
Mathematical Programming Computation
https://doi.org/10.1007/s12532-022-00231-3

FULL LENGTH PAPER

Amemetic procedure for global multi-objective
optimization

Matteo Lapucci1 · Pierluigi Mansueto1 · Fabio Schoen1

Received: 27 January 2022 / Accepted: 2 November 2022
© The Author(s) 2022

Abstract
In this paper we consider multi-objective optimization problems over a box. Several
computational approaches to solve these problems have been proposed in the litera-
ture, that broadly fall into two main classes: evolutionary methods, which are usually
very good at exploring the feasible region and retrieving good solutions even in the
nonconvex case, and descent methods, which excel in efficiently approximating good
quality solutions. In this paper, first we confirm, through numerical experiments, the
advantages and disadvantages of these approaches. Then we propose a new method
which combines the good features of both. The resulting algorithm, which we call
Non-dominated Sorting Memetic Algorithm, besides enjoying interesting theoreti-
cal properties, excels in all of the numerical tests we performed on several, widely
employed, test functions.

Keywords Multi-objective optimization · Memetic algorithm · NSGA-II · Descent
method · Pareto front approximation

Mathematics Subject Classification 90C29 · 90C30 · 68W20

1 Introduction

Multi-objective optimization problems have a significant relevance in many applica-
tions of various fields, such as engineering [5, 47, 50], management [28, 55], statistics

B Pierluigi Mansueto
pierluigi.mansueto@unifi.it

Matteo Lapucci
matteo.lapucci@unifi.it

Fabio Schoen
fabio.schoen@unifi.it

1 Global Optimization Laboratory (GOL), Department of Information Engineering, University of
Florence, Via di Santa Marta, 3, 50139 Florence, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-022-00231-3&domain=pdf
https://orcid.org/0000-0002-2488-5486
https://orcid.org/0000-0002-1394-0937
https://orcid.org/0000-0003-1160-7572

M. Lapucci et al.

[7], space exploration [45, 51], etc.. It is thus not surprising that many research streams
have flourished around this topic for the last 25 years.

Multi-objective optimization (MOO) exhibits twomajor complexities, that coupled
together make problems particularly difficult to handle. The first complexity element
is the general absence of a solution minimizing all the objective functions simultane-
ously; as a consequence, the definitions of optimality (global, local and stationarity),
based on Pareto’s theory, are not trivial and make optimization processes not obvious,
both in terms of aims and tools. The second one, on the other hand, traces one classical
issue typical of scalar optimization: in absence of convexity assumptions, there is no
equivalence between local and global (Pareto) optimality.

The combination of the two aforementioned features of MOO problems makes
evolutionary-type algorithms (EAs) particularly well suited to be used and, indeed,
they have been the most widely studied class of algorithms for decades in this context
[35, 44]. The NSGA-II algorithm [13] is arguably the most popular among these
methods; basically, it is a population-based procedure exploiting a cheaply computable
score to efficiently rank solutions w.r.t. the objectives, and performing the classical
genetic crossover, mutation and selection operations to create the new generation of
solutions. Basically, NSGA-II represents the de facto standard, at least popularity-
wise, for unconstrained and bound-constrained MOO.

In fact, alongside the EA stream, two different classes of approaches have been
studied for MOO. The first one concerns scalarization approaches [17, 18, 46]. How-
ever, solvingMOOproblems by scalarization has some drawbacks: firstly, unfortunate
choices of weights may lead to unbounded scalar problems, even under strong regu-
larity assumptions [20, Section 7]; moreover, scalarization is designed to produce a
single solution and, in order to generate an approximation of the whole Pareto front,
the problem has to be repeatedly solved with different choices of weights; unfortu-
nately, it is not known a priori how weights should be selected to obtain a wide and
uniform Pareto front.

The other family of methods is that of MO descent methods (either first-order,
second-order and derivative-free) [6, 8, 16, 20, 21, 26, 27]. These methods mimic
classical iterative scalar optimization algorithms.

Originally, thesemethodswere designed to generate a single Pareto-stationary solu-
tion, but in recent years specific strategies have been proposed to handle lists of points
and to generate approximations of the entire Pareto front [9–12, 22, 38]. Numerical
results show that these methods, when used on problems with reasonable regular-
ity assumptions, are effective and much more efficient than evolutionary methods,
especially as the problem size grows [9, 10, 12].

On the other hand, descent algorithms have convergence properties that are theo-
retically relevant but, in practice, guarantee only Pareto stationarity of the retrieved
solutions. This is a significant limitation with highly non-convex problems, similarly
as for gradient-based algorithms in scalar optimization that may converge to stationary
points which are not even local optima.

In scalar global optimization, particularly successful strategies are memetic ones.
Memetic algorithms combine population-based techniques (either heuristic and/or
genetic ones) and local search steps [4, 29, 30, 39, 40, 43]. In the case of MOO, this
idea has only superficially been considered. In fact, each class of MOO algorithms

123

Amemetic procedure for global multi-objective optimization

has practical drawbacks. EAs have no theoretical convergence property [20] and are
usually expensive [31, 37, 49]. On the other hand, descent algorithms often produce
suboptimal solutions when starting from non carefully chosen points and are thus
not suitable for highly non-convex problems. For these reasons, some MO memetic
approaches have been proposed in the literature. However, we can find approaches that
are mostly application-specific [54] or that employ heuristic [33, 34, 36, 41], meta-
heuristic [1, 53], stochastic [15, 19] or scalarization-based [31, 49, 52] local search
steps. Even the few proposed strategies employing gradient information for the local
search steps do not exploit the concept of common descent directions. Rather, convex
combinations of gradients are generated and exploited in variousways [2, 3, 34, 37, 48].

In this paper, we show by computational experiments the benefits and limitations of
evolutionary andMOdescent algorithms indifferent settings (high/lowdimensionality,
convex/non-convex objectives). Then, we propose a memetic algorithm for bound-
constrainedMOOproblems, combining an evolutionary approach (namely, the popular
NSGA-II) with MO descent methods, similarly to what is done in the scalar case in
[30]. We finally show that the proposed method, that inherits the good features of both
EA and MO descent families, outperforms the state-of-the-art MOO solvers in any
setting.

The rest of the manuscript is organized as follows. In Sect. 2, we recall the main
concepts of both the descent methods and the NSGA-II algorithm. In Sect. 3, we
provide a description of our memetic algorithm along with a theoretical analysis. In
Sect. 4, we first compare the two families of algorithms in some specific problems, in
order to show the benefits and the shortcomings of both. Then, we show the results of
computational experiments highlighting the good performance of our approach w.r.t.
main state-of-the-artmethods. Finally, in Sect. 5we provide some concluding remarks.

2 Preliminaries

In this work, we consider multi-objective optimization problems of the form

min
x∈Rn

F(x) = (f1(x), . . . , fm(x))T

s.t. x ∈ [l, u],
(1)

where F : R
n → R

m is a continuously differentiable function and l, u ∈ R
n with

li ≤ ui ∀i ∈ {1, . . . , n}. The values of l and u may possibly be infinite. Given
the boundary constraints, we denote the feasible set, which is closed, convex and non
empty, byΩ = {x ∈ R

n | x ∈ [l, u]}. We denote by JF the Jacobianmatrix associated
with F .

In order to introduce some preliminary concepts of multi-objective optimization,
we define a partial ordering of the points in R

m . Considering two points u, v ∈ R
m ,

we define

u < v ⇐⇒ ui < vi ∀i = 1, . . . , m,

u ≤ v ⇐⇒ ui ≤ vi ∀i = 1, . . . , m.

123

M. Lapucci et al.

If u ≤ v and u �= v, we can say that u dominates v and we use the following
notation: u � v. Finally, we say that the point x ∈ R

n dominates y ∈ R
n w.r.t. F if

F(x) � F(y).
In multi-objective optimization problems, we ideally would like to obtain a point

which simultaneously minimizes all the objectives f1, . . . , fm . However, such a solu-
tion is unlikely to exist. For this reason, the Pareto optimality concepts have been
introduced.

Definition 1 A point x̄ ∈ Ω is Pareto optimal for Problem (1) if a point y ∈ Ω such
that F(y) � F(x̄) does not exist. If there exists a neighborhood N (x̄) such that the
previous property is satisfied in Ω ∩ N (x̄), then x̄ is locally Pareto optimal.

In practice, it is difficult to attain solutions characterized by the Pareto optimality
property. A slightly weaker property is weak Pareto optimality.

Definition 2 A point x̄ ∈ Ω is weakly Pareto optimal for Problem(1) if a point y ∈ Ω

such that F(y) < F(x̄) does not exist. If there exists a neighborhood N (x̄) such that
the previous property is satisfied inΩ ∩N (x̄), then x̄ is locally weakly Pareto optimal.

We refer to the set of all Pareto optimal solutions of the problem as the Pareto set,
while by Pareto front we refer to the image of the Pareto set through F .

We can now introduce the concept of Pareto stationarity.

Definition 3 A point x̄ ∈ Ω is Pareto-stationary for Problem(1) if we have that

max
j=1,...,m

∇ f j (x̄)T d ≥ 0,

for all feasible directions d ∈ D(x̄) = {v ∈ R
n | ∃t̄ > 0 : x̄ + tv ∈ Ω ∀ t ∈ [0, t̄]}.

Under differentiability assumptions, Pareto stationarity is a necessary condition for
all types of Pareto optimality. Further assuming the convexity of the objectives in
Problem (1), the condition is also sufficient for Pareto optimality. The property can be
compactly re-written as

min
d∈D(x̄)

max
j=1,...,m

∇ f j (x̄)T d = 0.

Finally, we introduce a relaxation of Pareto stationarity, recalling the ε-Pareto-
stationarity concept introduced in [8].

Definition 4 Let ε ≥ 0. A point x̄ ∈ Ω is ε-Pareto-stationary for Problem(1) if

min
d∈D(x̄)
‖d‖≤1

max
j=1,...,m

∇ f j (x̄)T d ≥ −ε.

In the following, we briefly review evolutionary and descent algorithms for MOO,
with particular emphasis on the NSGA-II algorithm and steepest/projected gradient
descent methods respectively.

123

Amemetic procedure for global multi-objective optimization

2.1 Multi-objective descent methods

First of all, let us address the following unconstrained optimization problem.

min
x∈Rn

F(x) = (f1(x), . . . , fm(x))T . (2)

If a point x̄ ∈ R
n is not Pareto-stationary, then there exists a descent direction w.r.t.

all the objectives. Therefore, following [21, Section 3.1], we can introduce the steepest
common descent direction as the solution of problem

min
d∈Rn

‖d‖≤1

max
j=1,...,m

∇ f j (x̄)T d, (3)

which, if �∞ norm is employed, can be re-written as an LP one:

min
β∈R, d∈Rn

β

s.t. − 1 ≤ di ≤ 1 ∀ i = 1, . . . , n,

∇ f j (x̄)T d ≤ β ∀ j = 1, . . . , m.

(4)

A slightly different problem formulation is the �2-regularized one, which is again pro-
posed in [21]. However, we preferred to use formulation (3) because of the simplicity
of the LP problem. We define the continuous function θ : R

n → R such that θ(x̄)

indicates the optimal value of Problem (3) at x̄ . If x̄ is Pareto-stationary, θ(x̄) = 0,
otherwise θ(x̄) < 0. We also denote by V(x̄) ⊆ R

n the set of optimal solutions to
Problem (3). Indeed, the solution may not be unique, although this fact is not a real
technical issue.

Based on the concept of steepest common descent direction, the standard Multi-
Objective Steepest Descent (MOSD) algorithm was proposed in [21]. In MOSD, a back-
tracking Armijo-type Line Search (ALS) is used. The idea of this latter one is to reduce
the step size until we get a sufficient decrease for all the objective functions. We report
ALS in Algorithm 1.

