can

be written as

æcent =
1
º

s
2 f 2

DL

SN R2 +
f 2

t i p + f 2
t i l t

SN R2 . (5.5)

In photon-noise limited case, SNR / T °1/2. Thus, the centroiding error has still a T °1/2

dependence if the diffraction-limited contribution is dominant; if intra-exposure tip-tilt

residuals contribute more, the dependence on the exposure time will follow a T 1/2 law for

small times where intra-exposure residuals show a T 1 behavior, and still a T °1/2 law for

larger times where intra-exposure residuals are not time-dependent.

Putting altogether the results on differential tilt jitter and centroiding error, we can

estimate Eq. (5.1) as
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5.2 Tip-tilt residuals in MORFEO-assisted observations

MORFEO will provide an MCAO correction to the first light near-infrared camera MICADO

at the ELT. One of the main science drivers of MORFEO-MICADO is high precision differ-

ential astrometry and MORFEO must guarantee that MICADO astrometric observations

fulfill the requirement of 50 µas of precision (the goal is 10 µas).

In this context, we exploit the formulation and the reasoning of the previous chapters

to have an estimate of the impact of tip-tilt atmospheric residuals on MORFEO-MICADO

astrometric error budget. The results are obtained within the framework of analysis

presented in Section 4.1. Thus, we consider a 39-m telescope, with the DM0 conjugated

at 600 m and the DM1 at 17 km. We assume the ELT median turbulence profile reported

in Sarazin et al. [89], with a seeing of 0.644" and an average wind speed of 9.2 m/s.

We consider the contribution of all the modes to the turbulence-induced wavefront

distortions and a reconstruction of tip-tilt with the DM0 and focus-astigmatisms with the

DM1, based on the tip-tilt measurements from three NGSs in equilateral asterisms. We

assume the equilateral asterism of NGSs centered at the origin of the field of view and

the diameter of the NGSs technical FoV of 160". We neglect the noise assuming NGSs

with infinite flux, as well as we minimize the temporal error considering a loop with a
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frequency frame rate of 1 kHz and where the control is a pure integrator with a delay given

by the WFSs exposure time only.

5.2.1 Differential tilt jitter error

We start estimating the astrometric error due to differential tilt jitter when measuring the

distance between two astrometric targets in the MICADO FoV. We always consider one

target at the center of the FoV and the other one at a specific angular separation; in order

not to be affected by the geometry of the asterism of NGSs, for each separation we make

an azimuthal average of the errors obtained at different polar coordinates.

In Fig. 5.2, we plot the differential tilt jitter as a function of the angular separation

between the astrometric sources, for different values of the NGSs asterism radius up to the

radius of the technical FoV. The errors are computed for exposures with integration time

of 120 s, that is the one that has been identified for a typical single exposure with MICADO.

We explore three different values of the zenith angle, ≥ = 30±, 45± and 60±, that correspond

to a seeing of 0.70", 0.79" and 0.98", respectively. The first value (≥ = 30±) represents the

"reference zenith angle" for MORFEO performance analysis, that is, it is the angle at which

MORFEO shall deliver the required performance; the last value (≥ = 60±) represents the

maximum zenith angle for MORFEO, as it is the maximum angle at which the lasers can

operate. The curves show that the astrometric error due to differential tilt jitter is within

the requirement in the whole FoV, with values up to 30-40 µas at the edge of the FoV,

for ≥ = 30±; the goal of 10 µas is met at only few arcseconds angular separations when

considering the maximum value of the asterism radius. The requirement of 50 µas is not

fulfilled in the whole FoV for both ≥ = 45± and 60±. In particular, at ≥ = 60± differential tilt

jitter might represent a relevant contributor to the astrometric error budget for targets at

º 10" separation considering the whole technical FoV. At this zenith angle, few arcseconds

separations are still within the requirement, but the errors are at the limit of the goal value.

Longer integration times could help reduce differential tilt jitter error at these zenith angle,

considering the T °1/2 dependence.

However, current specifications suggest a major interest in high-precision differential

astrometry for targets at small angular separations (d º 1") and, in this case, differential

tilt jitter should not be the dominant limiting factor to astrometric precision.
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Fig. 5.2 Differential tilt jitter error as a function of the angular separation for MORFEO-assisted
observations with exposure time T = 120 s and zenith angle ≥ = 30± (top), 45± (center) and 60±

(bottom). Solid colored lines represent the MCAO errors for different values of the NGSs asterism
radius. The SCAO case (dotted black line) is shown for comparison, as well as the astrometric
precision requirement and goal (dashed red lines).
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5.2.2 Centroiding error

We analyze the contribution of MORFEO atmospheric tip-tilt residuals to centroiding

error. We restrict the analysis to an angular separation between astrometric sources of 1"

and to the worst case of asterism radius, i.e. 80". One of the two sources is at the center of

the FoV.

