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We prove an approximation result for functions u ∈ SBV (Ω;
Rm) such that ∇u is p-integrable, 1 ≤ p < ∞, and g0(|[u]|) is 
integrable over the jump set (whose Hn−1 measure is possibly 
infinite), for some continuous, nondecreasing, subadditive 
function g0, with g−1

0 (0) = {0}. The approximating functions 
uj are piecewise affine with piecewise affine jump set; the 
convergence is that of L1 for uj and the convergence in 
energy for |∇uj |p and g([uj ], νuj ) for suitable functions g. In 
particular, uj converges to u BV -strictly, area-strictly, and 
strongly in BV after composition with a bilipschitz map. 
If in addition Hn−1(Ju) < ∞, we also have convergence of 
Hn−1(Juj ) to Hn−1(Ju).
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction and main result

Approximation with regular objects is a fundamental tool in many problems in func-
tional analysis and in the Calculus of Variations. For instance, De Giorgi’s theory of 
sets of finite perimeter depends crucially on the approximability with piecewise smooth 
sets, a key step in the theory of Sobolev spaces is approximation by smooth functions 
(for example, the proof of the chain rule depends on it), and similarly for functions of 
Bounded Variation. Indeed, in these cases a possible definition of the relevant function 
space is via relaxation of a functional defined on smooth maps, and the difficult part is 
proving that this is equivalent to the intrinsic definition on measurable sets or functions.

More specifically, approximation and density play an important role in relaxation, 
Γ-convergence, integral representation, semicontinuity and many other aspects of the 
Calculus of Variations in which the topology of the function space is complemented 
by a variational functional to be minimized. In these applications it is important to 
approximate in the relevant topology and in energy. In this respect, the literature contains 
many approximation results for free discontinuity problems, mainly focused on either 
linear growth or discontinuity sets with finite measure, as appropriate for example for 
models of concentration of plastic slip or for the Griffith model of brittle fracture. Our 
main aim here is approximation in energy without the assumption that the jump set has 
finite measure. One natural application of our result is the study of superlinear models 
of cohesive fracture.

The functional framework to settle this kind of problems is provided by (a suitable 
subspace of) the space of Special functions of Bounded Variation, introduced by De 
Giorgi and Ambrosio in [23] to model a large class of problems which are described by 
a volume energy and a surface energy (e.g., mixtures of liquids, liquid crystals, image 
segmentation, fracture mechanics, ...). Indeed, SBV (Rn; Rm) is the set of functions 
u ∈ BV (Rn; Rm) whose distributional derivative has no Cantor part:

Du = ∇uLn + [u] ⊗ νuHn−1 Ju,

where ∇u is the approximate gradient and Ju, νu, [u] = u+ − u− are respectively the 
jump set, its normal, and the amplitude of the jump, see [5] for the definitions.
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In these problems, the general form of the energy is

F [u,A] :=
ˆ

A

Ψ(x,∇u)dx +
ˆ

Ju∩A

g(x, u+, u−, νu)dHn−1, (1.1)

for A ⊂ Rn open and bounded, Ψ and g satisfying suitable growth and regularity 
properties, u ∈ SBV (A; Rm). If one is interested in the (possibly constrained) global 
minimization of F , lower semicontinuity and coercivity are further required in order to 
apply the direct method of the Calculus of Variations and to establish the existence of 
a solution.

For many applications it is of crucial importance to be able to approximate u ∈
SBV (A; Rm) in L1(A; Rm) and in the sense of the energy by a sequence uj of more 
regular functions (for example piecewise regular), i.e., in a way that F [uj, A] → F [u, A]
as j → ∞. This was the aim of several works appeared in the recent years. Braides 
and Chiadò-Piat in [10, Sect. 5] focus on functions u ∈ SBV p ⊂ SBV , p > 1, i.e. such 
that ∇u ∈ Lp and Hn−1(Ju) < ∞. For functions u ∈ SBV p ∩ L∞ they provide an 
approximation uj ∈ SBV p, regular out of a closed rectifiable set, satisfying

uj → u strongly in BV, ∇uj → ∇u in Lp, Hn−1(Juj
	Ju) → 0. (1.2)

Cortesani in [19] and Cortesani and Toader in [22], on the positive side, improve this 
result, by constructing for u ∈ SBV p∩L∞, p > 1, a sequence uj whose jump set is in 
addition piecewise regular, and precisely polyhedral. Moreover they get

∇uj → ∇u in Lp,

lim sup
j→∞

ˆ

Juj
∩A

g(x, u+
j , u

−
j , νuj

)dHn−1 ≤
ˆ

Ju∩A

g(x, u+, u−, νu)dHn−1,

on A ⊂⊂ Ω. On the negative side, they do not obtain strong convergence in SBV .
The strong convergence in SBV holds for the result by De Philippis, Fusco and Pratelli 

in [24, Theorem C], in which, for u ∈ SBV p, p > 1, the authors construct uj regular out 
of the closure of its jump set, which is actually essentially closed being contained in a 
compact C1 manifold with C1 boundary, and differs from it only by an Hn−1-negligible 
set.

The previous four results have been crucial for many applications involving a penal-
ization on the measure of the jump set. The case in which the jump set of u is allowed 
to have infinite measure is quite different and few approximations are available in the 
literature. An extension of the result by Cortesani and Toader to BV was obtained in [3]
in the setting of BV strict convergence. In [29], the approximation of any BV function 
is obtained in the area-strict sense through countably piecewise affine functions with 
the same trace as u at the boundary. A different approximation is provided in SBV in 
[24, Theorem B]. Precisely, the authors prove that if u ∈ SBV with ∇u ∈ Lp, p > 1, 
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then it is possible to construct uj regular out of the closure of its jump set, which is 
actually essentially closed being (up to Hn−1-null sets) a compact C1 manifold with C1

boundary, and satisfying

uj → u strongly in BV, ∇uj → ∇u in Lp .

In particular, the convergence Hn−1(Juj
\ Ju) → 0 is not ensured. Moreover, in case 

p = 1, the jump of uj can be additionally taken contained in the intersection of a 
compact C1 manifold with C1 boundary and of the jump set of the function to be 
approximated (see [24, Theorem A]). Related density results, with different functional 
settings such as (G)SBD or BH, have been obtained in the last years (see for example 
[17,28,13,26,27,14,20,12] and [1,2], respectively).

Although all the quoted results are important advances, they are in general not enough 
for many applications, and in general do not imply convergence of the surface term or 
of the total energy F , in particular if the measure of the jump set is not finite. An easy 
example is that of an energy F where Ψ = Ψ(∇u) is superlinear for large gradients and 
g = g([u], νu) is superlinear for small amplitudes, the natural domain of finiteness being 
(a subset of) SBV . In this case, the only result available in the literature is [9, Sect. 4], 
which however applies only to u ∈ GSBV with ∇u = 0 Ln-a.e. on Ω. The approximants 
satisfy ∇uj = 0 Ln-a.e. on Ω and have jump sets of finite measure. The convergence is 
that of L1 together with the convergence of the energies.

In this paper, we develop an original multiscale technique to approximate functions 
u ∈ SBV with jump set of possibly infinite measure and ∇u ∈ Lp, with p ≥ 1. We 
stress that it encompasses at the same time both superlinear, cohesive-type and Griffith, 
brittle-type surface energies as shown in Section 2.

Theorem 1.1.
Let Ω ⊆ Rn be an open bounded Lipschitz set, u ∈ SBV (Ω; Rm) such that ∇u ∈

Lp(Ω; Rm×n) for some p ∈ [1, ∞), and g0(|[u]|) ∈ L1(Ω; Hn−1 Ju), with g0 : [0, ∞) →
[0, ∞) continuous, nondecreasing, subadditive, and g−1

0 (0) = {0}.
Then there are sequences uj ∈ SBV ∩ L∞(Ω; Rm) and Φj ∈ Lip (Rn; Rn) such that

(i) for each j there is a locally finite decomposition of Rn in simplexes such that uj is 
affine in the interior of each of them;

(ii) uj → u in L1(Ω; Rm);
(iii) ∇uj → ∇u in Lp(Ω; Rm×n);
(iv) Φj is bilipschitz, with Φj(x)−x → 0 in L∞(Rn; Rn), DΦj → Id in L∞(Rn; Rn×n), 

and Φj(x) = x for x ∈ Rn \ Ω;
(v) one can choose the orientation of the normal νj to Juj

so that

lim
j

ˆ

Ju∪Φ−1(Ju )

g0(|[u] − [uj ] ◦ Φj |) dHn−1 = 0 (1.3)
j j
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(with [u] = 0 outside Ju, and similarly for uj), and

lim
j

ˆ

Ju∪Φ−1
j (Juj

)

g0(|[u]| + |[uj ] ◦ Φj |)
∣∣νu − νj ◦ Φj

∣∣ dHn−1 = 0; (1.4)

(vi) if Hn−1(Ju) < ∞, then also Hn−1(Ju	Φ−1
j (Juj

)) → 0;
(vii) if ∇u = 0 Ln-almost everywhere on Ω, then ∇uj = 0 Ln-almost everywhere on Ω

for all j. If instead u ∈ W 1,p(Ω; Rm) then uj ∈ W 1,p(Ω; Rm) for all j.

A few remarks are in order. First, since Φj(Ω) = Ω, the integrals in (1.3) and (1.4)
are over subsets of Ω. Then, thanks to the subadditivity of g0 from items (iv) and (v) it 
follows that

lim
j

ˆ

Juj

g0(|[uj ]|) dHn−1 =
ˆ

Ju

g0(|[u]|) dHn−1

(see the proof of Corollary 2.1 below). Moreover, under suitable assumptions discussed 
in details in Section 2, we can deduce the convergence of surface energies with density 
g : Rm × Sn−1 → [0, ∞) depending suitably on the full jump and the normal. Finally, if 
Ψ ∈ C0(Rm×n) has p-growth (cf. again Section 2) then (iii) implies

lim
j

ˆ

Ω

Ψ(∇uj) dx =
ˆ

Ω

Ψ(∇u) dx .

In addition, the sequence (uj)j∈N can be chosen such that the convergence to u is 
stronger, namely strict in BV and in area, see Corollary 2.3 below.

We stress that energies with bulk density Ψ and surface density g as above are in 
general not L1 or weakly∗-BV lower semicontinuous. Hence, our approximations can be 
used to prove relaxation formulas in the spirit of [6,8,7]. This will be the object of future 
work in [16].

The proof of Theorem 1.1 is obtained through an explicit construction in several steps. 
First, u can be extended to a function defined on a slightly larger set at a small energy 
cost. This is not achieved by local reflections at the boundary and a partition of unity 
process as usually done, which would require u ∈ Lp. It is rather pursued through a 
regularization of the normal vector at the boundary and the definition of a bilipschitz 
map which swaps an inner neighborhood of the boundary with an outer one. Further 
details can be found in Section 3.1.

We employ next a multiscale approach. More precisely, we find a suitable scale δ > 0, 
such that ∇u is close to a constant and Ju is close to a C1 manifold in each cube of side 
δ of a partition of Rn. This is the object of Proposition 3.6. At this point, we introduce 
a second scale ε � δ. In each cube of side δ we consider a finer triangulation with 
simplexes of diameter less than cε and volume larger than cεn. The heart of the paper 
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is Proposition 4.1, which, given the values of u on the vertices of a single simplex, and 
two vectors for each edge, representing the cumulated jump and the average gradient of 
u on the edge, provides a piecewise affine interpolation, whose gradient and jump can be 
estimated respectively only through the given gradient vector or the given jump vector 
(see Fig. 1). Proposition 4.1 is then employed in Proposition 4.3 (see Fig. 2) to define 
a global projection, with good energy estimates, of any SBV function on the space of 
piecewise affine functions.

The proof of Theorem 1.1 contains a few additional steps, since the direct application 
of Proposition 4.3 to the given u would provide a piecewise affine approximation with 
surface energy controlled only up to a multiplicative factor by the surface energy of u. 
To avoid this problem, we first consider the extensions U± of u with respect to the C1

manifold approximating Ju in each cube of side δ. We then apply the previous projection 
to U±. We finally introduce a piecewise affine interpolation of the C1 manifold and define 
the approximation of u as the projections of U± on the two sides of it. This is performed 
in the proof of Theorem 1.1 in Section 4.3, see also Fig. 3.

The structure of the paper is the following. In Section 2 we provide several conse-
quences of Theorem 1.1, in particular we show that the approximating sequence can be 
constructed such that it converges also BV -strictly, area-strictly and BV -strongly after 
composition with a bilipschitz map. Section 3 addresses two key technical issues: the 
extension tool in Section 3.1 and the regularization at scale δ in Section 3.2. Section 4
is devoted to the proof of Theorem 1.1. Precisely, Section 4.1 contains the construc-
tion of a relevant piecewise affine interpolation on a single simplex. Section 4.2 applies 
such construction to produce a piecewise affine approximation of a given SBV function. 
Finally, Section 4.3 provides the full proof of Theorem 1.1 by applying the projection 
of Section 4.2 to the extensions of u on the two sides of the regularized jump set and 
by defining the approximation of u as such projections on the two sides of a suitable 
perturbation of a piecewise interpolation of the regularized jump set.

2. Consequences of the approximation theorem

We discuss here some consequences of Theorem 1.1. To this aim we fix p ∈ [1, ∞) and 
consider Ψ ∈ C0(Rm×n) obeying for some C > 0,

|Ψ(ξ)| ≤ C(|ξ|p + 1). (2.1)

Throughout the paper C will denote a constant, possibly depending on the dimension 
(if not otherwise specified) and changing from line to line. Next we select a function 
g0 : [0, ∞) → [0, ∞) which represents a modulus of continuity of the surface energy g
introduced below (see in particular (2.4)) satisfying:

(Hg0
1 ) g0 is continuous, nondecreasing, and g−1

0 (0) = {0},
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(Hg0
2 ) g0 is subadditive, namely for every (t, t′) ∈ [0, ∞) × [0, ∞)

g0(t + t′) ≤ g0(t) + g0(t′) .

For example either g0(t) = 1 ∧ tq or g0(t) = tq, for q ∈ (0, 1], will do. Note that by 
subadditivity and continuity of g0 in zero, for every λ > 0 there is Cλ > 0 such that for 
all t ∈ [0, ∞)

g0(t) ≤ λ + Cλt. (2.2)

Then we consider any function g ∈ C0(Rm × Sn−1; [0, ∞)), such that

(Hg
1) g(−s, −ν) = g(s, ν) for all (s, ν) ∈ Rm × Sn−1;

(Hg
2) for all (s, s′, ν) ∈ Rm ×Rm × Sn−1

g(s + s′, ν) ≤ g(s, ν) + C g0(|s′|); (2.3)

and either

(Hg
3) g(0, ν) = 0 for all ν ∈ Sn−1

or

(Hg
3′) there is α > 0 such that g(0, ν) ≥ α for all ν ∈ Sn−1.

Thanks to assumption (Hg
1), the surface energy with density g is well defined as it does 

not depend on the chosen orientation of the normal to the jump set. Assumption (Hg
3) 

is useful to model cohesive-type energies, such as for example the one of the Barenblatt 
model. Assumption (Hg

3′) is instead useful for surface energies typical of brittle fracture, 
such as the one of the Griffith model (or, in the scalar case, of the Mumford-Shah model) 
for which g is constant.

Exchanging the roles of s and s + s′ in (2.3) yields that

|g(s + s′, ν) − g(s, ν)| ≤ C g0(|s′|). (2.4)

Moreover, if (Hg
3) holds, the latter estimate with s′ = −s implies that for all (s, ν) ∈

Rm × Sn−1

g(s, ν) ≤ C g0(|s|) . (2.5)

If instead (Hg
3′) holds, then by continuity there is also β > 0 such that g(0, ν) ≤ β for 

all ν, and in particular for all (s, ν) ∈ Rm × Sn−1
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g(s, ν) ≤ β + C g0(|s|). (2.6)

For u ∈ SBV (Ω; Rm) and for a Borel set A ⊆ Ω, we define the energy

EΨ,g[u,A] :=
ˆ

A

Ψ(∇u)dx +
ˆ

Ju∩A

g([u], νu)dHn−1 ,

where for any u ∈ SBV (Ω; Rm) we denote by [u] the function which is the usual jump 
of u on Ju and 0 on Ω \ Ju.

Corollary 2.1. Under the assumptions of Theorem 1.1, the sequence (uj)j∈N introduced 
there satisfies

lim
j

ˆ

Ω

Ψ(∇uj)dx =
ˆ

Ω

Ψ(∇u)dx , (2.7)

lim
j

ˆ

Juj

g([uj ], νuj
)dHn−1 =

ˆ

Ju

g([u], νu)dHn−1 (2.8)

for all functions Ψ ∈ C0(Rm×n) satisfying (2.1), and all g ∈ C0(Rm × Sn−1; [0, ∞))
satisfying (Hg

1), (H
g
2), and (Hg

3). In particular,

lim
j

EΨ,g[uj ,Ω] = EΨ,g[u,Ω] .

We stress that the assumptions of Theorem 1.1 include in particular integrability of 
g0(|[u]|) and ensure via (2.1) and (2.5) that EΨ,g[u, Ω] is finite.