We now recall the main theoretical results of the two algorithms, starting from the
finite termination property of the line search.

Lemma 1 [21, Lemma 4] If F is continuously differentiable and JF (x)d < 0 (i.e.
θ(x) < 0), then there exists some ε > 0, which may depend on x, d and β, such that

F(x + td) < F(x) + βt JF (x)d

for all t ∈ (0, ε].
Regarding the MOSD procedure, the following convergence property holds.

Lemma 2 [21, Theorem 1, Section 9.1] Every accumulation point of the sequence
{xk} produced by the MOSD algorithm is a Pareto-stationary point. If the function F
has bounded level sets, in the sense that {x ∈ R

n | F(x) ≤ F(x0)} is bounded, then
the sequence {xk} stays bounded and has at least one accumulation point.

123

M. Lapucci et al.

Algorithm 1: Armijo-type Line Search
1 Input: F : R

n → R
m , xk ∈ R

n , dk ∈ V(xk), α0 > 0, δ ∈ (0, 1), β ∈ (0, 1).
2 α = α0
3 while F(xk + αdk) � F(xk) + βα JF (xk)dk do
4 α = δα

5 return α

Through the years, the MOSD procedure was extended to handle a sequence of sets
{Xk} of non-dominated points, rather than a sequence of points, aiming to approximate
the Pareto front of the optimization problems. Indeed, in themulti-objective context, an
approximation of the Pareto front could bemuchmore useful than a single solution: the
user is free to choose, a posteriori, the solution providing the most appropriate trade-
off among many. An algorithm representing an extension of the MOSD procedure is
the one introduced in [10], which is called Front Steepest Descent Algorithm (FSDA).

In the next lemma, we report the convergence property of the algorithm, where the
authors use the concept of linked sequence introduced in [38].

Definition 5 A sequence {xk} is a linked sequence if, for all k, xk ∈ Xk and xk is
generated at iteration k − 1 starting the search procedure from xk−1.

Lemma 3 [10, Proposition 5] Let {Xk} be the sequence of sets of non-dominated points
produced by FSDA. Let us assume that there exists a point x0 ∈ X0 such that:

– x0 is not Pareto-stationary;
– the set L(x0) = ⋃m

j=1{x ∈ R
n : f j (x) ≤ f j (x0)} is compact.

Let {xk} be a linked sequence, then it admits limit points and every limit point is
Pareto-stationary for Problem (2).

In [10], two concepts are introduced. The first one is the steepest partial descent
direction at x̄ w.r.t. a subset of indices of objectives I ⊆ {1, . . . , m}. This type of
direction at a point x̄ can be found solving this optimization problem:

min
d∈Rn

‖d‖≤1

max
j∈I

∇ f j (x̄)T d. (5)

As for the steepest common descent direction, we define the continuous function θ I :
R

n → R, where θ I (x̄) indicates the optimal value of Problem (5) at x̄ . Accordingly,we
denote by V I (x̄) ⊆ R

n the set of optimal solutions to the Problem(5). If appropriately
used, the steepest partial descent direction may be useful to spread the search in the
objectives space and to reach the extreme regions of the Pareto front.

For our purposes, given a subset I , we also define FI (x̄) as the |I |-dimensional
vector with components f j (x̄), with j ∈ I . In addition, given a set of points X̄ , we
introduce the set X̄ I ⊆ X̄ as the set of points that are mutually non-dominated w.r.t.
FI , i.e.

X̄ I = {x ∈ X̄ | �y ∈ X̄ s.t. FI (y) � FI (x)}.

123

Amemetic procedure for global multi-objective optimization

The second concept introduced in [10] is a weaker front-based variant of ALS:
we call it the Front Armijo-Type Line Search (FALS). We report it in Algorithm 2.
In FALS, the step size is reduced until a sufficient decrease is reached w.r.t. all the
points in X̄ I for at least one of the objective functions f j , with j ∈ I . FALS can be
considered as a weak extension of ALS to themulti-objective case. As it is not required
to obtain a sufficient decrease for all the objective functions, employing FALS leads
to two consequences: less required computational time and bigger values for the step
size. These features again may be very useful to obtain good and spread Pareto front
approximations in a short time.

Algorithm 2: Front Armijo-type Line Search

1 Input: F : R
n → R

m , I ⊆ {1, . . . , m}, X I
k set of mutually non-dominated points w.r.t. FI , xc ∈ X I

k ,

d I
c ∈ V I (xc), θ I (xc) ∈ R, α0 > 0, δ ∈ (0, 1), β ∈ (0, 1).

2 α = α0

3 while ∃y ∈ X I
k s.t. FI (y) + 1βαθ I (xc) < FI (xc + αd I

c) do
4 α = δα

5 return α

FALS has a finite termination property, which we recall in the following lemma.

Lemma 4 [10, Proposition 4] Let I ⊆ {1, . . . , m}, xc ∈ X I
k be such that θ I (xc) < 0,

i.e. there exists a direction d I
c ∈ V I (xc) such that

∇ f j (xc)
T d I

c < 0

∀ j ∈ I . Then ∃ᾱ > 0, sufficiently small, such that

FI (y) + 1βᾱθ I (xc) �< FI (xc + ᾱd I
c), ∀y ∈ X I

k ,

i.e., the while loop of FALS terminates in a finite number h̄ of iterations, returning
a value ᾱ = δh̄α0. Furthermore, the produced point xc + ᾱd I

c is not dominated with
respect to the set Xk.

Since we consider bound constraints in Problem(1), we need to recall the (single-
point) Multi-Objective Projected Gradient (MOPG) method. This latter algorithm was
firstly introduced in [16] and then developed and analyzed in [24, 25]. In addition, the
MOPGmain results were summarized in [23]. The method is an extension of the MOSD
procedure dealing with constrained problems. In particular, it deals with optimization
problems characterized by a feasible closed and convex set Ω . We report the MOPG
procedure in Algorithm 3.

The first difference w.r.t. the MOSD procedure is the way the direction is retrieved,
since now the problemconstraints have to be considered. The steepest descent direction
is now defined as the solution of

min
z∈Ω‖z−x̄‖≤1

max
j=1,...,m

∇ f j (x̄)T (z − x̄). (6)

123

M. Lapucci et al.

Algorithm 3: Multi-Objective Projected Gradient
1 Input: F : R

n → R
m , Ω feasible closed and convex set, x0 ∈ Ω .

2 k = 0
3 while xk is not Pareto-stationary do
4 Compute

zΩk ∈ argmin
z∈Ω‖z−xk‖≤1

max
j=1,...,m

∇ f j (xk)T (z − xk)

5 dΩk = zΩk − xk
6 αk = ALS(F(·), xk , dΩk)

7 xk+1 = xk + αkdΩk
8 k = k + 1

9 return xk

Note that, again, in practice we employ the �∞ norm so that the problem can be
reformulated as an LP problem similar to (4). As in the unconstrained case, we define
the continuous function θΩ : R

n → R such that θΩ(x̄) indicates the optimal value
of Problem(6) at x̄ . We also denote by ZΩ(x̄) ⊆ Ω the set of optimal solutions to
Problem(6), and by VΩ(x̄) = {z − x̄ | z ∈ ZΩ(x̄)} ⊆ Ω the set of optimal directions.
We denote these latter ones as constrained steepest common descent directions; if a
subset I ⊆ {1, . . . , m} is considered, they are referred to constrained steepest partial
descent directions. If θΩ(x̄) < 0, the point is not Pareto-stationary and we proceed to
find a step size through ALS. As opposed to the unconstrained case, where α0 can be
any positive real number, in the MOPG procedure α0 = 1. Since the set Ω is convex,
d is a feasible direction by construction and α0 = 1, every produced point will be
feasible.

We report here two theoretical results of the MOPG method.

Lemma 5 [23, Lemma 4.3] Let {xk} ⊂ R
n be a sequence generated by MOPG. Then,

we have {xk} ⊂ Ω .

Lemma 6 [23, Theorem 4.4] Every accumulation point, if any, of a sequence {xk}
generated by MOPG is a feasible Pareto-stationary point.

In order to deal with box-constrained optimization problems, we adapted the FSDA
algorithm [10]. We call the adaptation Front Projected Gradient Algorithm (FPGA)
and the differences w.r.t. the original algorithm are the following:

– the initial set X0 is composed by feasible non-dominated points w.r.t. F ;
– the direction is found solving Problem(6) instead of Problem(3);
– we employ the Bound-constrained Front Armijo-Type Line Search (B-FALS),
which is a modified version of FALS that we introduced to take into account
bound constraints.

B-FALS, which we report in Algorithm 4, is similar to FALS: the only added
requirement is that the step size must lead to a point that is feasible.

Through the following proposition, we show that B-FALS terminates in a finite
number of iterations.

123

Amemetic procedure for global multi-objective optimization

Algorithm 4: Bound-constrained Front Armijo-type Line Search

1 Input: F : R
n → R

m , Ω feasible convex set, I ⊆ {1, . . . , m}, X I
k set of feasible mutually

non-dominated points w.r.t. FI , xc ∈ X I
k , d I

Ωc ∈ V I
Ω(xc), θ I

Ω(xc) ∈ R, α0 > 0, δ ∈ (0, 1),
β ∈ (0, 1).

2 α = α0

3 while xc + αd I
Ωc /∈ Ω or ∃y ∈ X I

k s.t. FI (y) + 1βαθ I
Ω(xc) < FI (xc + αd I

Ωc) do
4 α = δα

5 return α

Proposition 1 Let I ⊆ {1, . . . , m}, xc ∈ X I
k be such that θ I

Ω(xc) < 0, i.e. there exists
a direction d I

Ωc ∈ V I
Ω(xc) such that

∇ f j (xc)
T d I

Ωc < 0

∀ j ∈ I . Then ∃ᾱ > 0, sufficiently small, such that

xc + ᾱd I
Ωc ∈ Ω

and

FI (y) + 1βᾱθ I
Ω(xc) �< FI (xc + ᾱd I

Ωc) ∀y ∈ X I
k ,

i.e., the while loop of B-FALS terminates in a finite number h̄ of iterations, returning
a value ᾱ = δh̄α0. Furthermore, the produced point xc + ᾱd I

Ωc is not dominated with
respect to the set Xk.

Proof Assume by contradiction that the thesis is false. Then the algorithm produces
an infinite sequence {δhα0} such that, for all h, either

xc + δhα0d I
Ωc /∈ Ω

or a point yh ∈ X I
k exists such that

FI (yh) + 1βδhα0θ
I
Ω(xc) < FI (xc + δhα0d I

Ωc). (7)

Since Ω is convex, d I
Ωc is a feasible direction by construction and δhα0 → 0 as

h → ∞, for h sufficiently large the point xc + δhα0d I
Ωc is feasible and thus Condition

(7) holds. Then, following the proof of Proposition 4 in [10], we can prove the thesis.��
We provide a full description of FPGA in Appendix A, along with feasibility and

convergence properties. In this work, we consider the FPGA algorithm as a represen-
tative of gradient-based methods designed to produce Pareto front approximations for
bound-constrained optimization problems.

123

M. Lapucci et al.

In [10], a variant of the FSDA algorithm exploiting an Armijo-type extrapolation
technique is also introduced. The authors claim that this variant outperforms the origi-
nal algorithm. For this reason, in the initial stage of our work, we decided to also adapt
this variant for box-constrained optimization problems. However, some preliminary
computational experiments led us to the somewhat surprising conclusion that vanilla
FPGA is better than using extrapolation. A possible justification of this result may lie
in the presence of constraints. Anyhow, we decided for the sake of brevity to only
consider FPGA in the remainder of the paper.

2.2 NSGA-II

NSGA-II is a non-dominated sorting-based multi-objective evolutionary algorithm
that was proposed in [13]. In particular, NSGA-II is a genetic algorithm that creates
a mating pool by combining the parent and offspring populations and selecting the
best N solutions. In this section, we review the main characteristics of NSGA-II.
For a deeper understanding of the algorithm mechanisms, the reader is referred to the
original work [13].