In Fig. 5.3, we first show the FWHM of the gaussian kernel due to intra-exposure tip-tilt

residuals on the source at the origin of the FoV, as a function of the integration time. The

diffraction-limited FWHM for infrared observations in H band (∏ = 1.6 µm; FWHM º
8.5 mas) is shown in comparison. Again, we consider three zenith angle values, ≥ = 30±,

45± and 60±. Since the PSF elongation effect is caused by intra-exposure residuals, we

retrieve the dependence on the exposure time that has been shown in Fig. 4.11 and we

see that larger integration times lead to larger elongation of the PSF. However, for ≥ = 30±

and 45±, the contribution of tip-tilt residuals to the FWHM is smaller than the value of the

diffraction-limited FWHM, which therefore dominates the contribution to the centroiding

error. On the other hand, for ≥ = 60± the errors are more important and, for exposures

larger than º 1 s, they exceed the diffraction-limited FWHM.

These results must be combined with the SNR to estimate the centroiding error, as

shown in Eq. (5.5). Thus, we consider different values of magnitude in H band (magH = 10,

15, 20, 25), spanning in an observable range with MICADO-MORFEO, and we estimate the

SNR considering a total transmission of 65%. In Fig. 5.4, we show the related centroiding

error for the source at the origin of the FoV, computed from Eq. (5.5) and where the FWHM

is estimated from Eqs. (5.3) and (5.4). The curves behavior is still dominated by the T °1/2

law. However, it is interesting to note, for ≥ = 60±, the small bumps occurring at few

seconds of integration time where intra-exposure tip-tilt residuals start dominating the

contribution to the FWHM, as shown in Fig. 5.3. For larger times, tip-tilt residuals are not

time-dependent and the T °1/2 law of the centroiding error is maintained.

In general, for all zenith angles, centroiding error on brighter objects shows to be

within MORFEO astrometric requirement for typical exposures of 120 s and should not

represent a dominant limiting factor.
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Fig. 5.3 FWHM of the gaussian kernel related to intra-exposure residuals of tip (solid line), for a
source on axis, as a function of the exposure time and for zenith angle ≥ = 30± (top), 45± (center) and
60± (bottom). The value of the diffraction-limited FWHM in the H band is shown in comparison
(dotted line). The asterism radius is 80".
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Fig. 5.4 Centroiding error as a function of the exposure time, for two targets at 1" separation. The
colors show different values of the magnitude of the source in the H band. Both the requirement
(50 µas) and the goal (10 µas) of MORFEO astrometric precision are shown in comparison (dotted
black lines).
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5.2.3 Error budget at 1" separation

In this section, we estimate the total contribution of tip-tilt atmospheric residuals to

MORFEO astrometric error budget for targets at 1" separation. We put together the results

on differential tilt jitter and centroiding error obtained in the two previous paragraphs

and we use Eq. (5.6) for a global estimation. We consider an NGS asterism radius of 80"

and we still vary the zenith angle from ≥ = 30± to ≥ = 60±.

In Fig. 5.5, we show the total error budget from tip-tilt atmospheric residuals for two

sources at 1" angular separation, with one of the two targets at the center of the FoV. The

sources are assumed to have same magnitude, which varies from magH = 10 to magH = 25.

The plots show that the centroiding error dominates the contribution to the astrometric

error for the fainter sources. On the other hand, the high SNR of the brighter objects

(magH = 10, 15) makes the centroiding error negligible with respect to differential tilt jitter

effect.

For typical exposure times, tip-tilt atmospheric residuals should not impact on MOR-

FEO astrometric requirements at 1" separations for sources with magH up to 20. Fainter

objects are at the limit of MORFEO requirements for 2 min exposures but, in general, these

errors can be reduced with longer integration times. Of course, in this case, other sources

of astrometric error becomes relevant (e.g plate-scale distortions from the telescope) and

a trade-off in the choice of the exposure time must be found.

It is worth pointing out that these results show the contribution of atmospheric resid-

uals only: the contribution of temporal errors of the AO loop is minimized, noise terms

are neglected and other contributors such as aliasing and high-order residuals are also

not considered. On the other hand, we did not consider the correction of higher orders

than astigmatisms from the LGS loop, thus, in this context, our results should represent

an upper limit.
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Fig. 5.5 Astrometric error due to MORFEO atmospheric tip-tilt residuals as a function of the
scientific integration time, for two targets at 1" separation. The errors are shown for three zenith
angles, ≥ = 30± (top), 45± (center) and 60± (bottom). The colors represent different magnitudes of
the astrometric sources in H band. Both the requirement (50 µas) and the goal (10 µas) of MORFEO
astrometric precision are shown in comparison (dotted black lines).
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5.3 Tip-tilt residuals in MAVIS-assisted observations

We apply the analysis of the previous section to MAVIS. MAVIS is an instrument being

built for the VLT Adaptive Optics Facility (AOF) [29] and will be the first MCAO system to

perform AO correction in the visible, with performance optimized at 550 nm. It will feed

both an imager and a spectrograph and one of the main science targets is high-precision

astrometry in crowded stellar fields, which is shared in common with MORFEO-MICADO.