In this proof and in the rest of the paper we shall use repeatedly the Area formula in 
the following form. For Φ : Rn → Rn bilipschitz, and u ∈ BV (Rn; Rm), one has

ˆ

Ju

g([u], νu)dHn−1 =
ˆ

Φ−1(Ju)

g([u] ◦ Φ, νu ◦ Φ)Jn−1d
Φ−1(Ju)Φ dHn−1 (2.9)

(cf. [5, Theorem 2.91], with f = Φ and E = Φ−1(Ju), or [25, Theorem 3.2.22]). In (2.9) we 
write Jn−1d

Φ−1(Ju)Φ for the tangential Jacobian and remark that if Φ is differentiable 
then Jn−1d

Φ−1(Ju)Φ = |cof(DΦ)(νu ◦ Φ)|. For Hn−1-almost every x ∈ Φ−1(Ju), the 
map Φ is differentiable in x in the directions of the tangent space. The same holds for 
y �→ Φ(y) − y, which is Lipschitz with Lipschitz constant bounded by ‖DΦ − Id‖L∞(Rn). 
Therefore for Hn−1-almost every x ∈ Φ−1(Ju) we have

|Jn−1d
Φ−1(Ju)Φ − 1|(x) ≤ C‖DΦ − Id‖L∞(Rn) (2.10)

and, in particular, |Jn−1d
Φ−1(Ju)Φ| ≤ C (with constants that may depend on n and on 

the Lipschitz constants of Φ and Φ−1).
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Proof. Given the Lp convergence of (∇uj)j∈N to ∇u, we may consider a subsequence, 
which we do not relabel, such that

lim sup
j

∣∣∣∣∣∣
ˆ

Ω

(Ψ(∇uj) − Ψ(∇u))dx

∣∣∣∣∣∣
is actually a limit, and (∇uj)j∈N converges to ∇u Ln-almost everywhere on Ω. Thanks 
to Egorov’s theorem, for every ε > 0 there is E with |Ω \ E| ≤ ε such that ∇u ∈
L∞(E; Rm×n) and (∇uj)j∈N converges to ∇u uniformly on E. Therefore, we may use 
(2.1) and item (iii) in Theorem 1.1 to get

lim sup
j

∣∣∣∣∣∣
ˆ

Ω

(Ψ(∇uj) − Ψ(∇u))dx

∣∣∣∣∣∣ = lim sup
j

∣∣∣∣∣∣∣
ˆ

Ω\E

(Ψ(∇uj) − Ψ(∇u))dx

∣∣∣∣∣∣∣
≤ C

( ˆ

Ω\E

|∇u|pdx + |Ω \ E|
)
.

The conclusion then follows as ε ↓ 0 by absolute continuity. As the limit is unique, 
convergence holds for the entire sequence.

We next deal with (2.8). To this aim we first use the Area formula in (2.9) to obtain

ˆ

Juj

g([uj ], νuj
)dHn−1 =

ˆ

Φ−1
j (Juj

)

g([uj ] ◦ Φj , νuj
◦ Φj)Jn−1d

Φ−1
j (Juj

)ΦjdHn−1. (2.11)

By (2.10) and (iv), the tangential Jacobian converges in L∞ to 1. We observe that by 
subadditivity of g0

ˆ

Φ−1
j (Juj

)

g0(|[uj ] ◦ Φj |)dHn−1

≤
ˆ

Ju∪Φ−1
j (Juj

)

g0(|[u] − [uj ] ◦ Φj |) dHn−1 +
ˆ

Ju

g0(|[u]|) dHn−1.

Using (1.3) and the assumption that g0(|[u]|) ∈ L1(Ω, Hn−1 Ju) we obtain that

ˆ

Φ−1
j (Juj

)

g0(|[uj ] ◦ Φj |)dHn−1 ≤ C < ∞ (2.12)

for all j. By (2.11), the growth condition in (2.5), and the last step (2.12), we obtain
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∣∣∣∣∣∣∣∣
ˆ

Juj

g([uj ], νuj
)dHn−1 −

ˆ

Φ−1
j (Juj

)

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1

∣∣∣∣∣∣∣∣
≤ ‖1 − Jn−1d

Φ−1
j (Juj

)Φj‖L∞(Φ−1
j (Juj

);Hn−1)

ˆ

Φ−1
j (Juj

)

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1

≤ o(1)
ˆ

Φ−1
j (Juj

)

g0(|[uj ] ◦ Φj |)dHn−1 = o(1) . (2.13)

Using (1.3) and (1.4) in Theorem 1.1 and the fact that g0 is nondecreasing with g−1
0 (0) =

{0} we deduce χΦ−1
j (Juj

) → 1 and νuj
◦Φj → νu, Hn−1-almost everywhere on Ju. Thus, 

χΦ−1
j (Juj

)νuj
◦Φj → νu, Hn−1-almost everywhere on Ju. Dominated convergence, which 

we can use by (2.5) and integrability of g0(|[u]|), then yields

lim sup
j

ˆ

Ju∩Φ−1
j (Juj

)

∣∣g([u], νuj
◦ Φj) − g([u], νu)

∣∣ dHn−1 = 0. (2.14)

Moreover, (1.3) in Theorem 1.1(v) yields (with (2.5)) that

lim sup
j

⎛⎜⎜⎝ ˆ

Ju\Φ−1
j (Juj

)

g([u], νu)dHn−1 +
ˆ

Φ−1
j (Juj

)\Ju

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1

⎞⎟⎟⎠ = 0.

(2.15)
Therefore, we conclude that

lim sup
j

∣∣∣∣∣∣∣
ˆ

Juj

g([uj ], νuj
)dHn−1 −

ˆ

Ju

g([u], νu)dHn−1

∣∣∣∣∣∣∣
≤ lim sup

j

∣∣∣∣∣∣∣∣
ˆ

Φ−1
j (Juj

)

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1 −

ˆ

Ju

g([u], νu)dHn−1

∣∣∣∣∣∣∣∣
≤ lim sup

j

ˆ

Φ−1
j (Juj

)∩Ju

∣∣g([uj ] ◦ Φj , νuj
◦ Φj) − g([u], νu)

∣∣dHn−1

≤ lim sup
j

ˆ

Φ−1(Ju )∩Ju

∣∣g([uj ] ◦ Φj , νuj
◦ Φj) − g([u], νuj

◦ Φj)
∣∣dHn−1
j j
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≤ C lim sup
j

ˆ

Φ−1
j (Juj

)∩Ju

g0(|[u] − [uj ] ◦ Φj |) dHn−1 = 0 ,

where we have used (2.13) in the first inequality, (2.15) in the second one, (2.14) in the 
third one, (2.4) in the fourth one, and (1.3) in Theorem 1.1(v) in the last equality. �

We next show how to treat the case that g is bounded from below, in which (Hg
3′) 

holds. We stress that the case of the Mumford-Shah energy functional corresponds to 
the choices Ψ = | · |2 and g ≡ 1 as |[u]| > 0 on Ju for u ∈ SBV .

Corollary 2.2. Under the assumptions of Theorem 1.1, if Hn−1(Ju) < ∞ the sequence 
(uj)j∈N introduced there satisfies

lim
j

ˆ

Ω

Ψ(∇uj)dx =
ˆ

Ω

Ψ(∇u)dx , (2.16)

lim
j

ˆ

Juj

g([uj ], νuj
)dHn−1 =

ˆ

Ju

g([u], νu)dHn−1 (2.17)

for all functions Ψ ∈ C0(Rm×n) satisfying (2.1), and g ∈ C0(Rm × Sn−1; [0, ∞)) satis-
fying (Hg

1), (H
g
2), and (Hg

3′). In particular,

lim
j

EΨ,g[uj ,Ω] = EΨ,g[u,Ω] .

Proof. The proof is very similar to the one of Corollary 2.1. The first part, until (2.12), 
is identical. Using (2.6), Hn−1(Ju) < ∞, (vi) in Theorem 1.1, and (2.12) we have

ˆ

Φ−1
j (Juj

)

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1

≤ β(Hn−1(Ju) + Hn−1(Φ−1
j (Juj

) \ Ju)) + C

ˆ

Φ−1
j (Juj

)

g0(|[uj ] ◦ Φj |)dHn−1

≤ C < ∞

(2.18)

for all j. We use the latter and (2.11) to conclude that∣∣∣∣∣∣∣∣
ˆ

Juj

g([uj ], νuj
)dHn−1 −

ˆ

Φ−1
j (Juj

)

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1

∣∣∣∣∣∣∣∣
≤ ‖1 − Jn−1d

Φ−1
j (Juj

)Φj‖L∞(Φ−1
j (Juj

);Hn−1)

ˆ

Φ−1(Ju )

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1
j j



12 S. Conti et al. / Journal of Functional Analysis 288 (2025) 110686
= o(1) (2.19)

which replaces (2.13). Using (vi) in Theorem 1.1, χΦ−1
j (Juj

) → 1 pointwise Hn−1-almost 
everywhere on Ju. As above, χΦ−1

j (Juj
)νuj

◦ Φj → νu Hn−1-almost everywhere on 

Ju. From Hn−1(Ju) < ∞ and integrability of g0(|[u]|) we obtain that β + g0(|[u]|) ∈
L1(Ω; Hn−1 Ju). Dominated convergence, which we can use by (2.6), then yields

lim sup
j

ˆ

Ju∩Φ−1
j (Juj

)

∣∣g([u], νuj
◦ Φj) − g([u], νu)

∣∣ dHn−1 = 0. (2.20)

Moreover, items (v) and (vi) in Theorem 1.1 and (2.6), yield that

lim sup
j

⎛⎜⎜⎝ ˆ

Ju\Φ−1
j (Juj

)

g([u], νu)dHn−1 +
ˆ

Φ−1
j (Juj

)\Ju

g([uj ] ◦ Φj , νuj
◦ Φj)dHn−1

⎞⎟⎟⎠ = 0.

(2.21)
The rest of the proof is unchanged. �

We can actually strengthen the conclusions of Corollary 2.1 and Corollary 2.2 by 
constructing an approximating sequence converging in a stronger sense. We recall that 
the push-forward of a measure μ through a map Φ : Rn → Rn is defined by (Φ#μ)(E) :=
μ(Φ−1(E)) for any measurable set E, and that this implies 

´
fd(Φ#μ) =

´
(f ◦Φ)dμ for 

any measurable function f .

Corollary 2.3. In Corollary 2.1 and Corollary 2.2 the sequence (uj)j∈N can be chosen to 
additionally satisfy

lim
j

|(Φj)#Duj −Du|(Ω) = 0 (2.22)

and

lim
j

‖uj ◦ Φj − u‖BV (Ω) = 0 . (2.23)

In particular,

lim
j

ˆ

Ω

|∇uj |dx =
ˆ

Ω

|∇u|dx , (2.24)

lim
j

ˆ √
1 + |∇uj |2dx =

ˆ √
1 + |∇u|2dx , (2.25)
Ω Ω
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lim
j

ˆ

Juj

|[uj ]|dHn−1 =
ˆ

Ju

|[u]|dHn−1 , (2.26)

so that (uj)j∈N converges to u strictly in BV (Ω; Rm) and in area.

Proof. The proof is based on the fact that the construction of the sequence in Theo-
rem 1.1 does not depend on the details of the energy considered. We define the auxiliary 
functions g̃0 : [0,∞) → [0, ∞), g̃ : Rm → [0, ∞), by

g̃0(t) := g0(t) + t , t ∈ [0,∞) ,

and

g̃(s) := |s| , s ∈ Rm .

It is easy to check that g̃0 satisfies (Hg0
1 )-(Hg0

2 ), and moreover that both g and g̃
satisfy (Hg

1)-(H
g
2) with respect to g̃0. Further, g̃ satisfies (Hg

3). In addition, if u ∈
SBV (Ω; Rm), having assumed that g0(|[u]|) ∈ L1(Ω; Hn−1 Ju), we infer that g̃0(|[u]|) ∈
L1(Ω; Hn−1 Ju). Therefore, we may consider the sequence (uj)j∈N provided by The-
orem 1.1 with surface density g̃0. Thus, to get (2.24)–(2.26) it is sufficient to apply 
Corollary 2.1 with Ψ1(ξ) := |ξ| and g̃, and then Ψ2(ξ) :=

√
1 + |ξ|2 and g̃. One applies 

either Corollary 2.1 or Corollary 2.2 with densities Ψ and g to obtain convergence of the 
energy. From Theorem 1.1(v) for g̃0 we obtain

lim
j

ˆ

Ju∪Φ−1
j (Juj

)

|[uj ] ◦ Φj − [u]|dHn−1 = 0 ,

and with (iii) and (iv) we conclude |(Φj)#Duj −Du|(Ω) → 0. It remains to prove (2.23). 
Recalling Theorem 1.1 (ii) and (iv) and (2.22), it is enough to check that

lim
j

ˆ

Ω

|∇(uj ◦ Φj) −∇u|dx = 0.

Let Sj be the decomposition of Theorem 1.1 (i), then uj is affine in T , for all T ∈ Sj , 
and the chain rule gives

ˆ

Ω

|∇(uj ◦ Φj) −∇u|dx =
∑
T∈Sj

ˆ

Ω∩Φ−1
j (T )

|∇(uj ◦ Φj) −∇u|dx

=
∑
T∈Sj

ˆ

Ω∩Φ−1(T )

|(∇uj ◦ Φj)DΦj −∇u|dx.
j
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The triangular inequality yields
ˆ

Ω∩Φ−1
j (T )

|(∇uj ◦ Φj)DΦj −∇u|dx ≤
ˆ

Ω∩Φ−1
j (T )

|∇uj ◦ Φj ||DΦj − Id|dx

+
ˆ

Ω∩Φ−1
j (T )

|(∇uj −∇u) ◦ Φj |dx +
ˆ

Ω∩Φ−1
j (T )

|∇u ◦ Φj −∇u|dx

and all terms tend to zero by Theorem 1.1 (iv) and (2.22). This gives the conclusion. �

Finally, we extend the above approximation results to functions belonging to 
(GSBV (Ω))m with energy E|·|p,g0 finite (we refer to [5, Section 4.5] for the basic notation 
and theory).

Corollary 2.4. Let Ω ⊆ Rn be an open bounded Lipschitz set, u ∈ L1(Ω; Rm) ∩
(GSBV (Ω))m be such that ∇u ∈ Lp(Ω; Rm×n) for some p ∈ [1, ∞), and g0(|[u]|) ∈
L1(Ω; Hn−1 Ju), with g0 : [0, ∞) → [0, ∞) continuous, nondecreasing, subadditive, and 
g−1
0 (0) = {0}.

Then, there exists a sequence (uj)j∈N ⊆ SBV ∩ L∞(Ω; Rm) such that all the conclu-
sions in Theorem 1.1 hold, and in addition

lim
j

ˆ

Ω

Ψ(∇uj)dx =
ˆ

Ω

Ψ(∇u)dx , (2.27)

lim
j

ˆ

Juj

g([uj ], νuj
)dHn−1 =

ˆ

Ju

g([u], νu)dHn−1 (2.28)

for all functions Ψ ∈ C0(Rm×n) satisfying (2.1), and all g ∈ C0(Rm × Sn−1; [0, ∞))
satisfying (Hg

1), (H
g
2), and (Hg

3). In addition, if Hn−1(Ju) < ∞, (2.28) holds for all 
g ∈ C0(Rm × Sn−1; [0, ∞)) satisfying (Hg

1), (H
g
2), and (Hg

3′).
Moreover, the sequence (uj)j∈N can be chosen such that (2.24) and (2.25) hold.

Proof. We argue by density by constructing a sequence (ũk)k∈N ⊂ SBV ∩ L∞(Ω; Rm)
converging in L1(Ω; Rm) and in energy to u. This is well-known nowadays, in any case for 
the readers’ convenience we recall the definition. To this aim we fix a sequence (ak)k∈N ⊂
(0, ∞) such that ak < ak+1, ak ↑ ∞, and such that there are functions Tk ∈ C1

c (Rn; Rm)
satisfying Tk(z)= z if |z| ≤ ak, Tk(z) = 0 if |z| ≥ ak+1, and ‖DTk‖L∞(Rn;Rm) ≤ 1. Then, 
the sequence ũk := Tk(u)∈ SBV (Ω;Rm) converges to u in L1(Ω; Rm), ∇ũk = ∇u Ln-
almost everywhere on Ωk := {x ∈ Ω : |u(x)| ≤ ak}, Jũk

⊆ Ju, νũk
= νu Hn−1-almost 

everywhere on Jũk
. Moreover, as

Hn−1({x ∈ Ju : |u±(x)| = ∞}) = 0
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(see [4, Proposition 2.12, Remark 2.13]) we infer that χJũk
→ χJu

, ũ±
k (x) = u±(x) Hn−1-

almost everywhere on Jũk
∩Ωk, |[ũk]| ≤ |[u]| and ũ±

k → u± Hn−1-almost everywhere on 
Ju. Therefore, we get

lim
k

ˆ

Ω

|∇ũk|pdx =
ˆ

Ω

|∇u|pdx ,

and thanks to the subadditivity and monotonicity properties of g0 also that

lim
k

ˆ

Ju

g0(|[u] − [ũk]|)dHn−1 = 0

(for detailed proofs of similar properties see, for instance, [4, Lemma 6.1] and [15, Propo-
sition 4.8]).

Next, for every k ∈ N we apply Theorem 1.1 in order to get a sequence (ũk,j)j∈N
approximating ũk and satisfying all the conditions in that statement. Eventually, we 
conclude thanks to a diagonalization argument in view of the properties of g0, Ψ and g
and the arguments in Corollaries 2.1 or 2.2, and in Corollary 2.3. �

3. Technical results

In this section we collect the key technical tools we use to prove Theorem 1.1. For SBV

functions having finite energy according to Theorem 1.1, we establish first an extension 
result, and then some measure theoretic properties crucial for our constructions.

3.1. Extension

In this section we prove an extension result for SBV functions. A standard local re-
flection argument would work for SBV ∩ Lp functions. However, in the present setting 
it is not clear that having finite energy implies finiteness of the Lp norm. In particular, 
to the aim of applications, both for approximation via Γ-convergence and for the deter-
mination of relaxation of variational integrals, it is not natural to assume additionally 
u ∈ Lp (see for example the forthcoming paper [16]), therefore we avoid the extra Lp

integrability condition. To this aim, we introduce a global reflection argument based on 
a bilipschitz map reflecting a neighborhood of ∂Ω in Ω, outside of Ω itself.