We report the main steps of NSGA-II in Algorithm 5.

Algorithm 5: NSGA-II
1 Input: F : R

n → R
m , Ω = {x ∈ R

n | x ∈ [l, u]} feasible set, X0 ⊂ Ω , N population size.
2 k = 0

3 X̂0 = X0

4 R̂0, Ĉ0 = getMetrics(X̂0)

5 X0, R0, C0 = getSurvivors(X̂0, R̂0, Ĉ0, N)
6 while a stopping criterion is not satisfied do
7 Pk = getParents(Xk , Rk , Ck)
8 Ok = crossover(Pk , l, u)

9 Õk = mutation(Ok , l, u)

10 X̂k+1 = Xk ∪ Õk

11 R̂k+1, Ĉk+1 = getMetrics(X̂k+1)

12 Xk+1, Rk+1, Ck+1 = getSurvivors(X̂k+1, R̂k+1, Ĉk+1, N)
13 k = k + 1

14 return Xk

NSGA-II deals with a fixed size population (N solutions) and takes as input an
initial population X0. For the sake of clarity, from now on we consider X0 as a set
composed by N feasible solutions. However, we want to remark two facts.

– Starting with a population X0 composed by N points is not necessary: if the
population is smaller/bigger, after the first iteration it is increased/reduced in order
to get exactly N solutions in it.

– NSGA-II can also manage unfeasible points. However, since in our work we
address bound constrained problems, and the genetic operators ensure that after

123

Amemetic procedure for global multi-objective optimization

the first iteration no point in the population violates the bound constraints, we
assume that X0 is only composed by feasible points.

The core idea of the algorithm is that during an iteration:

– the parents are chosen among the current solutions (Line 7);
– N offsprings are created from the parents through the crossover operator
(Line 8);

– the offsprings are mutated using the mutation function (Line 9);
– a new population of 2N solutions is created merging the current population with
the offsprings (Line 10);

– by the function getMetrics scores are associated to the members (Line 11);
– only the best N points (survivors) are selected and maintained (Line 12).

The crossover and mutation operators have a crucial role in the NSGA-II
mechanisms. The crossover operator aim is the creation of offsprings that inherit
(hopefully the best) features of the parents. The mutation operator introduces some
random changes in the offsprings. This latter one could be useful when we want to
spread our search in the objectives space as much as possible. For a more detailed
and technical explanation about these two operators, we again refer the reader to [13].
We want to remark here that the NSGA-II mechanisms ensure that there are no
duplicates among the offsprings and any offspring is not a duplicate of any point in
the current population. At the end of the algorithm execution, the current population
Xk is returned.

In the next subsections, we provide other details of the algorithm that are useful for
our purposes.

2.2.1 Metrics

In this section, we explain the metrics used in the NSGA-II mechanisms (computed
in the getMetrics function). In particular, these scores are used to select the parents
and the survivors.

The first one is the ranking, which leads to a splitting of the population in different
domination levels. Briefly, if a point has rank 0, it means that it is not dominated by
any point in Xk w.r.t. F . If it has rank 1, it is dominated by some of the points with
rank 0, but it is not w.r.t. any other point with rank equal to or greater than 1. In order
to obtain the ranking values, a fast sorting approach is employed, which is one of the
strength elements of the NSGA-II algorithm.

The second considered metric is crowding distance. It is useful to get an estimate
of the density of solutions surrounding a particular point in the population. Having
a high crowding distance indicates that the point is in a poorly populated area of the
objectives space, andmaintaining it in the populationmay likely lead to a spread Pareto
front. Note that for each point this metric is calculated with respect to the solutions
with the same ranking value.

We again refer the reader to the original paper [13] for the rigorous definition of
the metrics.

123

M. Lapucci et al.

2.2.2 Parents selection

In the getParents function, pairs of parents are randomly chosen among the solu-
tions in Xk . Then, considering a pair, only one of the two points is selected by binary
tournament. In this latter one, the solutions are compared in the following way.

– The point with the lowest rank is preferred.
– If the ranking value is the same for both points, the one with the highest crowding
distance is chosen.

– In the unlikely case in which the crowding distance values are equal too, a random
choice is done.

The selected point will be used with a parent chosen from another pair in the
crossover function in order to create offsprings.

This approach of comparing the solutions is also used in the getSurvivors
function.

2.2.3 Selection operation

After getting the offsprings through the crossover and mutation operators, the
new population is composed by 2N solutions. The aim of the getSurvivors func-
tion is to select and maintain the best N solutions. As in the getParents function,
the selection is based on the ranking and the crowding distance.

– The set composed by the 2N points is initially sorted based on the ranking.
– The solutions with the same rank are sorted based on the crowding distance.
– The first N points are chosen as the best ones.

3 Non-dominated sortingmemetic algorithm

In this section, we introduce a novel memetic algorithm for bound-constrained MOO
problems, which we call Non-dominated Sorting Memetic Algorithm (NSMA). We first
show and describe the algorithmic scheme. Then, we formally introduce the Front
Multi-Objective Projected Gradient (FMOPG) algorithm, which is the descent method
used within the NSMA and for which we also provide a rigorous theoretical analysis.

3.1 Algorithmic scheme

The scheme of NSMA is reported in Algorithm 6. Basically, the structure of the pro-
posed algorithm is similar to that of NSGA-II, from which we also inherit all the
genetic operators. The main differences between the two methods are constituted by
three new operations:

– getSurrogateBounds (Line 9);
– getCrowdingDistanceThreshold (Line 14);
– optimizePopulation (Line 17).

In the next subsections, we give a detailed description of these three new functions.

123

Amemetic procedure for global multi-objective optimization

Algorithm 6: Non-dominated Sorting Memetic Algorithm

1 Input: F : R
n → R

m , Ω = {x ∈ R
n |x ∈ [l, u]} feasible set, X0 ⊂ Ω , N population size, sh ∈ R

+
0 ,

q ∈ [0, 1], nopt ∈ N
+, {εt } ⊂ R

+
0 decreasing sequence.

2 k = 0
3 t = 0

4 X̂0 = X0

5 R̂0, Ĉ0 = getMetrics(X̂0)

6 X0, R0, C0 = getSurvivors(X̂0, R̂0, Ĉ0, N)
7 while a stopping criterion is not satisfied do
8 Pk = getParents(Xk , Rk , Ck)
9 ls

k , us
k = getSurrogateBounds(Xk , l, u, sh)

10 Ok = crossover(Pk , ls
k , us

k)

11 Õk = mutation(Ok , ls
k , us

k)

12 X̂k+1 = Xk ∪ Õk

13 R̂k+1, Ĉk+1 = getMetrics(X̂k+1)

14 c̄k+1 = getCrowdingDistanceThreshold(X̂k+1, R̂k+1, Ĉk+1, q)

15 Xk+1, Rk+1, Ck+1 = getSurvivors(X̂k+1, R̂k+1, Ĉk+1, N)
16 if k mod nopt = 0 then
17 Xk+1, Rk+1, Ck+1 = optimizePopulation(F(·), Ω, Xk+1, Rk+1,Ck+1, c̄k+1, εt , N)
18 t = t + 1

19 k = k + 1

20 return Xk

3.1.1 Estimating surrogate bounds

When the addressed problem is characterized by a particularly large feasible region
(l � u), the NSGA-II algorithm turns out to be slow at obtaining a good approxi-
mation of the Pareto front. This issue occurs because of the crossover and, above
all, of the mutation operator. Random mutations over a large search area lead from
the very first iterations to a population which is overly disperse and far from optimal-
ity. In such a scenario, even the effectiveness of the crossover operator might be
compromised: some parents might have extremely bad features. As a consequence,
NSGA-II may exhibit a performance slowdown.

In NSMA, this issue is solved using surrogate bounds for the crossover and the
mutation operators instead of the original ones. These bounds are obtained using the
getSurrogateBounds function, which we report in Algorithm 7. The surrogate
bounds are computed using the current population and a shift value sh . This latter
parameter is employed to progressively enlarge the region where the population can
be distributed: a greater value leads to a bigger enlargement.

Ideally, the exploration starts considering only a small portion of the feasible area,
which is defined by the initial population and the shift value sh . In this way, the points
cannot be moved by the crossover and the mutation operators too far away in
the feasible set. At each following iteration, new surrogate bounds are computed to
enlarge the search space.

123

M. Lapucci et al.

Algorithm 7: getSurrogateBounds

1 Input: Xk ⊂ Ω , l, u ∈ R
n lower and upper bounds, sh ∈ R

+
0 .

2 for i = 1, . . . , n do

3 (ls
k)i = max

{

li , min
x∈Xk

{xi } − sh

}

4 (us
k)i = min

{

ui , max
x∈Xk

{xi } + sh

}

5 return ls
k , us

k

After a number of iterations, it may happen that the surrogate bounds cover a bigger
region than the one defined by the original bounds. In such case, the search goes on
over the entire feasible set.

3.1.2 Identifying exploration candidates

Similarly as in memetic approaches for scalar optimization, performing local searches
starting from each point in a population usually turns out to be inefficient. In fact, a
great computational effort is required to optimize many points that in the end do not
lead to good solutions.

In the case of NSMA, onemay think of only performing local searches for the rank-0
points. However, this idea is inefficient too: during the last iterations, most, if not all,
the points are likely to be associated with a ranking value equal to 0. Furthermore,
many of these points could be in a high density area of the Pareto front and, therefore,
optimizing all of them could be a waste of computational time.

The issue is solved by choosing to optimize the rank-0 points associated with an
high crowding distance. As already remarked in Sect. 2.2.1, such points are in a poorly
populated area of the objectives space. Therefore, optimizing them, we still contribute
to obtain a better approximation of the Pareto front, since they are rank-0 points, and,
at the same time, we have the possibility to populate a low density area, leading to a
better spread Pareto front.

Algorithm 8: getCrowdingDistanceThreshold

1 Input: X̂k+1 ⊂ Ω , R̂k+1, Ĉk+1 ∈ R
|X̂k+1| metrics vectors, q ∈ [0, 1].

2 C̄k+1 = {ĉ p ∈ Ĉk+1|r̂ p = 0 ∧ ĉ p < +∞}
3 if C̄k+1 �= ∅ then
4 Let c̄k+1 be the q–quantile of the set C̄k+1

5 else
6 c̄k+1 = +∞
7 return c̄k+1

Through the getCrowdingDistanceThreshold function, which we report
in Algorithm 8, we retrieve the q–quantile of the crowding distances of the rank-0

123

Amemetic procedure for global multi-objective optimization

points in X̂k+1. We denote by c̄k+1 this quantity: only the rank-0 points associated
with a crowding distance greater than or equal to c̄k+1 will be optimized through the
FMOPG algorithm. Smaller values for the parameter q lead to the optimization of a
greater number of points.

As stated in [13], some points will be associated to a crowding distance equal to
+∞. These points are considered the extreme solutions of the Pareto front w.r.t. a
specific objective function. For this reason, they are always used as starting solutions
for local searches, since they could lead to a wider Pareto front approximation.

3.1.3 Local searches by multi-objective descent

In the optimizePopulation function, which we report in Algorithm 9, the
FMOPG method is employed to refine the population by performing local searches.
This function is the core of our memetic approach: it allows to combine the typical
features of descent methods with the genetic operators of NSGA-II.

Algorithm 9: optimizePopulation

1 Input: F : R
n → R

m , Ω feasible closed and convex set, Xk+1 ⊂ Ω , Rk+1, Ck+1 ∈ R
|Xk+1|

metrics vectors, c̄k+1 crowding distance threshold, εt ∈ R
+
0 , N population size.

