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Abstract: The article is motivated by the analysis of the relationship between university student
ratings and teacher practices and attitudes, which are measured via a set of binary and ordinal items
collected by an innovative survey. The analysis is conducted through a two-level random intercept
model, where student ratings are nested within teachers. The analysis must face two issues about the
items measuring teacher practices and attitudes, which are level 2 predictors: (a) the items are severely
affected by missingness due to teacher non-response and (b) there is redundancy in both the number
of items and the number of categories of their measurement scale. We tackle the missing data issue by
considering a multiple imputation strategy exploiting information at both student and teacher levels.
For the redundancy issue, we rely on regularization techniques for ordinal predictors, also accounting
for the multilevel data structure. The proposed solution addresses the problem at hand in an original
way, and it can be applied whenever it is required to select level 2 predictors affected by missing values.
The results obtained with the final model indicate that ratings on teacher ability to motivate students
are related to certain teacher practices and attitudes.
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1 Introduction

The evaluation of university courses, which is essential for quality insurance, is
typically based on student ratings. A large body of literature focuses on studying
factors associated with expressed evaluations, including student, teacher and course
characteristics (Spooren et al., 2013). It is widely recognized that teaching quality is a
key determinant of student satisfaction, even if observed teacher characteristics often
reveal weak effects (Hanushek and Rivkin, 2006). Therefore, it is helpful to gather
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more information about teacher practices and attitudes by specific surveys involving
the teachers themselves (Goe et al., 2008). In this vein, the PRODID project, launched
in 2013 by the University of Padua (Dalla Zuanna et al., 2016), is a valuable source
as it implemented a Computer-Assisted Web Interviewing (CAWI) survey addressed
to teachers for collecting information on their practices and attitudes.

We aim at analysing the relationship between student ratings and teacher practices
and attitudes, controlling for available characteristics of students, teachers and
courses. Given the hierarchical structure with ratings nested into teachers, we exploit
multilevel modelling (Goldstein, 2010; Rampichini et al., 2004). Teacher practices
and attitudes from the PRODID survey enter the model as level 2 predictors, but they
are missing for nearly half of the teachers due to non-response. Thus, the multilevel
analysis must face a serious issue of missing data at level 2. This issue is receiving
increasing attention in the literature (Grund et al., 2018). In addition, modelling the
effects of teacher practices and attitudes is complicated since they are measured by a
wide set of binary and ordinal items, calling for suitable model selection techniques.
Therefore, the case study raises the methodological challenge of selecting level 2
predictors affected by missing values. We handle missing values through Multivariate
Imputation by Chained Equations (MICE), exploiting information at both levels 1
and 2 (Grund et al., 2017; Mistler and Enders, 2017). For the selection of predictors,
we rely on regularization techniques for ordinal predictors (Gertheiss and Tutz,
2010), and we propose a strategy to combine selection of predictors and imputation
of their missing values.

The rest of the article is organized as follows. Section 2 describes the data and
the statistical model. Section 3 outlines the imputation procedure to handle missing
data at level 2, then Section 4 presents the regularization method chosen to deal with
ordinal predictors. Section 5 outlines the proposed strategy to combine imputation
and model selection, while Section 6 illustrates the application of the strategy to the
case study. Section 7 concludes with some remarks and directions for future work.

2 Data description and model specification

As anticipated in Section 1, we wish to analyse the relationship between student
ratings and teacher practices and attitudes, controlling for available characteristics at
student, course and teacher level. To this end, we exploit a dataset of the University
of Padua for academic year 2012/13, obtained by merging three sources: (a) the
traditional course evaluation survey with 18 items on a scale from 1 to 10; (b)
administrative data on students, teachers and courses; and (c) the innovative PRODID
survey collecting information on teacher practices and attitudes (Dalla Zuanna et al.,
2016). The dataset used for the analysis is freely available (Felisatti et al., 2020).

The data have a two-level hierarchical structure, with 56 775 student ratings at
level 1 and 1 016 teachers at level 2. The median group size is 44 (the 5th percentile
is 8; the 95th percentile is 146). Summary statistics of student, teacher and course
characteristics are reported in Table 1.
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Table 1 Summary statistics of fully observed variables (56 775 ratings, 1 016 courses)

Variables Mean SD Min Max

Outcome (lev 1) Student rating on teacher ability 7.387 2.163 1 10

Student Female 0.511 0.500 0 1
characteristics (lev 1) Age 20.511 2.962 17 78

High school grade 80.729 11.817 60 100
Enrolment year 1.688 0.786 1 3
Regular enrolment 0.967 0.178 0 1
Passed exams 6.077 2.587 0 18

Teacher Female 0.324 0.468 0 1
characteristics (lev 2) Age (years) 50.638 9.442 32 70

Course Compulsory course 0.296 0.457 0 1
characteristics (lev 2) School

Agronomy and veterinary 0.109
Social sciences 0.113
Engineering 0.237
Psychology 0.075
Sciences 0.256
Humanities 0.210

We investigate student opinion about teacher ability to motivate students,
which is one of the items of the course evaluation questionnaire (https://www.
unipd.it/opinione-studenti-sulle-attivita-didattiche). The analysis is based on the
following two-level random intercept linear model for rating i about teacher j:

yij = x′ijα + z′jδ + q′jγ + uj + eij, (2.1)

where xij is the vector of level 1 covariates (student characteristics) including the
constant, zj is the vector of fully observed level 2 covariates (administrative data on
teachers and courses) and qj is the vector of partially observed level 2 covariates
(teacher practices and attitudes). Model errors are assumed independent across levels
with standard distributional assumptions, namely eij

iid∼N(0, σ2
e ) and uj

iid∼N(0, σ2
u).