In this case, it is required an astrometric precision of 150 µas and the goal is 50 µas.

For the analysis of MAVIS astrometric error due to atmospheric tip-tilt residuals, we

considered the 8-m aperture of the VLT, the MAVIS technical FoV of 120" diameter for the

NGSs, the scientific FoV of 30"£30", one DM at the ground compensating for tip and tilt

and one DM at 13.5 km compensating for focus and astigmatisms. We still assumed the

turbulence profile in Sarazin et al. [89], with seeing of 0.644".

5.3.1 Differential tilt jitter error

As for MORFEO analysis, we consider one target at the center of the FoV and we vary the

angular separation of the second astrometric target; the errors computed at different polar

coordinates are then averaged for each separation.

In Fig. 5.6, we plot the astrometric error due to differential tilt jitter as a function of

the angular separation between the astrometric targets, for different values of the radius

of the NGSs asterism up to the radius of the technical FoV. The errors are averaged over

exposures of T = 120 s. We compute the errors for zenith angles ≥ = 30±, 45± and 60±,

corresponding to seeing values of 0.70", 0.79" and 0.98" respectively. Differential tilt

jitter shows to have a major impact with respect to the requirements, compared to the

MORFEO case, as expected from the small telescope aperture diameter. At ≥ = 30±, only

few arcseconds separations are affected by errors within the requirement of 150 µas and,

at ≥ = 60±, only 1" separations are at the limit of the requirement; besides, in this case it is

interesting to note that differential tilt jitter for the maximum asterism radius (rast = 60")

is approximately the same as the one obtained with a SCAO correction. The plots show

that averaging over longer times is required: with º 20 min of exposures, the error due to

differential tilt jitter can be reduced by a factor º 10 and be within the requirement value

over the whole FoV, even for the worst case at ≥ = 60±.

However, as for MORFEO, current specifications suggest a major interest in high-

precision differential astrometry at º 1" separations where differential tilt jitter is con-

trolled.
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Fig. 5.6 Differential tilt jitter error as a function of the angular separation for MAVIS-assisted
observations with exposure time T = 120 s and zenith angle ≥ = 30± (top), 45± (center) and 60±

(bottom). Solid colored lines represent the MCAO errors for different values of the NGSs asterism
radius. The SCAO case (dotted black line) is shown for comparison, as well as the astrometric
precision requirement and goal (dashed red lines).
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5.3.2 Centroiding error

We analyze the impact of atmospheric tip-tilt residuals from MAVIS on centroiding error.

We consider two targets at 1" separation, one of which at the center of the FoV, and the

maximum asterism radius (rast = 60").

In Fig. 5.7, we show the FWHM of the gaussian kernel due to intra-exposure tip-tilt

residuals on the source at the origin of the FoV, as a function of the integration time. We

consider ≥ = 30±, 45± and 60± and we compare the results to the diffraction-limited FWHM

in V band (∏=550 nm; FWHMº14 mas). Unlike MORFEO case, MAVIS intra-exposure

tip-tilt residuals show to be dominant than the diffraction-limited FWHM, even at ≥ = 30±

and starting from small exposure times. This effect is evident in the centroiding error.

In Fig. 5.8, we show the centroiding error computed from Eq. (5.5), considering values

of magnitude in V band from 10 to 25 and having estimated the SNR in case of 80% total

transmission. The sources are assumed to have the same magnitude. The plots show

a bump at exposure times smaller than 1 s, where intra-exposure tip-tilt residuals start

dominating the contribution to the FWHM with respect to its diffraction-limited value,

and then a dependence on time as T °1/2, where the FWHM due to tip-tilt residuals is not

time-dependent. For typical exposure times (T & 120 s), tip-tilt residuals do not have a

major impact on astrometric precision and are within the requirement for the brighter

objects; on the other hand, for fainter objects (magV = 25), they lead to centroiding errors

that never meet the requirement of 150 µas.

5.3.3 Error budget at 1" separation

We estimate the total contribution of tip-tilt atmospheric residuals from MAVIS to astro-

metric precision for targets at 1" separations. We consider an asterism radius of 60" and ≥

= 30±, 45± and 60±.

In Fig. 5.9, we plot the astrometric error, as computed from Eq. (5.6), on the measure-

ment of the distance between the two sources. The astrometric objects are assumed to

have the same magnitude in V band, that varies from 10 to 25. As for MORFEO case, the

astrometric error on the brighter objects is dominated by differential tilt jitter error, whose

value is within the requirement of 150 µas for exposure times larger than 120 s, but not

within the goal of 50 µas for ≥ = 60±; on the other hand, fainter objects are dominated by

the centroiding error that never fullfills the requirements on astrometric precision. Ideally,

one could reduce the error by integrating more than the maximum value of exposure time

shown in the plots (T = 1000 s º 17 min), but other sources of astrometric error would