2 X̂k+1 = Xk+1
3 for p = 1, . . . , |Xk+1| do
4 for I ∈ 2{1,...,m} do
5 if x p is such that

a. r p = 0, cp ≥ c̄k+1

b. x p ∈ X̂ I
k+1

c. θ I
Ω(x p) < 0

6 then
7 X̃ p = FMOPG(F(·), Ω, I , X̂ I

k+1, x p, εt)

8 X̂k+1 = X̂k+1 ∪ X̃ p

9 R̂k+1, Ĉk+1 = getMetrics(X̂k+1)

10 Xk+1, Rk+1, Ck+1 = getSurvivors(X̂k+1, R̂k+1, Ĉk+1, N)
11 return Xk+1, Rk+1, Ck+1

In order to be optimized through FMOPG w.r.t. a subset of indices of objectives
I ⊆ {1, . . . , m}, a point x p must satisfy the following conditions:

– Its rank must be 0 and its crowding distance must be greater than or equal to c̄k+1
(Line 5a). These requirements are already discussed in Sect. 3.1.2.

– It must belong to X̂ I
k+1, which is the set of mutually non-dominated points w.r.t.

FI contained in X̂k+1 (Line 5b). A formal definition of this set can be found in
Sect. 2.1. Trying to optimize points which are not contained in X̂ I

k+1 could be
useless, since we have no guarantee to reach a non-dominated point w.r.t. FI .

– It must not be Pareto-stationary w.r.t. FI (Line 5c).

If the point satisfies all these requirements, it is used as starting solution in the FMOPG
algorithm. Along with it, the set X̂ I

k+1 is used as input for the algorithm. FMOPG

123

M. Lapucci et al.

returns the set of produced solutions, which are collected in the set X̃ p and inserted
in the set X̂k+1.

Lastly, the new population X̂k+1 is reduced in order to have exactly N survivors.
This last operation is performed through the getMetrics (Sect. 2.2.1) and the
getSurvivors (Sect. 2.2.3) functions of the NSGA-II algorithm.

3.2 The front multi-objective projected gradient algorithm

The Front Multi-Objective Projected Gradient (FMOPG) algorithm is the descent
method used in our memetic approach. In particular, it is a variant of the MOPGmethod
(Algorithm 3).

3.2.1 Algorithmic scheme

We report the scheme of FMOPG in Algorithm 10.

Algorithm 10: Front Multi-Objective Projected Gradient
1 Input: F : R

n → R
m , Ω feasible closed and convex set, I ⊆ {1, . . . , m}, X0 ⊂ Ω , x0 ∈ X0.

2 k = 0
3 while xk is not Pareto-stationary w.r.t. FI do
4 Compute

θ I
Ω(xk) = min

z∈Ω‖z−xk‖≤1

max
j∈I

∇ f j (xk)T (z − xk)

5 Let d I
Ωk ∈ V I

Ω(xk) be the direction associated with θ I
Ω(xk)

6 αk = B-FALS(F(·), Ω, I , X I
k , xk , d I

Ωk , θ I
Ω(xk))

7 xk+1 = xk + αkd I
Ωk

8 Xk+1 = Xk ∪ {xk+1}
9 k = k + 1

10 return sequence {xk }

The main difference between FMOPG and MOPG is the following: while in the
original algorithm the current point xk is only optimized w.r.t. itself, in FMOPG it is
also w.r.t. the set of points in which it is contained. At each iteration, the constrained
steepest descent direction d I

Ωk at the current point xk w.r.t. the subset of indices of
the objectives I is found (Line 5). Then, in Line 6 a step size αk is calculated by the
B-FALS procedure (Algorithm 4). Given the direction and the step size, a new point
xk+1 is obtained (Line 7). This latter one is inserted in the set Xk , leading to a new set
Xk+1 (Line 8).

The FMOPG algorithm iterates until the current solution xk is Pareto-stationary
w.r.t. FI . At the end, the method returns the sequence of points {xk} generated during
the iterations. Indeed, considering the stopping conditions of B-FALS, we have no
guarantee that, for all k, the point xk+1 dominates xk w.r.t. FI . So, every point produced
by FMOPG could be useful to obtain good and spread Pareto front approximations.

123

Amemetic procedure for global multi-objective optimization

Finally, note that the FMOPG algorithm is called by the optimizePopulation
function with an additional parameter εt (Line 7 of Algorithm 5). In fact, FMOPG is
executed using ε-Pareto-stationarity as stopping condition. In NSMA (Algorithm 6),
we consider a decreasing sequence {εt } ⊂ R

+
0 . So, during the iterations, we get closer

and closer to the Pareto-stationarity.

3.2.2 Algorithm analysis

In this section, we provide a rigorous analysis of the FMOPG algorithm from a theoret-
ical perspective. The following analysis is crucial to state the convergence properties
of FMOPG. These latter ones are crucial to guarantee that local searches within NSMA
stop in finite time and, thus, the overall algorithm is well-defined.

Before proceeding, we need to state an assumption.

Assumption 1 Let I ⊆ {1, . . . , m}, X0 ⊂ Ω be a set of feasible points and x0 ∈ X0.
There does not exist a point y0 ∈ X0 that dominates x0 w.r.t. FI , i.e. x0 ∈ X I

0 .

This assumption is reasonable since a point x p to be optimized through FMOPG
must be non-dominated w.r.t. FI (Sect. 3.1.3).

We begin characterizing the points produced by the FMOPG algorithm.

Proposition 2 Consider a generic iteration k of FMOPG. Let I ⊆ {1, . . . , m}, Xk

be a set of feasible points and xk ∈ Xk. Assume that xk is not dominated by any
point in Xk w.r.t. FI . Then, B-FALS returns a step size αk > 0 such that the point
xk+1 = xk + αkd I

Ωk is feasible and not dominated by any point in Xk+1 w.r.t. FI .

Proof The B-FALS algorithm is performed from xk ∈ X I
k , with θ I

Ω(xk) < 0, along
a constrained steepest descent direction d I

Ωk . Then, from Proposition 1, B-FALS
terminates in a finite number of steps and returns a step size αk > 0 such that the point
xk+1 = xk + αkd I

Ωk has the following properties:

– xk+1 ∈ Ω;
– xk+1 is not dominated by any other point in Xk w.r.t. FI .

Since Xk+1 = Xk ∪ {xk+1}, the assertion is finally proved. ��
Remark 1 Since the point xk+1 induced by the step size produced by B-FALS is not
dominated by any point in Xk+1 w.r.t. FI , we can easily conclude that the new point
is also not dominated w.r.t. all the objectives.

Given Proposition 2, we can state the following corollary.

Corollary 1 Let Assumption 1 hold with I ⊆ {1, . . . , m}, the set X0 and the point x0.
Then, the sequence of sets {Xk} and the sequence of points {xk} generated by FMOPG
are such that for all k = 0, 1, . . ., xk is feasible and not dominated by any point in Xk

w.r.t. FI .

Proof The assertion straightforwardly follows if the assumptions of Proposition 2 are
satisfied at every iteration k of the algorithm.

When k = 0, this is guaranteed by Assumption 1. The case of a generic iteration k
simply follows by induction from Proposition 2 itself. ��

123

M. Lapucci et al.

Before proceeding with the convergence analysis, we make a further reasonable
assumption. This hypothesis is similar to Assumption 1 in [10]. However, in this
context, Assumption 1 and bound constraints must be also taken into account.

Assumption 2 Assumption 1 holds and x0 is also such that:

– x0 is not Pareto-stationary w.r.t. FI ;
– the set L(x0) = ⋃m

j=1{x ∈ Ω : f j (x) ≤ f j (x0)} is compact.

This assumption is stronger than the one required to prove convergence of the MOSD
method (Lemma 2). However, as also observed in [10] for FALS (Algorithm 2), this
is reasonable since the second stopping criterion of B-FALS is weaker than the one
used in ALS (Algorithm 1).

Proposition 3 Let Assumption 2 hold with I ⊆ {1, . . . , m}, the set X0 and the point
x0. Let {xk} be the sequence of points generated by FMOPG. Then {xk} admits limit
points and every limit point is Pareto-stationary considering the objectives f j , with
j ∈ I .

Proof Firstly, we prove that the sequence {xk} admits limit points. Since x0 ∈ Xk

for all k, Corollary 1 guarantee that, for each k, xk ∈ Ω and there exists an index
j(xk) ∈ I such that

f j(xk)(xk) ≤ f j(xk)(x0).

So,

xk ∈ {x ∈ Ω : f j(xk)(x) ≤ f j(xk)(x0)}

and, therefore,

xk ∈ L(x0), ∀k.

Assumption 2 assures that the sequence {xk} is bounded. Hence, this latter one admits
limit points: we can consider a subsequence K ⊆ {1, 2, . . .} such that

lim
k→∞
k∈K

xk = x̄ .

We recall that x̄ is Pareto-stationary w.r.t. FI if and only if θ I
Ω(x̄) = 0. By contra-

diction, we assume that x̄ is not Pareto-stationary w.r.t. FI : there exists ε̄ > 0 such
that

θ I
Ω(xk) ≤ −ε̄ < 0, ∀k ∈ K . (8)

Next, we want to prove the following statement:

lim
k→∞
k∈K

αkθ
I
Ω(xk) = 0. (9)

123

Amemetic procedure for global multi-objective optimization

Again, by contradiction, we assume that the assertion is not true: there exists a subse-
quence K̄ ⊆ K and η̄ > 0 such that

αkθ
I
Ω(xk) ≤ −η̄ < 0, ∀k ∈ K̄ . (10)

Recalling Proposition 1 and Corollary 1, for all k ∈ K̄ , B-FALS returns in a finite
number of iterations a step size αk such that

xk+1 = xk + αkd I
Ωk ∈ Ω (11)

and

FI (yk) + 1βαkθ
I
Ω(xk) �< FI (xk+1),

for all yk ∈ Xk . By using Eq. (10), we obtain that, for all k ∈ K̄ and for all yk ∈ Xk ,

FI (yk) − 1βη̄ �< FI (xk+1). (12)

Since β > 0 and η̄ > 0, we have that −βη̄ < 0.
Since Xk = X0 ∪ {x1} ∪ · · · ∪ {xk} and x0 ∈ X0, it simply follows that, for all k ∈ K̄ ,

FI (x0) − 1βη̄ �< FI (xk+1).

Therefore, for all k ∈ K̄ , there exists jk ∈ I such that

f jk (x0) > f jk (x0) − βη̄ ≥ f jk (xk+1),

and, then, considering also Eq. (11),

xk+1 ∈ L(x0). (13)

Moreover, let us consider k1, k2 ∈ K̄ , with k1 < k2. By the instructions of the
algorithm, we know that xk1+1 ∈ Xk2 . Thus, from Eq. (12), we know that

FI (xk1+1) − 1βη̄ �< FI (xk2+1)

Therefore, for any pair k1, k2 ∈ K̄ , with k1 < k2, there exists jk2 ∈ I such that

f jk2
(xk1+1) − βη̄ ≥ f jk2

(xk2+1). (14)

Equations(13) and (14) imply that we have an infinite sequence {FI (xk+1)}k∈K̄ , with
xk+1 ∈ L(x0), where any pair of points is at a distance not smaller than βη̄ from each
other. Thus, the set

Z = {z ∈ R
m | z = F(xk+1), xk+1 ∈ L(x0), k ∈ K̄ }

123

M. Lapucci et al.

is not compact. This last statement and the continuity of F contradict Assumption 2,
since the image of a compact set under a continuous map should be compact. Thus,
Equation (9) holds.

Recalling Eq. (8), from Equation (9) we obtain the following statement:

lim
k→∞
k∈K

αk = 0.