The general strategy is standard, but to the best of our knowledge the details are 
new. For example, a similar result was obtained in [21, Th. 3.1] with a more complex 
construction using the solution of an ODE (see [21, Eq. (3.5)]) instead of the specific 
formula (3.21) below for the construction of the reflection.

Theorem 3.1. Let Ω ⊆ Rn be a bounded Lipschitz set. Then there are an open set ω ⊆ Rn

with ∂Ω ⊂ ω and a bilipschitz map Φ : ω → ω such that Φ(x) = x for x ∈ ∂Ω and 
Φ(ω ∩ Ω) = ω \ Ω.
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We recall that a map f : E → f(E) ⊆ Rn, for E ⊆ Rn, is bilipschitz if there is L > 0
such that

1
L
|x− y| ≤ |f(x) − f(y)| ≤ L|x− y| (3.1)

for all x, y ∈ E. This is the same as saying that f is injective, Lipschitz, with a Lipschitz 
inverse f−1 : f(E) → E.

Moreover, a set Ω is Lipschitz if for every x ∈ ∂Ω there are εx > 0, Gx ∈ Lip (Rn−1)
and an isometry Ax : Rn → Rn such that Ax0 = x and

Bεx(x) ∩ Ω = Bεx(x) ∩Ax{(y′, yn) ∈ Rn−1 ×R : yn < Gx(y′)}. (3.2)

Obviously Gx(0) = 0; if |y′| < εx/(Lip (Gx) + 1) then Ax(y′, Gx(y′)) ∈ Bεx(x) ∩ ∂Ω. If 
Ω is bounded, there are ε0 and L0 such that one can choose εx ≥ ε0 and Lip (Gx) ≤ L0
for all x ∈ ∂Ω.

We start with defining a smooth vector field playing the role of the normal field to 
∂Ω, which under our hypotheses is only a function in L∞(∂Ω; Sn−1).

Lemma 3.2. Let Ω ⊆ Rn be a bounded Lipschitz set. Then there are γ > 0 and a map 
ψ ∈ C∞

c (Rn; Rn) such that ψ(x) · ν(x) ≥ γ for Hn−1-almost every x ∈ ∂Ω and |ψ| = 1
on ∂Ω.

This is well-known (see, for example, [18, Lemma 4.1]), for completeness we include 
the short proof.

Proof. The compact set ∂Ω can be covered by a finite family of balls Bi := Bri(zi), such 
that in each of the larger balls B∗

i := B2ri(zi) (3.2) reads

B∗
i ∩ Ω = B∗

i ∩Ai{(x′, xn) : xn < Gi(x′)} (3.3)

for some Gi ∈ Lip (Rn−1) and isometry Ai. If x′ is such that y := Ai(x′, Gi(x′)) ∈
∂Ω ∩ B∗

i and Gi is differentiable at x′, then the outer normal obeys ν(y) =
Ri(−DGi(x′), 1)/

√
1 + |DGi|2(x′), where Ri := DAi ∈ O(n), so that

ν ·Rien ≥ γ∗ := 1√
1 + maxi(Lip (Gi))2

> 0 (3.4)

Hn−1-almost everywhere on B∗
i ∩ ∂Ω. We fix cutoff functions θi ∈ C∞

c (B∗
i ; [0, 1]) with 

θi = 1 on Bi, and set ψ∗(x) :=
∑

i θi(x)Rien. Then for Hn−1-almost every point x ∈ ∂Ω
we have

ψ∗(x) · ν(x) =
∑

∗

θi(x)(Rien) · ν(x) ≥
∑

∗

θi(x)γ∗ ≥ γ∗, (3.5)

i:x∈Bi i:x∈Bi
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since at least one of the θi(x) equals 1.
It only remains to normalize. Condition (3.5) implies |ψ∗| ≥ γ∗ on ∂Ω, and therefore 

|ψ∗| > γ∗/2 in a neighborhood of ∂Ω. We select ϕ ∈ C∞(Rn; [0, 1]) such that ϕ = 0
on ∂Ω, and ϕ > 0 on the set |ψ∗| ≤ γ∗/2. Then ψ := ψ∗/

√
|ψ∗|2 + ϕ has the desired 

properties with γ := γ∗/ max |ψ∗|(∂Ω). �

Lemma 3.3. Let Ω ⊆ Rn be a bounded Lipschitz set, ψ as in Lemma 3.2. There are ρ > 0
and c > 0 such that for any x, y ∈ ∂Ω with |x − y| < ρ one has

|x− y| ≤ c|(Id − ψ(y) ⊗ ψ(y))(x− y)|. (3.6)

Proof. We can assume x �= y. After a change of coordinates, and choosing ρ sufficiently 
small, we can assume that y = 0, and that

∂Ω ∩B(1+L)ρ(0) = B(1+L)ρ(0) ∩ {(z′, G(z′)) : z′ ∈ Rn−1} (3.7)

for some L-Lipschitz function G : Rn−1 → R. The values of ρ and L have bounds that 
depend only on Ω. Let m := ψ(0), so that P := Id −m ⊗m is the projection onto the 
space orthogonal to m. Condition (3.6) then translates into

|x| ≤ c|Px| (3.8)

for any x ∈ ∂Ω ∩ Bρ(0). As both sides of (3.8) are continuous, it suffices to prove it for 
Hn−1-almost every x. By (3.7), we have x = (x′, G(x′)) for some x′ ∈ Rn−1 \{0}. Define 
x̂ := (x̂′, 0) := ( x′

|x′| , 0) ∈ Sn−2×{0} ⊂ Rn−1×{0}. Let Π := span{x̂, en}, we remark that 
x̂ · en = 0 and that x ∈ Π. Let mΠ be the orthogonal projection of m on Π, namely

mΠ := (x̂⊗ x̂ + en ⊗ en)m = (x̂ ·m)x̂ + (en ·m)en ∈ Π, (3.9)

and m⊥ := m −mΠ, so that m = mΠ + m⊥. Then, as x ∈ Π and m⊥ ∈ Π⊥ we have

|Px|2 =|(Id − (mΠ + m⊥) ⊗ (mΠ + m⊥))x|2

=|x− (mΠ · x)mΠ|2 + |m⊥|2|mΠ · x|2. (3.10)

We distinguish two cases. If |m⊥| ≥ 1
2γ, with γ the constant from Lemma 3.2, the first 

term leads to

|Px| ≥ |x− (mΠ · x)mΠ| ≥ |x| − |mΠ|2|x| = |m⊥|2|x| ≥
γ2

4 |x| (3.11)

which concludes the proof of (3.8) in this case.
Assume now that |m⊥| ≤ 1

2γ. For any z′ ∈ Rn−1 with |z′| < ρ we have z :=
(z′, G(z′)) ∈ ∂Ω ∩Bρ(1+L)(0), and if G is differentiable in z′ the outer normal is
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ν(z) = 1√
1 + |DG|2(z′)

(
−DG(z′)

1

)
. (3.12)

Recalling ψ(z) · ν(z) ≥ γ,

m · ν(z)= ψ(z) · ν(z) + (ψ(0) − ψ(z)) · ν(z) ≥ γ − ‖ψ‖C1 |z| (3.13)

so that, if ρ < γ/(4‖ψ‖C1(1 + L)), the condition |m⊥| ≤ 1
2γ implies

mΠ · ν(z) = m · ν(z) −m⊥ · ν(z) ≥ γ − 1
4γ − |m⊥| ≥

1
4γ.

(3.14)

By (3.12) and (3.9),

mΠ · ν(z) = 1√
1 + |DG|2(z′)

[(en ·m) − (x̂ ·m)x̂′ ·DG(z′)] . (3.15)

With a slight abuse of notation we have used the dot to denote the inner product both 
in Rn−1 and Rn.

Let ζ(t) := (tx̂′, G(tx̂′)), for t ∈ [0, |x′|]. For Hn−1-almost every choice of x′ ∈ B′
ρ we 

have that for H1-almost every t the function G is differentiable in tx̂′. Clearly ζ(0) = 0, 
ζ(|x′|) = x, and ζ is Lipschitz with

Dζ(t) = x̂ + (x̂′·DG(tx̂′))en. (3.16)

We define

m⊥
Π := (en ⊗ x̂− x̂⊗ en)m = (x̂ ·m)en − (en ·m)x̂ ∈ Π , (3.17)

and compute

m⊥
Π · x =

|x′|ˆ

0

m⊥
Π ·Dζ(t)dt =

|x′|ˆ

0

[(x̂ ·m)(x̂′ ·DG(tx̂′)) − (en ·m)] dt. (3.18)

Using first (3.15) and then (3.14),

m⊥
Π · x = −

|x′|ˆ

0

mΠ · ν(ζ(t))
√

1 + |DG|2(tx̂′)dt ≤ −|x′|γ4 .
(3.19)

With |m⊥
Π |≤1 and m⊥

Π ·m = 0 (note that m⊥
Π ∈ Π and m⊥

Π ·mΠ = 0) we obtain

|Px| ≥
∣∣∣∣x · m⊥

Π
⊥

∣∣∣∣≥|x ·m⊥
Π | ≥

γ |x′| . (3.20)
|mΠ | 4
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Recalling that |x| ≤ |x′| + |G(x′)| ≤ (1 + L)|x′|, this concludes the proof of (3.8), and 
therefore of (3.6) (with c = 4(1 + L)/γ2). �

We are now ready to prove Theorem 3.1. Before starting, we recall that by Brower’s 
invariance of domain theorem any injective continuous map f : E ⊆ Rn → Rn is open, 
in the sense that if E is open then f(E) is open.

Proof of Theorem 3.1. Step 1. Let ψ be as in Lemma 3.2, ρ as in Lemma 3.3, and define 
f : ∂Ω ×R → Rn by

f(x, t) := x + tψ(x). (3.21)

We claim that there are ε > 0 and C > 0, depending only on Ω, such that for all 
x, y ∈ ∂Ω, all t, s ∈ (−ε, ε),

|x− y| + |t− s| ≤ C|f(x, t) − f(y, s)|. (3.22)

In order to prove (3.22) we write

f(x, t) − f(y, s) = x− y + tψ(x) − sψ(y). (3.23)

We shall choose ε ≤ ρ. If |x − y| ≤ ρ we can use Lemma 3.3. Let Py be the projection 
onto ψ(y)⊥. Then

Py(f(x, t) − f(y, s)) = Py(x− y) + tPy(ψ(x) − ψ(y)). (3.24)

For the second term we use |ψ(x) − ψ(y)| ≤ ‖ψ‖C1 |x − y|. For the first term, we use 
(3.6). We then obtain

|f(x, t) − f(y, s)| ≥ |Py(x− y)| − |t| |ψ(x) − ψ(y)|

≥ 1
c
|x− y| − ε‖ψ‖C1 |x− y| ≥ 1

2c |x− y| (3.25)

provided that ε ≤ 1/(2c‖ψ‖C1). To estimate t − s we write (3.23) as

f(x, t) − f(y, s) = (t− s)ψ(x) + x− y + s(ψ(x) − ψ(y)) (3.26)

so that

|t− s| ≤ |f(x, t) − f(y, s)| + |x− y| + |s| ‖ψ‖C1 |x− y| (3.27)

which, recalling that |s|‖ψ‖C1 ≤ 1/(2c), together with (3.25) concludes the proof of 
(3.22) in this case.
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Assume now that |x − y| > ρ, still with |t|, |s| < ε. Then (3.23) gives

|f(x, t) − f(y, s)| ≥ |x− y| − |t| − |s| ≥ 1
2 |x− y| + 1

2ρ− 2ε. (3.28)

Choosing ε ≤ ρ/4 and recalling (3.27), this concludes the proof of (3.22).
Step 2. We define ω := f(∂Ω × (−ε, ε)) and check that f |∂Ω×(−ε,ε) is bilipschitz. Let 

y, y′ ∈ ω. Then there are x, x′ ∈ ∂Ω, t, t′ ∈ (−ε, ε), such that

y = f(x, t), y′ = f(x′, t′), (3.29)

which by (3.22) and (3.26) in Step 1 implies

1
C

(|x− x′| + |t− t′|) ≤ |y − y′| ≤ C(|x− x′| + |t− t′|). (3.30)

Hence f |∂Ω×(−ε,ε) is bilipschitz. Let now Φ : ω → ω be

Φ(y) := f(f−1
x (y),−f−1

t (y)) (3.31)

where f−1
x and f−1

t denote the components of f−1. Obviously Φ(y) = y if y ∈ ∂Ω ⊆ ω. 
We check that Φ is bilipschitz. Indeed, arguing as above, setting

Y := f(x,−t) = Φ(y), Y ′ := f(x′,−t′) = Φ(y′), (3.32)

we get

1
C

(|x− x′| + |t− t′|) ≤ |Y − Y ′| ≤ C(|x− x′| + |t− t′|), (3.33)

therefore Φ is bilipschitz.
It remains to show that ω is open if ε is sufficiently small. Assume ε ≤ ε0/(1 + L0), 

with ε0, L0 the quantities introduced right after (3.2). Select y ∈ ω, and let x ∈ ∂Ω, 
s ∈ (−ε, ε) be such that y = f(x, s). Choose Ax, Gx as in (3.2) and let h : B′

ε0/(1+L0) ×
(−ε, ε) → ω be defined by

h(z′, t) := f(Ax(z′, Gx(z′)), t). (3.34)

The map h is injective and Lipschitz, and therefore open. Therefore ω contains an open 
neighborhood of y = f(x, s). �

Remark 3.4. If ψ were only L∞, the map f(x, t) may not be invertible in ∂Ω × (−ε, ε), 
for all choices of ε > 0. This happens for example if ∂Ω is (locally) the graph of the 
function χ(0,1)(x)|x|1+α for x ∈ (−1, 1), where 0 < α < 1 (see (3.25)).
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Theorem 3.5. Let Ω ⊆ Rn be a bounded open Lipschitz set, θ > 0, and u ∈ SBV (Ω; Rm)
such that E|·|p,g0 [u, Ω] < ∞, for some p ≥ 1 and g0 satisfying (Hg0

1 )-(Hg0
2 ). Then there 

are an open set Ω′ with Ω ⊂ Ω′ and |Ω′| ≤ |Ω| + θ, and a function U ∈ SBV (Rn; Rm)
such that U = u on Ω, |DU |(∂Ω) = 0,

ˆ

Ω′

|∇U |p dx ≤
ˆ

Ω

|∇u|p dx + θ , (3.35)

and
ˆ

Ω′∩JU

g0(|[U ]|)dHn−1 ≤
ˆ

Ju

g0(|[u]|)dHn−1 + θ . (3.36)

In particular,

E|·|p,g0 [U,Ω
′] ≤ E|·|p,g0 [u,Ω] + 2θ. (3.37)

If Hn−1(Ju) < ∞, then additionally Hn−1(JU ) < ∞ and Hn−1(JU ∩ Ω′ \ Ω) < θ; if 
∇u = 0 Ln-almost everywhere on Ω then also ∇U = 0 Ln-almost everywhere on Ω′. If 
u ∈ W 1,p(Ω; Rm) then U ∈ W 1,p(Ω′; Rm).

Proof. We consider the open set ω and the bilipschitz map Φ provided by Theorem 3.1. 
Thus, [5, Theorem 3.16] yields that u ◦ Φ−1 ∈ SBV (ω \ Ω; Rm), with

|Lip(Φ)|1−nΦ#|D(u|Ω∩ω)| ≤ |D(u ◦ Φ−1)| ≤ |Lip(Φ−1)|n−1Φ#|D(u|Ω∩ω)| ,

where Φ# denotes the push forward of measures. In particular, by the Coarea formula 
(cf. [5, Theorem 2.93]) we conclude that

ˆ

ω\Ω

|∇(u ◦ Φ−1)|p dx ≤ C

ˆ

Ω∩ω

|∇u|p dx , (3.38)

and by the Area formula (2.9)

ˆ

Ju◦Φ−1

g0(|[u ◦ Φ−1]|)dHn−1 ≤ C

ˆ

Ju∩(Ω∩ω)

g0(|[u]|)dHn−1 , (3.39)

for a constant C depending only on n and Lip(Φ−1).
Having fixed θ > 0, up to restricting ω, we may assume that both right-hand sides of 

(3.38) and (3.39) are actually less than or equal to θ, and in addition that ω is Lipschitz 
with |ω \ Ω| ≤ θ.
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Then, to conclude, set Ω′ := Ω ∪ ω and

U(x) :=

⎧⎪⎪⎨⎪⎪⎩
u(x) x ∈ Ω,

u(Φ−1(x)) x ∈ ω \ Ω,

0 x ∈ Rn \ Ω′ .

(3.40)

By construction U = u on Ω. Moreover, recalling that Φ|∂Ω is the identity and that ω
is Lipschitz, [5, Corollary 3.89] implies that U ∈ SBV (Rn; Rm), |DU |(∂Ω) = 0, and 
moreover that DU Ω′ = Du Ω + D(u ◦ Φ−1) (ω \ Ω). Finally, estimates (3.35) and 
(3.36) readily follows from (3.38) and (3.39).

In the case Hn−1(Ju) < ∞ the additional estimate follows from the same proof, using 
1 + g0 in place of g0 in (3.39). Similarly, if either ∇u = 0 or Ju = ∅, the same property 
is immediately inherited by U on Ω ∪ ω. �

3.2. Approximate regularity on an intermediate scale

Given a SBV function satisfying the hypotheses of Theorem 1.1, we show that at an 
intermediate scale, denoted by δ, the regular part of the gradient is uniformly approxi-
mately continuous, and the jump is approximately given by a fixed jump concentrated 
on a C1 manifold. Having fixed g0 satisfying (Hg0

1 )-(Hg0
2 ), for every u ∈ SBV (Ω; Rm), 

we introduce the notation

μu := g0(|[u]|)Hn−1 Ju . (3.41)

The case of interest in what follows is when μu is a finite measure on Ω; in any case 
μu is concentrated on a σ-finite set with respect to Hn−1 Ju. The main result is the 
following.