become relevant over such time intervals.
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Fig. 5.7 FWHM of the gaussian kernel related to intra-exposure residuals of tip (solid line) from
MAVIS, for a source on axis, as a function of the exposure time and for zenith angle ≥ = 30± (top),
45± (center) and 60± (bottom). The value of the diffraction-limited FWHM in the V band is shown
in comparison (dotted line). The asterism radius is 60".
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Fig. 5.8 Centroiding error as a function of the exposure time, for two targets at 1" separation. The
colors show different values of the magnitude of the source in the V band. Both the requirement
(150 µas) and the goal (50 µas) of MAVIS astrometric precision are shown in comparison (dotted
black lines).
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Fig. 5.9 Astrometric error due to MAVIS atmospheric tip-tilt residuals as a function of the scientific
integration time, for two targets at 1" separation. The errors are shown for three zenith angles,
≥ = 30± (top), 45± (center) and 60± (bottom). The colors represent different magnitudes of the
astrometric sources in V band. Both the requirement (150 µas) and the goal (50 µas) of MAVIS
astrometric precision are shown in comparison (dotted black lines).



Chapter 6

Testing astrometric capabilities of actual

AO systems for future MCAO observations

In parallel to the study presented in the previous chapters, we worked on a proposal to

observe the gravitational light bending from Jupiter by means of differential astrometry

with SOUL-LUCI [67] at the LBT. We submitted our proposal of observations, "Bend it like

Jupiter", on the occasion of the "Call for Proposal for the LBT Observing period 2021-2022".

The aim is to test the astrometric capabilities of actual AO systems, SOUL in this case, to

have an understanding of potential issues that can occur during the observations or the

data reduction process, in order to have a better comprehension of the strategies to be

adopted in astrometric observations with MORFEO at the ELT. Despite the acceptance of

the proposal, unfortunately the observations could not be made at the LBT; thus, we are

working on new analyses to perform the observations with the upcoming ERIS, the AO

system that is going to equip the near-infrared imager NIX at the VLT [97].

6.1 Scientific framework

Gravitational light bending was the first new prediction of general relativity to be success-

fully tested during the solar eclipse of 1919, when Eddington and Dyson announced that

the results of their expeditions were consistent with Einstein’s general relativistic predic-

tion of a deflection of 1.75" at the solar limb [98]. Since then, light bending due to the Sun

during eclipses has been measured many times until 1973, without big improvements

in the uncertainties with respect to Eddington’s one (around 6%). Uncertainties were

reduced to below 1% using radio emission from quasars in the 1970’s [99] and further

improved by means of optical measurements from space, when astrometric satellites
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became operational (Hipparcos reached 0.2%) [100]; the best available measurements to

date, obtained by VLBI techniques, have relative uncertainties around 10°4÷10°5, and the

Gaia satellite is expected to reach 10°6 at optical wavelengths.

The Sun is not special at all, however, and any massive body gravitationally bends the

light that passes close to it. Indeed, astrometric catalogs take light bending due to many

solar system bodies into account when calculating the apparent positions of stars. Besides

the Sun, the largest effect is due to the planet Jupiter, and roughly amounts to 1/100 of

the solar one: 16 mas of deflection for a star at Jupiter’s limb. Such a deflection has been

measured from the ground with VLBI at the radio wavelengths emitted by a quasar [101]

and a measurement in the visible band from space with HST was recently planned [102];

the observations have been executed, but results have not been published yet. One of

the goals of the Gaia mission is to measure Jupiter’s light bending with sufficiently high

accuracy to extract and quantify the quadrupole contribution [103]; first results have been

published in this direction [104], but without being able to disentagle quadrupole from

monopole contribution. To the best of our knowledge, no measurements of Jupiter’s gravi-

tational light bending using ground-based telescopes at visible or infrared wavelengths

have been performed yet.

In this context, the aim of our proposal is to measure Jupiter’s gravitational light

bending by measuring the relative positions of as many stars as possible in a field close

to Jupiter, using SOUL in the near infrared (K band). It is a challenging measurement

and it would be impossible from the ground without an AO system, because we need to

perform astrometry with precision of the order of the mas or better. This would be the

first ground-based measurement of Jupiter’s light bending at near-infrared wavelengths

and the first using an AO system. Uncertainties will not allow to measure any contribution

to light bending due to Jupiter beyond the monopole (the quadrupole would require

a µas precision). However, such an observation would be a test of the performance of

SOUL in non-ideal conditions (e.g. at rather large zenith angles). Moreover, carrying out

measurements that are close to the limits of currently available instruments is useful to

clarify potential issues in data acquisition and data analysis strategies, also paving the way

to similar astrometric measurements with future facilities, especially MCAO systems like

MORFEO.

6.2 Observational strategy

In principle this measurement could be performed through the measurements of the shift

in the positions of many stars with respect to the known undeflected positions: assuming
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the shift s is along the radial direction from the center of Jupiter and that it follows the

law s = C (r /RJ ), where r is the distance of the star from Jupiter’s center and RJ is Jupiter’s

radius, the constant C is obtained by means of a best fit of the measured shifts. Such an

absolute astrometry approach is not expected to yield the required accuracy in our case,

though.