Given this limit, we can consider sufficiently large values for k ∈ K such that

αk <
αk

δ
≤ 1. (15)

Since Ω is convex and d I
Ωk is a feasible direction by construction, Eq. (15) implies

that the point xk + (αk/δ)d I
Ωk ∈ Ω . Therefore, for sufficiently large values for k ∈ K ,

the stopping conditions of B-FALS imply that there exists a point yk ∈ Xk such that

FI (yk) + 1β
αk

δ
θ I
Ω(xk) < FI

(
xk + αk

δ
d I
Ωk

)
. (16)

Considering Corollary 1 and Eq. (16) respectively, we have that an index j(xk) ∈ I
exists such that

f j(xk)(xk) + β
αk

δ
θ I
Ω(xk) ≤ f j(xk)(yk) + β

αk

δ
θ I
Ω(xk)

and

f j(xk)(yk) + β
αk

δ
θ I
Ω(xk) < f j(xk)

(
xk + αk

δ
d I
Ωk

)
.

Since the set I is finite, we can consider a subsequence K̄ ⊆ K such that, for suffi-
ciently large values for k ∈ K̄ , j(xk) = ĵ and, combining the two above inequalities,

f ĵ

(
xk + αk

δ
d I
Ωk

)
− f ĵ (xk) > β

αk

δ
θ I
Ω(xk).

Using the Mean-value Theorem, we have that

f ĵ

(
xk + αk

δ
d I
Ωk

)
− f ĵ (xk) = αk

δ
∇ f ĵ (ξk)

T d I
Ωk,

with

ξk = xk + tk
αk

δ
d I
Ωk, tk ∈ (0, 1).

Then, we can write

∇ f ĵ (ξk)
T d I

Ωk > βθ I
Ω(xk),

123

Amemetic procedure for global multi-objective optimization

from which we can state that

∇ f ĵ (xk)
T d I

Ωk +
[
∇ f ĵ (ξk) − ∇ f ĵ (xk)

]T
d I
Ωk > βθ I

Ω(xk).

Since ĵ ∈ I , we have that

θ I
Ω(xk) = max

j∈I
∇ f j (xk)

T d I
Ωk ≥ ∇ f ĵ (xk)

T d I
Ωk

and

(1 − β)θ I
Ω(xk) +

[
∇ f ĵ (ξk) − ∇ f ĵ (xk)

]T
d I
Ωk > 0.

Using Eq. (8), we obtain

−(1 − β)ε̄ +
[
∇ f ĵ (ξk) − ∇ f ĵ (xk)

]T
d I
Ωk > 0.

By taking the limit for k → ∞, k ∈ K̄ , recalling the continuity of JF , the boundedness
of d I

Ωk and that αk → 0, we get that

−(1 − β)ε̄ > 0.

Since 1−β > 0 and ε̄ > 0, we get the contradiction. So, we prove that the limit point
x̄ of the sequence {xk} is Pareto-stationary w.r.t. FI . ��

Finally, we prove that, when a stopping criterion based on the ε-Pareto-stationarity
is considered, FMOPG is well defined, i.e., it terminates in a finite number of iterations.

Proposition 4 Let Assumption 2 hold with I ⊆ {1, . . . , m}, the set X0 and the point
x0. Let ε > 0. Then, the FMOPG algorithm finds in a finite number of steps a point xk

which is ε-Pareto-stationary w.r.t. FI .

Proof We assume, by contradiction, that FMOPG produces an infinite sequence of
points {xk} such that, for all k, xk is not ε-Pareto-stationary w.r.t. FI . Since Assump-
tion 2 holds, Proposition 3 ensures that there exists a subsequence K ⊆ {1, 2, . . .}
such that

lim
k→∞
k∈K

xk = x̄

and x̄ is Pareto-stationary w.r.t. FI , i.e., recalling Definition 3, for all z ∈ Ω such that
‖z − x̄‖ ≤ 1 we have that

max
j∈I

∇ f j (x̄)T (z − x̄) ≥ 0.

123

M. Lapucci et al.

Given the continuity of the max operator and JF , we can state that

lim
k→∞
k∈K

max
j∈I

∇ f j (xk)
T (z − xk) ≥ 0 > −ε.

This last statement implies that, for sufficiently large values for k ∈ K , for all z ∈ Ω

such that ‖z − xk‖ ≤ 1, the following equation has to hold:

max
j∈I

∇ f j (xk)
T (z − xk) > −ε,

i.e. xk is ε-Pareto-stationary w.r.t. FI . Therefore, we get the contradiction and the
assertion is proved. ��

4 Computational experiments

In this section,we provide the results of thorough computational experiments, focusing
on the comparison of NSMAwith the main state-of-the-art methods in diverse settings.
The code of all the algorithms was written in Python3 1. In addition, all the tests
were run on a computer with the following characteristics: Ubuntu 20.04, Intel Xeon
Processor E5-2430 v2 6 cores 2.50 GHz, 16 GB RAM.We used the Gurobi Optimizer
(Version 9) to solve instances of Problem (6).

4.1 Settings

In this section,we report detailed information on the settings used for all the considered
algorithms in our experiments, the metrics and the problems used to carry out the
comparison.

4.1.1 Metrics

In this section, we provide a little description of the metrics and tools used to compare
the algorithms.

The first three metrics are the ones introduced in [12]: purity, Γ -spread and Δ-
spread. These metrics are widely used to evaluate the performance of multi-objective
optimization algorithms.

We recall that the purity metric measures the quality of the generated front, i.e., how
effective a solver is at obtaining non-dominated points w.r.t. its competitors. In detail,
the purity value indicates the ratio of the number of non-dominated points that a solver
obtained over the number of the points produced by that solver. Clearly, a higher value
is related to a better performance. In order to calculate the purity metric, we need a
reference front to establish whether a point is dominated or not. In our experiments, we

1 The implementation code of the NSMA algorithm can be found at https://github.com/pierlumanzu/nsma
[42].

123

https://github.com/pierlumanzu/nsma

Amemetic procedure for global multi-objective optimization

considered as the reference front the one obtained by combining the fronts retrieved
by all the considered algorithms and by discarding the dominated points.

The spread metrics are equally essential, since they measure the uniformity of the
generated fronts in the objectives space. The Γ -spread is defined as the maximum
�∞ distance in the objectives space between adjacent points of the Pareto front, while
the Δ-spread basically measures the standard deviation of the �∞ distance between
adjacent Pareto front points. As opposed to the purity, lowvalues for the spread metrics
are associated with good performance.

In addition to the previous metrics, we used theND-pointsmetric, introduced in [9].
This score substantially indicates the number of non-dominated points obtained by a
solver w.r.t. the reference front. We consider this metric as important as the purity one:
in particular, we think that these two metrics should be considered complementary.

Lastly, we employed the performance profiles introduced in [14] to carry out the
comparison. Performance profiles are a useful tool to appreciate the relative perfor-
mance and robustness of the considered algorithms. The performance profile of a
solver w.r.t. a certain metric is the (cumulative) distribution function of the ratio of
the score obtained by a solver over the best score among those obtained by all the
considered solvers. In other words, it is the probability that the score achieved by a
solver in a problem is within a factor τ ∈ R of the best value obtained by any of the
solvers in that problem. For a more technical explanation, we refer the reader to [14].
Note that performance profiles w.r.t. purity and ND-points were produced based on
the inverse of the obtained values, since the metrics have increasing values for better
solutions.

4.1.2 Algorithms and hyper-parameters

The first two algorithms we chose for the comparisons are, naturally, the NSGA-II
[13] and the FPGA [10] procedures, described in Sect. 2.2 and Appendix A, respec-
tively. We consider these methods as representatives for EAs and descent methods
and, thus, NSMA most direct competitors. The parameters values for both algorithms
were chosen according to the reference papers. Like NSMA, in NSGA-II the number
N of solutions in the population was fixed to 100.

Then, the values for the parameters of NSMA were chosen based on some prelimi-
nary experiments on a subset of the tested problems, which we do not report here for
the sake of brevity. The values are:

– N = 100;
– sh = 10;
– q = 0.9;
– nopt = 5;
– in B-FALS α0 = 1, β = 10−4, δ = 0.5.

We also consider in the experiments the DMS algorithm [12], a multi-objective
derivative-free method, inspired by the search/poll paradigm of direct-search method-
ologies of directional type. DMSmaintains a list of non-dominated points, from which
the new iterates or poll centers are chosen. The parameters for this method were set

123

M. Lapucci et al.

Table 1 Problems used in the computational experiments

PROBLEM n m

CEC09_1, CEC09_2, CEC09_3, 5, 10, 20, 30, 2

CEC09_4, CEC09_5, CEC09_6, CEC09_7 40, 50, 100, 200

CEC09_8, CEC09_9, CEC09_10 5, 10, 20, 30, 3

40, 50, 100, 200

ZDT_1, ZDT_2, ZDT_3, ZDT_4 2, 5, 10, 20, 30, 2

40, 50, 100, 200

MOP_1 1 2

MOP_2 2, 5, 10, 20, 30, 2

40, 50, 100, 200

MOP_3 2 2

MAN 2, 5, 10, 20, 30, 2

40, 50, 100, 200

according to the reference paper and the code available online (http://www.mat.uc.pt/
dms).

In most of the computational experiments, for each algorithm and problem we ran
the test for up to 2 minutes. A stopping criterion based on a time limit is the fairest way
to compare such structurally different algorithms.Obviously, we also took into account
other specific stopping criteria indicating that a certain algorithm cannot improve the
solutions anymore.

NSMA and NSGA-II are non-deterministic algorithm. Therefore, we decided to run
them 5 times on every problem, with different seeds for the pseudo-random number
generator. Every execution was characterized by the same time limit (2 minutes).
The five generated fronts were compared based on the purity metric and only the
best one was chosen as the output of NSMA/NSGA-II. In this context, the reference
front was the combination of the fronts of the 5 executions. Executing 5 runs lets
NSMA/NSGA-II reduce its sensibility to the seed used for its random operations. On
the other side, FPGA and DMS are deterministic and, then, they were executed once.

4.1.3 Problems

The problems constituting the benchmark of the computational experiments are listed
in Table 1. In this benchmark, we considered problems whose objective functions
are at least continuously differentiable almost everywhere. If a problem is character-
ized by singularities, we counted these latter ones as Pareto-stationary points. All the
constraints are defined by finite lower and upper bounds.

The set is mainly composed by the CEC09 problems [56], the ZDT problems [57]
and the MOP problems [32]. In particular, some of the CEC09 and the ZDT problems
have particularly difficult objective functions. Hence, these problems are particularly
interesting for the analysis of the behavior of the algorithms with hard tasks.

123

http://www.mat.uc.pt/dms
http://www.mat.uc.pt/dms

Amemetic procedure for global multi-objective optimization

We also defined a new test problem with convex objective functions: we refer to it
as the MAN problem. Its formal definition is the following:

min
x∈Rn

f1(x) = ∑n
i=1(xi − i)2/n2

f2(x) = ∑n
i=1 e−xi + xi

s.t. x ∈ [−104, 104].

Inspired by Custódio et al. [12], for each problem the initial points were uniformly
selected from the hyper-diagonal defined by the bound constraints. Furthermore, the
number of initial points is equal to the dimension n of the problem. Since in theMOP_1
problem n = 1, only in this case we started the tests from one feasible point, namely,
x = 0.

4.2 Experimental comparisons between NSGA-II and FPGA

Before turning to the evaluation of the NSMA, we carry out a preliminary study.
Evolutionary algorithms and descent methods have their own drawbacks. In par-

ticular, EAs do not have theoretical convergence properties. In addition, they can be
very expensive in particular settings. On the other side, descent algorithms suffer on
highly non-convex problems: in these cases, they often produce sub-optimal solutions,
especially when the starting points are not chosen carefully.

In this section, we want to address two topics:

– the impact of convexity of the objective functions on the performance of these
algorithms;

– the behavior of the methods as the problem dimension n increases.

For the comparisons of this section, we only considered the NSGA-II and FPGA
algorithms, which we respectively pick as representatives for the two classes of meth-
ods.