Proposition 3.6. Let Ω ⊆ Rn be open and bounded, p ∈ [1, ∞), and g0 be satisfying 
(Hg0

1 )-(Hg0
2 ). There is a constant C depending on p, n and m, such that for every u ∈

SBV (Ω; Rm) with μu(Ω) < ∞ and ∇u ∈ Lp(Ω; Rm×n), and for every θ > 0, after 
fixing an orientation of Ju there is δ ∈ (0, θ] such that, setting Aδ := {z ∈ Ω ∩ δZn :
dist(z, ∂Ω) > δ

√
n} and Q∗

z := z + (−δ, δ)n, the following holds: there are R : Aδ →
SO(n), s : Aδ → Rm, η : Aδ → Rm×n, ϕ : Aδ → C1

c (Rn−1), and x : Aδ → Rn such that, 
setting

Lz := xz + Rz{(y′, ϕz(y′)) : y′ ∈ Rn−1}, (3.42)

one has ‖Dϕz‖L∞ ≤ θ and

∑
z∈Aδ

ˆ
∗

|∇u− ηz|pdx +
∑
z∈Aδ

ˆ
∗

g0(|[u]|)dHn−1
Qz Qz∩Ju\Lz



S. Conti et al. / Journal of Functional Analysis 288 (2025) 110686 23
+
∑
z∈Aδ

ˆ

Q∗
z∩Lz

g0(|[u]|)|νu −Rzen|dHn−1

+
∑
z∈Aδ

ˆ

Q∗
z∩Lz

g0(|[u] − sz|)dHn−1 ≤ Cθ(1 + μu(Ω) + |Ω|) . (3.43)

If Hn−1(Ju) < ∞ then additionally∑
z∈Aδ

Hn−1(Q∗
z ∩ (Ju	Lz)) ≤ Cθ. (3.44)

Before proving it we introduce a preliminary pointwise result for the jump part of the 
energy.

Lemma 3.7. Let Ω ⊆ Rn be open, and g0 be satisfying (Hg0
1 )-(Hg0

2 ). Let u ∈ SBV (Ω; Rm)
with μu(Ω) < ∞. Then, for Hn−1-almost every x ∈ Ju there are Rx ∈ SO(n), sx ∈
Rm \ {0}, ϕx ∈ C1(Rn−1) such that ϕx(0) = 0, Dϕx(0) = 0, and, letting Lx := x +
Rx{(y′, ϕx(y′)) : y′ ∈ Rn−1},

lim
r→0

1
μu(Br(x))

⎡⎢⎣ ˆ

Br(x)∩Ju\Lx

g0(|[u]|)dHn−1

+
ˆ

Br(x)∩Lx

(
g0(|[u] − sx|) + g0(|[u]|)|νu −Rxen|

)
dHn−1

⎤⎥⎦ = 0.

(3.45)

If Hn−1(Ju) < ∞, then additionally

lim
r→0

Hn−1(Br(x) ∩ (Ju	Lx))
μu(Br(x)) = 0. (3.46)

Proof. We first observe that for Hn−1-almost every x ∈ Ju by [5, Th. 2.83(i)] we have

lim
r→0

μu(Br(x))
ωn−1rn−1 = g0(|[u](x)|) �= 0, (3.47)

therefore to prove (3.45) it suffices to show that for Hn−1-almost every x ∈ Ju there is 
Lx as stated such that, setting sx := [u](x), one has

lim
r→0

1
rn−1

ˆ

Br(x)∩Lx

g0(|[u] − sx|)dHn−1 = 0, (3.48)

lim
r→0

1
rn−1

ˆ
g0(|[u]|)dHn−1 = 0, (3.49)
Br(x)∩Ju\Lx
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and

lim
r→0

1
rn−1

ˆ

Br(x)∩Lx∩Ju

|νu −Rxen|dHn−1 = 0. (3.50)

Note that (3.48) implies (3.49). Indeed, subadditivity and monotonicity of g0 imply 
g0(|sx|) ≤ g0(|[u]|) + g0(|[u] − sx|) and therefore

μu(Br(x) \ Lx) = μu(Br(x)) − μu(Br(x) ∩ Lx)

≤μu(Br(x)) − g0(|sx|)Hn−1(Br(x) ∩ Lx) +
ˆ

Br(x)∩Lx

g0(|[u] − sx|)dHn−1. (3.51)

As Lx is the graph of a C1 function,

lim
r→0

Hn−1(Br(x) ∩ Lx)
ωnrn−1 = 1. (3.52)

We divide (3.51) by ωn−1r
n−1 and take the lim sup as r → 0. Using (3.47) to estimate 

the first term, (3.52) for the second, and (3.48) for the third, we obtain

lim sup
r→0

1
ωn−1rn−1μu(Br(x) \ Lx) = 0, (3.53)

which is (3.49). Therefore it remains to prove (3.48) and (3.50).
For any j > 0 let Aj := {x ∈ Ju : |[u](x)| ≥ 2−j}. As u ∈ SBV (Ω; Rm), we have 

Hn−1(Aj) < ∞, and Aj is countably (n −1)-rectifiable. Therefore for Hn−1-almost every 
x ∈ Aj there are Rj

x, ϕj
x as in the statement such that the corresponding set Lj

x obeys

lim
r→0

Hn−1(Br(x) ∩ (Aj	Lj
x))

rn−1 = 0 (3.54)

and νu(x) = Rj
xen. As |[u]| ∈ L1(Ω; Hn−1 Ju), and Hn−1(Aj) is finite, for Hn−1-almost 

every x ∈ Aj

lim
r→0

1
rn−1

ˆ

Aj∩Br(x)

|[u] − sx|dHn−1 = 0 (3.55)

and similarly

lim
r→0

1
rn−1

ˆ

Aj∩Br(x)

|νu − νu(x)|dHn−1 = 0. (3.56)

We recall that for x ∈ Ju we defined sx = [u](x) �= 0. We first show that (3.54) and 
(3.55) imply
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lim
r→0

1
rn−1

ˆ

Lj
x∩Br(x)

|[u] − sx|dHn−1 = 0 (3.57)

for Hn−1-almost every x ∈ Aj . Indeed, we have
ˆ

Lj
x∩Br(x)

|[u] − sx|dHn−1 ≤
ˆ

Aj∩Br(x)

|[u] − sx|dHn−1

+ (|sx|+2−j)Hn−1((Lj
x \Aj) ∩Br(x))

and the conclusion then follows from (3.54) and (3.55).
We next show that (3.57) implies that for Hn−1-almost every x ∈ Aj

lim
r→0

1
rn−1

ˆ

Lj
x∩Br(x)

g0(|[u] − sx|)dHn−1 = 0. (3.58)

Indeed, using (2.2), namely that for every λ > 0 there is Cλ > 0 such that g0(t) ≤ λ +Cλt

for all t ∈ [0, ∞), with (3.57) we obtain

lim sup
r→0

1
rn−1

ˆ

Br(x)∩Lj
x

g0(|[u] − sx|)dHn−1

≤ λ lim
r→0

Hn−1(Br(x) ∩ Lj
x)

rn−1 = λωn−1. (3.59)

Since λ was arbitrary this concludes the proof of (3.58).
Let N ⊆ Ju be an Hn−1-null set such that (3.58) holds for all x ∈ Ju \ N and all j

such that x ∈ Aj . For any x ∈ Ju \N we define Lx as Lj
x for the smallest j ∈ N such that 

x ∈ Aj . This proves (3.48). Condition (3.50) follows similarly from (3.56) using Aj ⊆ Ju
and (3.54).

Assume now that Hn−1(Ju) < ∞. Then we can replace (3.54) by

lim
r→0

Hn−1(Br(x) ∩ (Ju	Lx))
rn−1 = lim

r→0

Hn−1(Br(x) ∩ (Aj	Lx))
rn−1 = 0. (3.60)

The second equality leads as above to (3.45); from the first one, one immediately obtains 
(3.46) (using again (3.47)). �

Proof of Proposition 3.6. As ∇u ∈ Lp(Ω; Rm×n), there is f ∈ C0(Ω; Rm×n) such that 
‖∇u − f‖pLp(Ω) ≤ θ. Let δ > 0 be such that |f(x) − f(y)|p ≤ θ for all x, y ∈ Ω with 
|x − y| ≤ δ

√
n. For any z ∈ Aδ we set ηz := f(z) and obtain

∑
z∈Aδ

ˆ
∗

|∇u− ηz|pdx ≤ 2p−1
∑
z∈Aδ

ˆ
∗

(|∇u− f |p + |f − ηz|p)dx

Qz Qz
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≤ 2p+n(1 + |Ω|)θ (3.61)

as any point x ∈ Rn belongs to at most 2n of the cubes Q∗
z, z ∈ Aδ. This treats the first 

term.
The jump terms are treated using Lemma 3.7. For μu-almost every x ∈ Ω there are 

R̂x ∈ SO(n), ŝx ∈ Rm \ {0}, and ϕ̂x ∈ C1(Rn−1) as stated, we define R̂x := Id, ŝx := 0, 
and ϕ̂x := 0 on the others. We recall that L̂x = x + R̂x{(y′, ϕ̂x(y′)) : y′ ∈ Rn−1}, and 
define, for any x ∈ Ω, the measure

m̂x :=g0(|[u]|)Hn−1 (Ju \ L̂x) + g0(|[u] − ŝx|)Hn−1 L̂x

+g0(|[u]|) |νu − R̂xen|Hn−1 L̂x .
(3.62)

By Lemma 3.7, for μu-almost every x ∈ Ω

lim
r→0

m̂x(Br(x))
μu(Br(x)) = 0 and lim

r→0
‖Dϕ̂x‖L∞(B′

3r) = 0 (3.63)

(we write B′ for balls in Rn−1). We define, for k ∈ N>0,

Ek,θ :={x ∈ Ω : ‖Dϕ̂x‖L∞(B′
3
k

) >
1
3θ}

∪ {x ∈ Ω : ∃r ∈ (0, 1
k

] with m̂x(Br(x) ∩ Ω) ≥ θμu(Br(x) ∩ Ω)}.
(3.64)

Obviously Ek′,θ ⊆ Ek,θ if k < k′. By (3.63), for μu-almost every x ∈ Ω there is k such 
that x �∈ Ek,θ. Therefore

μu(
⋂
k∈N

Ek,θ) = 0. (3.65)

We select kθ> 2/θ such that μu(Ekθ,θ) ≤ θ, and assume that δ is such that 2δ
√
n ≤ 1/kθ.

For some (s, x,R, ϕ) : Aδ → Rm × Ω×SO(n) × C1
c (Rn−1) (still to be defined) and 

any z ∈ Aδ we intend to estimate an error measure defined in analogy to (3.62) by 
Sz := xz+Rz{(y′, ϕz(y′)) : y′ ∈ Rn−1} and

mz := g0(|[u]|)Hn−1 (Ju \Sz) +
[
g0(|[u]− sz|)+g0(|[u]|)|νu −Rzen|

]
Hn−1 Sz, (3.66)

namely to prove ∑
z∈Aδ

mz(Q∗
z) ≤ Cθ(1 + μu(Ω)) ,

with a constant C > 0 depending on n, p.
Let F := {z ∈ Aδ : Q∗

z ⊆ Ekθ,θ}. If z ∈ F , we set sz := 0, xz := z + 2δen, Rz:=Id, 
ϕz := 0, so that Sz ∩Q∗

z = ∅ and mz Q∗
z = μu Q∗

z. Therefore
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∑
z∈F

mz(Q∗
z) =

∑
z∈F

μu(Q∗
z)≤ 2nμu(

⋃
z∈F

Q∗
z) ≤ 2nμu(Ekθ,θ) ≤ 2nθ. (3.67)

Consider now z ∈ Aδ \ F , and select xz ∈ Q∗
z \ Ekθ,θ. We set sz := ŝxz

, Rz := R̂xz
, and

Sz:= L̂xz
= xz + Rz{(y′, ϕ̂xz

(y′)) : y′ ∈ Rn−1} . (3.68)

Note that with this choice mz = m̂xz
. Moreover, as xz ∈ Q∗

z we have Q∗
z ⊂ B2

√
nδ(xz) ∩Ω. 

As 2δ
√
n ≤ 1/kθ, xz �∈ Ekθ,θ implies m̂xz

(B2δ
√
n(xz) ∩ Ω) < θμu(B2δ

√
n(xz) ∩ Ω), so that

∑
z∈Aδ\F

mz(Q∗
z) ≤

∑
z∈Aδ\F

θμu(B2δ
√
n(xz) ∩ Ω). (3.69)

Each ball B2
√
nδ(xz) overlaps with a finite number C(n) of cubes with center in δZn and 

side of length δ, which implies that they have finite overlap. Therefore∑
z∈Aδ\F

mz(Q∗
z) ≤ Cθμu(Ω) . (3.70)

Recall that ϕ̂xz
∈ C1(Rn−1) satisfies ‖Dϕ̂xz

‖L∞(B′
3/kθ

) ≤ 1
3θ and ϕ̂xz

(0) = 0. We fix 

αz ∈ C1
c (B′

3/kθ
; [0, 1]) such that αz = 1 on B′

1/kθ
and ‖Dαz‖L∞ ≤ 2

3kθ, and set ϕz :=
αzϕ̂xz

. Then ϕz ∈ C1
c (Rn−1), with ϕz = ϕ̂xz

on B′
1/kθ

(xz). Using the bounds above, 
ϕ̂xz

(0) = 0 and the mean-value theorem, we obtain

‖Dϕz‖L∞(Rn−1) ≤ ‖Dϕ̂xz
‖L∞(B′

3/kθ
)‖αz‖L∞ + ‖ϕ̂xz

‖L∞(B′
3/kθ

)‖Dαz‖L∞

≤ ‖Dϕ̂xz
‖L∞(B′

3/kθ
) + 3

kθ
‖Dϕ̂xz

‖L∞(B′
3/kθ

)‖Dαz‖L∞ ≤ θ.
(3.71)

Combining this remark with the results in (3.61), (3.67), (3.70) gives the first assertion.
Assume now that additionally Hn−1(Ju) < ∞. We proceed in the same way, replacing 

the measure m̂x defined in (3.62) by M̂x := m̂x + Hn−1 (Ju	L̂x) and μu by μ̂u :=
(g0(|[u]|) +1)Hn−1 Ju. By (3.46) in Lemma 3.7 we obtain that (3.63) holds with M̂x in 
place of m̂x, so that we can define Ek,θ with M̂x and μ̂u. Similarly, we consider in place 
of mz defined in (3.66) the measure Mz := mz + Hn−1 (Ju	Sz). The rest of the proof 
is unchanged, replacing mz by Mz and μu by μ̂u. �

4. Proof of the approximation theorem

4.1. Explicit construction on a single simplex

We show how to construct the piecewise affine approximation in a single simplex, 
assuming that the values at the vertices and the jumps on the sides are given. On each 
edge we shall use a function of the form illustrated on the right-hand side of Fig. 1. For 
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Fig. 1. Sketch of the construction in Proposition 4.1 in the 2d case. Left: decomposition of the triangle. The 
blue lines represent the jump set of v. Right: profile along a single edge. The parameter s denotes the jump 
in the middle, the parameter ξ the rest of the height change, which corresponds to the uniform slope in the 
rest. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

simplicity we deal here only with scalar functions, the construction will then be applied 
componentwise.

We consider points A1, . . . , An+1 ∈ Rn such that their convex envelope, the simplex 
T := conv({A1, . . . , An+1}), has positive measure. The basic construction is outlined in 
general for values u1, . . . , un+1∈ R of the function on the vertices, and jumps sij∈ R on 
the (oriented) edges, with sij = −sji (which obviously implies sii = 0). We then define 
the average gradients on the edges ξij := uj − ui − sij (and therefore ξii = 0). The 
definition of ξ implies that whenever {i, j, k} ⊆ {1, . . . , n} then

ξij + ξjk + ξki + sij + sjk + ski = 0. (4.1)

The compatibility conditions arising from longer paths are not independent, as each 
path can be written as a concatenation of triangles. On the edge joining Ai with Aj , we 
require our target function to take the form (see Fig. 1)

v(Ai + t(Aj −Ai)) =ui + tξij + sijχt>1/2

=ui + t(uj − ui) + sij(χt>1/2 − t).
(4.2)

Proposition 4.1. Let A1, . . . , An+1 ∈ Rn be such that T := conv({A1, . . . , An+1}) has 
positive measure. There is a decomposition of T into n +1 closed polyhedra T1, . . . , Tn+1
with disjoint interior such that the following holds. Let u1, . . . , un+1 ∈ R, fix s ∈ R∗ :=
R(n+1)2

skw , and define ξ ∈ R∗ by ξij + sij = uj −ui. Then there is v : T → R affine in each 
Tj \

⋃
i�=j ∂Ti such that

|∇v| ≤ C
diam(T )n−1

|T | |ξ| , |[v]| ≤ 3|s|, (4.3)

Hn−1(Jv ∩ T ) ≤ Hn−1(∂T ), (4.4)

and with

v(Ai + t(Aj −Ai)) = ui + tξij + sijχt>1/2 (4.5)
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for all i < j ∈ {1, . . . , n +1}, t ∈ [0, 1]. The constant C depends only on n. The function 
v depends linearly on {ui} ∪ {sij}.

