
Computers & Graphics 115 (2023) 69–80

a

b

c

p
s
p
l
s
s
b
i
i
d
b
p
n
t
e
i

c
s

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on 3DOR 2023

Learning graph-based features for relief patterns classification on
meshmanifolds
Niccolò Guiducci a, Claudio Tortorici b, Claudio Ferrari c, Stefano Berretti a,∗
University of Florence, Italy
Technology Innovation Institute, Abu Dhabi, United Arab Emirates
University of Parma, Italy

a r t i c l e i n f o

Article history:
Received 11 April 2023
Received in revised form 27 June 2023
Accepted 3 July 2023
Available online 16 July 2023

Keywords:
Graph Neural Networks
Graph Attention Networks
Relief pattern classification
Features learning

a b s t r a c t

Relief patterns represent a surface characteristic that can be seen as the 3D counterpart of the texture
concept in 2D images. Such characteristic is well distinct from the 3D object shape but represents
a good information source to recognize the object itself. The majority of state-of-the-art techniques
for 2D images rely on convolution-based filtering so, the idea of extending such techniques to the
mesh manifold domain is quite intriguing as much as challenging. In this paper, we propose a novel
approach based on Graph Neural Networks for 3D mesh relief pattern classification. To this end, we
designed a bi-level architecture that learns on data structures computed thanks to a mesh resampling
algorithm that allows us to represent local surface patches uniformly, while keeping a consistent
points order. The local mesh structures are represented by SpiderPatches, that aim to capture local
features of the 3D mesh surface, providing a fine-grained rich representation of the relief patterns;
global structures are instead captured by MeshGraphs, whose nodes are SpiderPatches, representing
the mesh at a macroscopic level. We tested our architecture using SpiderPatches and MeshGraphs on
the original meshes of the SHREC’17 and SHREC’20 relief patterns track datasets, showing superior
performance to that reported in the literature using a comparable experimental setting.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Relief pattern classification is a challenging problem in com-
uter vision and pattern recognition, with applications in areas
uch as archaeology, geology, and cultural heritage [1–3]. Relief
atterns are an additional feature of the surface, which may be
inked to texture, and provide complementary information to the
hape. The peculiar characteristic of these patterns is that their
tyle is independent of the general shape topology. They can
e thought of as the 3D geometric equivalent of textures in 2D
mages; indeed, they are characterized by some type of regular-
ty and repeatability across the surface. Knitted fabrics, artistic
esigns, artist styles, or naturally occurring structures like tree
arks [4] rock types, or engravings [5] are a few examples. The
roblem of detecting, retrieving, and classifying relief patterns is
ow more relevant than ever due to the availability of datasets
hat include them [5,6]. After the pioneering work of Werghi
t al. [7] based on defining Local Binary Patterns on mesh man-
folds, a number of approaches have been proposed that rely on

∗ Corresponding author.
E-mail addresses: niccolo.guiducci@stud.unifi.it (N. Guiducci),

laudio.tortorici@tii.ae (C. Tortorici), claudio.ferrai2@unipr.it (C. Ferrari),
tefano.berretti@unifi.it (S. Berretti).
ttps://doi.org/10.1016/j.cag.2023.07.004
097-8493/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
ad-hoc designed descriptors [8–11]. However, machine learning
based approaches still struggle to succeed in such complex tasks.

Recently, Graph Neural Networks (GNNs) have emerged as a
promising approach for processing graph-structured data, includ-
ing 3D mesh surfaces. GNNs have the ability to capture the rela-
tionships between vertices, edges, and faces in the mesh, making
them powerful tools for learning effective geometric features.
However, analyzing and comparing different graphs demands for
a consistent underlying mesh structure across meshes (or parts
of them). Thus, an implicit ordering of the vertices is required.

In this work, we propose a novel approach based on Graph
Neural Networks for 3D mesh relief pattern classification. We
designed a bi-level architecture where local and global mesh
structures are represented as graphs, named SpiderPatch and
MeshGraph, respectively. A SpiderPatch aims to capture local
features of the 3D mesh surface, providing a fine-grained local
representation of the relief pattern; on the other hand, Mesh-
Graph is a graph whose nodes are SpiderPatches, and represent
the mesh at the macroscopic level. In order to train the above
GNNs, we also developed a mesh sampling algorithm that allows
us to represent local surface patches uniformly, while keeping a
consistent points order. In this way we can safely represent the
mesh (or its parts) as a graph such that the spatial relationships

among points is the same across instances.

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.cag.2023.07.004
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2023.07.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:niccolo.guiducci@stud.unifi.it
mailto:claudio.tortorici@tii.ae
mailto:claudio.ferrai2@unipr.it
mailto:stefano.berretti@unifi.it
https://doi.org/10.1016/j.cag.2023.07.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80
We evaluated the effectiveness of the above solution in the
task of relief pattern classification, and demonstrated the advan-
tages of using Graph Attention Networks for this task. Indeed, our
results show that the combination of GNNs and SpiderPatches
outperforms previous approaches in terms of accuracy and ro-
bustness, making it a promising solution for the classification of
3D relief patterns. The main contributions can be summarized as
follows:

• We designed a sampling algorithm that induces a local
consistent ordering of points based on the mesh surface,
allowing us to represent local surface patches as graphs;

• We propose and explore Graph Neural Networks for the
task of 3D relief pattern classification with a novel bi-level
learning architecture, where two GNNs are hierarchically
stacked and trained to capture local surface properties and
their global relationships. A comprehensive evaluation of
the proposed solution is reported, also in comparison with
state-of-the-art approaches.

The rest of the paper is organized as follows: In Section 2, we
summarized the related work in the literature of relief pattern
classification; The proposed approach is concisely introduced in
Section 3, and described in detail in Sections 4, and 5; experi-
mental results are presented in Section 6; finally, conclusions are
sketched in Section 7.

2. Related work

Numerous techniques for describing texture patterns based on
repeatability, unpredictability, and orientation have been devel-
oped for the 2D image domain [12,13]. he most popular meth-
ods for extracting this information were local descriptors from
convolution-based filtering operations like Gabor or Local Binary
Pattern [14]. In the 2D realm, texture analysis is an established
field; however, in the 3D domain, geometric pattern analysis
presents numerous challenges, like the lack of a unique, pre-
dictable and regular data representation or the local–global na-
ture of relief patterns characterization, as reported in the work of
Biasotti et al. in [15]. In the following, we summarize works in
the literature that are more related to our approach.

A 3D mesh convolution, designed as a direct extension of
the 2D operation, was introduced in [9]. Similarly, the widely
used 2D approaches, HOG [12] and LBP, were extended to the
mesh domain as MeshHOG [16] and MeshLBP [17]. A mesh local
binary pattern (meshLBP), which was inspired by LBP in 2D, was
presented in [8,17]. This technique developed on the Ordered
Ring Facets (ORF) structure on the mesh to have a proper ordered
mesh support region for LBP computation, thus creating a regular
grid-like structure resembling that of 2D images. This method
computed many rings at each facet depending on the demand,
and through subsampling, twelve facets were picked at each ring.
Additionally, employing geometric attributes discovered at facets,
LBP computation used the difference between the central and
neighboring facets. This strategy showed some limitation in the
case adjacent facets were missing from boundary facets. A couple
more methods make use of images generated from 3D meshes,
and then locate the texture pattern using image processing meth-
ods like morphological operations. Despite being straightforward
and simple to use, these strategies outperformed many others
in the relief patterns track of SHREC’17 [15]. Biasotti et al. [6]
introduced a covariance descriptor utilizing 2D images created
from a 3D geometry. To determine how similar texture patterns
are, these covariance descriptors were generated for patches.
Similar to this, Giachetti et al. [18] created a 2D raster image of
3D meshes before using Improved Fisher Vector (IFV) to the 2D

image to obtain feature vectors. In order to create LBP images,

70
Tatsuma and Aono [6] first extracted depth images from 3D
meshes. Additionally, the LBP image was used to compute Kaze
characteristics. The final feature was created by concatenating a
few statistical features that were computed on the LBP image.
An EdgeLBP on the mesh surface that uses concentric spheres
with various radii at each facet, similar to MeshLBP was proposed
in [11]. Twelve evenly spaced points were produced for each
intersecting contour. Additionally, the local binary pattern was
computed using these locations.