As benchmark, we picked four problems that are scalable w.r.t. the problem dimen-
sion n and have the following features:

– the MAN problem and the ZDT_1 problem have convex objective functions;
– the CEC09_4 problem and the ZDT_3 problem have nonconvex objective func-
tions.

For these comparisons, each problem was tested for values of n ∈ {5, 10,
20, 30, 40, 50, 100, 200}.

We show the performance profiles for the two algorithms on the convex problems
in Fig. 1 and on the nonconvex problems in Fig. 2.

We can observe that in the former case the FPGA turned out to be better than
NSGA-II in terms of purity. This result reasonably comes from the fact that, in prob-
lems characterized by convex objective functions, the use of first-order information and
common descent directions lets FPGA find better solutions than NSGA-II for equal

123

M. Lapucci et al.

(a) (b) (c)

Fig. 1 Performance profiles for FPGA and NSGA-II on the convex MAN and ZDT_1 problems (for
interpretation of the references to color in text, the reader is referred to the web version of the article). a
Purity. b Γ -spread. c Δ-spread

(a) (b) (c)

Fig. 2 Performance profiles for FPGA and NSGA-II on the nonconvex CEC09_4 and ZDT_3 problems
(for interpretation of the references to color in text, the reader is referred to the web version of the article).
a Purity. b Γ -spread. c Δ-spread

computational budget. On the contrary, the FPGA algorithm was outperformed by
NSGA-II in terms of Γ -spread and Δ-spread. In this perspective, the crossover
and mutation operations of NSGA-II allow to consistently obtain spread Pareto
front approximations, while the constrained steepest partial descent directions and the
B-FALS employed by the FPGA are apparently not as effective.

As for the nonconvex case, we can observe from the purity profile that now the
FPGA obtained many points that are dominated by those produced by NSGA-II.
The results with the spread metrics are instead analogous to the convex case, with
NSGA-II outperforming FPGA. However, the performance gap in terms of Γ -spread
is even larger, while it is less marked for the Δ-spread.

In order to assess the performance of the algorithms as the problem dimension n
increases, in Tables 2 and 3 we show in detail the metrics values achieved by the two
methods on a convex (MAN) and a nonconvex (CEC09_4) problems. Again, the table
shows the overall strength of NSGA-II w.r.t. the Δ-spread metric.

As for theΓ -spread, in theMANproblemwe can observe the great results achieved
by FPGA: it outperformed NSGA-II considering values of n equal to or greater than
20. In these cases, the constrained steepest partial descent directions and the B-FALS
algorithm turned out to be helpful in exploring the extreme regions of the objectives

123

Amemetic procedure for global multi-objective optimization

Table 2 Metrics values obtained by FPGA and NSGA-II in the MAN problem with n =
5, 10, 20, 30, 40, 50, 100, 200

n MAN (F convex)

Purity Γ -spread Δ-spread

FPGA NSGA-II FPGA NSGA-II FPGA NSGA-II

5 0.984 0.98 1.839 0.809 1.928 0.69

10 0.993 0.61 6.241 1.377 1.791 0.547

20 1.0 0.05 16.65 49.983 1.59 0.754

30 1.0 0.0 2.318 89.577 1.353 0.724

40 1.0 0.0 36.716 279.445 1.458 0.906

50 1.0 0.0 5.868 412.791 1.231 0.889

100 1.0 0.0 21.854 3894.709 0.95 1.004

200 1.0 0.0 62.971 9283.624 0.824 0.906

The values marked in bold are the best obtained in a specific problem. Each of them is related to a specific
score

Table 3 Metrics values obtained by FPGA and NSGA-II in the CEC09_4 problem with n =
5, 10, 20, 30, 40, 50, 100, 200

n CEC09_4 (F non-convex)

purity Γ -spread Δ-spread

FPGA NSGA-II FPGA NSGA-II FPGA NSGA-II

5 0.0 1.0 0.419 0.132 0.579 0.713

10 0.154 0.99 0.607 0.041 1.109 0.549

20 0.714 0.98 0.475 0.037 0.68 0.537

30 0.429 0.93 0.553 0.078 0.678 0.55

40 0.2 0.97 0.501 0.093 0.786 0.618

50 0.025 0.95 0.544 0.128 1.845 0.618

100 0.965 0.89 0.514 0.143 1.757 0.701

200 0.915 0.81 0.483 0.474 1.673 1.016

The values marked in bold are the best obtained in a specific problem. Each of them is related to a specific
score

space and, then, in finding a spread approximation of the Pareto front. In the CEC09_4
problem, it is the opposite: the genetic algorithmmanaged to obtain the best Γ -spread
values.

The purity values indicate another relevant feature of the two algorithms. In the
nonconvex case, FPGA turned out not to be capable of obtaining better points than
NSGA-II for low values of n. However, as the value of n increased, the situation
gradually changed and FPGA finally obtained better purity values w.r.t. its competitor
on the largest problems. These results remark one of the drawbacks of the EAs, i.e.,
the limited scalability. In this case, common descent directions can be very helpful for
cheaply improving the quality of the solutions.

123

M. Lapucci et al.

(a) (b)

(c) (d)

Fig. 3 Approximation of the Pareto front of the CEC09_3 problem with n = 10 (for interpretation of the
references to color in text, the reader is referred to the electronic version of the article). a NSMA. b FPGA.
c NSGA-II. d DMS

In conclusion, both algorithms have features that make them very effective in spe-
cific situations: FPGA was better in convex and/or high dimensional problems, while
NSGA-II was more effective in non-convex low dimensional ones. Furthermore, the
genetic features of NSGA-II let this latter one perform better in finding spread and
uniform Pareto fronts most of the times: this is also reflected in the spread metrics
values obtained by NSGA-II. All these facts remark once again how much trying to
join these benefits in one algorithm might be appealing.

4.3 Preliminary comparisons between NSMA and the state-of-the-art algorithms

In this section, we provide the results on two problems alongwith some first comments
about the behavior of the four algorithms. We analyzed the CEC09_3 problem with
n = 10 and the ZDT_3 problem with n = 20. The first one has particularly difficult
objective functions, while the second one is also characterized by a composite function
and a disconnected front which is not convex everywhere.We consider these problems
suitable to start an analysis about the performance of the considered algorithms.

123

Amemetic procedure for global multi-objective optimization

(a) (b)

(c) (d)

Fig. 4 Approximation of the Pareto front of the ZDT_3 problem with n = 20 (for interpretation of the
references to color in text, the reader is referred to the electronic version of the article). a NSMA. b FPGA.
c NSGA-II. d DMS

From the results on theCEC09_3 problem, shown in Fig. 3,we immediately observe
the effectiveness of our approach. Indeed, NSMA outperformed the other algorithms
in terms of ND-points, purity and Γ -spread.

NSGA-II and FPGA turned out to be the second and the third best algorithms,
respectively, with FPGA outperforming the genetic method only in terms ofΔ-spread.
Note that FPGA achieved a high value for the Γ -spread metric since it produced a
suboptimal point that is dominated and far from the reference front. This point is not
shown in the figure for graphical reasons.

NSGA-II andFPGA seemnot to be capable of spreading the search in the objectives
space. Indeed, they retrieved many points but most of them are concentrated in a small
portion of the objectives space. In this regard, NSMA was better: this result arguably
comes from the use of constrained steepest partial descent directions with points
characterized by a high crowding distance. Indeed, using descent steps at such points
lets NSMA obtain a more spread and uniform Pareto front approximation w.r.t. its
competitors.

NSMA and NSGA-II turned out to be the best algorithms on the ZDT_3 problem,
as we can observe in Fig. 4. Furthermore, they exhibited very similar performance.
It is known that NSGA-II is one of the most effective algorithms to use with the
ZDT problem class. Indeed, its genetic features allow it to escape from non-optimal

123

M. Lapucci et al.

Table 4 Metrics values achieved by the four algorithms (NSMA, FPGA, NSGA-II and DMS) on the
convex MAN problem for n = 5, 20, 50, 100

n METRIC NSMA FPGA NSGA-II DMS

5 ND-points 9 1107 2 5291

purity 0.09 0.954 0.02 0.994

Γ -spread 0.433 1.839 0.81 0.006

Δ-spread 0.597 1.928 0.69 1.003

20 ND-points 59 2649 0 0

purity 0.59 0.99 0.0 0.0

Γ -spread 6.535 68.252 51.601 9953.2

Δ-spread 0.558 1.541 0.775 N/A

50 ND-points 30 2776 0 0

purity 0.3 0.998 0.0 0.0

Γ -spread 46.41 273.518 543.112 9790.081

Δ-spread 0.509 1.222 0.893 N/A

100 ND-points 22 2258 0 0

purity 0.22 0.999 0.0 0.0

Γ -spread 278.269 1154.101 3894.709 9878.008

Δ-spread 0.521 0.952 1.005 N/A

The values marked in bold are the best obtained on a specific problem

Pareto-stationary solutions and to obtain good resultswith themost complex functions.
NSMA seems to use these features as efficiently as NSGA-II. We also observe a little
performance enhancement in terms of ND-points and purity.

The lack of these characteristics did not allow FPGA to have the same performance.
Indeed, although this algorithm obtained a good value for the purity metric, it produced
few points and it was not capable to obtain a spread and uniform Pareto front. DMS
seems not to have the same issues, having been able to properly identify two blocks
of the disconnected front. However, it performed worse than FPGA in terms of purity.

Finally, we note that NSMAwas better than all its competitors in terms ofND-points.
It was not obvious a priori to obtain such results, since, as opposed to FPGA and DMS,
NSMA considers a fixed number of solutions in the population.

4.4 Performance analysis in variable settings

In this section, we want to assess the robustness of the proposed algorithm in the
specific settingswhere, as highlighted in Sect. 4.2, genetic and descentmethods exhibit
particular struggles. In detail, we compare the performance of the four algorithms
(NSMA, FPGA, NSGA-II and DMS) in two peculiar problems already addressed
in Sect. 4.2: MAN (F convex) and CEC09_4 (F nonconvex). Moreover, we consider
the following problem dimensionalities: n = 5, 20, 50, 100.

The results for the MAN problem are shown in Fig. 5 and Table 4. For n = 5, DMS
turned out to be the best algorithm in all the metrics except for the Δ-spread. Only

123

Amemetic procedure for global multi-objective optimization

(a) (b)

(c) (d)

Fig. 5 Approximation of the Pareto front of the convexMANproblemat different dimensionalities, retrieved
by NSMA, FPGA, NSGA-II and DMS (for interpretation of the references to color in text, the reader is
referred to the electronic version of the article). a n = 5. b n = 20. c n = 50. d n = 100

the FPGA algorithm obtained a similar purity. However, observing the plot, the points
produced by the NSMA algorithm seem to be near to those obtained by DMS and FPGA.
We hence deduce that the latter algorithms produced only slightly better points.

Furthermore, in this problem NSMA outperformed the competitors in terms of Δ-
spread. Indeed, our method managed to achieve an uniform Pareto front, as opposed
to FPGA that produced most of the points in restricted areas of the objectives space.

As the value of n increases, theDMS performance getsworse and NSMA outperforms
it w.r.t. all the metrics. In particular, in these cases our method turned out to be the
best in terms of the spread metrics. For large values of n, DMS produced only a
single point that is also dominated (it is not observable in the figure since it is too
far from the reference front). In fact, the performance drop of DMS as the size of
problems grows is not unexpected: derivative-free algorithms based on searches along
coordinate directions are well known to poorly scale in general. The Δ-spread metric
is not available for DMS in these cases, since it requires at least two points to be
returned.