The function v on a face of T does not depend on the opposing vertex. Precisely, for 
any k, if x ∈ conv({A1, . . . , An+1} \ {Ak}) then v(x) depends only on Ai, ui for i �= k

and on sij for i, j �= k.

Proof. We first observe that each point x ∈ T can be uniquely represented as x =∑n+1
i=1 λiAi for some λ ∈ Λ := {λ ∈ [0, 1]n+1 :

∑n+1
i=1 λi = 1}. We define the polyhedra 

Tj by

Tj := {
∑
i

λiAi : λ ∈ Λ, λj ≥ λi for i �= j}, (4.6)

see Fig. 1(left) (in the case that T is regular, this amounts to the Voronoi decomposition 
of T ). We remark that the condition λi ≤ λj = 1 −

∑
k �=j λk for all i �= j is equivalent to

2λi ≤ 1 −
∑
k �=i,j

λk for all i �= j , (4.7)

so that

x ∈ Tj ⇐⇒ x = Aj +
∑
i�=j

λi(Ai −Aj) λ ∈ Λ as in (4.7) .

We define vj : Tj → R by

vj(x) := v̂j(A−1
j (x−Aj)) ,

where Aj is the matrix with columns given by Ai − Aj for i �= j, and v̂j : Rn → R is 
defined by

v̂j(λ1, . . . , λj−1, λj+1, . . . , λn+1) := uj +
∑
i�=j

λiξji (4.8)

so that vj(
∑

i λiAi) = uj +
∑

i�=j λiξji. We define v by setting

v := vj in Tj\
⋃
i<j

Ti. (4.9)

Obviously Aj ∈ Tj and v(Aj) = uj . Further, for any j the function v is affine in Tj \⋃
i<j ∂Ti, with

∇v(x) = (A−1
j )T∇v̂j(A−1

j (x−Aj)) = (A−1
j )T (ξji)i�=j

for all x inside Tj , and therefore
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|∇v| ≤ ‖A−1
j ‖op|(ξji)i�=j | on Tj

from which we infer that

|detAj ||∇v| ≤ ‖cof Aj‖op|ξ| on Tj .

By definition of Aj , it holds | detAj | = n!|T |. As a cofactor is a homogeneous polynomial 
of degree n − 1, one obtains ‖cof Aj‖op ≤ Cdiam(T )n−1, for some dimensional constant 
C < ∞. This proves the first bound in (4.3).

To conclude that v ∈ SBV (T ), with the claimed estimates, we note that since by 
construction v is affine on each Tj , it jumps only on the points x =

∑
i λiAi ∈ ∂Tj ∩∂Tk

for some j �= k. Necessarily λj = λk, and the conditions ξij + sij = uj − ui, 
∑

i λi = 1
with λi ∈ [0, 1], the antisymmetry of ξ, and the compatibility condition in (4.1) imply 
that

(vj − vk)(
∑
i

λiAi) = uj − uk + λkξjk − λjξkj +
∑

i�∈{j,k}
λi(ξji − ξki)

= ξkj + skj − (λk + λj)ξkj +
∑

i�∈{j,k}
λi(ξji + ξik)

= skj +
∑

i�∈{j,k}
λi(ξkj + ξji + ξik)

= skj −
∑

i�∈{j,k}
λi(skj + sji + sik)

= (λj + λk)skj −
∑

i�∈{j,k}
λi(sji + sik).

(4.10)

Therefore v ∈ SBV (T ) with |[v]| ≤ 3|s| and

Hn−1(Jv) ≤
∑
i�=j

Hn−1(∂Ti ∩ ∂Tj) ≤ Hn−1(∂T ) . (4.11)

The last inequality is proven in (4.19) below. This concludes the proof of (4.3) and (4.4). 
Condition (4.5) follows directly from the definition above.

By construction, it is clear that v does not depend on the vertex Ak on the opposing 
face Fk, since on Fk we have λk = 0 and Fk ∩ Tk = ∅.

It remains to prove the geometric inequality that was used in the last step of (4.11). 
By Fubini’s theorem one easily checks the following: Consider a set α of k + 1 points in 
Rn, 0 ≤ k < n. Then for any x ∈ Rn one has

Hk+1(conv(α ∪ {x})) = 1
k + 1H

k(conv(α)) · dist(x, aff-span(α)), (4.12)

where aff-span(α) is the smallest affine space that contains α (if k = 0 then conv(α) =
aff-span(α) = α and H0(conv(α)) = 1).
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Fix now i �= j ∈ {1, . . . , n + 1}, and consider ∂Ti ∩ ∂Tj . Then

∂Ti ∩ ∂Tj ={
n+1∑
p=1

λpAp : λ ∈ Λ, λi = λj = max
p

λp}

={2λi
Ai + Aj

2 +
∑

p�={i,j}
λpAp : λ ∈ Λ, λi = λj = max

p
λp}

⊆{
n∑

p=1
λ∗
pA

∗
p : λ∗ ∈ Λ∗, λ∗

1 = max
p

λ∗
p},

(4.13)

where Λ∗ := {λ∗ ∈ [0, 1]n :
∑n

p=1 λ
∗
p = 1}, A∗

1 := Ai+Aj

2 and {A∗
p}p=2,...,n is any 

relabeling of the n − 1 points in αij := {A1, . . . , An+1} \ {Ai, Aj} (the inclusion in the 
last step follows from the fact that λ∗

1 = 2λi ≥ 2λ∗
p for all p > 1). By symmetry, all 

n sets {λ∗ ∈ Λ∗ : λ∗
i = maxp λ

∗
p} have the same area, and as they are disjoint up to 

Hn−1-dimensional null sets we obtain

Hn−1(∂Ti ∩ ∂Tj) ≤
1
n
Hn−1(conv{A∗

p}
)

= 1
n
Hn−1

(
conv

(
αij ∪ {Ai + Aj

2 }
))

(4.14)

so that (4.12) gives

Hn−1(∂Ti ∩ ∂Tj) ≤
1

n(n− 1)H
n−2(conv(αij)) · dist

(Ai + Aj

2 , aff-span(αij)
)
. (4.15)

By convexity

dist
(Ai + Aj

2 , aff-span(αij)
)

≤ 1
2dist(Ai, aff-span(αij)) + 1

2dist(Aj , aff-span(αij)) . (4.16)

Let Fi := conv({A1, . . . , An+1} \ {Ai}) = conv(αij ∪ {Aj}) be the face opposite to the 
vertex Ai. By (4.12),

Hn−1(Fi) = 1
n− 1H

n−2(conv(αij)) · dist(Aj , aff-span(αij)). (4.17)

Combining (4.15), (4.16) and (4.17) gives

Hn−1(∂Ti ∩ ∂Tj) ≤
1
2nH

n−1(Fi) + 1
2nH

n−1(Fj). (4.18)

We sum over all pairs (i, j) with i �= j and obtain

∑
Hn−1(∂Ti ∩ ∂Tj) ≤

n+1∑∑ 1
n
Hn−1(Fi) =

n+1∑
Hn−1(Fi) = Hn−1(∂T ) (4.19)
i�=j i=1 j �=i i=1
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which concludes the proof. �

4.2. Projection on piecewise affine functions

In this section, we use Proposition 4.1 to construct a good piecewise affine interpo-
lation of any vectorial function u ∈ SBVloc(Rn; Rm) over a suitable partition of Rn

in simplexes. First, Lemma 4.2 states the general properties of the chosen partition. 
Proposition 4.1 then can be applied componentwise in each simplex of a suitable shift 
of the partition. The resulting interpolation can be interpreted as a projection of u over 
piecewise affine functions and enjoys good energy estimates, see Proposition 4.3.

Lemma 4.2. For any n ≥ 1 there is a countable set of simplexes T0 ⊆ P(Rn) such that, 
denoting by Vert(τ0) the set of vertices of τ0 ∈ T0, one has:

(i) #Vert(τ0) = n + 1; |τ0| > 0 for all τ0 ∈ T0;
(ii) τ0 ∩ τ ′0 = conv(Vert(τ0) ∩ Vert(τ ′0)), in particular |τ0 ∩ τ ′0| = 0 if τ0 �= τ ′0;
(iii)

⋃
τ0∈T0

τ0 = Rn;
(iv) For any τ0 ∈ T0 there is z ∈ Zn such that Vert(τ0) ⊆ {z+

∑
i λiei : λi ∈ {0, 1}, i ∈

{1, . . . , n}}, with the ei’s the canonical basis vectors;
(v) If τ0 ∈ T0, then τ0 + 2ei ∈ T0, with ei any of the canonical basis vectors.

We recall that conv(∅) = ∅. Condition (i) and condition (ii) with τ0 = τ ′0 imply that 
τ0 is a closed simplex. Condition (iv) implies that for all ε > 0, the rescaled simplex ετ0
has diameter at most ε

√
n, and together with condition (i) that its volume is at least 

εn/n! (indeed, it is 1/n! times the determinant of a matrix with entries in {−ε, 0, ε}). 
The last two imply that this is a refinement of the natural subdivision of Rn into unitary 
cubes, with period [0, 2]n.

Proof. This can be obtained taking any partition, as for example the Freudenthal parti-
tion, of [0, 1]n, reflecting this along the coordinate axes to obtain a partition of [−1, 1]n, 
and then extending periodically. �

In the rest of this section we define for any ε > 0 and ζ ∈ Bε a projection Πε,ζ on 
the space of functions that are affine on each polyhedron in a refinement of ζ + εT0. The 
projection will be used on functions u ∈ SBV (Rn; Rm). As it depends on point values, 
we shall only obtain a well-defined result for values of the translation ζ outside a null 
set. The null set, however, depends on u. To avoid this, the precise definition is given not 
on equivalence classes but on functions from Rn to Rm. In order to understand the key 
properties, it is useful to consider first the action of Πε,ζ on elements of SBV (Rn; Rm)
(or, equivalently, SBVloc(Rn; Rm), since Πε,ζ is local).
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Let u ∈ SBV (Rn; Rm). For any couple of vertices a �= b ∈ Vert(τ) of a simplex 
τ ∈ ζ + εT0, we consider the slice ub−a

a (t) := u(a + t(b − a)). For L2n-almost every pair 
(a, b) we have ub−a

a ∈ SBV (R; Rm) with

u(b) − u(a) =
1ˆ

0

(ub−a
a )′(t)dt +

∑
t∈(0,1)∩J

u
b−a
a

[ub−a
a ](t) (4.20)

with

(ub−a
a )′(t) = ∇u(a + t(b− a))(b− a)

and

[ub−a
a ](t) = [u](a + t(b− a))sgn(νa+t(b−a) · (b− a))

(see [5, Sect. 3.11] or [11, Th. 4.1(a)]). The parameters s and ξ entering the piecewise 
affine construction in Proposition 4.1 are then defined from the two components of (4.20). 
Precisely, we define the jump over an edge [a, b] by

s[a,b] :=
∑

t∈(0,1)∩J
u
b−a
a

[u](a + t(b− a))sgn(νa+t(b−a) · (b− a)) (4.21)

(setting it to zero if the sum does not converge or is not defined) and correspondingly 
the integral of the absolutely continuous part of the gradient by

ξ[a,b] := u(b) − u(a) − s[a,b]. (4.22)

For L2n-almost all pairs (a, b)

ξ[a,b] =
1ˆ

0

∇u(a + t(b− a))(b− a)dt. (4.23)

By monotonicity and subadditivity of g0,

g0(|s[a,b]|) ≤
∑

t∈(0,1)∩J
u
b−a
a

g0(|[u](a + t(b− a))|) . (4.24)

Similarly, for L2n-almost all pairs (a, b), using (4.23) and Jensen’s inequality,

∣∣∣∣ ξ[a,b]

|b− a|

∣∣∣∣p ≤
1ˆ
|∇u(a + t(b− a))|pdt. (4.25)
0
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Fig. 2. Sketch of the construction for Proposition 4.3. The dots mark the points on which Πε,ζf coincides 
with f , the black triangles (one of them is colored red) are the elements of Tε,ζ , on which Proposition 4.1
is applied. The blue segments are the (eventual) discontinuities introduced by the construction of Proposi-
tion 4.1 and delimit the polygons which compose T ∗

ε,ζ . The function Πε,ζu is affine on the smaller polyhedra 
(one of them is colored green). (For interpretation of the colors in the figure, the reader is referred to the 
web version of this article.)

In Proposition 4.3 we will turn both estimates (4.24) and (4.25) into estimates relating 
the energy over shifts of the segment, averaged over all possible shifts of size less than 
ε, and integrals over Ju and Ω, respectively.

Proposition 4.3. There is a locally finite subdivision of Rn into countably many essentially 
disjoint polyhedra, T ∗

0 , finer than T0 and with the same periodicity, and C > 0 such that, 
for any ε > 0 and ζ ∈ Bε, to any function f : Rn → Rm one can associate a function 
Πε,ζf : Rn → Rm, affine in the interior of each element of T ∗

ε,ζ := ζ + εT ∗
0 , so that the 

following holds:

(i) If either τ0 ∈ T0 or τ0 ∈ T ∗
0 then diam(τ0) ≤

√
n and |τ0| ≥ 1/C;

(ii) Πε,ζ is a projection, in the sense that Πε,ζΠε,ζf = Πε,ζf for all f , and it commutes 
with translations, in the sense that Πε,ζ [f(· − ζ)] = [Πε,0f ](· − ζ);

(iii) One has Πε,ζf ∈ SBVloc(Rn; Rm) and, with Tε,ζ := ζ + εT0,

|DΠε,ζf |(
⋃

τ∈Tε,ζ

∂τ) = 0. (4.26)

If u ∈ SBVloc(Rn; Rm), then for Ln-almost every ζ ∈ Bε one has

Hn−1(Ju ∩
⋃

τ∈Tε,ζ

∂τ) = 0.

(iv) The function Πε,ζf on a set ω depends only on the value of f on the set (ω)ε√n.
(v) If A : Rn → Rm is affine and λ ∈ R, then for any function f one has Πε,ζ(λf+A) =

λ(Πε,ζf) + A; if u, v ∈ SBVloc(Rn; Rm) then for almost every ζ ∈ Bε one has 
Πε,ζ(u + v) = Πε,ζu + Πε,ζv;



S. Conti et al. / Journal of Functional Analysis 288 (2025) 110686 35
(vi) For any η ∈ Rm×n and τ0 ∈ T0, one has for any u ∈ SBVloc(Rn; Rm) that
 

Bε

( ˆ

ζ+ετ0

|∇Πε,ζu− η|pdx
)
dζ ≤ C

ˆ

(ετ0)c∗ε

|∇u− η|pdx, (4.27)

 

Bε

( ˆ

JΠε,ζu∩(ζ+ετ0)

g0(|[Πε,ζu]|)dHn−1
)
dζ ≤ C

ˆ

Ju∩(ετ0)c∗ε

g0(|[u]|)dHn−1, (4.28)

 

Bε

Hn−1(JΠε,ζu ∩ (ζ + ετ0))dζ ≤ CHn−1(Ju ∩ (ετ0)c∗ε), (4.29)

 

Bε

( ˆ

ζ+ετ0

|Πε,ζu− u|dx
)
dζ ≤ Cε|Du|((ετ0)c∗ε), (4.30)

and, for every n − 1-rectifiable set Σ,
 

Bε

(ˆ
Σ

|Πε,ζu|dHn−1
)
dζ ≤ CkΣ

ε
‖u‖L1((Σ)c∗ε) + CkΣ|Du|((Σ)2c∗ε), (4.31)

where

kΣ := sup
r>0,x∈Rn

Hn−1(Σ ∩Br(x))
rn−1 . (4.32)

Here c∗ ∈ [1 +
√
n, ∞) is a constant that depends only on n; C may depend on n, 

m, p.
(vii) If u ∈ SBVloc(Rn; Rm) and ∇u = 0 Ln-almost everywhere then for almost every 

ζ ∈ Bε one has ∇Πε,ζu = 0 Ln-almost everywhere. In particular, if u = χE for 
some set E then there is a countable union of polygons Fε,ζ such that Πε,ζu = χFε,ζ

. 
If Hn−1(Ju) = 0 then for almost every ζ ∈ Bε one has Hn−1(JΠε,ζu) = 0.

Condition (4.27) easily implies that for any Borel set ω ⊂ Rn and any η

 

Bε

( ˆ
ω

|∇Πε,ζu− η|pdx
)
dζ ≤ C

ˆ

(ω)2c∗ε

|∇u− η|pdx. (4.33)

Indeed, it suffices to sum (4.27) over all τ0 ∈ T0 such that there is ζ ∈ Bε with (ζ +
ετ0) ∩ ω �= ∅, which implies ετ0 ⊆ (ω)(1+√

n)ε. Analogous observations hold for (4.28), 
(4.29) and (4.30).

We remark that (4.31) fails if we remove the derivative term in the right-hand side. 
Consider for example the sequence uj(x) := 1

j 〈jx1〉, where 〈x〉 := x − �x� denotes the 
fractional part of x ∈ R, which converges uniformly to 0 as j → ∞. As ∇uje1 = 1 almost 
everywhere, for any ε and ζ we have ∂1Πε,ζuj = 1 almost everywhere, and since Πε,ζuj
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is piecewise affine on a scale ε we obtain ‖Πε,ζuj‖L∞ ≥ 1
2ε, which does not depend on 

j. Similarly, one cannot estimate Πε,ζu in L1 only in terms of the L1 norm of u.

Proof. The grid T ∗
0 is defined decomposing each simplex τ0 ∈ T0 as in Proposition 4.1. 

The projection Πε,ζf is defined by application of the construction in Proposition 4.1
componentwise in each simplex τ ∈ Tε,ζ = ζ + εT0.