A few mesh convolution works are directly applicable to 3D
meshes. Hanocka et al. [19] introduced a technique that per-
formed all common operations, such as convolution and pooling,
on 3D meshes, much like they would be done on 2D images.
This method constructed a 5D relative feature vector at each
facet edge; the convolution was then operated on the neighboring
edges using symmetric functions to avoid the order ambiguity
between them, although the features derived with this solution
used tessellation modification rather than geometric surface at-
tributes. The method described in [9] incorporated two mesh
convolutions: the first one used a 2D grid computed at each
facet; and the second one performed a 2D convolution on the
generated grid. A different convolution proposed in this paper
employed polar coordinates and ORF, thus resulting in a mesh
support which is comparable to the regular grids and Cartesian
coordinates used in 2D. A drawback of this solution is related to
the computational complexity in calculating geodesic distances
on the surface, with a linear increment with the number of
vertices. A description was developed by Sun et al. [6] using the
inner dihedral angle of mesh edges. To discover commonalities
across texture patches, a histogram was built using the collected
angles [6].

More recently, some approaches proposed to directly work on
the mesh using more versatile data structures such as graphs.
For example, in [20], the authors suggested a graph learning-
based method for categorizing the texture of each facet in a
3D model given the adaptability of graph representations. A 3D
mesh was first converted into a graph structure, where each
node represents an aspect of the original mesh. The nearby facets
within a radius and their geometric characteristics were used to
compute a feature vector for each facet. Then, a graph neural
network is fed with the graph structure to categorize each node
as belonging to the textured or non-textured class. In SHREC’20
competition [5] is reported a hybrid method, the Deep Patch
Metric Learning(DPML), in which the mesh is first converted to
a graph that is subsequently used to sample the surface of the
mesh obtaining patches; these patches are then processed into
images and used in combination with standard CNNs to classify
relief patterns.

In summary, the current state-of-the-art solutions for relief
patterns classification are still dominated by approaches based
on techniques first developed for 2D images. Though effective
results have been reported, they miss most of the additional
information intrinsic to the mesh domain. Using a graph-based
representation seems a natural way to take into account the
adjacency information brought by the mesh support, while also
opening the way to the use of learning methods that take graphs
as an input. These are the motivating and funding ideas of our
solution, as described in the rest of the paper.

3. Proposed approach

In the following, we describe a new relief pattern classification
approach based on the definition of a hierarchical, bi-level Graph
Neural Network equipped with attention layers. The overall idea
is that a mesh surface can be represented as a graph, where each
node encodes local geometric properties of a neighborhood of

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80

f
g
M
v
l
w
d
t
c
i

t
t
d
a
R
m
m
a
a
a
c

t
b
p
o
(
t
s

Fig. 1. The bi-level procedure of our proposed solution: the first level Graph Attention Network (SpiderPatch Embedder) analyzes all the SpiderPatches, independently
of a MeshGraph, producing embeddings; these embeddings are then used as node features in the second level Graph Attention Network (MeshGraph Embedder) that
analyzes the MeshGraph producing a single embedding; finally, this is used to classify the MeshGraph with a final layer.
Fig. 2. Construction of a MeshGraph: first, we generate ConcentricRings (left); then, we build the SpiderPatch (middle); finally, by joining various SpiderPatches, the
MeshGraph is constructed (right).
points (i.e., a local patch). However, given that relief patterns
might be of different size and granularity, we define each local
patch to be also a graph, where the size of the neighborhood
can be defined dynamically. We will refer to the local graph as
SpiderPatch (SP) and to the global one as MeshGraph (MG). The
ormer can be considered as a local mesh descriptor as it gathers
eometrical features of a local neighborhood of points, while
G is instead a global descriptor, which is built by connecting
arious SPs into a larger graph. To process these structures and
earn relevant geometric features to classify the relief patterns,
e designed two Graph Attention Networks (GATs), named Spi-
erPath Embedder and MeshGraph Embedder. These are intended
o embed the graphs into latent features capturing discriminative
haracteristics to allow classifying the patterns. This framework
s summarized in Fig. 1.

In order to build consistent graphs, we need a technique
o sample a mesh surface as regularly as possible, so that the
opology of the graphs can be defined uniquely. To this aim, we
rew inspiration from the works of Tortorici et al. [9,21], in which
re-sampling process named Circle Surface Intersection Ordered
esampling (CSIOR) was used to extract local patterns on the
esh. More specifically, CSIOR is an algorithm for resampling a
esh to obtain a regular tessellation, while preserving the shape
nd local geometric properties of the mesh such as relief patterns
nd corrugations. This algorithm sorts the facets of the mesh in
polar fashion with respect to a seed point, thus maintaining a
onsistent ordering of points.
From the CSIOR algorithm, we borrow the Circle Surface In-

ersection (CSI) operation that can re-sample the mesh regularly
y applying simple algebraic operations, thus creating ordered
olygonal patterns on the mesh surface. In particular, to build
ur SpiderPatches, we developed a variation of CSI, named CSIRS
Circle Surface Intersection Regular Sampler), that locally samples
he surface in a regular manner independently by the mesh tes-
ellation through the use of CSI, thus obtaining a patch of points,
71
denoted as ConcentricRings, which are ordered in a polar fashion.
Based on this computation, a SpiderPatch graph is a data structure
created to compensate for the lack of topology of ConcentricRings,
and it is built by connecting vertices of the ConcentricRings in
the shape of a spider’s web. This specific choice derives from the
similarity between the latter and the polygonal visual pattern that
is created in the ConcentricRings (see Fig. 2 (Middle)). This new
graph-based local operator has therefore opened the way to the
possibility of using non-standard convolutions to process local
surface patches.

Finally, a MeshGraph is built by connecting randomly sampled
SpiderPatches, which represent the nodes, and therefore allows
for connecting the various samplings of the mesh surface. In
this way, while the SpiderPatches capture local surface features,
their connection provides pattern clues to distinguish the global
relief pattern. Fig. 2 summarizes the process of constructing a
MeshGraph as composed of the generation of ConcentricRings
and SpiderPatches.

4. Graph structures construction

In this section, we illustrate the necessary steps to build the
SpiderPatch and MeshGraph structures that will be subsequently
used to train the GNNs. The construction involves two macro
steps: (i) re-sampling the mesh surface so to obtain a consistent
and regular parameterization. To this aim, we defined a proce-
dure, named Circle-Surface Intersection Regular Sampler (CSIRS).
(ii) building the two above structures given the re-parameterized
surface.