The performance of NSGA-II is rather poor, regardless the value of n. Arguably,
this result can be attributed to the aforementioned NSGA-II performance slowdown
occurring on problems characterized by a particularly large feasible sets (Sect. 3.1.1).
Furthermore, as also commented in Sect. 4.2, in the MAN problem NSGA-II strug-

123

M. Lapucci et al.

(a) (b)

(c) (d)

Fig. 6 Approximation of the Pareto front of the nonconvex CEC09_4 problem at different dimensionalities,
retrieved by NSMA, FPGA, NSGA-II and DMS (for interpretation of the references to color in text, the
reader is referred to the electronic version of the article). a n = 5. b n = 20. c n = 50. d n = 100

gles to explore the extreme regions of the objectives space. In this context, NSMA
particularly exploited the surrogate bounds, the constrained steepest descent direc-
tions and the optimization of the points with high crowding distance. The constrained
steepest descent directions also allowed FPGA to be the best algorithm in terms of
purity overall. However, this method poorly performed regarding the spread metrics.
Finally, for great values of n, our approach and FPGA are the only algorithms whose
purity values are not equal to 0. Only NSMAmanaged to obtain points near to the ones
of FPGA.

Regarding theCEC09_4problem,whose results are reported inFigure 6 andTable 5,
NSMAwas the algorithmwith the best overall performance: it generally obtained better
metrics values than its most important competitors (FPGA and NSGA-II). Here, the
combination of genetic operations and constrained steepest descent directions was
greatly helpful to obtain remarkable results. Indeed, the independent use of only one
of these two approaches did not lead to the same performance. In this problem, the
DMS algorithm performed poorly regardless the value for n.

In conclusion, NSMA can be considered a viable option with convex problems,
both in the low and the high dimensional cases. At the same time, our approach did
not suffer with non-convex problems, as opposed to FPGA. On the contrary, it also

123

Amemetic procedure for global multi-objective optimization

Table 5 Metrics values achieved
by the four algorithms (NSMA,
FPGA, NSGA-II and DMS) on
the nonconvex CEC09_4
problem for n = 5, 20, 50, 100

n METRIC NSMA FPGA NSGA-II DMS

5 ND-points 64 0 56 4

purity 0.64 0.0 0.56 0.024

Γ -spread 0.101 0.419 0.132 0.333

Δ-spread 0.801 0.579 0.714 1.193

20 ND-points 86 4 49 30

purity 0.86 0.571 0.49 0.234

Γ -spread 0.086 0.475 0.037 0.3

Δ-spread 0.546 0.68 0.537 1.613

50 ND-points 94 4 24 1

purity 0.94 0.025 0.24 0.071

Γ -spread 0.068 0.544 0.128 0.461

Δ-spread 0.498 1.845 0.618 0.956

100 ND-points 96 109 13 0

purity 0.96 0.948 0.13 0.0

Γ -spread 0.136 0.514 0.143 0.491

Δ-spread 0.641 1.757 0.701 1.248

The values marked in bold are the best obtained on a specific problem

outperformed NSGA-II, which is known to be a particularly suitable algorithm to
use in these cases but struggles as the dimensionality of the problem grows.

4.5 Overall comparison

In this last section of computational experiments, we provide the performance profiles
for the four considered algorithms on the entire benchmark of problems, listed in
Table 1. The profiles are shown in Fig. 7.

The performance profiles remark once again the benefits of using our proposed
approach. Regarding the ND-points, NSMA proved to be the most robust algorithm.
This result was not obvious: we remind that our method, as opposed to FPGA and
DMS, considers a fixed number of solutions in the population.

Another interesting result is related to the purity metric: NSMA is again the clear
winner. In problemswith complicated objective functions, local optimization of points
in the NSMA mechanisms could result in a waste of computational time. From the
results, however, we deduce that the converse is true: the combined use of constrained
steepest descent directions and genetic operations allowed NSMA to achieve the best
performance.

The proposedmethod also outperformed the other ones in terms ofΓ -spread, while
its performance is very similar to the one of NSGA-II in terms of Δ-spread. We can
conclude that our approach is able to effectively obtain spread and uniform Pareto
front approximations. At the same time, we deduce that the same cannot be said for
the FPGA, which turned out to be the worst method w.r.t. the spread metrics. However,

123

M. Lapucci et al.

(a) (b)

(c) (d)

Fig. 7 Performance profiles for the NSMA, FPGA, NSGA-II and DMS algorithms on the CEC, ZDT,
MOP and MAN problems, run with a time limit of 2 minutes (for interpretation of the references to color
in text, the reader is referred to the electronic version of the article). a ND-points. b purity. c Γ -spread. d
Δ-spread

the descent-based algorithm was the second best in terms of purity, outperforming
NSGA-II. In general, DMS was not effective overall on the considered benchmark.

Lastly, we tested the four algorithms considering a time limit of 30 s for the exper-
iments: the results can be seen in Fig. 8. Our aim is to observe the effectiveness of the
methods at the first iterations.

Considering the ND-points and the purity metrics, we observe that the differences
between our approach and the other algorithms are noweven clearer,while the situation
is not changed in terms of Γ -spread. Regarding the Δ-spread metric, NSGA-II was
more effective than the other algorithms. However, our method was still competitive,
as in terms of this metric it was the second most robust algorithm and it outperformed

123

Amemetic procedure for global multi-objective optimization

(a) (b)

(c) (d)

Fig. 8 Performance profiles for the NSMA, FPGA, NSGA-II and DMS algorithms on the CEC, ZDT,
MOP and MAN problems, run with a time limit of 30 s (for interpretation of the references to color in text,
the reader is referred to the electronic version of the article). a ND-points. b purity. c Γ -spread. d Δ-spread

FPGA and DMS.We can conclude that NSMA turned out to be also effective considering
a smaller time limit: from the very first iterations, our approach was capable to obtain
good, wide and uniform Pareto front approximations.

5 Conclusions

In this paper, we considered smooth multi-objective optimization problems subject
to bound constraints. After a review of the existing literature, we listed and com-
mented the main state-of-the-art approaches designed to approximate the Pareto front

123

M. Lapucci et al.

of such problems, alongwith their benefits and drawbacks. In particular, we focused on
NSGA-II [13], which is the most popular genetic algorithm, and on FPGA, which is
a variant of the gradient-based descent method introduced in [10], capable of handling
bound constraints. A detailed definition of FPGA, along with convergence properties,
is provided in Appendix A. In a preliminary study, we compared these two algorithms
trying to emphasize their strengths and weaknesses.

We then focused on the design of a memetic algorithm, whose aim is to combine
the good features of both the aforementioned algorithms. We call this new method
Non-dominated Sorting Memetic Algorithm (NSMA). In this procedure, we exploit the
genetic operations of NSGA-II and the tools typical of gradient-based descent meth-
ods, such as the steepest descent directions and line searches. In particular, we employ
a new descent method, called Front Multi-Objective Projected Gradient (FMOPG),
which is a front-based variant of the original MOPG firstly introduced in [16]. For
FMOPG, we proved properties of convergence to Pareto stationarity for the sequence
of produced points.

Moreover, results of thorough computational experiments in which we compared
our method with main state-of-the-art algorithms, including FPGA and NSGA-II, are
provided. These results show that NSMA can consistently outperform its competitors
in terms of popular metrics for multi-objective optimization. Our approach turned out
to be highly effective in any considered setting.

Acknowledgements We are grateful to the editor and the anonymous referees for their precious com-
ments that helped us to improve the quality of this manuscript. We would also like to thank
Dr. Guido Cocchi, Dr. Giampaolo Liuzzi and Prof. Stefano Lucidi for the useful discussions.

Funding Open access funding provided byUniversità degli Studi di Firenzewithin the CRUI-CAREAgree-
ment. The authors declare that no funds, grants, or other support were received during the preparation of
this manuscript.

Data availability statement Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Declarations

Conflict of interests The authors have no relevant financial or non-financial interests to disclose.

Code availability statement The full code of the experiments presented in this paper was made available
for review. The implementation code of the NSMA algorithm proposed in this paper can be found at https://
github.com/pierlumanzu/nsma (DOI: 10.5281/zenodo.7299857).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://github.com/pierlumanzu/nsma
https://github.com/pierlumanzu/nsma
http://creativecommons.org/licenses/by/4.0/

Amemetic procedure for global multi-objective optimization

Appendix A: The Front Projected Gradient Algorithm

In this appendix, we describe the adaptation of the FSDA algorithm [10] to box-
constrained optimization problems, whichwe callFront Projected Gradient Algorithm
(FPGA). We initially report the scheme of the new adaptation. Then, in the remainder
of the appendix, we provide a rigorous theoretical analysis.

A.1 Algorithmic scheme

We report the scheme of FPGA in Algorithm A1.

Algorithm A1: Front Projected Gradient Algorithm
1 Input: F : R

n → R
m , Ω feasible closed and convex set, X0 set of feasible non-dominated points

w.r.t. F .
2 k = 0
3 while a stopping criterion is not satisfied do
4 X̂k = Xk
5 for c = 1, . . . , |Xk | do
6 if xc ∈ X̂k and ∃I ⊆ {1, . . . , m} such that

• xc ∈ X̂ I
k

• θ I
Ω(xc) < 0

7 then
8 Let d I

Ωc ∈ V I
Ω(xc) be the direction associated with θ I

Ω(xc)

9 α = B-FALS(F(·), Ω, I , X̂ I
k , xc, d I

Ωc, θ
I
Ω(xc))

10 X̂k = X̂k \ {y ∈ X̂k |F(xc + αd I
Ωc) � F(y)} ∪ {xc + αd I

Ωc}
11 else
12 if xc ∈ X̂k (i.e. xc has not been filtered out by previous inner iterations) then
13 xc is a Pareto-stationary point w.r.t. F for Problem (1).

14 Xk+1 = X̂k
15 k = k + 1

16 return Xk

With respect to the FSDA algorithm, there are two major differences.

– For the descent directions, we solve instances of Problem (6), while in the original
implementation Problem (3) is considered.

– We employ B-FALS (Algorithm 4) instead of FALS (Algorithm 2) in order to
handle bound constraints.

In the remainder of the appendix, we provide some FPGA properties.

A.2 Algorithm analysis

In this subsection, we provide a formal analysis of the FPGA algorithm from a theo-
retical perspective.

123

M. Lapucci et al.

We first prove the feasibility of the points produced by the algorithm.

Proposition A1 Let {Xk} be the sequence of sets of points generated by FPGA. Then,
for all k, every point xc in the set Xk is feasible for Problem (1).

Proof The proof is straightforward. First of all, the initial set X0 is composed by
feasible points. New solutions are only added through Line 10. Considering that Ω is
convex and d I

Ωc is a feasible direction by construction for any I ⊆ {1, . . . , m}, and
reminding the stopping criteria of B-FALS, these new points are contained in Ω and,
therefore, they are feasible for Problem (1). ��

In order to prove convergence properties, we need the concept of linked sequence
(Definition 5) and the following assumption.

Assumption 1 Let X0 be a set of feasible non-dominated points w.r.t. F . A point
x0 ∈ X0 exists such that:

– x0 is not Pareto-stationary w.r.t. F ;
– the set L(x0) = ⋃m

j=1{x ∈ Ω : f j (x) ≤ f j (x0)} is compact.

This latter one is similar to Assumption 1 in [10]. The difference is that, in this
case, bound constraints must be also taken into account.

Proposition A2 Let us assume that Assumption 1 holds. Let {Xk} be the sequence of
sets of non-dominated points w.r.t. F produced byFPGA. Let {xk} be a linked sequence,
then it admits limit points and every limit point is Pareto-stationary w.r.t. F.

Proof The proof is almost identical to the one of Proposition 5 in [10]. There is only
one difference. After proving that

lim
k→∞
k∈K

αk+1 = 0 (A1)

[10, Equation 22], where K indicates a subsequence, the FSDA authors consider
sufficiently large values of k such that αk+1 < α0. In this case, the steps of FALS and
the definition of Xk , k ∈ K , imply that there exists yk ∈ Xk such that

FI (yk) + 1β
αk+1

δ
θ I (xk) < FI

(
xk + αk+1

δ
d I

k

)
.