Precisely, let τ = ζ + ετ0, for some τ0 ∈ T0, and let {w1, . . . , wn+1} := Vert(τ) be its 
vertices. In order to define the cumulated jump over the edge [wi, wj ] we consider the 
slice vfij(t) := f(wi + t(wj − wi)), for t ∈ [0, 1]. If vfij ∈ SBV ((0, 1); Rm) then we set

sfij :=
∑

t∈(0,1)∩J
v
f
ij

[vfij ](t), (4.34)

otherwise we set sfij := 0. The function Πε,ζf is then defined in τ using Proposition 4.1
componentwise. As discussed above, if f = u ∈ SBVloc(Rn; Rm) then for almost every 
choice of ζ one has that vuij ∈ SBV ((0, 1); Rm) for all choices of τ0 and of i, j.

(i): The upper bound on the diameter follows from Lemma 4.2 and the fact that T ∗
0

is a refinement of T0. The lower bound on the volume follows from the fact that both 
grids are locally finite and periodic.

(ii): Assume for simplicity that f is scalar. For any τ and w1, . . . , wn+1 as above, 
one easily obtains that (Πε,ζf)(wi) = f(wi). Let sfij be defined as in (4.34). By (4.5)
the function vΠε,ζf

ij has a unique jump point in (0, 1), which is located at 1/2, and the 

amplitude of the jump is exactly sfij . Therefore sΠε,ζf
ij = sfij and Πε,ζ is a projection. The 

relation to translations follows observing that for any τ0 ∈ T0 the vertices of ζ + ετ0 are 
translated with respect to the vertices of ετ0 by ζ.

(iii): Let τ �= τ ′ ∈ Tε,ζ be such that Hn−1(∂τ ∩ ∂τ ′) > 0, so that by Lemma 4.2(ii) 
∂τ ∩ ∂τ ′ = conv(Vert(τ) ∩ Vert(τ ′)). Proposition 4.1 implies that Πε,ζf |∂τ∩∂τ ′ only 
depends on the in-plane vertices Vert(τ) ∩ Vert(τ ′), on the values of f on such vertices, 
and on the jumps sσ on the in-plane edges σ ⊂ ∂τ∩∂τ ′. Hence |DΠε,ζf |(

⋃
τ∈Tε,ζ

∂τ) = 0. 
The second condition follows from the fact that Hn−1 Ju is σ-finite.

(iv): Given a set ω ⊂ Rn, the function Πε,ζf |ω only depends on the values of f on 
the vertices of the simplexes intersecting ω. Since their diameter is by construction not 
greater than ε

√
n, Πε,ζf |ω only depends on the value of f on the neighborhood (ω)ε√n.

(v): It follows from the fact that the function constructed in Proposition 4.1 depends 
linearly on the prescribed values on the vertices ui and jumps sij .

(vi): By (v), it suffices to prove the first bound in the case η = 0. Let τ0 ∈ T0, and 
{w1, . . . , wn+1} = Vert(ετ0). For any ζ ∈ Bε, by the uniform estimate in (4.3) we have

ˆ

ζ+ετ0

|∇Πε,ζu|pdx ≤ Cεn
∑
i,j

∣∣∣ξζ+[wi,wj ]

|wi − wj |

∣∣∣p. (4.35)

Next, we claim that for all i, j
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ˆ

Bε

∣∣∣∣ξζ+[wi,wj ]

|wi − wj |

∣∣∣∣p dζ ≤
ˆ

B(1+
√

n)ε(wi)

|∇u|pdx. (4.36)

Indeed, starting from (4.25) and integrating over all translations ζ ∈ Bε we get, setting 
� := wj − wi,

ˆ

Bε

∣∣∣∣ξζ+[wi,wj ]

|�|

∣∣∣∣pdζ ≤
ˆ

Bε

1ˆ

0

|∇u(ζ + wi + t�)|pdtdζ

=
1ˆ

0

ˆ

Bε(wi+t�)

|∇u(x)|pdxdt ≤
ˆ

B(1+
√

n)ε(wi)

|∇u|pdx

since |�| = |wi − wj | ≤ ε
√
n. Therefore, from (4.35) and (4.36) we conclude

 

Bε

( ˆ

ζ+ετ0

|∇Πε,ζu|pdx
)
dζ

≤ C
∑
i

ˆ

B(1+
√

n)ε(wi)

|∇u|pdx ≤ C

ˆ

(ετ0)(1+√
n)ε

|∇u|pdx,

which concludes the proof of (4.27).
Analogously, using (iii), (4.3), and (4.4), we get

ˆ

JΠε,ζu∩(ζ+ετ0)

g0(|[Πε,ζu]|)dHn−1 ≤ Cεn−1
∑
i,j

g0(|sζ+[wi,wj ]|), (4.37)

by monotonicity and subadditivity of g0, where as before the wi are the vertices of ετ0. 
We claim that

ˆ

Bε

g0(|sζ+[wi,wj ]|)dζ ≤ Cε

ˆ

B(2+
√

n)ε(wi)∩Ju

g0(|[u]|)dHn−1 . (4.38)

Indeed, we start from (4.24), integrate over translations, and separate the component ζ�
along � from the orthogonal ones, which we denote by ζ ′, so that ζ = ζ ′ + ζ��/|�|,
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ˆ ˆ
Bε

g0(|sζ+[wi,wj ]|)dζ ≤
Bε

∑
t∈(0,1)

g0(|[u](ζ + wi + t�)|)dζ

≤
εˆ

−ε

ˆ

B′
ε

∑
t∈(0,1)

g0(|[u](ζ ′ + wi + t� + ζ�
�

|�| )|)dζ
′dζ�

≤ 2ε
ˆ

B′
ε

∑
t∈(−ε,ε(1+

√
n))

g0(|[u](ζ ′ + wi + t
�

|�| )|)dζ
′.

(4.39)

Using the Coarea formula, [5, Eq. (2.72)] with M = n, N = k = n − 1, g =
g0([u])χwi+B′

ε×(−ε,ε(1+
√
n)), and f the orthogonal projection onto �⊥, we obtain

ˆ

Bε

g0(|sζ+[wi,wj ]|)dζ ≤ 2ε
ˆ

Ju∩B(2+
√

n)ε(wi)

g0(|[u]|)
∣∣∣νu · �

|�|

∣∣∣dHn−1. (4.40)

Clearly, (4.38) easily follows from (4.40).
Hence, by (4.37) and (4.38)

 

Bε

ˆ

JΠε,ζu∩(ζ+ετ0)

g0(|[Πε,ζu]|)dHn−1dζ ≤ C

ˆ

Ju∩(ετ0)(2+√
n)ε

g0(|[u]|)dHn−1 (4.41)

which concludes the proof of (4.28).
The proof of (4.29) is similar. Let g1 : [0, ∞) → [0, ∞) be defined by g1(0) = 0, 

g1(s) = 1 for s �= 0. The derivation of (4.37) above uses only (iii), (4.3), (4.4), and the 
fact that g0 is nondecreasing and subadditive, and g1 has the same properties. By (4.34), 
suij = 0 if vuij does not jump on [0, 1], thus we obtain instead of (4.37) the estimate

ˆ

JΠε,ζu∩(ζ+ετ0)

g1(|[Πε,ζu]|)dHn−1 ≤ Cεn−1
∑
i,j

g1(|sζ+[wi,wj ]|). (4.42)

The rest of the computation leading to (4.41) is unchanged. This proves (4.29).
Next, we estimate the L1 distance of u from Πε,ζu. By (4.3) for τ0 ∈ T0 one has the 

pointwise estimate
 

Bε

ˆ

ζ+ετ0

|Πε,ζu− u|dx dζ

≤
 

Bε

ˆ

ζ+ετ0

∑
i

|u(ζ + wi) − u(x)|dx dζ + Cεn
 

Bε

∑
i,j

|ξζ+[wi,wj ]|dζ.

We observe that for all choices of i, ζ and x we have x ∈ ζ+ετ0 ⊆ (ετ0)ε and ζ+wi ∈ ζ+
ετ0 ⊆ (ετ0)ε. Therefore, each addend in the first term can be estimated using Poincaré’s 
inequality for BV functions by
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Bε

ˆ

ζ+ετ0

|u(ζ + wi) − u(x)|dx dζ ≤ 1
|Bε|

ˆ

(ετ0)ε

ˆ

(ετ0)ε

|u(y) − u(y′)|dydy′

≤2 |(ετ0)ε||Bε|

ˆ

(ετ0)ε

|u(y) − ū|dy ≤ Cε|Du|((ετ0)ε),

where ū denotes the average of u in (ετ0)ε. For the second one, we write using (4.36)
with p = 1

εn
 

Bε

∑
i,j

|ξζ+[wi,wj ]|dζ ≤ Cε

ˆ

(ετ0)Cε

|∇u|dx.

Combining the two gives (4.30).
Finally, we prove (4.31): for any τ0 ∈ T0 and ζ ∈ Bε, we have Hn−1(Σ ∩ (ζ + ετ0)) ≤

CkΣε
n−1. As the map Πε,ζu is affine on each element of ζ + εT ∗

0 , we have

‖Πε,ζu‖L∞(ζ+ετ0) ≤
C

εn
‖Πε,ζu‖L1(ζ+ετ0). (4.43)

We sum over all τ0 such that ζ + ετ0 intersects Σ and obtain
ˆ

Σ

|Πε,ζu|dHn−1 ≤ CkΣ

ε
‖Πε,ζu‖L1((Σ)√nε) (4.44)

for a.e. ζ ∈ Bε. Then we use (4.30) and a triangular inequality to conclude.
(vii): If ∇u = 0 Ln-almost everywhere, then (4.27) with η = 0 implies ∇Πε,ζu = 0

Ln-almost everywhere for Ln-almost every ζ. If u takes values in {0, 1}, then for each 
application of Proposition 4.1 we have that ξij = 0, therefore the constructed function 
is piecewise constant and takes values in the set {u1, . . . , un+1} ⊆ {0, 1}.

Finally, if Hn−1(Ju) = 0 then necessarily u ∈ W 1,1
loc (Rn; Rm). In turn, the slices of u

are Sobolev functions for Ln-almost every ζ ∈ Bε, so that JΠε,ζu = ∅, in turn implying 
that Πε,ζu is actually continuous and in W 1,1

loc (Rn; Rm) (alternatively, this follows also 
from (4.29)). �

4.3. Global construction

We are now ready to establish Theorem 1.1. The proof contains two different scales, 
denoted by δ and ε in the following. The scale δ is the one at which the function u
has approximately regular jump and gradient, and is identified in Proposition 3.6. The 
second scale ε � δ, used for the construction in Proposition 4.3, is the one on which 
we construct a piecewise affine approximation of u. This is achieved in each cube at 
scale δ by applying Proposition 4.3 to the extensions, obtained via Theorem 3.5, of 
u itself restricted to domains separated by the regular part of its jump set. In turn, 
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Fig. 3. Sketch of the grids used in the proof of Theorem 1.1. The grid (T ′, V ′) is taken in Rn−1, it is then 
rotated. Similarly, Hz and Lz are graphs of ψz and ϕz respectively, in these rotated coordinates (in the 
picture for Hz we have set β = 0 for the sake of simplicity, see (4.58).) (For interpretation of the colors in 
the figure, the reader is referred to the web version of this article.)

the regularization Lz of the jump set Ju will be separately approximated using piecewise 
affine elements in Rn−1 using again the scale ε. Fig. 3 shows a sketch of the construction, 
the different parts will become clear during the proof.

Proof of Theorem 1.1. Let u ∈ SBV (Ω; Rm) and θ ∈ (0, 1
2 ]. To simplify the notation we 

work at fixed θ, and in the end choose a sequence θj → 0. It is not restrictive to assume 
additionally that

t ≤ g0(t) for all t ∈ [0,∞); (4.45)

indeed, this follows by proving first the theorem with g0(t) + t in place of g0 and then 
deducing the statement for g0 as a by-product. By (2.2), for any λ > 0 (fixed below, it 
will depend on θ and δ but not on ε and δ′; λ = θδ will do) there is Cλ ≥ 1 such that

g0(t) ≤ λ + Cλt for all t ∈ [0,∞). (4.46)

This will be used to estimate terms of the form g0(|[w]|) on sets of finite n −1-dimensional 
measure in terms of the jump.

Step 1: Choice of the scale δ on which u is regular and of the sets Aδ, A∗
δ .

By Theorem 3.5 we can assume that u ∈ SBV (Rn; Rm) with |Du|(Ju ∩ ∂Ω) = 0,
ˆ

Ω′

|∇u|p dx ≤
ˆ

Ω

|∇u|p dx + θ , (4.47)

and
ˆ

Ω′∩Ju

g0(|[u]|)dHn−1 ≤
ˆ

Ω∩Ju

g0(|[u]|)dHn−1 + θ , (4.48)

for some bounded open set Ω′ with Ω ⊂ Ω′ and |Ω′| ≤ 2|Ω|. We choose δ0 ∈ (0, θ] such 
that 3δ0

√
n ≤ dist(Ω, ∂Ω′) and
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ˆ

(∂Ω)3δ0
√

n

|∇u|pdx + μu((∂Ω)3√nδ0) ≤ θ, (4.49)

where μu := g0(|[u]|)Hn−1 Ju as in (3.41). If Hn−1(Ju∩Ω) < ∞, then Theorem 3.5
gives Hn−1(Ju) < ∞ and we may also require

Hn−1(Ju ∩ (∂Ω)3√nδ0) ≤ θ. (4.50)

By Proposition 3.6, used with δ0 in place of θ, there is δ ∈ (0, δ0] ⊆ (0, θ] such that, with 
Aδ := {z ∈ (δZn) ∩ Ω : dist(z, ∂Ω)>δ

√
n}, there are R : Aδ → SO(n), s : Aδ → Rm, 

η : Aδ → Rm×n, ϕ : Aδ → C1
c (Rn−1), x : Aδ → Rn which, setting

Lz := xz + Rz{(y′, ϕz(y′)) : y′ ∈ Rn−1} (4.51)

and Q∗
z := z + (−δ, δ)n, satisfy ‖Dϕz‖L∞ ≤ θ and

∑
z∈Aδ

ˆ

Q∗
z

|∇u− ηz|pdx +
∑
z∈Aδ

ˆ

Q∗
z∩Ju\Lz

g0(|[u]|)dHn−1

+
∑
z∈Aδ

ˆ

Q∗
z∩Lz

[g0(|[u] − sz|)+g0(|[u]|)|νu −Rzen|]dHn−1 ≤ Cθ .

(4.52)

Here and in what follows we do not explicitly indicate the dependence of C on μu(Ω)
and |Ω|. If Hn−1(Ju) < ∞ we have in addition∑

z∈Aδ

Hn−1(Q∗
z ∩ (Ju	Lz)) ≤ Cθ. (4.53)

We further define A∗
δ := {z ∈ (δZ)n : dist(z, ∂Ω) ≤ δ

√
n}. We observe that Q∗

z ⊆
Bδ

√
n(z), so that by (4.49)

∑
z∈A∗

δ

ˆ

Q∗
z

|∇u|pdx +
∑
z∈A∗

δ

ˆ

Q∗
z∩Ju

g0(|[u]|)dHn−1

≤ C(
ˆ

(∂Ω)2δ√n

|∇u|pdx + μu((∂Ω)2δ√n)) ≤ Cθ .

(4.54)

For γ ∈ Bδ/4 and z ∈ Aδ∪A∗
δ we define Qγ

z := γ + z + (−δ/2, δ/2)n ⊆ Q∗
z, and observe 

that since 2δ
√
n ≤ 2δ0

√
n ≤ dist(Ω, ∂Ω′) we have Ω ⊂

⋃
z∈Aδ∪A∗

δ
Qγ

z⊂ Ω′. Further, for 
Ln-almost every choice of γ ∈ Bδ/4 we have

Hn−1

⎛⎝Ju ∩
⋃

∗

∂Qγ
z

⎞⎠ = 0 and Hn−1

( ⋃
(Lz ∩ ∂Qγ

z )
)

= 0. (4.55)

z∈Aδ∪Aδ z∈Aδ
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This follows from the fact that Hn−1 Ju and Hn−1 ⋃
z∈Aδ

Lz are σ-finite. In the rest 
of the proof γ is a fixed value with property (4.55) and we write Qz in place of Qγ

z .

Step 2: Approximation of the interface.

Let ε ∈ (0, δ2 ). For every z ∈ Aδ, we let

L+
z := xz+Rz{(y′, yn) : y′ ∈ Rn−1, yn > ϕz(y′)}, (4.56)

so that Lz = ∂L+
z , and then let L−

z := Rn \ Lz \ L+
z . Fix a triangulation (T ′, V ′) of 

Rn−1, with V ′ = εZn−1, as in Lemma 4.2. We define ψz : Rn−1 → R setting ψz = ϕz

on V ′, and ψz affine in each element of T ′.
We stress that the triangulation (T ′, V ′) used above to approximate Lz is not related 

to the triangulation (Tε,ζ , Vε,ζ) used in Proposition 4.3 for the definition of Πε,ζ . The 
usage of the same scale ε for both triangulations is only to avoid having one more small 
parameter. In any case, it would be crucial for both scales to be much smaller than δ.

We claim that there is a modulus of continuity ωε, infinitesimal as ε ↓ 0, such that 
for all z ∈ Aδ we have

‖ϕz − ψz‖L∞(Rn−1) ≤ εωε and ‖Dϕz −Dψz‖L∞(Rn−1) ≤ ωε. (4.57)

In the following we shall assume that ε is sufficiently small to ensure ωε ≤ θ. To prove 
(4.57), we observe that since ϕz ∈ C1

c (Rn−1) there is a modulus of continuity ω̂ε such 
that |Dϕz(y) −Dϕz(ỹ)| ≤ ω̂ε whenever |y− ỹ| ≤ ε

√
n. As there are finitely many choices 

of z, we can assume that ω̂ε does not depend on z. Consider now an element τ ′ ∈ T ′. 
For every edge (a, b) of τ ′ we have Dψz|τ ′(b − a) = ϕz(b) − ϕz(a), so that

|(Dψz|τ ′ −Dϕz(b))(b− a)| ≤ ω̂ε|b− a|

for all edges (a, b) of τ ′. As the simplexes τ ′ are uniformly nondegenerate this implies 
|Dψz −Dϕz| ≤ Cω̂ε, for some constant C depending only on n. This proves (4.57).