4.1. Surface resampling with CSIRS

The proposed CSIRS grounds on some ideas and properties of
the Circle-Surface Intersection (CSI) algorithm defined by Tortorici
et al. [21]. The goal of the CSI algorithm is to calculate a new mesh

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80

f
a
t
p
u
a
t
f
p
p
i
a
i
d
a
p
p

o
g
f
s
p
r
p
T
p
a
o
i
i
t
r
a
n
t

d
c
c
s
s
g

4

p
I
a

Fig. 3. LRF correction procedure: (Left) Example of an erroneous ConcentricRings
generation; (Middle) LRF axes; (Right) First CSI iteration scheme and future order
of ConcentricRings (Spiral Ordering).

vertex that lies on the original surface but is at a precise (non-
geodesic) distance from a fixed point. The key idea is to compute
the intersection between the mesh surface M with a circle C of
ixed radius centered at some reference point p, orthogonal to M
nd aligned in the direction we want to determine the new ver-
ex. Using the CSI properties and starting from an arbitrary mesh
oint, CSIRS generates a regular sequence of points that can be
sed as a regular sampling pattern, the ConcentricRings. Thanks to
n iterative use of CSI, a ‘‘polygon’’ pattern formed by equilateral
riangles can be reproduced on the mesh surface. Initially, the
irst polygon is generated from the seed point, i.e., the starting
oint of the procedure. Then, by expanding the vertices of this
olygon on the mesh, ConcentricRings are generated. The result
s a set of points, subdivided in concentric rings ordered following
polar fashion, that can be used as a local polar coordinate sort-

ng operator. The characteristics of the resulting ConcentricRings
epend on the following CSIRS parameters: the radius, i.e., the
pproximate geodesic distance between the seed point and a
oint in the last ring, the number of rings and the number of points
er ring.
In order to induce a robust and consistent ordering of points

n ConcentricRings when sampling on similar surfaces, the al-
orithm has been equipped with a Local Reference Frame (LRF),
rom which the directions of generation and ordering of the
ampling points are chosen. More specifically, using as support
oints all the vertices of the mesh enclosed in a sphere with
adius equal to the ConcentricRings and centered in the seed
oint, we calculate the eigenvectors of the Covariance matrix.
he eigenvectors (x, y, z) are used as LRF axes, where x and z are
arallel to the mesh surface, while y is perpendicular (conceptu-
lly similar to the surface normal). During the first CSI iteration
f the procedure, the vector x is used as the normal of the first
ntersection circle, y is used as the rotation axis of the subsequent
ntersection circles and, finally, z is used to select the first point of
he ordering. The direction of the ordering is instead given by the
otation around the y axis of the LRF. Therefore, being a rotation
lways positive and applied on a vector parallel to the surface
ormal, it maintains consistency on similar surfaces. Fig. 3 depicts
he resulting axes.

In its basic implementation, this technique might fail in some
ifficult cases: for example, incorrect ordering of the LRF axes
ould arise if using too many (or too few) support points. To over-
ome these and possibly other issues, we used the actual local
urface normals to align the y axis of the LRF with such normals,
o tightly constraining the LRF. Fig. 4 shows some concentric rings
enerated in different regions of a mesh.

.2. SpiderPatch

SpiderPatch is a data structure that was developed to com-
ensate for the absence of a topology within ConcentricRings.
t is therefore utilized for local mesh sampling, but it also has
well-defined topology, so can also be regarded as a graph
72
Fig. 4. Some examples of ConcentricRings generated in different regions of a
mesh. It appears as ConcentricRings is capable to manage also ‘‘hard’’ spots if
properly set.

whose nodes are connected through a spider web pattern. Every
SpiderPatch has a seed point from which the generation of the
graph starts: first, CSIRS is applied from the seed point, then the
sample points obtained are connected following a spider web
pattern. This algorithm generates the actual SpiderPatch giving
to its nodes and edges the spider web pattern and some peculiar
features like mesh spatial information or weights. Conceptually,
the algorithm exploits the ordering of ConcentricRings to gener-
ate the SpiderPatch edges by connecting adjacent points of the
same ring and the points of consecutive rings that are in the same
radial direction with respect to the seed point.

A SpiderPatch is characterized primarily by three parameters:
the radius, representing the maximum pseudo-geodesic distance
between the seed point and a node belonging to the farthest
ring from the seed point, the number of rings, and the number
of nodes per ring. To clarify, the radius is used in the CSI part
of the CSIRS algorithm to define the radius of the intersecting
circumferences as radius/number of rings.

SpiderPatch nodes. The node of a graph is an abstract data struc-
ture that can virtually contain an infinite amount of information;
SpiderPatch nodes inherit this trait. In addition, the nodes rep-
resent actual sampling points on the mesh that are generated
thanks to the calculation of a ConcentricRings by using the CSIRS
algorithm. During the SpiderPatch generation, thanks to the spi-
der web pattern, some peculiar features are given to the nodes
following a ‘‘weight decay’’ approach: every node is weighted
based on its position in the spider web pattern relatively to the
seed point (i.e., the center of the web) calculating the mean of
nodes edges weights, see Section 4.2.

The following features are also stored for each node: the
relative coordinates inside the web (derived from the coordinates
inside the corresponding ConcentricRing); the spatial coordinates
(3D), which represent the actual sampling point on the mesh;
and, in addition, the Euclidean distance between node and seed
point is calculated.

SpiderPatch nodes also contain Gaussian and mean curvatures,
curvedness, max curvature (K2), and local depth (LD).

The fact that ConcentricRings possesses an intrinsic ordering
of the generated points, and the way the SpiderPatch nodes are
connected following the spider web pattern help to induce a

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80

s
t
n
b
p
n

S
s
l
T
o
r
t
w
r
o
t
b
b
C
w
w

h

i
a
w
i
a
w

α

pecific ordering of the SpiderPatch nodes: performing a visit of
he SpiderPatch following the order of the node IDs (simply a
umber given in order of insertion of the nodes) a spiral path will
e obtained, which starts from the center of the web (the seed
oint) and extends outwards. It is therefore possible to state that
ode IDs inherently have a ‘‘spiral’’ ordering, see Fig. 3 (Right).

piderPatch edges. The choice of using a connection pattern in the
hape of a spider’s web derives from the similarity between the
atter and the visual pattern that is created in ConcentricRings.
he edges that are generated can store an arbitrary number
f features but, at the current stage, they only have a weight
epresenting the type of connection, i.e., the edges that connect
wo nodes belonging to the same ring are considered different
ith respect to the edges that connect two nodes on different
ings. More specifically: basic values are chosen for the two types
f connection, 1 for an edge that connects two nodes belonging
o different rings, and 0.85 for the edges that connect two nodes
elonging to the same ring (subsequently this value is multiplied
y a decay factor, which is set equal to 0.10 in the experiments).
oncisely, the edge weight is computed as Eij = BW · (1 − WD)r ,
here BW is the base weight defined on the edge type, WD is the
eight decay, and r is the concentric ring of node i.

4.3. MeshGraph

A SpiderPatch can be regarded as a local descriptor that cap-
tures the local characteristics of relief patterns. For complex pat-
terns classification or shape recognition tasks, SpiderPatches can
be aggregated in another data structure that we called Mesh-
Graph. Our idea here was to create a data structure that allows
the exchange of information between different SpiderPatch sam-
ples on the mesh surface, while keeping intact the intrinsic spatial
information of these particular graphs, thus potentially adding
useful macro-information. MeshGraph is therefore a graph whose
nodes are other graphs, the SpiderPatches, and edges are given
a weight proportional to the Euclidean distance between the
SpiderPatches seed points.

A MeshGraph can be characterized by two parameters: the
number of SpiderPatches that compose it, and its degree of con-
nectivity. It is possible to generate MeshGraphs that are com-
pletely connected or that have N-degree connectivity: simply,
each SpiderPatch is connected to the closest N SpiderPatches
in terms of Euclidean distance. In this way, it is possible to
introduce information concerning the spatial proximity between
SpiderPatches, which will be invariant on scale.

5. Network architecture

To process the SpiderPatch and MeshGraph structures, we
developed a specific, bi-level architecture composed of two net-
works: the first, named SpiderPatchEmbedder, learns to embed
the SpiderPatch graphs into a latent representation. The second,
named MeshGraphEmbedder, embeds the MeshGraphs into a la-
tent feature as well. The latter will be used to train the relief
pattern classifier. Note that the MeshGraphs are built as described
in Section 4.3, with the only difference that its nodes are the
embedded SpiderPatches as resulting from the first networks.
Both the modules have a common Graph Attention Network
(GAT) [22] structure, depicted in Fig. 5. Differently from standard
GCNs (Graph Convolutional Network) that use a simple average
aggregation scheme, they aggregate the information from the
one-hop neighborhood using an attention mechanism, weigh-
ing neighbor features with feature dependent and structure-free
normalization,

The common structure of the basic building block of our
architecture is composed of four main parts: the convolutional
73
Fig. 5. Structure of the basic building block (blueish rectangles) and their
interconnection. Each block is equipped with a convolutional GAT, united
common normalization, average readout and jumping knowledge layers.

layer, the normalization layer, the readout layer, and the jumping
knowledge layer. These elements are fully modular and are in-
terspersed and repeated to compose the complete network. The
two modules (SpiderPatchEmbedder and MeshGraphEmbedder)
differentiate only in terms of number of the number of such block
that are concatenated. Finally, note that this architecture is not
specific for processing 3D meshes.