Our proposal is then to perform differential astrometric measurements, i.e., to measure

the distance between pairs of stars (although in the typical case the relative shift is smaller

than the absolute one) and compare it with the theoretical prediction, again treating C as

the free parameter of a best fit procedure. In the Jupiter case one has an advantage over

solar eclipse experiments, that is, one can perform a time-resolved observation taking m

measurements over a given timespan where Jupiter moves appreciably so that the relative

deflection changes. Of course, a random choice of an observing date with Jupiter above

the horizon would not work: one has to select observing windows where there is at least

one AO reference star and a sufficient number of other stars, with a suitable geometrical

arrangement, in a 30”×30” (i.e. the FoV of LUCI’s N30 camera) field close to Jupiter.

Thus, we performed the following analysis to identify good observing windows: we

extracted the apparent coordinates of Jupiter within the SOUL-LUCI observing period

(September 2021-July 2022) and we identified the dates when Jupiter’s elevation is larger

than 30± in order to limit airmass. We then made a query from the NOMAD [105] catalog to

find stars near Jupiter within the selected windows. We chose as good cases the windows

with more than three stars within the 30" FoV and at least one good star as reference for

the AO correction (i.e. magR < 15).

In Fig. 6.1, we show, as an example, one of the good configurations that we selected:

Jupiter transits through a field of 7 stars (i.e. 21 distances to be measured) within the time

interval of the observation. This is a particularly convenient framework, as there are 4

potential GSs for the AO, that means stars with a high SNR and then with a low astrometric

error due to photon noise.

For the selected cases, we performed an analysis of the astrometric error budget and

we identified differential tilt jitter as the major contributor, considering to compensate dif-

ferential atmospheric refraction and instrumental distortions in post-processing analysis

and having selected high-flux sources to reduce centroiding error. This is expected due to

the SCAO configuration, as well as to the large zenith angles characterizing the observing

windows.

To estimate differential tilt jitter and centroiding error, we used the Python codes in

the Arcetri AO group’s libraries that we wrote to implement the analytical formulation

presented in the previous chapters.
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Fig. 6.1 Apparent motion of Jupiter with respect to the field stars on December 13, 2021. The box is
the N30 camera FoV and the red circles highlight possible NGSs.

In Fig. 6.2, we show the expected observed variation of distance between "star 5" and

"star 6" of Fig. 6.1 as a function of observing time and with the estimated error.

Fig. 6.2 Distance between stars 5 and 6 of Fig. 6.1 as a function of time (blue curve). The error bar
is represented by the shaded region. The red line is the distance without the gravitational effect.



Conclusions and perspectives

The goal of this PhD work, as part of the MORFEO project, is the estimation of the im-

pact of tip-tilt residuals from MCAO systems on ground-based astrometric observations.

Differential astrometry is, indeed, one of the main science drivers of the future instru-

ments equipped with MCAO systems and challenging requirements have been set on

the astrometric precision. Several contributors to astrometric error on MCAO-assisted

observations are currently being analyzed, but an accurate study of the errors caused by

MCAO tip-tilt residuals has not been carried out. The modeling of such source of error is,

indeed, not straightforward for this flavour of AO since the geometry with multiple GSs

and multiple DMs must be considered and can lead to complex behaviors.

In this context, we proposed an analytical derivation that allows to model and estimate

the astrometric errors due to MCAO atmospheric tip-tilt residuals, specifically differential

tilt jitter and centroiding errors. The derivation involves the computation of the temporal

PSD of the residual wavefront from an MCAO correction that is based on spatiotemporal

statistics of turbulence-induced wavefront distortions and on its temporal filtering by the

MCAO loop. We implemented all the analytical derivations into Python codes that are

now included in the libraries of the AO group of INAF - Arcetri Astrophysical Observatory

(https://github.com/ArcetriAdaptiveOptics/arte) and that are going to be available for the

MORFEO project.

As a first step, we derived analytical expressions to estimate spatiotemporal CPSDs

of the turbulent phase, considering either the whole piston-removed phase or its modal

decomposition into Zernike modes. The formulas are provided in a general framework:

CPSDs can be computed between two wavefronts observed with two different apertures

and, from this, all the limiting cases can be extracted (one aperture looking at two sources,

two apertures looking at one source, one aperture looking at one source). The expressions

have been validated through comparisons with results that are present in the literature for

the limiting cases, as well as with simulations. The general configuration can help study

different aspects of actual and future AO systems, providing faster results than simulations.

For our case study, we needed to model spatiotemporal statistics between the multiple

https://github.com/ArcetriAdaptiveOptics/arte


122 Conclusions and perspectives

beams involved in MCAO-assisted observations, thus, we restricted the analysis to the

configuration with one aperture and two sources.