Using this interpolation and a shift β ∈ (−ε, ε) we define the set

H+
z := xz+Rz{(y′, yn) : y′ ∈ Rn−1, yn > ψz(y′)+β}, (4.58)

which is a polyhedral approximation of L+
z , and Hz := ∂H+

z , H−
z := Rn \Hz \H+

z (see 
Fig. 3). We choose β such that

Hn−1

( ⋃
z∈Aδ

(Hz ∩ ∂Qz)
)

= 0. (4.59)

Condition (4.59), which holds for almost all β, will be needed to estimate the (unilateral) 
Hn−1-difference between the jump of the approximation and Ju, see text after (4.77) and 
the proof of (4.131).
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Fig. 4. Sketch of geometry in the construction of U+
z and U−

z in Step 3 in the proof of Theorem 1.1, assuming 
n = 2, Rz = Id, and that Lz is the graph of a parabola. The set E+

z is the area above Lz (inside the ball Bz), 
Oε

z is a neighborhood of Lz intersected with the larger cube Q∗
z , and Ôε

z is a smaller neighborhood of Lz

intersected with a neighborhood of Qz. The set Hz is an approximation of Lz with the graph of a piecewise 
affine function, and the part inside Qz belongs to Ôε

z (in the picture for Hz we have set β = 0 for the sake 
of simplicity, see (4.58)). Fig. 3 shows how this construction interacts with the rest. (For interpretation of 
the colors in the figure, the reader is referred to the web version of this article.)

Step 3: Construction of wz,ζ and wζ . In this step we define an approximation wz,ζ on 
each cube Qz, for z ∈ Aδ and ζ ∈ Bε. This requires two different extensions of u on 
different sets, a sketch is given in Fig. 4.
If Lz∩Q∗

z = ∅ we set wz,ζ = Πε,ζu. The other case is more complex. We pick yz ∈ Lz∩Q∗
z, 

let Bz := B3
√
nδ(yz), so that Q∗

z ⊂⊂ Bz ⊂ Ω′, and consider the sets E±
z := Bz∩L±

z . One 
checks that, since ϕz is θ-Lipschitz with θ ≤ 1

2 , the sets E±
z are Lipschitz with a constant 

C. For this it is convenient to use that a bounded open set A is Lipschitz if and only if 
there are a nontrivial open one-sided cone E and r > 0 such that Br(x) ∩ (x + E) ⊂ A

and Br(x) ∩ (x −E) ∩A = ∅ for all x ∈ ∂A, see [5, Remark after Def. 2.60].
Let M > 0 be fixed, it will be chosen below depending only on the dimension n. By 

Theorem 3.5 there are U±
z ∈ SBV (Rn; Rm) which extend the restriction of u to E±

z , 
respectively. In particular, we have U±

z = u on E±
z , and |DU+

z |(∂E+
z ) = |DU−

z |(∂E−
z ) =

0. For ε sufficiently small, letting Oε
z := (Lz)2Mε ∩Q∗

z, from 
⋂

ε>0 O
ε
z = Lz ∩Q∗

z ⊂ ∂E+
z

we obtain

E|·|p,g0 [U
+
z , Oε

z] + |DU+
z |(Oε

z)+‖∇u‖pLp(Oε
z) + |Du|(Oε

z \ Lz) ≤
δnθ

Cλ
(4.60)

for all z, and the same for U−
z . If Hn−1(Ju) < ∞, then we also have for ε > 0 small 

enough ∑
z∈Aδ

Hn−1(JU+
z
∩Oε

z) + Hn−1(JU−
z
∩Oε

z) ≤ Cθ. (4.61)

The function wz,ζ will be defined as a discretization of U+
z on H+

z ∩ Qz, and similarly 
with the other sign. By Proposition 4.3(iv) it depends on U±

z on a small neighborhood 
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of the sets H±
z ∩ Qz, and by Proposition 4.3(vi) the relevant properties of wz,ζ can be 

estimated by corresponding properties of U±
z on 2c∗ε-neighborhoods of H±

z ∩ Qz (see 
also (4.33)). Therefore we need to estimate U±

z on these sets.
Let Ôε

z := (Lz)Mε ∩ (Qz)Mε. From (4.56), (4.57) and (4.58) we obtain Hz ⊆ (Lz)2ε
and (H+

z )2c∗ε ⊆ L+
z ∪ (Lz)(2+2c∗)ε, which imply

(H+
z ∩Qz)2c∗ε ⊆ (L+

z ∩Q∗
z) ∪ Ôε

z (4.62)

and the same for the other sign, provided that M ≥ 2 + 2c∗ and ε is sufficiently small. 
Recalling (4.52), (4.60) in particular implies

∑
z∈Aδ

ˆ

J
U

+
z
∩(H+

z ∩Qz)2c∗ε

g0(|[U+
z ]|)dHn−1

+
∑
z∈Aδ

ˆ

J
U

−
z
∩(H−

z ∩Qz)2c∗ε

g0(|[U−
z ]|)dHn−1 ≤ Cθ

(4.63)

and ∑
z∈Aδ

ˆ

(H+
z ∩Qz)2c∗ε

|∇U+
z − ηz|pdx +

ˆ

(H−
z ∩Qz)2c∗ε

|∇U−
z − ηz|pdx ≤ Cθ. (4.64)

We next estimate the difference between u, U+
z and U−

z around Hz, this will be 
important after (4.107) (cf. (4.111)-(4.112)). We pick x1, . . . , xK ∈ Lz such that

Lz ∩Qz ⊆
⋃
i

Bi, Bi := BMε(xi), (4.65)

and

Ôε
z ⊆

⋃
i

B∗
i , B∗

i := B2Mε(xi). (4.66)

We can pick the points so that the larger balls B∗
i have finite overlap uniformly in ε, 

namely 
∑K

i=1 χB∗
i
≤ C, and that they are all contained in (Qz)3Mε. This implies in 

particular K ≤ Cδn−1

εn−1 , for a constant C. For ε sufficiently small, B∗
i ⊆ Oε

z. As ϕz is 
1
2 -Lipschitz, the sets B∗

i ∩ L+
z and B∗

i ∩ L−
z are uniformly Lipschitz, therefore there is a 

constant C such that for any i there are h+
i , h−

i ∈ Rm with

1
ε
‖u− h+

i ‖L1(B∗
i ∩L+

z ) + ‖Tu− h+
i ‖L1(B∗

i ∩Lz;Hn−1) ≤ C|Du|(B∗
i ∩ L+

z ). (4.67)

In (4.67) we write Tu for the inner trace on the boundary of B∗
i ∩L+

z , which on B∗
i ∩Lz

coincides with u+. The corresponding estimate holds with the other sign (then with 
Tu = u−). This in particular implies
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ˆ

B∗
i ∩Lz

|[u] − (h+
i − h−

i )|dHn−1 ≤ C|Du|(B∗
i \ Lz). (4.68)

We observe that Lip (ϕz) ≤ 1
2 also implies for some constant C

εn

C
≤ |B∗

i ∩ L+
z |,

εn

C
≤ |B∗

i ∩ L−
z |, (4.69)

as well as

εn−1

C
≤ Hn−1(Bi ∩ Lz) ≤ Cεn−1,

εn−1

C
≤ Hn−1(Bi ∩Hz) ≤ Cεn−1. (4.70)

By Poincaré’s inequality applied to U+
z on B∗

i , using u = U+
z on B∗

i ∩ L+
z , (4.67) and 

(4.69),

‖U+
z − h+

i ‖L1(B∗
i ) ≤ Cε|DU+

z |(B∗
i ) (4.71)

and analogously for U−
z and h−

i , so that

ˆ

B∗
i

|U+
z − U−

z − h+
i + h−

i |dx ≤ Cε(|DU+
z | + |DU−

z |)(B∗
i ). (4.72)

Finally, a direct application of Poincaré’s inequality to U+
z − u on B∗

i , using u = U+
z on 

B∗
i ∩ L+

z and (4.69), leads to

ˆ

B∗
i

|U+
z − u|dx ≤ Cε(|DU+

z | + |Du|)(B∗
i ), (4.73)

obviously the same holds for U−
z . Summing (4.73) over all balls shows that

‖U+
z − u‖L1(Ôε

z) ≤ Cε(|DU+
z | + |Du|)(Oε

z) (4.74)

and the same for U−
z . Summing instead (4.73) only over the balls with centers contained 

in (∂Qz)3Mε ∩ Lz gives

‖U+
z − u‖L1((∂Qz)Mε∩(Lz)Mε) ≤ Cε

(
|DU+

z | + |Du|
)
((∂Qz)5Mε ∩Oε

z), (4.75)

and the same bound for U−
z .

For z ∈ Aδ with Lz ∩Q∗
z �= ∅ we define wz,ζ : Rn → Rm by

wz,ζ :=
{

Πε,ζU
+
z in H+

z ,

Π U− in H−,
(4.76)
ε,ζ z z
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we recall that if instead Lz∩Q∗
z = ∅ we had set wz,ζ = Πε,ζu. In both cases, the function 

wz,ζ is piecewise affine. For any function f , we have for almost all ζ ∈ Bε

Hn−1(JΠε,ζf ∩Hz) = Hn−1(JΠε,ζf ∩ ∂Qz) = 0 , (4.77)

and in particular this holds for U+
z and U−

z . With this choice, and recalling (4.59), 
Jwz,ζ

∩ Qz splits (up to Hn−1-null sets) into the disjoint union of JΠε,ζU
+
z
∩ H+

z ∩ Qz, 
JΠε,ζU

−
z
∩H−

z ∩Qz, and a subset of Hz ∩Qz, with

[wz,ζ ] = Πε,ζU
+
z − Πε,ζU

−
z , Hn−1-a.e. on Hz ∩Qz. (4.78)

By (4.57) and the fact that ϕz is θ-Lipschitz we also obtain

|νwz,ζ
−Rzen| ≤ Cθ Hn−1-a.e. on Q∗

z ∩Hz ∩ Jwz,ζ
. (4.79)

If Hn−1(Ju) < ∞ then using (4.29) on U+
z (cf. the discussion to get (4.33)) leads to

 

Bε

Hn−1(Qz ∩H+
z ∩ JΠε,ζU

+
z

)dζ ≤ C
∑
z∈Aδ

Hn−1(JU+
z
∩ (Qz ∩H+

z )2c∗ε), (4.80)

and the same for U−
z . Using (4.62) in the first step, and in the second one that U+ = u

in the open set L+
z ∩Qz and that Ôε

z ⊆ Oε
z,

 

Bε

Hn−1(Qz ∩H+
z ∩ JΠε,ζU

+
z

)dζ

≤ CHn−1(JU+
z
∩ L+

z ∩Q∗
z) + CHn−1(JU+

z
∩ Ôε

z)

≤ CHn−1(Ju ∩ L+
z ∩Q∗

z) + CHn−1(JU+
z
∩Oε

z),

(4.81)

and the same for U−
z . Finally, since Lz, L+

z , L−
z are mutually disjoint summing over all 

z ∈ Aδ and using (4.53) and (4.61) we obtain
 

Bε

∑
z∈Aδ

Hn−1(Qz ∩H+
z ∩ JΠε,ζU

+
z

) + Hn−1(Qz ∩H−
z ∩ JΠε,ζU

−
z

)dζ

≤ C
∑
z∈Aδ

Hn−1(Q∗
z ∩ Ju \ Lz) + Hn−1(Oε

z ∩ JU+
z

) + Hn−1(Oε
z ∩ JU−

z
) ≤ Cθ.

(4.82)

We define w0
ζ := Πε,ζu and then wζ ∈ SBV (ΩQ; Rm), where ΩQ := int(

⋃
z∈Aδ∪A∗

δ
Qz), 

by setting wζ := wz,ζ on Qz if z ∈ Aδ, and wζ := w0
ζ if z ∈ A∗

δ . For any ζ ∈ Bε, the 
function wζ is piecewise affine and obeys property (i). This concludes the construction 
of wζ .

Step 4: Estimates on wζ and ∇wζ .
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We first check that we have not added too much jump on the boundary between adjacent 
cubes by replacing w0

ζ by wz,ζ . Fix z ∈ Aδ. By (4.59) we have Hn−1(Hz ∩∂Qz) = 0, and 
by (4.77) for any f we have Hn−1(JΠε,ζf ∩∂Qz) = 0 for almost every ζ. As Hz, H+

z , H−
z

are a partition of Rn, for almost every ζ the functions w0
ζ and wz,ζ have a well-defined 

trace on ∂Qz, and (4.76) implies

ˆ

∂Qz

|w0
ζ − wz,ζ |dHn−1 =

ˆ

∂Qz∩H+
z

|Πε,ζu− Πε,ζU
+
z |dHn−1

+
ˆ

∂Qz∩H−
z

|Πε,ζu− Πε,ζU
−
z |dHn−1.

(4.83)

By estimate (4.31) with Σ = ∂Qz ∩H+
z ,

 

Bε

ˆ

∂Qz∩H+
z

|w0
ζ − wz,ζ |dHn−1dζ ≤C

ε
‖u− U+

z ‖L1((∂Qz∩H+
z )c∗ε)

+ C|D(u− U+
z )|((∂Qz ∩H+

z )2c∗ε).

(4.84)

Recalling that U+
z = u on E+

z and (4.62), both domains can be restricted to (∂Qz)Mε ∩
(Lz)Mε. The first term is estimated by (4.75), and we conclude

 

Bε

ˆ

∂Qz

|w0
ζ − wz,ζ |dHn−1dζ ≤ C(|Du| + |DU+

z | + |DU−
z |)((∂Qz)5Mε ∩Oε

z) (4.85)

so that, using (4.55),

lim sup
ε→0

∑
z∈Aδ

 

Bε

ˆ

∂Qz

|w0
ζ − wz,ζ |dHn−1dζ= 0. (4.86)

We next address the L1 convergence. For any z ∈ Aδ for which Lz ∩Q∗
z �= ∅, by the 

definition of wζ and Proposition 4.3(v), we have for Ln-almost every ζ∈ Bε

ˆ

Qz

|wζ − u|dx =
ˆ

Qz∩H+
z

|Πε,ζU
+
z − u|dx +

ˆ

Qz∩H−
z

|Πε,ζU
−
z − u|dx

≤
ˆ

Qz∩H+
z

(
|Πε,ζU

+
z − U+

z | + |U+
z − u|

)
dx

+
ˆ

−

(
|Πε,ζU

−
z − U−

z | + |U−
z − u|

)
dx.

(4.87)
Qz∩Hz
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We recall that U+
z = u on Qz ∩H+

z \ Ôε
z ⊆ E+

z and (4.74) to obtain

ˆ

Qz∩H+
z

|U+
z − u|dx ≤‖U+

z − u‖L1(Ôε
z)

≤Cε(|DU+
z | + |DU−

z | + |Du|)(Oε
z).

(4.88)

With (4.30) in Proposition 4.3,

 

Bε

ˆ

Qz∩H+
z

|Πε,ζU
+
z − U+

z |dx dζ ≤ Cε|DU+
z |((Qz ∩H+

z )2c∗ε)

≤ Cε(|Du|(Q∗
z) + |DU+

z |(Oε
z))

(4.89)

and an analogous estimate holds for the term with the other sign. Recalling (4.60) we 
obtain

∑
z∈Aδ:Lz∩Qz �=∅

 

Bε

ˆ

Qz

|wζ − u|dx dζ ≤ Cθ (4.90)

for ε sufficiently small. If Lz ∩ Q∗
z = ∅ or z ∈ A∗

δ the computation is simpler as wζ =
w0

ζ = Πε,ζu, and only (4.89) with u in place of U+
z appears. From this we conclude that

 

Bε

ˆ

Ω

|wζ − u|dx dζ ≤ Cθ. (4.91)

Moreover, from wζ = w0
ζ on Qz \ Ôε

z, from (4.60) and estimate (4.27) in Proposi-
tion 4.3(vi) we deduce

 

Bε

ˆ

Ω

|∇wζ −∇u|pdx dζ

≤ C

 

Bε

∑
z∈Aδ∪A∗

δ

( ˆ
Qz

|∇w0
ζ −∇u|pdx+

ˆ

Ôε
z

(|∇wζ |p + |∇u|p)dx
)
dζ

≤ C
∑

z∈Aδ∪A∗
δ

ˆ

(Qz)2c∗ε

|∇u− ηz|pdx+Cθ ≤ Cθ, (4.92)

where the last estimate follows from (4.52), and the constant C > 0 depends on u, on 
the dimension n, on p and on Ω.