Convolutional layer. – It is implemented as a Multi-Head GAT
[22]. In a standard Graph Convolution Network, the node embed-
dings h(l+1)

i in the layer l + 1 are calculated as:

(l+1)
i = σ

(∑
j∈N(i)

1
cij

W (l)h(l)
j

)
, (1)

where N(i) is the set of one-hop neighbors of i, cij =
√

|N(i)|
s a normalization constant based on the graph topology, σ is
n activation function (often a ReLu), and W (l) is the shared
eight matrix for node-wise transformation. The main difference

n GAT layers is the introduction of an attention mechanism as
substitute for the statically normalized convolution. Practically,
e substitute the term 1

cij
with weights calculated as follows:

e(l)ij = LeakyReLu(−→a (l)T (W (l)h(l)
i ∥ W (l)h(l)

j)), (2)

(l)
ij =

exp(e(l)ij)∑
k∈N(i) exp(e

(l)
ik)

. (3)

Where −→a (l) is a learnable vector, ∥ denotes concatenation, e(l)ij
represents the pair-wise not normalized attention score between
two neighbors. We can finally substitute the term c in (1) with
ij

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80

t

R

w
n

s
n
a
i
f

5

P
p
b
p
i
w
m

5

l
r
n
i
i

y
a
t
s
E
(
t
c
A
c
T
a
o

5

b
g
n
d
c
t
C

Fig. 6. United Common Normalization: different normalization coefficients are
computed and jointly applied to the data as a weighted combination.

aij from (3) obtaining:

h(l+1)
i = σ

(∑
i∈N(i)

aijW (l)h(l)
j

)
. (4)

The expression in (4) represents a single-head attention layer;
to obtain a multi-head attention layer, we use more independent
single-head layers, each with its own parameters, and we merge
their outputs. The merging operation can be performed in two
ways (with K number of heads):

concatenation : h(l+1)
i = ||

K
k=1σ

(∑
i∈N(i)

akijW
(l)kh(l)

j

)
, (5)

average : h(l+1)
i = σ

(
1
K

K∑
k=1

∑
j∈N(i)

akijW
(l)kh(l)

j

)
, (6)

where the concatenation is often used for intermediary layers,
and the average for the final one. It should be noted that each
multi-head GAT layer is also equipped with a residual connection.

Normalization layer. – Given the atypical nature of the data struc-
tures used, we decided to use a similar approach to that of [23],
where a mixture of normalization methods is defined. Different
normalization methods are used in a single module, and weighted
by some learned coefficients. The main techniques incorporated
in the mixture are node normalization, adjacent normalization,
graph normalization and batch normalization (see Fig. 6).

Readout layer. – The term ‘‘readout’’ refers to the process of
aggregating information across sets of nodes. The goal of the
readout function is to summarize the information learned by
the GCN into a fixed-length vector or tensor; the input to the
readout function is typically the output of the final layer of the
GCN, which includes node-level features for each node in the
graph. There exist different readout functions. Here, we chose the
average readout function: given a graph G = (V , E), we can define
he average node feature readout function as:

G =
1

|V |

∑
v∈V

hv, (7)

where hv is the feature representation encoded in a node v.

Jumping knowledge. – The architecture is equipped with the pro-
cess of Jumping Knowledge [24] that determines how the basic
block output is treated. In GCNs, jumping knowledge involves
connecting the output of each layer to the output of the final
one, in addition to connections between adjacent layers. This
creates a direct path for information to flow from early to later
layers, allowing the network to use this information for making
predictions. More specifically, let us consider a GCN with L layers,
 t

74
where the output of layer l is denoted as h(l). In a standard GCN,
the output of the final layer is used as input to a classification
layer to make predictions. In a jumping knowledge GCN instead,
the output of each layer is also connected to the final layer,
resulting in the following prediction function:

y = classify(AG(h(1), h(2), . . . , h(L))), (8)

here AG is a generic aggregation function like mean or concate-
ation, but can be arbitrarily complex.
In our architecture, the output of each basic block, which is of

ize K × C (l), being K the number of attention-heads, and C the
umber of channels in a convolution layer l, is both concatenated
nd averaged (see (5) and (6)). The concatenated output is used as
nput in the subsequent layer while the averaged output is used
or jumping knowledge, i.e., it goes to the final layer.

.1. SpiderPatch embedder

The SpiderPatchEmbedder is designed to embed the Spider-
atch graphs, i.e., learning a feature representation of a local
atch of the mesh surface. The SpiderPatchEmbedder is composed
y four concatenated basic blocks of Fig. 5, with the following
arameters: 2 Heads; Average Readout; United Common Normal-
zation; Jumping Concatenation; LeakyReLu Activation Function
ith slope set equal to 0.1. It is also equipped with a NodeWeigher
odule that weights the SpiderPatch nodes during readout.

.1.1. NodeWeigher
The NodeWeigher module uses the attention mechanism to

earn the best weight to apply to a specific node during the
eadout phase, relying both on the topological information of the
ode p ∈ RP (i.e., its relative position in the SpiderPatch), and on
ts features f ∈ RF . The NodeWeigher architecture is summarized
n Fig. 7.

The module is inspired by the Universal Readout function [25],
et the key difference is that the weights assigned to the nodes
re not only based on current node features, but also on the
opological information. As a result, the module has been de-
igned with two fully connected layers. The first layer, denoted as
xpansion layer, expands the topological information of the nodes
we remind that SpiderPatch nodes as defined in Section 4.2 have
heir own weight based on the distance from the seed point and
oordinates within the SpiderPatch); the second layer, denoted as
ggregation layer, incorporates information relating to the node’s
urrent state, i.e., the features on which to perform the readout.
he weights to use in the readout phase are finally calculated by
n attention mechanism, using a Softmax activation on the output
f the aforementioned fully connected layer.

.2. MeshGraph embedder

The MeshGraph Embedder is again composed by stacking the
asic blocks depicted in Fig. 5. This module though analyses
raphs without specific topology (MeshGraph); therefore, it does
ot require any special adaptation as in the case of the Spi-
erPatch Embedder. The MeshGraph Embedder is built by con-
atenating three basic blocks. The parameters are the same as
he SpiderPatchEmbedder, i.e., 2 Heads; Average Readout; United
ommon Normalization; Jumping Concatenation; LeakyReLu Ac-

ivation Function with slope set equal to 0.2.

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80
Fig. 7. NodeWeigher architecture. Every node of a SpiderPatch is analyzed: only
the topological information p is used in the first FC layer.

5.3. Loss functions

To train the proposed network, we defined the CETripletMG
loss that combines the classic Cross Entropy loss and a Triplet loss.
The CETriplet loss is defined as follows:

CETripletMG(y, ŷ,mgembed) =α · CrossEntropy(y, ŷ)+
β · Triplet(y,mgembed,m),

(9)

where y are the labels, ŷ are the predicted values, mgembed are the
MeshGraph embeddings computed by the MeshGraph Embedder,
and α = β = 0.5. Triplet(y,mgembed,m) is a triplet loss [26]
adapted to MeshGraphs that uses the online triplet mining strat-
egy to calculate the hardest-negative and hardest-positive exam-
ples in the batch of normalized embedded MeshGraphs passed to
the function. The margin m is set to 1.

6. Experimental results

In this section, we report relief pattern classification results
on the SHREC’17 and SHREC’20 competition datasets. An abla-
tion study was also conducted on SHREC’17 to find the best
parameters, and investigate how they impact on the results.