Then, we derived an analytical formulation to compute the residual wavefront phase

from an MCAO loop. First, we performed the calculations for the simpler SCAO case: we

derived expressions to estimate the residual PSD in the direction of an on-axis target when

using an off-axis guide star. The formulation allows to take into account noise, temporal

errors and anisoplanatism, as well as its temporal filtering from the AO loop. We validated

the results with simulations and we compared them with expressions present in the

literature. Since our formulas take into account the temporal filtering of anisoplanatism

from the AO loop, we demonstrated that they can lead to more accurate analyses of

anisoplanatic error.

Next, we extended the results on SCAO to the MCAO case and we derived analytical

expressions to compute the temporal PSD of the residual wavefront phase from an MCAO

correction in any direction of the scientific field of view. The formulas are general and

allow to analyze specific frameworks through the definition of the telescope aperture, the

turbulence profile, the NGS and/or LGS asterism, the number and conjugation heights

of the DMs, and the sensed and corrected modes of distortion. The derivation within

the temporal domain allowed to include the MCAO control within the formulation: in

particular, we provided expressions in the case of either a closed-loop or a pseudo-open

loop control. The temporal domain allowed us also to model the dependence of tip-tilt

residuals on the scientific integration time: we identified inter-exposure residuals, that

are responsible for the relative jitter of the position of a target between successive frames,

and intra-exposure residuals, that are responsible for typical PSF elongation effects. We

found a dependence of the former on T 0 for small integration times and on T °1/2 for large

integration times, and of the latter on T 1 for small integration times and on T 0 for large

integration times. In both cases, switching from one power law to the other one depends

on the relationship between the camera transfer function and the residual PSD cutoff

frequencies. We used the derivation to also analyze the spatial behavior of on-axis MCAO

tip-tilt residuals and we found a quadratic dependence on the angular separation of the

asterism, that we demonstrated to be consistent with the control of plate-scale distortions

operated by the MCAO correction. We provided analytical expressions for differential tilt

jitter as well and we showed that the cross-correlations between the guide stars with each

other and between the guide stars and the target can play a role in reducing this source of

error with respect to the SCAO case.

Finally, we used our results to estimate the contribution of both differential tilt jitter

and centroiding error to the astrometric error budget of future MCAO instruments, in
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particular MORFEO at the ELT and MAVIS at the VLT. Atmospheric tip-tilt residuals should

not be the dominant limiting factor to the astrometric precision of these systems for

targets at º 1 separation and with magnitude < 20. However, for larger separations and

fainter magnitudes mitigation strategies may be foreseen, especially if considering zenith

angles larger than 30±.

This PhD work has taken part in the MORFEO project and we are going to include the

results within the AO system analysis in the next phase of the project starting in the next

months. We also plan to extend the analysis to high-order residuals from the LGS loop

and their impact on the PSF. In this context, we aim at including spatial frequencies in our

analytical derivation, exploring the possibility to join our approach with existing methods

on the study of spatial frequencies (e.g. Fourier approach). Moreover, in the framework of

high-orders correction, we aim at verifying and validating POLC-MMSE algorithm within

the MORFEO framework through the development of an optical setup for test procedures

in the laboratories of the Arcetri Astrophysical Observatory.





Appendix A

Numerical verifications

We performed simple simulation cases in order to verify and validate our analytical deriva-

tions on CPSDs and on residual PSDs from both SCAO and MCAO corrections.

A.1 CPSDs of piston-removed phase and Zernike modes

The CPSDs and PSDs have been averaged on 2000 turbulence occurrences and computed

using a Hanning window to improve the dynamical range. A single simulation (i.e. one

turbulence occurrence) has 10,000 iterations with a time step of 0.002 s. The propagation

of the phase is performed through end-to-end simulations as follows: the pupil phase

is the sum of the phases within the footprints of the beam on each layer. For a source at

finite distance, a linear interpolation is used to scale all the footprint phases to the pupil

size.

In Figs. A.1 and A.2, we show the comparison of Eqs. (2.34) and (2.44) respectively with

simulations. We considered a single turbulent layer at 10 km, with r0 = 16 cm in V band,

L0 = 25 m, wind speed of 10 m/s and wind direction of -20± with respect to the x axis. We

considered one source on axis at infinity and one source at polar coordinates (50", 30±)

and altitude of 100 km. We assumed a single aperture of 10 m diameter.

A.2 Residual PSD from SCAO correction

The CPSDs and PSDs have been averaged on 100 turbulence occurrences and computed

using a Hanning window to improve the dynamical range. A single simulation (i.e. one

turbulence occurrence) has 5,000 iterations with a time step of 0.002 s. The propagation
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Fig. A.1 Real (left) and imaginary (right) part of piston-removed phase CPSD.

Fig. A.2 Real (left) and imaginary (right) part of CPSD of Zernike modes 2 and 5 (top) and 4 and 8
(bottom).

of the phase is performed through end-to-end simulations as described in the previous

section, but also considering the sum of the correction phase.