Step 5: Definition of the deformation Φ.
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We select δ′ ∈ (0, δ) and define Φ : Rn → Rn by

Φ(x) := x +
∑

z∈Aδ:Lz∩Q∗
z �=∅

αz(x)Rz

(
ψz((RT

z (x− xz))′) + β − ϕz((RT
z (x− xz))′)

)
en,

(4.93)
where (RT

z x)′ denotes the first n −1 components of the vector RT
z x and we fixed a function 

αz ∈ C∞
c (Qz; [0, 1]) with αz = 1 on Q′′

z := z + γ + (− δ+δ′

4 , δ+δ′

4 )n, |Dαz| ≤ 6/(δ − δ′). 
Since αz, ψz, ϕz are Lipschitz, so is Φ. By the definition of αz we have Φ(x) = x for 
x �∈ Ω, and by (4.57) |Φ(x) − x| ≤ 2ε for all x. For ε sufficiently small, Φ(Qz) = Qz for 
all z ∈ δZn by construction, and if we define Q′

z := z + γ + (− δ′

2 , 
δ′

2 )n ⊂⊂ Q′′
z ⊂⊂ Qz, 

from (4.51), (4.57) and (4.58) we obtain

Hz∩Q′
z = Φ(Lz)∩Q′

z, and Φ−1(Hz)∩Q′
z = Lz∩Q′

z. (4.94)

In order to show that Φ is invertible with Lipschitz inverse it suffices to prove that DΦ
is uniformly close to the identity. Indeed, using (4.57) we obtain

‖DΦ − Id‖∞ ≤max
z∈Aδ

‖Dψz −Dϕz‖∞ + max
z∈Aδ

‖Dαz‖∞(‖ψz − ϕz‖∞+|β|)

≤ωε + 12ε
δ − δ′

. (4.95)

In particular, if ε is sufficiently small on a scale depending on δ and δ′, we can ensure

‖DΦ − Id‖∞ ≤ 1
2θ. (4.96)

Therefore,

(1 − 1
2θ)|x− y| ≤ |Φ(x) − Φ(y)| ≤ (1 + θ)|x− y|,

which implies that Φ is globally bilipschitz. Property (iii) follows.

Step 6: Estimate of the jump energy.

We are now able to estimate the energy of the jump contribution. We start to decompose 
it as

 

Bε

ˆ

Ω∩(Ju∪Φ−1(Jwζ
))

g0(|[u] − [wζ ] ◦ Φ|) dHn−1dζ

≤
 

Bε

∑
z∈Aδ∪A∗

δ

ˆ

(Ju∪Φ−1(Jwζ
))∩Qz

g0(|[u] − [wζ ] ◦ Φ|) dHn−1dζ

+
 

Bε

∑
z∈Aδ

ˆ

∂Qz

g0(|wz,ζ − w0
ζ |)dHn−1dζ (4.97)



50 S. Conti et al. / Journal of Functional Analysis 288 (2025) 110686
where we separated the boundary contributions from the ones in the interior, then used 
Φ(x) = x on ∂Qz, (4.55) to infer that [u] = 0 almost everywhere on ∂Qz, (4.77) to infer 
[wz,ζ ] = [w0

z ] = 0 almost everywhere on ∂Qz, and finally used |[wζ ]| ≤ |wz,ζ − w0
ζ | +

|wz′,ζ −w0
ζ | and subadditivity of g0 on ∂Qz ∩ ∂Qz′ for z, z′ ∈ Aδ, |[wζ ]| = |wz,ζ −w0

ζ | on 
∂Qz ∩ ∂Qz′ for z ∈ Aδ, z′ ∈ A∗

δ , and |[wζ ]| = 0 on ∂Qz ∩ ∂Qz′ for z, z′ ∈ A∗
δ .

We start from the boundary term. From (4.46) we get

 

Bε

∑
z∈Aδ

ˆ

∂Qz

g0(|wz,ζ − w0
ζ |)dHn−1dζ

≤ #AδHn−1(∂Qz)λ + Cλ

 

Bε

∑
z∈Aδ

ˆ

∂Qz

|wz,ζ − w0
ζ |dHn−1dζ

≤ C
λ

δ
+ Cθ, (4.98)

by (4.86) and choosing ε sufficiently small. For λ ≤ δθ the entire term is bounded by Cθ.
We now turn to the first term of (4.97). We start from z ∈ Aδ. Splitting

Ju ∪ Φ−1(Jwζ
) =(Ju ∪ Φ−1(Jwζ

)) ∩ (Lz ∪ Φ−1(Hz))

∪ (Ju ∪ Φ−1(Jwζ
)) \ (Lz ∪ Φ−1(Hz))

and using the subadditivity of g0 to estimate the integral on the second set, we get

 

Bε

ˆ

(Ju∪Φ−1(Jwζ
))∩Qz

g0(|[u] − [wζ ] ◦ Φ|) dHn−1 dζ ≤ Iz + IIz + IIIz (4.99)

with

Iz :=
 

Bε

ˆ

(Lz∪Φ−1(Hz))∩Qz

g0(|[u] − [wζ ] ◦ Φ|) dHn−1dζ,

IIz :=
ˆ

Ju∩Qz\Lz

g0(|[u]|) dHn−1,

IIIz :=
 

Bε

ˆ

Φ−1(Jwζ
\Hz)∩Qz

g0(|[wζ ] ◦ Φ|) dHn−1 dζ.

(4.100)

We start from Iz. We add and subtract sz, write

Iz ≤
 ˆ

−1

g0(|[u] − sz|) + g0(|[wζ ] ◦ Φ − sz|) dHn−1dζ (4.101)

Bε (Lz∪Φ (Hz))∩Qz
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and observe that

g0(|[u] − sz|)χ(Φ−1(Hz)\Lz)∩Qz
≤ g0(|[u]|)χ(Ju\Lz)∩Qz

+ g0(|sz|)χ(Φ−1(Hz)\Lz)∩Qz
,

and similarly for the other term. Therefore

Iz ≤I1z + I2z + I3z+IIz + IIIz, (4.102)

where

I1z :=
ˆ

Lz∩Q∗
z

g0(|[u] − sz|) dHn−1, (4.103)

I2z :=
 

Bε

ˆ

Φ−1(Hz)∩Qz

g0(|[wζ ] ◦ Φ − sz|) dHn−1dζ, (4.104)

and

I3z := g0(|sz|)Hn−1((Lz	Φ−1(Hz)) ∩Qz). (4.105)

First note that ∑
z∈Aδ

(I1z + IIz) ≤ Cθ (4.106)

thanks to (4.52). For I2z we use first the Area formula (2.9), then (4.95) and (4.78) to 
obtain

I2z ≤2
 

Bε

ˆ

Hz∩Qz

g0(|Πε,ζ(U+
z − U−

z ) − sz|) dHn−1dζ. (4.107)

We cover Hz ∩Qz with the balls Bi introduced in (4.65), and start from estimating the 
term

I2z(Bi) :=
 

Bε

ˆ

Hz∩Bi

g0(|Πε,ζ(U+
z − U−

z ) − sz|) dHn−1dζ. (4.108)

By subadditivity,

g0(|Πε,ζ(U+
z − U−

z ) − sz|)
≤ g0(|h+

i − h−
i − sz|) + g0(|Πε,ζ(U+

z − U−
z ) − h+

i + h−
i |). (4.109)

The first term, using (4.70) twice and subadditivity, leads to
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ˆ

Hz∩Bi

g0(|h+
i − h−

i − sz|)dHn−1 ≤ Cεn−1g0(|h+
i − h−

i − sz|)

≤ C

ˆ

Lz∩Bi

[g0(|[u] − sz|) + g0(|h+
i − h−

i − [u]|)]dHn−1,

(4.110)

where the first integral is controlled by I1z. Using (4.46) in the second term of (4.109)
and the second term of (4.110), for any λ > 0 we have

I2z(Bi) ≤C

ˆ

Lz∩Bi

g0(|[u] − sz|)dHn−1 + Cλεn−1

+ Cλ

ˆ

Lz∩Bi

|h+
i − h−

i − [u]| dHn−1

+ Cλ

 

Bε

ˆ

Hz∩Bi

|Πε,ζ(U+
z − U−

z − h+
i + h−

i )| dHn−1 dζ. (4.111)

The term in the second line can be estimated with (4.68). For the last line we use first 
(4.31) and then (4.72), and obtain

 

Bε

ˆ

Hz∩Bi

|Πε,ζ(U+
z − U−

z − h+
i + h−

i )|dHn−1 dζ

≤ C

ε

ˆ

B∗
i

|U+
z − U−

z − h+
i + h−

i |dx + C(|DU+
z | + |DU−

z |)(B∗
i )

≤ C(|DU+
z | + |DU−

z |)(B∗
i ).

(4.112)

Using that Lip (ϕz) ≤ 1
2 , (4.70) and 

∑K
i=1 χB∗

i
≤ C, summing over i yields

I2z ≤CI1z + Cλδn−1 + Cλ|Du|(Oε
z \ Lz) + Cλ(|DU+

z | + |DU−
z |)(Oε

z), (4.113)

so that by (4.60) summing on z ∈ Aδ we find for λ ≤ δθ and ε sufficiently small∑
z∈Aδ

I2
z ≤ Cθ .

We next turn to I3z, and observe that by (4.94) and (4.95)

Hn−1((Lz	Φ−1(Hz)) ∩Qz) ≤Hn−1(Lz ∩Qz \Q′
z) + Hn−1(Φ−1(Hz) ∩Qz \Q′

z)

≤Hn−1(Lz ∩Qz \Q′
z) + 2Hn−1(Hz ∩Qz \Q′

z).
(4.114)
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Therefore

I3z ≤ 4 max
z∈Aδ

g0(|sz|)Hn−1 ((Hz ∪ Lz) ∩ (Qz \Q′
z)) .

As Hn−1(
⋃

z∈Aδ
(Hz ∪ Lz)∩Qz) < ∞ and 

⋃
δ′<δ Q

′
z = Qz, choosing δ′ sufficiently close 

to δ we have ∑
z∈Aδ

Hn−1 ((Hz ∪ Lz) ∩ (Qz \Q′
z)) ≤ θ and

∑
z∈Aδ

I3z ≤ θ. (4.115)

Similarly, if Hn−1(Ju) < ∞, for δ′ sufficiently close to δ we have

Hn−1(Ju ∩
⋃

z∈Aδ

(Qz \Q′
z)) ≤ θ. (4.116)

For IIIz we use the Area formula (2.9) and (4.95). We obtain

IIIz ≤ 2
 

Bε

ˆ

Jwz,ζ
∩Qz\Hz

g0(|[wz,ζ ]|) dHn−1 dζ. (4.117)

Therefore IIIz ≤ 2III+z + 2III−z , with

III+z :=
 

Bε

ˆ

JΠε,ζU
+
z
∩Qz∩H+

z

g0(|[Πε,ζU
+
z ]|) dHn−1 dζ, (4.118)

and similarly for III−z . We use inequalities (4.28) to infer

∑
z∈Aδ

III+z ≤C
∑
z∈Aδ

ˆ

J
U

+
z
∩(H+

z ∩Qz)2c∗ε

g0(|[U+
z ]|) dHn−1, (4.119)

and the same for III−z . Both can be estimated via (4.63), we conclude that∑
z∈Aδ

IIIz ≤ Cθ. (4.120)

We next treat the bulk term in (4.97) in the case z ∈ A∗
δ . Since Φ(x) = x and wζ = w0

ζ

on Qz, recalling Proposition 4.3 (iii),
 

Bε

ˆ

(Ju∪Jw0
ζ
)∩Qz

g0(|[u] − [w0
ζ ]|) dHn−1 dζ ≤ IVz + Vz, (4.121)

where
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ˆ

IVz :=

Ju∩Qz

g0(|[u]|) dHn−1,

Vz :=
 

Bε

ˆ

Jw0
ζ
∩Qz

g0(|[w0
ζ ]|) dHn−1 dζ.

(4.122)

As for III+z , we use inequality (4.28) in Proposition 4.3 and obtain

Vz ≤ C

ˆ

Ju∩(Qz)2c∗ε

g0(|[u]|) dHn−1 (4.123)

so that ∑
z∈A∗

δ

(IVz + Vz) ≤ Cμu(
⋃

z∈A∗
δ

(Qz)2c∗ε) ≤ Cμu((∂Ω)3√nδ) ≤ Cθ, (4.124)

for ε sufficiently small, where in the last step we used (4.49). Combining the previous 
estimates, (4.97) yields

 

Bε

ˆ

Ω∩(Ju∪Φ−1(Jwζ
))

g0(|[u] − [wζ ] ◦ Φ|) dHn−1dζ ≤ Cθ . (4.125)

We claim next that for ε sufficiently small

 

Bε

ˆ

Ω∩(Ju∪Φ−1(Jwζ
))

g0(|[u]| + |[wζ ] ◦ Φ|)
∣∣νu − νwζ

◦ Φ
∣∣ dHn−1dζ ≤ Cθ . (4.126)

Thanks to subadditivity and monotonicity of g0, (4.125) implies that it suffices to prove

 

Bε

ˆ

Ω∩(Ju∩Φ−1(Jwζ
))

g0(|[u]|)
∣∣νu − νwζ

◦ Φ
∣∣ dHn−1dζ ≤ Cθ . (4.127)

Similarly, by (4.106), (4.115) and (4.124) it suffices to prove

∑
z∈Aδ

 

Bε

ˆ

Qz∩Lz∩Φ−1(Hz)

g0(|[u]|)|νu − νwζ
◦ Φ|dHn−1 dζ ≤ Cθ . (4.128)

From (4.79) we obtain that |νwζ
◦ Φ − Rzen| ≤ θ almost everywhere on Qz ∩ Φ−1(Hz). 

The claim follows then from (4.52) and integrability of g0(|[u]|).

Step 7: Choice of ζ, conclusion of the proof.
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From (4.91), (4.92), (4.125) and (4.126), it is easy to check that there is a subset B̃ ⊂ Bε, 
with |B̃|/|Bε| > 1/2, such that for all ζ ∈ B̃ (4.77) holds and we have

ˆ

Ω

|wζ − u|dx ≤ Cθ,

ˆ

Ω

|∇wζ −∇u|pdx ≤ Cθ,

ˆ

Ω∩(Ju∪Φ−1(Jwζ
))

g0(|[u] − [wζ ] ◦ Φ|) dHn−1 ≤ Cθ,

ˆ

Ω∩(Ju∪Φ−1(Jwζ
))

g0(|[u]| + |[wζ ] ◦ Φ|) |νu − νwζ
◦ Φ| dHn−1 ≤ Cθ.

If Hn−1(Ju) < ∞ then, using (4.82), we can choose B̃ so that additionally∑
z∈Aδ

Hn−1(Qz ∩ Jwζ
\Hz) ≤ Cθ,

which by the Area formula (2.9) as usual implies∑
z∈Aδ

Hn−1(Qz ∩ Φ−1(Jwζ
\Hz)) ≤ Cθ. (4.129)

Properties (ii), (iii) and (v) follow; (i) and (iv) had already been proven. Property 
(vii) is immediate.

It remains to prove (vi). We assume that Hn−1(Ju) < ∞ and start from a bound on 
Φ−1(Jwζ

) \ Ju. We split the jump set of wζ into the contribution inside each cube Qz, 
for z ∈ A∗

δ ∪Aδ, and then for each z ∈ Aδ, we split the jump set Jwζ
into the part in Hz

and the rest. We obtain

Hn−1(Ω ∩ Φ−1(Jwζ
) \ Ju) ≤

∑
z∈A∗

δ

Hn−1(Qz ∩ Φ−1(Jwζ
))

+
∑
z∈Aδ

(
Hn−1(Qz ∩ Φ−1(Hz) \ Ju) + Hn−1(Qz ∩ Φ−1(Jwζ

\Hz))
)
.

(4.130)

In the first term in the second line, we use (4.59) to drop the part on ∂Qz and then 
separate the contributions inside and outside Lz. Equation (4.94) ensures that Q′

z ∩
Φ−1(Hz) \ Lz = ∅. We obtain∑

z∈Aδ

Hn−1(Qz ∩ Φ−1(Hz) \ Ju)

≤
∑ (

Hn−1(Qz ∩ Lz \ Ju) + Hn−1(Qz ∩ Φ−1(Hz) \Q′
z)

)
≤ Cθ,

(4.131)
z∈Aδ
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where the last inequality follows from (4.53), (4.115) and the Area formula (2.9). The 
other two terms in (4.130) can be bounded by (4.129) and (4.50), and we conclude

Hn−1(Ω ∩ Φ−1(Jwζ
) \ Ju) ≤ Cθ. (4.132)

The converse inequality is proven by a different argument based on lower semiconti-
nuity. As discussed in the first lines of the proof, taking a sequence θj → 0 we obtain a 
sequence wj which has all stated properties, except that (vi) is replaced by the weaker 
assertion

lim sup
j

Hn−1(Ω ∩ Φ−1
j (Jwj

) \ Ju) = 0. (4.133)

In particular wj converges to u in L1(Ω; Rm), and since ∇wj converges to ∇u strongly 
in Lp(Ω; Rm×n), with p ∈ [1, ∞) given, there is a function f : Rm×n → [0, ∞) with 
superlinear growth at infinity such that

lim sup
j

ˆ

Ω

f(∇wj)dx + Hn−1(Ω ∩ Jwj
) < ∞ (4.134)

(if p > 1, then f(ξ) := |ξ|p itself will do; if p = 1, de la Vallée-Poussin Theorem gives the 
conclusion). By the SBV closure and lower semicontinuity theorem [5, Theorem 4.7], we 
deduce

Hn−1(Ω ∩ Ju) ≤ lim inf
j

Hn−1(Ω ∩ Jwj
) = lim inf

j
Hn−1(Ω ∩ Φ−1

j (Jwj
)), (4.135)

where the last equality can be obtained from the Area formula and (iv). By additivity 
of Hn−1,

Hn−1(Ω ∩ Ju \ Φ−1
j (Jwj

)) =Hn−1(Ω ∩ Ju) −Hn−1(Ω ∩ Φ−1
j (Jwj

))

+ Hn−1(Ω ∩ Φ−1
j (Jwj

) \ Ju).
(4.136)

Using first (4.135) and then (4.133),

lim sup
j

Hn−1(Ω ∩ Ju \ Φ−1
j (Jwj

)) ≤ lim sup
j

Hn−1(Ω ∩ Φ−1
j (Jwj

) \ Ju) = 0, (4.137)

which concludes the proof. �
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