With respect to FALS, B-FALS has an additional stopping criterion: the step size
must lead to a point that is feasible for Problem (1). In this context, αk+1/δ ≤ α0
might not have been selected because the point xk + (αk+1/δ)d I

Ωk /∈ Ω . However,
through a little modification, we can handle this additional stopping criterion.

First of all, Eq. (A1) still holds: the proof of this statement is the same provided in
[10]. Then, we can consider sufficiently large values of k such that

αk+1 <
αk+1

δ
≤ 1.

123

Amemetic procedure for global multi-objective optimization

In this way, since Ω is convex and d I
Ωk is a feasible direction by construction, the

points produced by the two step sizes are feasible, i.e., the B-FALS feasibility stopping
criterion is satisfied. Then, the steps of B-FALS and the definition of Xk , k ∈ K , imply
that there exists yk ∈ Xk such that

FI (yk) + 1β
αk+1

δ
θ I
Ω(xk) < FI

(
xk + αk+1

δ
d I
Ωk

)
.

From this point forward, we can follow the remainder of the proof of Proposition 5 in
[10] in order to prove the thesis. ��

References

1. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective opti-
mization algorithm: Amosa. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

2. Bhuvana, J., Aravindan, C.: Memetic algorithm with preferential local search using adaptive weights
for multi-objective optimization problems. Soft Comput. 20 (2015)

3. Brown, M., Smith, R.E.: Directed multi-objective optimization. Int. J. Comput. Syst. Sign. 6(1), 3–17
(2005)

4. Cabassi, F., Locatelli, M.: Computational investigation of simple memetic approaches for continuous
global optimization. Comput. Oper. Res. 72, 50–70 (2016)

5. Campana, E.F., Diez, M., Liuzzi, G., Lucidi, S., Pellegrini, R., Piccialli, V., Rinaldi, F., Serani, A.: A
multi-objective direct algorithm for ship hull optimization. Comput. Optim. Appl. 71(1), 53–72 (2018)

6. Carrizo, G.A., Lotito, P.A., Maciel, M.C.: Trust region globalization strategy for the nonconvex uncon-
strained multiobjective optimization problem. Math. Program. 159(1–2), 339–369 (2016)

7. Carrizosa, E., Frenk, J.B.G.: Dominating sets for convex functions with some applications. J. Optim.
Theory Appl. 96(2), 281–295 (1998)

8. Cocchi, G., Lapucci, M.: An augmented Lagrangian algorithm for multi-objective optimization. Com-
put. Optim. Appl. 77(1), 29–56 (2020)

9. Cocchi,G., Lapucci,M.,Mansueto, P.: Pareto front approximation through amulti-objective augmented
Lagrangian method. EURO J. Comput. Optim. 100008 (2021)

10. Cocchi, G., Liuzzi, G., Lucidi, S., Sciandrone, M.: On the convergence of steepest descent methods
for multiobjective optimization. Comput. Optim. Appl. 1–27 (2020)

11. Cocchi, G., Liuzzi, G., Papini, A., Sciandrone, M.: An implicit filtering algorithm for derivative-free
multiobjective optimization with box constraints. Comput. Optim. Appl. 69(2), 267–296 (2018)

12. Custódio, A.L., Madeira, J.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective opti-
mization. SIAM J. Optim. 21(3), 1109–1140 (2011)

13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

15. Drugan, M., Thierens, D.: Stochastic pareto local search: Pareto neighbourhood exploration and per-
turbation strategies. J. Heuristics 18 (2012)

16. Drummond, L.G., Iusem, A.N.: A projected gradient method for vector optimization problems. Com-
put. Optim. Appl. 28(1), 5–29 (2004)

17. Drummond, L.G., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting method
in vector optimization. Math. Program. 111(1–2), 201–216 (2008)

18. Eichfelder, G.: An adaptive scalarizationmethod inmultiobjective optimization. SIAMJ.Optim. 19(4),
1694–1718 (2009)

19. Filatovas, E., Lančinskas, A., Kurasova, O., Žilinskas, J.: A preference-based multi-objective evolu-
tionary algorithm r-nsga-ii with stochastic local search. CEJOR 25(4), 859–878 (2017)

20. Fliege, J., Drummond, L.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J.
Optim. 20(2), 602–626 (2009)

123

M. Lapucci et al.

21. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper.
Res. 51(3), 479–494 (2000)

22. Fliege, J., Vaz, A.I.F.: A method for constrained multiobjective optimization based on SQP techniques.
SIAM J. Optim. 26(4), 2091–2119 (2016)

23. Fukuda, E., Drummond, L.: A survey on multiobjective descent methods. Pesquisa Operacional 34,
585–620 (2014)

24. Fukuda, E.H., Drummond, L.G.: On the convergence of the projected gradient method for vector
optimization. Optimization 60(8–9), 1009–1021 (2011)

25. Fukuda, E.H., Drummond, L.G.: Inexact projected gradient method for vector optimization. Comput.
Optim. Appl. 54(3), 473–493 (2013)

26. Fukuda, E.H., Drummond, L.G., Raupp, F.M.: A barrier-type method for multiobjective optimization.
Optimization, 1–17 (2019)

27. Gonçalves, M.L.N., Lima, F.S., Prudente, L.F.: Globally convergent newton-type methods for multi-
objective optimization. Comput. Optim. Appl. 83(2), 403–434 (2022)

28. Gravel,M.,Martel, J.M.,Nadeau, R., Price,W., Tremblay, R.:Amulticriterion viewof optimal resource
allocation in job-shop production. Eur. J. Oper. Res. 61(1–2), 230–244 (1992)

29. Gribel, D., Vidal, T.: Hg-means: A scalable hybrid genetic algorithm for minimum sum-of-squares
clustering. Pattern Recogn. 88, 569–583 (2019)

30. Grosso, A., Locatelli, M., Schoen, F.: A population-based approach for hard global optimization prob-
lems based on dissimilarity measures. Math. Program. 110(2), 373–404 (2007)

31. Hu, X., Huang, Z., Wang, Z.: Hybridization of the multi-objective evolutionary algorithms and the
gradient-based algorithms. In: The 2003 Congress on Evolutionary Computation, 2003. CEC’03.,
vol. 2, pp. 870–877. IEEE (2003)

32. Huband, S., Hingston, P., Barone, L.,While, L.: A review ofmultiobjective test problems and a scalable
test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

33. Kim, H., Liou, M.S.: Adaptive directional local search strategy for hybrid evolutionary multiobjective
optimization. Appl. Soft Comput. J. 19, 290–311 (2014)

34. Lara, A., Sanchez, G., Coello, C.A.C., Schutze, O.: Hcs: A new local search strategy for memetic
multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112–132 (2010)

35. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary
multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)

36. Liu, D., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm based on particle swarm
optimization. IEEE Trans. Syst. Man Cyberne. B (Cybern.) 37(1), 42–50 (2007)

37. Liu, T., Gao, X., Yuan, Q.: An improved gradient-based nsga-ii algorithm by a new chaotic mapmodel.
Soft. Comput. 21(23), 7235–7249 (2017)

38. Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nonsmooth
optimization. SIAM J. Optim. 26(4), 2744–2774 (2016)

39. Locatelli, M., Maischberger, M., Schoen, F.: Differential evolution methods based on local searches.
Comput. Oper. Res. 43, 169–180 (2014)

40. Locatelli, M., Schoen, F.: Global optimization: theory, algorithms, and applications. SIAM (2013)
41. Mandal, S.K., Pacciarelli, D., LØkketangen, A., Hasle, G.: A memetic NSGA-II for the bi-objective

mixed capacitated general routing problem. J. Heuristics 21(3), 359–390 (2015). Number: 3
42. Mansueto, P.: NSMA: A memetic procedure for global multi-objective optimization (2022). https://

doi.org/10.5281/zenodo.7299857
43. Mansueto, P., Schoen, F.: Memetic differential evolution methods for clustering problems. Pattern

Recogn. 114, 107849 (2021)
44. Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimization on computer

grids. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp.
869–875. ACM (2007)

45. Palermo, G., Silvano, C., Valsecchi, S., Zaccaria, V.: A system-level methodology for fast multi-
objective design space exploration. In: Proceedings of the 13th ACM Great Lakes Symposium on
VLSI, pp. 92–95. ACM (2003)

46. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4),
499–524 (1984)

47. Pellegrini, R., Campana, E., Diez, M., Serani, A., Rinaldi, F., Fasano, G., Iemma, U., Liuzzi, G.,
Lucidi, S., Stern, F.:Application of derivative-freemulti-objective algorithms to reliability-based robust

123

https://doi.org/10.5281/zenodo.7299857
https://doi.org/10.5281/zenodo.7299857

Amemetic procedure for global multi-objective optimization

design optimization of a high-speed catamaran in real ocean environment1. Engineering Optimization
IV-Rodrigues et al.(Eds.) p. 15 (2014)

48. Shukla, P.K.: On gradient based local search methods in unconstrained evolutionary multi-objective
optimization. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 96–110.
Springer (2007)

49. Sindhya,K.,Miettinen,K., Deb,K.:A hybrid framework for evolutionarymulti-objective optimization.
IEEE Trans. Evol. Comput. 17(4), 495–511 (2013)

50. Sun, Y., Ng, D.W.K., Zhu, J., Schober, R.: Multi-objective optimization for robust power efficient and
secure full-duplexwireless communication systems. IEEETrans.WirelessCommun. 15(8), 5511–5526
(2016)

51. Tavana, M.: A subjective assessment of alternative mission architectures for the human exploration of
Mars at NASA using multicriteria decision making. Comput. Oper. Res. 31(7), 1147–1164 (2004)

52. Tiwari, S., Fadel, G., Koch, P., Deb, K.: Performance assessment of the hybrid archive-based micro
genetic algorithm (amga) on the cec09 test problems. In: 2009 IEEE Congress on Evolutionary Com-
putation, pp. 1935–1942 (2009)

53. Villalobos-Cid, M., Dorn, M., Ligabue-Braun, R., Inostroza-Ponta, M.: A memetic algorithm based on
an nsga-ii scheme for phylogenetic tree inference. IEEE Trans. Evol. Comput. 23(5), 776–787 (2018)

54. Wang, X., Hirsch, C., Kang, S., Lacor, C.: Multi-objective optimization of turbomachinery using
improved nsga-ii and approximation model. Comput. Methods Appl. Mech. Eng. 200(9–12), 883–895
(2011)

55. White, D.: Epsilon-dominating solutions inmean-variance portfolio analysis. Eur. J. Oper. Res. 105(3),
457–466 (1998)

56. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: Multiobjective optimization test
instances for the cec 2009 special session and competition. Mech. Eng. (2008)

57. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical
results. Evol. Comput. 8(2), 173–195 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A memetic procedure for global multi-objective optimization
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multi-objective descent methods
	2.2 NSGA-II
	2.2.1 Metrics
	2.2.2 Parents selection
	2.2.3 Selection operation

	3 Non-dominated sorting memetic algorithm
	3.1 Algorithmic scheme
	3.1.1 Estimating surrogate bounds
	3.1.2 Identifying exploration candidates
	3.1.3 Local searches by multi-objective descent

	3.2 The front multi-objective projected gradient algorithm
	3.2.1 Algorithmic scheme
	3.2.2 Algorithm analysis

	4 Computational experiments
	4.1 Settings
	4.1.1 Metrics
	4.1.2 Algorithms and hyper-parameters
	4.1.3 Problems

	4.2 Experimental comparisons between NSGA-II and FPGA
	4.3 Preliminary comparisons between NSMA and the state-of-the-art algorithms
	4.4 Performance analysis in variable settings
	4.5 Overall comparison

	5 Conclusions
	Acknowledgements
	Appendix A: The Front Projected Gradient Algorithm
	A.1 Algorithmic scheme
	A.2 Algorithm analysis

	References