6.1. SHREC’17

In this section, we first present the data used in the ex-
periments on the SHREC’17 dataset and their pre-processing,
respectively, in Sections 6.1.1 and 6.1.2. Then, we report results
for our method also in comparison with state-of-the-art solutions
in Section 6.1.3. Additional analysis for different configurations of
our methods are given in Section 6.2.
75
Fig. 8. Example meshes from the 15 classes of the SHREC’17 dataset.

Table 1
Characteristics of the SpiderPatch datasets.
SpiderPatch datasets

Name Radius Rings Points Norm & Align

SHREC17R0.1RI4P6 0.1 4 6 ✓
SHREC17R0.1RI6P8 0.1 6 8 ✓
SHREC17R10RI4P6 10 4 6 ✗

SHREC17R10RI6P8 10 6 8 ✗

SHREC20R0.1RI6P8 10 6 8 ✗

SHREC20R0.15RI6P8 10 6 8 ✗

6.1.1. Raw data
The raw mesh data used in our experimentation are those

included in the SHREC’17 track on Retrieval of Surfaces with sim-
ilar Relief Patterns [27]. The (full) dataset consists of 720 mesh
surfaces, grouped in 15 classes of 48 elements each (see Fig. 8
for some examples). Each class represents a single pattern and
was created by acquiring it in different poses, and applying three
processing operations to each scan (two adaptive simplifications
to 10K and 5K vertices and one re-sampling operation to 15K
vertices). Transformations were designed to alter the connectivity
of the original meshes. Since data were acquired with a depth
sensor, small artifacts and small topological handles are also
present. The dataset constituted by the 180 unique original raw
scans (15 patterns, each with 12 samples, all different from each
other) is referred to as original dataset.

In the literature, the full dataset of 720 meshes was used in a
relief pattern retrieval task, with a reported accuracy that reached
100% [9] or very high scores [11,18]. The original dataset proved
to be more challenging, as evidenced by the results reported in
the literature (see Table 3), so we opted to utilize the original
dataset for our experiments.

6.1.2. Raw data sampling with SpiderPatches and MeshGraphs
In order to use the SHREC data to train our model, we need

to process them so to build the SpiderPatch and MeshGraph
data structures. To this end, we derived different SpiderPatch
datasets and MeshGraphs dataset from the data of the SHREC’17
original dataset. Different datasets are generated by varying the
parameters of the SpiderPatches, e.g., radius, number of rings, and
MeshGraphs, e.g., connectivity degree.

SpiderPatch dataset – It is a collection of SpiderPatches gen-
erated by applying the CSIRS procedure to the SHREC data. The
dataset is constituted by 1,000 SpiderPatches, generated for each
scan in SHREC’17 using a uniform sampling. The dataset con-
tains only SpiderPatches that have at least the first two rings
completed, i.e., rings in which all the sampling points have been

generated and which are therefore closed, In this way, the relief

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80

a
w
n
d
S
t
t

6

p
n
p
K
(
h
8
p
t

s
r
t
g
h
c
t
o

r
t
s
s
l
f
t
m
p
i
t
o
S

a
m
G
r
t
i
v

e
a
o
f
d
i
s

w
d
a
d
n
M
h
o

6

t
s
i
i

Table 2
Characteristics of the MeshGraph datasets. With the parameter Norm&Align we
refer to a MeshGraph dataset generated starting from a set of meshes that have
been normalized and aligned (i.e., meshes have unitary cube bounding boxes
and are aligned along their major extension dimension.
SHREC’17 MeshGraph datasets

Name SpiderPatch (SP) params MeshGraph (MG) params

Radius Rings Pts Norm&Align MG Num. #SP Connec.

A 0.1 4 6 ✓ 25 50 5
B 0.1 6 8 ✓ 25 50 5
C 10 4 6 ✗ 25 50 5
D 10 6 8 ✗ 25 50 10

SHREC’20 MeshGraph datasets

E 0.1 6 8 ✗ 25 50 10
F 0.15 6 8 ✗ 25 50 10

Table 3
Comparison of our method with the results of SHREC’17 competition [27],
EdgeLBP [11], Mesh-LBP and Mesh-Convolution [9], and the approaches of
[18]. Performance refers to the original dataset using Nearest Neighbor (NN)
classification for No deep learning methods.
NO Deep Learning

Retrieval Method NN

[27] CMC-2 63.3%
KLBO-FV-IWKS 52.2%
KLBO-SV-IWKS 48.9%

[11] EdgeLBP - run1 92.2%
EdgeLBP - run2 91.1%

[18] P/mC/SIFT/FV 82.8%
T/mC/SIFT/FV 87.2%
MeshLDSift+FV 77.8%

[9] Differential r = 4 87.22%
Edge Detector (b) 90.00%
Sobel 93.33%
Haar H2 90.00%
Sharpen H2 91.11%

DEEP LEARNING

Classification Method Acc.

No Voting Spider-GAT 95.0%
Voting Spider-GAT 97.2%

pattern is sampled by possibly different types of SpiderPatches.
A SpiderPatch dataset can be described by the characteristics
of its SpiderPatches: in particular, we generated 4 datasets, 2
using normalized and aligned SHREC’17 meshes, and 2 where
the original SHREC’17 data were left unchanged, as reported in
Table 1.

MeshGraphs dataset – It is a collection of MeshGraphs gener-
ted from the SpiderPatch datasets. For every mesh in SHREC’17,
e generated a certain number of MeshGraphs using homoge-
eous SpiderPatches from a SpiderPatch dataset. A MeshGraph
ataset is mainly characterized by: number of MeshGraph per
HREC’17 mesh; number of SpiderPatches per MG (MG nodes);
ype of SpiderPatch; MG connectivity. The main characteristics of
he datasets are summarized in Table 2.

.1.3. Relief pattern classification
As previously mentioned, the results on the full dataset have

erfect or extremely high accuracy in the literature; however, we
otice that all the SHREC’17 methods drastically decreased their
erformance when applied to the original dataset, except for the
LBOFV-IWKS method that achieved a maximum score of 63.3%
CMC-2) [27]. The feature mapping method of [18], on the other
and, performed better than the SHREC’17 participants, earning
7.2% on its Tutte/meanC/SIFT/FV configuration. This strategy
erformed worse than the EdgeLBP of Thompson et al. [11] and
he Mesh-LBP+Mesh-Convolution approach of Tortorici et al. [9].
76
The mapping method used in such a solution, which maps to
the 2D domain and thus loses some information on the mesh
manifold, may be one reason for this. Instead, the EdgeLBP sug-
gested by the competition’s organizers demonstrated its potential
by obtaining 92.2% and 91.1% in its two runs. The convolution-
based method proposed by Tortorici et al. [9] also reported a per-
formance decline on the original dataset, which is consistent with
the rest of the literature. However, in their work discrete filters
showed more resilience, and they deemed Sobel to be the best
feature descriptor because it outperformed the state-of-the-art
for this dataset, achieving 93.33% in classification accuracy.