In Fig. A.3, we show the residual PSDs of tip and tilt on an on-axis target obtained

from Eq. (2.55) and a comparison of the results with simulations. We considered the

NGS at polar coordinates (5", 30±) and the target in (0", 0±). We assumed a turbulence

profile following Kolmogorov model and given by three layers with r0,V = 16 cm in V band,

heights of [0, 5, 15] km, wind speed of [10, 5, 15] m/s, wind direction of [90±, 0±, -90±]. We
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considered a control given by a simple integrator with loop frequency frame rate of 500

Hz, gain g = 0.5 and delay in frames d = 2. We chose a telescope entrance aperture with

diameter D = 8 m.

Fig. A.3 SCAO residual PSD of tip (left) and tilt (right) for a target in (0", 0±). The results from
Eq. (2.55) are represented by the solid line, while the results from the simulation are shown with
the dotted line. The peaks at high frequencies characterizing the "Simulation" curves are caused
by the filtering of the data with a Hanning window to improve the CPSD dynamical range.

A.3 Residual PSD from MCAO correction

The CPSDs and PSDs have been averaged on 100 turbulence occurrences and computed

using a Hanning window to improve the dynamical range. A single simulation (i.e. one

turbulence occurrence) has 5,000 iterations with a time step of 0.002 s. The propagation

of the phase is performed through end-to-end simulations as described in Section A.1,

but also considering the sum of the correction phases.

In Fig. A.4, we show the residual PSDs of tip and tilt on an on-axis target obtained from

Eq. (3.16) and a comparison of the results with simulations. We assumed an asterism of

three NGSs in (30", 30±), (50", 120±) and (40", 270±) to sense tip and tilt, one DM at the

ground to compensate for tip and tilt and another DM at 10 km to compensate for focus

and astigmatisms. We assumed a turbulence profile following the Kolmogorov model,

characterized by three layers with r0,V = 16 cm in V band, heights of [0, 5, 15] km, wind

speed of [10, 5, 15] m/s, wind direction of [90±, 0±, -90±]. We considered a control given

by a simple integrator with loop frequency frame rate of 500 Hz, gain g = 0.5 and delay in

frames d = 2. The telescope entrance aperture has a diameter D = 8 m. We neglected noise

on the WFSs measurements.
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Fig. A.4 MCAO residual PSD of tip (left) and tilt (right) for a target in (0", 0±). The results from
Eq. (3.16) are represented by the solid line, while the results from the simulation are shown with
the dotted line. The peaks at high frequencies characterizing the "Simulation" curves are caused
by the filtering of the data with a Hanning window to improve the CPSD dynamical range.



Appendix B

Relating the wavefront on a metapupil in

altitude and on the telescope pupil plane

The computation of projection matrices, to relate for instance the wavefront on a meta-

pupil in altitude to the wavefront on the telescope pupil plane, is often required in MCAO

systems. In this context, if the wavefront is considered as decomposed onto Zernike

modes, the knowledge of coefficients to transform Zernike polynomials defined on a full

aperture to Zernike polynomials on a subaperture is needed. Analytical derivations have

been presented in the literature, and here we report the results from Negro [32].

B.1 Transformation coefficients from full aperture to sub-

aperture Zernike modes

The geometry is shown in Fig. B.1: the subaperture, with radius r , is at polar coordinates (h,

Æ) in the reference system of the full aperture of radius R . The derivation of transformation

coefficients is based on the geometric relationships between the variables (Ω0, µ0) and (Ω,

µ) of, respectively, the subaperture and the full aperture. These relationships are

RΩ cosµ = h cosÆ+ rΩ0 cosµ0 (B.1)

RΩ sinµ = h sinÆ+ rΩ0 sinµ0 . (B.2)
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Fig. B.1 Geometry of the subaperture within the full aperture.

We start estimating the coefficients relating full aperture and subaperture tip. The full

aperture tip is given by

Z2 = 2Ω cosµ = 2
R

RΩ cosµ

= 2
R

°
h cosÆ+ rΩ0 cosµ0

¢
= 2

R
h cosÆ+ r

R
2Ω0 cosµ0

= 2
R

h cosÆ+ r
R

Z 0
2 ,

(B.3)

where we followed Noll’s Zernike indexing [12] and where we used Eq. (B.1). The first term

is a piston term, while the second term represents the subaperture tip scaled by the ratio

between subaperture and full aperture radii r /R . Ignoring the piston term, Eq. (B.3) shows

that one wave of full aperture tip corresponds to r /R waves of subaperture tip.

The same can be demonstrated for tilt:

Z3 = 2Ω sinµ = 2
R

RΩ sinµ

= 2
R

°
h sinÆ+ rΩ0 sinµ0

¢
= 2

R
h sinÆ+ r

R
2Ω0 sinµ0

= 2
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h sinÆ+ r
R

Z 0
3 .