The Mesh-LBP was computed with radius r = 10. This is
omewhat in accordance with our method that scored its best
esults when a SpiderPatch radius of 10 was used. In contrast,
he MeshLBP approach compared two meshes by collecting a
lobal histogram on all the mesh facets, then comparing these
istograms with the Bhattacharyya distance. Differently, in our
ase, the sample points on the mesh that were needed to build
he MeshGraph are just a small fraction compared to the number
f facet of the mesh.
In Table 3, we summarize the techniques described above for

elief pattern classification on the SHREC’17 original dataset. The
able is divided into two main parts: the first part summarizes the
tate-of-the-art methods that do not use deep learning, while the
econd part reports the results of our method that applies deep
earning on graphs. The first part of the table is also divided into
our groups, thus evidencing some methods that participated in
he SHREC’17 contest [27], the two method variants of [11], the
ethod variants of [18], and some discrete convolution filters
roposed in [9]. Our network was trained on the MeshGraphs
ncluded in the ‘‘D’’ dataset of Table 2. This dataset was chosen
hanks to the execution of small-scale tests and seems to be the
ne containing the type of MeshGraphs that best characterize the
HREC17’s relief patterns.
To evaluate the performance of the new feature descriptors

nd network architecture, we followed two approaches: first, we
easured the ability of the model to classify individual Mesh-
raphs, i.e., considering a MeshGraph as a unique and separate
epresentation of a relief pattern; in a second test, we considered
he MeshGraphs generated from a mesh as samples of the mesh
tself, while the mesh classification was obtained by a majority
oting of the individual MeshGraph predictions.
We train the network for a total of 60 epochs, adopting an

arly-stopping paradigm. In order to better generalize the results,
nd compare with those present in the literature, and with those
btained in the SHREC17 competition in particular, we used a 12-
old cross-validation (i.e., for each class in the dataset there are 12
istinct samples). In this way, we obtained 12 trained networks
n which, for each class, 11 samples were used as training and 1
ample was used as validation.
For the network training, we used the AdamW optimizer,

hich is a variant of the classic Adam optimizer that uses a
ecoupling weight decay technique in the gradient update, with
n initial learning rate equal to 0.01. The batch size was very
ependent on the implementation of the used batching tech-
iques: a batch size of 128 was chosen for the batching of the
eshGraphs, and 512 for the batching of the SpiderPatches. A
igh value for MeshGraphs batching resulted necessary for an
ptimal behavior of the proposed CETriplet loss.

.2. Discussion

We note that the results reported in Table 3 for the SHREC17
rack and the other retrieval methods were obtained with the
pecific protocol defined in the competition. The different setup,
.e., classification instead of retrieval, prevented us from adopt-
ng exactly the same protocol as in SHREC17. The latter indeed

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80
Fig. 9. Confusion matrices for the experiments conducted on SHREC’17 using a 12-fold cross validation (11 meshes were used for training, 1 mesh for validation,
repeated 12 times so that each mesh is used once for test). (Left) Confusion matrix with the number of correctly classified MeshGraphs for each class (for each
validation mesh, 25 MeshGraphs were generated; thus, for the entire cross validation process, there were 25 · 12 = 300 MeshGraphs to be classified for each class).
(Middle) Mean accuracy confusion matrix. (Right) Voting confusion matrix obtained by implementing a voting approach on MeshGraphs: a mesh is correctly classified
if at least half of the MeshGraphs representing it are correctly classified.
does not come with a predefined train/test split, necessary for
training the classifier. Methods performance is evaluated using
the Nearest-Neighbor criterion for the ‘‘Retrieval’’ task, i.e., given
a mesh (Query) of class find, among all the other meshes in the
dataset (Gallery), the most similar one based on some similarity
metric. We argue this is the most comparable setting with re-
spect to a classification one where, for a given mesh, the model
directly outputs its predicted class. Clearly, this requires dividing
the dataset in two sets, one to train the model, and the other
for testing. In order to collect results for all the samples, we
performed a cross-validation as per the standard procedure. So,
we performed a 12-fold cross-validation, and gathered results
obtained for all the folds, so to cover the entire dataset.

The performance of the MeshGraph classification is reported in
Table 3. For this particular task, we reached an accuracy of 95.0%
outperforming existing methods. In Fig. 9, we reported the cor-
responding confusion matrices, reaching a perfect classification
score for class 1. Classes that obtained a lower score, like class
3 or 12 (above 85%) are similar, and their relief patterns would
need different MeshGraph configurations to be better classified.
Further, these two classes include quite irregular meshes, where
the relief pattern is barely visible.

As discussed above, to balance the effect that the random
generation of the MeshGraphs might have on the relief pattern
classification results based on the individual MeshGraphs, and
therefore not create a bias on the prediction performance mea-
sures, we implemented a voting mechanism. Using this voting
approach, a mesh is assigned to a certain relief pattern class
by applying a majority vote on the classification of the Mesh-
Graphs generated by the mesh itself. With this configuration,
the accuracy increased to 97.2%, and the classes with a perfect
score increased to 10 out of 15. This is shown in Fig. 9, where
the 5 classes that do not have a perfect score still show an
accuracy of 91.7%, meaning that only one out of the 12 meshes
was misclassified during the cross validation.

6.3. Ablation study

For completeness, we report in Table 4 an ablation study to
evaluate how the hyperparameters related to the generation of
the MeshGraph datasets influenced the performance. The pa-
rameters of the network architecture are instead fixed. Due to

computational limitations, a cross-validation was not used in this

77
Table 4
Test on different SHREC’17 MeshGraph datasets.
SpiderP. params MeshGraph params Statistics

Radius Rings Points N&A # MG # SP Connec. Acc. Loss

0.1 4 6 ✓ 25 50 5 91.3% 0.52
0.1 6 8 ✓ 25 50 5 90.7% 0.47
0.1 6 8 ✓ 25 50 10 93.6% 0.35
6 4 6 ✗ 25 50 5 93.0% 0.36
10 4 6 ✗ 25 50 5 92.9% 0.44
10 6 8 ✗ 25 50 5 93.9% 0.43
10 6 8 ✗ 25 50 10 96.7% 0.26
10 6 8 ✗ 50 10 full 84.0% 0.88
10 6 8 ✗ 50 25 full 88.9% 0.56
15 4 6 ✗ 25 50 5 96.8% 0.31

case. Instead, an 80/20 splitting was used: the 80% of the meshes
in the original dataset on which the MeshGraphs were generated,
were used for training, and 20% for test (i.e., 10 training meshes
and 2 test meshes for each of the 15 classes of SHREC17). It
is interesting to observe that, keeping unchanged the other hy-
perparameters, the connectivity of the MeshGraph plays a fairly
important role in decreeing good or bad performance; balanced
values allow the achievement of an excellent accuracy. Another
important parameter is the radius chosen for building the Spi-
derPatches. Below a certain threshold, it appears the performance
remains unchanged (for example, in the case of radius 6 and 10);
instead, higher values capturing an excessively large area, lead
to the risk of missing the relief pattern. Ultimately, the choice of
the radius is critical yet reasonably robust; a wrong choice can
still compromise the effectiveness with which some patterns are
recognized nonetheless.

6.4. SHREC’20 experiments

In this section, we present the results of the experiments
performed on the SHREC’20 dataset [5]. First, we summarize
the peculiarities of the data used and their pre-processing in
Section 6.4.1. Then, we report results for our method utiliz-
ing the best configuration derived for the SHREC’17 dataset in
Section 6.4.2, and provide further discussion in Section 6.4.3.

6.4.1. Raw data
To better evaluate our method, we applied it to the com-

plex synthetic dataset released for the SHREC 2020 challenge

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80

T
s
o
d
m
m
d
s
o

c
G
d
c
S
e
e
u

Table 5
Comparison of our method with the results of SHREC20 competition [5].
Retrieval performance of methods that participated in the SHREC20 competition
were measured using Nearest Neighbor (NN), which is comparable with our
classification accuracy measure:.
NO Deep Learning

Retrieval Method NN

[5] MeshLBP-So 90.9%
kd-tree FLANN 68.6%
SRNA 92.3%
OH 71.4%
APPFD-FK 18.6%

DEEP LEARNING

Classification Method NN.

[5] DPML 98.2%
PointNet+SQFD 17.3%
DFE 98.2%

Acc.

No Voting Spider-GAT 90.7%
Voting Spider-GAT 100%

on Retrieval of digital surfaces with similar geometric reliefs [5].
he SHREC 2020 dataset includes 220 triangular meshes of 20
ynthetically modeled objects like pots, goblets and mugs, each
ne of them characterized by one of 11 different geometric reliefs
erived from natural textures (bricks, floors, roofs, etc.). Each
esh is given by a single connected component, it is regular, and
ade of 50K vertices. Every different object is covered with all 11
ifferent relief patterns and, depending on the object represented,
ome meshes have non-trivial topology (they may have handles
r tunnels) and may even have boundaries.
Similar to the experiments on SHREC17, our aim here is to

lassify relief patterns using the proposed SpiderPatch and Mesh-
raphs structures. To this end we pre-processed the data to
erive SpiderPatch and MeshGraph data following the same pro-
edure as explained in Section 6.1.2. This resulted into 1,000
piderPatches for every mesh in SHREC’20, from which we gen-
rated the MeshGraph dataset. To compensate for the differ-
nces in mesh dimension between SHREC17 (bounding box vol-
me around 3 m3) and SHREC’20 (bounding box volume around

4.5 cm3), and better compare the results, to generate our data
structures from SHREC20, we used the same configuration used
for SHREC17, only changing the SpiderPatch radius, as reported
in Tables 1 and 2.

6.4.2. Relief pattern classification
A total of eight methods participated in the SHREC20 chal-

lenge [5]. They can be divided in two groups: geometric-based
and learning-based methods. For the sake of brevity, we will
provide a detailed comparison only with learning-based methods.
Among the geometric-based approaches, the best performance
was obtained by Mesh-LBP and SRNA with a score of 90.9% and
92.3%, respectively. The Mesh-LBP method is similar to the one
used in the SHREC17 competition, with the difference that several
histograms are computed rather than a global one. To compare
two meshes, the respective patches are therefore compared. SRNA
also uses histograms, but calculated on the basis of per-vertex
quantity. Both methods require pre-processing on the raw data
(smoothing for SRNA and resampling for Mesh-LBP) and use a
good fraction, if not all, of the vertices/faces of the mesh.

For learning-based methods, the best ones turned out to be
DFE and DPML, both with an accuracy of 98.2%. DFE extracts 2D
images starting from surface patches of the mesh and uses them
as input to different pre-trained CNNs (ResNet [28], DenseNet
[29], etc.). DPML, instead, uses graphs to represent the mesh.

Differently from our solution, DPML represents the entire mesh

78
as a graph and uses it for the calculation of surface patches.
These patches are then transformed into 2D images and used for
training a Siamese CNN (a VGG16 architecture [30]). In Table 5,
we summarize results on SHREC’20 for the above techniques.
The table explicitly separates learning-based methods (including
ours) from geometric ones.

For training our network, we followed the steps described in
Section 6.1.3, with the obvious exception of a different choice of
MeshGraph dataset and a different cross-validation protocol. In
this case, in fact, the dataset ‘‘E’’ of Table 2 was used, which we re-
call was generated with the specifications of the best MeshGraph
dataset for SHREC17 (‘‘D’’ Table 2) and a 5-fold cross-validation
was used as a training protocol, which translates into 16 meshes
used as training dataset and 4 as validation. The rest of the
hyperparameters have been set as described in the last part of
Section 6.1.3.

6.4.3. Discussion and additional analysis
The results of the experiments based on SHREC20 are re-

ported in Table 5. Differently from SHREC’17, in SHREC’20 [5]
classification results are instead reported, yet only in form of
graphs without numerical values. Given this, we could not di-
rectly compare with those results; so, we resorted to using the
performance measurement protocol described in Section 6.2, and
compare with the same measure as that used for SHREC’17 i.e.
nearest-neighbor retrieval.

The performance of the classification of the individual Mesh-
Graphs is shown in Table 5 and stands at 90.7%, marking a
worsening compared to 95% of SHREC17; this is reasonably due to
the more complex shape of the meshes, as well as to the random
sampling during the generation of the SpiderPatches. Similar to
SHREC17, we can observe from the confusion matrices in Fig. 10
(Center) that there is a predominance of some classes (1 and 7)
over others, indicating that a different MeshGraph configuration
may favor some classes. It is also interesting to note that SHREC20
classes 1 and 7 (Fig. 8 represent similar patterns, respectively,
to SHREC17 classes 1 and 8 [5]. In Table 5, we also report the
classification accuracy using the voting mechanism: with this
configuration we get a perfect score, 100%. Such a result is due to
the voting mechanism, canceling the effect that an unfortunate
placement of the SpiderPatches has on the classification of the
single MeshGraphs.

7. Conclusions

In this paper, we presented new mesh surface descriptors,
namely SpiderPatch and MeshGraph that used together with
our bi-level GAT, shown to outperform existing SHREC’17 relief
pattern classification methods obtaining an accuracy of 97.2%
(i.e., misclassifying just 5 meshes over a total of 180 meshes).

Considering the current definition and practical implementa-
tion of the SpiderPatch structure, we can enumerate pros and
cons as emerged from our reported results and further exper-
imental analysis that we did not report in the paper. As pros,
SpiderPatches can be computed via simple geometric computa-
tions; they are scale-invariant with respect to the mesh (but they
are not with respect to the scale of the relief pattern), they are
not influenced by the mesh tessellation; they are invariant to
rotations and can be applied to any mesh without preprocessing.
As cons, the local patches are affected by the scale of the relief
patterns.

The MeshGraph representation revealed both merits and lim-
itations: on the positive side, it can be computed on a quite
ample spectra of meshes, thus being adaptable to different tasks;
on the negative one, we did not exploit yet a generation with
a predefined sampling as well as the edges do not account for

geodesic distance.

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80

M

Fig. 10. Confusion matrices for the experiments performed on SHREC’20 using a 5-fold cross validation. (Left) Confusion matrix with the number of correctly classified
eshGraphs for each class (16 training meshes, 4 validation meshes, for each validation mesh 25 MeshGraphs were generated so that 25 · 4 · 5 = 500 MeshGraphs

were classified in the entire cross validation process). (Middle) Mean accuracy confusion matrix. (Right) Voting confusion matrix obtained by implementing a voting
approach on the MeshGraphs: a mesh is correctly classified if at least half of the MeshGraphs representing it are correctly classified.
The proposed GAT architecture has some positive properties:
though we experimented it in the task of relief pattern classifi-
cation, in principle it can be applied to different tasks (e.g., 3D
shape retrieval); it is a completely modular architecture, which
makes it easily adaptable and open to improvements; it allowed
us to achieve effective performance that outperformed state-of-
the-art methods using a comparable protocol with a relatively
small number of training samples.

Overall, based on the analyses performed so far, we have built
some very ductile and adaptable descriptors as well as a network
that can be easily remodeled for other tasks. As future work,
we plan to explore new fields of application for the proposed
approach.

CRediT authorship contribution statement

Niccolò Guiducci: Software, Validation, Investigation, Writing
– original draft, Data curation. Claudio Tortorici: Investigation,
Writing – review & editing, Formal analysis, Conceptualization.
Claudio Ferrari:Methodology, Writing – review & editing, Visual-
ization. Stefano Berretti: Supervision, Writing – review & editing,
Visualization.

Declaration of competing interest

We declare that the content of the paper is the result of the
research effort of all the authors listed in the accompanying letter.
All authors have approved the paper submission.

Data availability

Data will be made available on request

Acknowledgments

The research is funded by the Technology Innovation Institute
(TII), Abu Dhabi, UAE under grant TII/ARRC/2053/2021.

References

[1] Andreetto M, Brusco N, Cortelazzo GM. Automatic 3D modeling of textured
cultural heritage objects. IEEE Trans Image Process 2004;13(3):354–69.

[2] Hu S, Li Z, Wang S, Ai M, Hu Q. A texture selection approach for cultural
artifact 3D reconstruction considering both geometry and radiation quality.

Remote Sens 2020;12(16):2521.

79
[3] Gillespie D, Welham K. Subjective and objective assessment of 3D textured
and non-textured cultural heritage artefacts. IEEE Comput Graph Appl
2020.

[4] Othmani A, Voon LFLY, Stolz C, Piboule A. Single tree species classification
from terrestrial laser scanning data for forest inventory. Pattern Recognit
Lett 2013;34(16):2144–50.

[5] Thompson EM, Biasotti S, Giachetti A, Tortorici C, Werghi N, Obeid AS,
Berretti S, Nguyen-Dinh H-P, Le M-Q, Nguyen H-D, et al. SHREC 2020:
Retrieval of digital surfaces with similar geometric reliefs. Comput Graph
2020;91:199–218.