(B.4)
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For what concerns focus, it is useful the following relationship

°
RΩ

¢2 =
°
RΩ

¢2 °
cos2µ+ sin2µ

¢

= h2 + r 2Ω02 +2hrΩ0 cos(µ0 °Æ) ,
(B.5)

derived from squaring and adding Eqs. (B.1) and (B.2). Dividing both sides by R2 and

making cos(µ0 °Æ) explicit gives
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Through this expression, the full aperture focus can be written in terms of subaperture

modes:
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The equation shows that full aperture focus can be seen on a subaperture as piston, tip, tilt

and focus itself. In particular, the subaperture focus is (r /R)2 times the full aperture focus

and both subaperture tip and tilt scales with a coefficient proportional to (h/R) (r /R).

Same reasoning leads to the coefficients in Fig. B.2 for Zernike modes up to j =11. In

general, it is worth noting that each full aperture mode couples into only lower-order

radial subaperture modes.
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Fig. B.2 Table of transformation coefficients from full aperture to subaperture Zernike modes from
Negro [32]. The coefficients do not follow Noll’s indexing: in particular, the column Ai with i =
1,...,10 in the figure corresponds to i = 2,...,11 in Noll’s ordering and also the pairs of columns (A4,
A5), (A6, A7) and (A8, A9) must be inverted between them in order to follow Noll’s indexing.
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B.2 Plate-scale distortions

Plate-scale distortions are first-order distortions, thus, they can be described by the

following combination of polynomials

¢x = a1 +a2x +a3 y

¢y = b1 +b2 y +b3x .
(B.8)

In particular, they are caused by focus and astigmatisms in altitude projected on to tip-tilt

in pupil. The effect is the displacement of the position of an object in the pupil plane, that

linearly depends on the off-axis distance of the object. If we consider, for example, a focus

applied on a meta-pupil in altitude, the wavefront phase from an off-axis object is seen on

to the pupil as

'(h,Æ) = c4
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where c4 is the focus coefficient applied on the meta-pupil and where we used the trans-

formation coefficients in Fig. B.2. Thus, a focus on a meta-pupil in altitude is seen as only

a focus scaled by (r /R)2 in case of an object on axis; for an off-axis object, it is seen as a

focus scaled by (r /R)2, a tip linearly increasing in the field (dependence of tip coefficient

on h cosÆ) and a tilt also linearly increasing in the field (dependence of tilt coefficient on

h sinÆ). Therefore, focus in altitude generates a displacement proportional to x along x

and proportional to y along y (considering the compensation for the focus term applied

in the pupil). Similarly, from Fig. B.2 derives that astigmatism Z5 in altitude generates

'(h,Æ) = c5
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that is, a displacement proportional to y along x and proportional to y along x (consider-

ing the compensation for the astigmatism term applied in the pupil), and astigmatism

Z6

'(h,Æ) = c6
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that is, a displacement proportional to x along x and proportional to °y along y (consid-

ering the compensation for the astigmatism term applied in the pupil). The combination

of these first-order distortions leads to plate-scale distortions. The effect is sketched in

Fig. B.3.
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Fig. B.3 Maps of field offset, converted from polar (h,Æ) to Cartesian coordinates, due to focus (left)
and astigmatisms Z5 (center) and Z6 (right) applied in altitude. The compensation for, respectively,
focus and astigmatisms in pupil is included.
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Residual distortions on a pupil plane

We want to relate tip-tilt on the telescope pupil plane with the distortions on a layer of

turbulence at altitude hl . The phase observed at the pupil plane can be seen as a linear

combination of tip and tilt

'(x ,µ, t ) =
3X

k=2
∞k (µ, t )Zk (x/R) , (C.1)

where we used the same notation as the one presented in Flicker et al. [106], where '

is the phase observed at coordinates x on the pupil plane for a source at position µ, R

is the telescope pupil radius, Zk is the kth Zernike mode and ∞k (µ, t) are time and field

dependent coefficients relating tip-tilt on the pupil plane with all the modes of distortion

on a meta-pupil in altitude

∞k (µ, t ) =
NX

i=2
ci k (µ)Ai (t ) . (C.2)

The coefficients ci k (µ) and Ai can be defined from the first two rows of the table in Fig. B.2

as
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and as

A[2,3](t ) = a[2,3]l (t )R/Rl ; A[4:10](t ) = a[4:10]l (t )hl R/R2
l ; · · · (C.4)
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Due to the orthogonality of the Zernike, the phase variance can be computed as:
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where the notation C∞ denotes the covariance matrix of the coefficients ∞k (µ, t ).

C.1 SCAO

The SCAO systems compensate for the zeroth order of the distortions, thus the contri-

bution of modes higher than the tilt has to be considered. By exploiting the covariance

properties of the Zernike and through straightforward algebra, it can be demonstrated

that the phase variance becomes:
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where we showed the results from the first order distortions. In this case the variance

shows to be, at the first order, proportional to the second power of the off-axis separation

(i.e. the RMS has a linear dependence).

C.2 MCAO

The NGS-based MCAO configuration that we considered in our analysis is able to com-

pensate for the first order distortions. The contribution of the uncorrected modes, in this

case the ones higher than the astigmatisms, leads to a phase variance that is, at the first

order, proportional to the fourth power of the off-axis separation (i.e. RMS proportional to
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the second power):
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