[6] Biasotti S, Moscoso Thompson E, Aono M, Ben Hamza A, Bustos B, Dong S,
Du B, Fehri A, Li H, Limberger FA, Masoumi M, Rezaei M, Sipiran I,
Sun L, Tatsuma A, Velasco-Forero S, Wilson RC, Wu Y, Zhang Y, Zhao T,
Formasa F, Giachetti A. Shrec’17 Track: Retrieval of surfaces with similar
relief patterns. In: 10th Eurographics workshop on 3D object retrieval.
2017, p. 95–103.

[7] Werghi N, Tortorici C, Berretti S, del Bimbo A. Local binary patterns on
triangular meshes: Concept and applications. Comput Vis Image Underst
2015;139:161–77. http://dx.doi.org/10.1016/j.cviu.2015.03.016, URL https:
//www.sciencedirect.com/science/article/pii/S1077314215000843.

[8] Werghi N, Tortorici C, Berretti S, Del Bimbo A. Representing 3D texture on
mesh manifolds for retrieval and recognition applications. In: Proceedings
of the IEEE Conference on computer vision and pattern recognition. 2015,
p. 2521–30.

[9] Tortorici C, Berretti S, Obeid A, Werghi N. Convolution operations for
relief-pattern retrieval, segmentation and classification on mesh manifolds.
Pattern Recognit Lett 2021;142:32–8.

[10] Tortorici C, Werghi N, Berretti S. Representing and analyzing relief patterns
using LBP variants on mesh manifold. Pattern Anal Appl 2021;24:557–73.

[11] Thompson EM, Biasotti S. Description and retrieval of geometric patterns
on surface meshes using an edge-based LBP approach. Pattern Recognit
2018;82:1–15.

[12] Dalal N, Triggs B. Histograms of oriented gradients for human detection.
In: IEEE Conference on computer vision and pattern recognition, vol. 1.
2005, p. 886–93. http://dx.doi.org/10.1109/CVPR.2005.177.

[13] Lowe DG. Distinctive image features from scale-invariant keypoints. Int J
Comput Vis 2004;60:91–110.

[14] Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture mea-
sures with classification based on Kullback discrimination of distributions.
In: Proceedings of 12th International conference on pattern recognition,
vol. 1. IEEE; 1994, p. 582–5.

[15] Biasotti S, Thompson EM, Barthe L, Berretti S, Giachetti A, Lejemble T, Mel-
lado N, Moustakas K, Manolas I, Dimou D, et al. Shrec’18 track: Recognition
of geometric patterns over 3D models. In: Eurographics workshop on 3D
object retrieval. 2018.

[16] Zaharescu A, Boyer E, Varanasi K, Horaud R. Surface feature detection and
description with applications to mesh matching. In: 2009 IEEE Conference
on computer vision and pattern recognition. IEEE; 2009, p. 373–80.

[17] Werghi N, Berretti S, Del Bimbo A. The mesh-lbp: a framework for
extracting local binary patterns from discrete manifolds. IEEE Trans Image
Process 2014;24(1):220–35.

[18] Giachetti A. Effective characterization of relief patterns. In: Comput Graph
Forum. 37, (5):Wiley Online Library; 2018, p. 83–92.

http://refhub.elsevier.com/S0097-8493(23)00133-4/sb1
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb1
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb1
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb2
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb2
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb2
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb2
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb2
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb3
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb3
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb3
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb3
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb3
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb4
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb4
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb4
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb4
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb4
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb5
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb5
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb5
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb5
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb5
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb5
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb5
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb6
http://dx.doi.org/10.1016/j.cviu.2015.03.016
https://www.sciencedirect.com/science/article/pii/S1077314215000843
https://www.sciencedirect.com/science/article/pii/S1077314215000843
https://www.sciencedirect.com/science/article/pii/S1077314215000843
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb8
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb8
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb8
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb8
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb8
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb8
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb8
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb9
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb9
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb9
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb9
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb9
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb10
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb10
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb10
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb11
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb11
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb11
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb11
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb11
http://dx.doi.org/10.1109/CVPR.2005.177
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb13
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb13
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb13
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb14
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb14
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb14
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb14
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb14
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb14
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb14
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb15
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb15
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb15
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb15
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb15
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb15
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb15
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb16
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb16
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb16
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb16
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb16
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb17
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb17
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb17
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb17
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb17
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb18
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb18
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb18

N. Guiducci, C. Tortorici, C. Ferrari et al. Computers & Graphics 115 (2023) 69–80
[19] Hanocka R, Hertz A, Fish N, Giryes R, Fleishman S, Cohen-Or D. Meshcnn:
a network with an edge. ACM Trans Graph 2019;38(4):1–12.

[20] Ganapathi II, Javed S, Fisher RB, Werghi N. Graph based texture pattern
classification. In: Int. conf. on virtual reality. ICVR, 2022, p. 363–9. http:
//dx.doi.org/10.1109/ICVR55215.2022.9847889.

[21] Tortorici C, Riahi MK, Berretti S, Werghi N. CSIOR: Circle-surface intersec-
tion ordered resampling. Comput Aided Geom Design 2020;79:101837.

[22] Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph
attention networks. 2017, arXiv preprint arXiv:1710.10903.

[23] Chen Y, Tang X, Qi X, Li C-G, Xiao R. Learning graph normalization for
graph neural networks. Neurocomputing 2022;493:613–25.

[24] Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural
networks? 2019, arXiv:1810.00826.

[25] Navarin N, Van Tran D, Sperduti A. Universal readout for graph convolu-
tional neural networks. In: 2019 International joint conference on neural
networks. IJCNN, IEEE; 2019, p. 1–7.
80
[26] Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for
face recognition and clustering. In: Proceedings of the IEEE Conference
on computer vision and pattern recognition. 2015, p. 815–23.

[27] Biasotti S, Thompson EM, Aono M, Hamza AB, Bustos B, Dong S, Du B,
Fehri A, Li H, Limberger FA, et al. Shrec’17 track: Retrieval of surfaces
with similar relief patterns. In: 10th Eurographics workshop on 3F object
retrieval. 2017.

[28] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
In: Proceedings of the IEEE Conference on computer vision and pattern
recognition. 2016, p. 770–8.

[29] Huang G, Liu Z, Pleiss G, Van Der Maaten L, Weinberger KQ. Convolutional
networks with dense connectivity. IEEE Trans Pattern Anal Mach Intell
2019;44(12):8704–16.

[30] Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. In: International conference on learning
representations. 2015, p. 1–14.

http://refhub.elsevier.com/S0097-8493(23)00133-4/sb19
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb19
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb19
http://dx.doi.org/10.1109/ICVR55215.2022.9847889
http://dx.doi.org/10.1109/ICVR55215.2022.9847889
http://dx.doi.org/10.1109/ICVR55215.2022.9847889
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb21
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb21
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb21
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb23
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb23
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb23
http://arxiv.org/abs/1810.00826
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb25
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb25
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb25
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb25
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb25
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb26
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb26
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb26
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb26
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb26
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb27
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb27
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb27
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb27
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb27
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb27
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb27
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb28
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb28
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb28
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb28
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb28
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb29
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb29
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb29
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb29
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb29
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb30
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb30
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb30
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb30
http://refhub.elsevier.com/S0097-8493(23)00133-4/sb30

	Learning graph-based features for relief patterns classification on mesh manifolds
	Introduction
	Related Work
	Proposed Approach
	Graph Structures Construction
	Surface Resampling with CSIRS
	SpiderPatch
	MeshGraph

	Network Architecture
	SpiderPatch Embedder
	NodeWeigher

	MeshGraph Embedder
	Loss Functions

	Experimental Results
	SHREC'17
	Raw Data
	Raw data sampling with SpiderPatches and MeshGraphs
	Relief Pattern Classification

	Discussion
	Ablation Study
	SHREC'20 Experiments
	Raw Data
	Relief Pattern Classification
	Discussion and Additional Analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