The survey on teacher practices and attitudes has about 50% of missing
questionnaires, posing a serious issue of missing data at level 2. Tables 2 and 3
report percentages of missing values and summary statistics for teacher practices and
attitudes as observed in the sample, while Figures 1 and 2 show the distributions of
ordinal items.

An analysis based on listwise deletion would discard the entire set of student
ratings for non-responding teachers, causing two main problems: (a) a dramatic
reduction of sample size and statistical power; and (b) possibly biased estimates
if the probability of missing observations depends on both model covariates and
outcome of interest. To overcome these issues, we impute missing values by means
of multiple imputation (MI), which allows us to retain all observations and to
perform the analysis under the missing at random (MAR) assumption (Rubin, 1976;
Seaman et al., 2013). Given the available covariates, the MAR assumption seems
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Table 2 Summary statistics of teacher practices (1= yes, 0= no) for 1 016 teachers

% miss Proportion yes

Q01 Active learning 46.75 0.850
Q02 External contributors 46.75 0.340
Q03 Student progress monitoring 46.75 0.482
Q04 Integrated evaluation tools 46.75 0.553
Q05 Teaching considering students ratings 46.75 0.821
Q06 Teaching in English lead to change teaching 46.75 0.013
Q07 Teaching supported by multimedia materials 46.75 0.632
Q08 Production of multimedia teaching materials 46.75 0.409
Q09 Advanced use of online platforms 46.75 0.311

Table 3 Summary statistics of teacher attitudes (range 1–7) for 1 016 teachers

% miss 1st quartile 2nd quartile 3rd quartile

Beliefs
Q13 Must transmit theoretical knowledge 47.74 3 4 5
Q14 Active teaching stimulate learning 47.24 5 6 6
Q15 Student cooperation useful 48.03 4 5 6
Q16 Advanced technologies promotes student learning 47.64 4 5 6
Q17 Student opinions relevant 47.24 4 5 6
Q18 Single exam better than integrated exam 47.64 2 4 5
Q19 Teacher opinion should be asked 47.93 3 5 6
Q20 Customize teaching according to student needs 47.74 3 5 6
Q21 Teaching in English is an added value 48.62 2 4 6
Needs
Q22 Make syllabus coherent with learning outcomes 48.13 3 4 5
Q23 Adapt teaching proposal to student training 47.83 4 5 6
Q24 Acquire assessment tools on student learning 47.93 4 5 6
Q25 Consulting teaching experts 47.44 2 4 6
Q26 Training seminars on educational topics 47.44 2 5 6
Q27 Discuss teaching methods 47.83 3 5 6
Q28 Support to integrate technologies in teaching 47.74 2 4 6
Feelings
Q11 Real passion for teaching 47.15 5 6 7
Q12 Teaching exciting experience 47.15 5 6 7
Q29 Real passion for research 47.24 6 7 7
Q30 Research exciting experience 47.34 6 7 7

plausible in our application. The missingness rate is nearly 50%, thus one can
raise doubts about imputing so many missing data. However, simulation results
(Marshall et al., 2010) show that MI is better than listwise deletion in terms of
bias and coverage of confidence intervals; the performance of MI deteriorates as
the percentage of missing values increases, but it is satisfactory up to 50% of
missing data.
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Figure 1 Distributions of items on teacher beliefs

3 Handling missing data at level 2

In multilevel models, the treatment of missing data requires special techniques
since missing values can occur at any level of the hierarchy. Furthermore, if
not appropriately handled, missing values can alter variance components and
correlations.

MI is a flexible approach to handle missing data taking into account the
uncertainty deriving from the imputation procedure. MI is carried out in two steps:
(a) generate several imputed datasets according to a suitable imputation model; and
(b) fit the substantive model on each imputed dataset and join the results using
Rubin rules (Little and Rubin, 2002). The two main approaches to implement MI
are joint modelling (JM) and fully conditional specification, also known as MICE,
see van Buuren (2018) for a comprehensive treatment and Mistler and Enders (2017)
and Grund et al. (2017) for a comparison of these approaches in multilevel settings.
In the JM approach, data are assumed to follow a joint multivariate distribution
and imputations are generated as draws from the fitted distribution. In the MICE
approach, missing data are imputed by iteratively drawing from the fitted conditional
distributions of partially observed variables, given the observed and imputed values
of the remaining variables in the imputation model. In our case, missing data are
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Figure 2 Distributions of items on teacher feelings and needs

only at level 2, so we can apply MI techniques to the level 2 dataset and then
merge level 1 and level 2 datasets. According to the literature on MI in multilevel
settings (Erler et al., 2016; Grund et al., 2018), the imputation model used to fill
in missing information at level 2 should include level 2 covariates, the cluster size
and proper summaries of level 1 variables, including the outcome. In our case,
level 1 variables helpful for imputation are the ratings of the items of the student
questionnaire, even if they are not used as covariates in the analysis model to avoid
endogeneity. The response variable and other student ratings are inserted in the
imputation model through their sample cluster means, which is shown to be optimal
for normal variables (Carpenter and Kenward, 2013). More generally, the cluster
mean is a good summary for quantitative covariates, as shown in simulation studies
of Erler et al. (2016) and Grund et al. (2018). This approach is easy to implement in
our case since imputation is only at level 2.

In our case, the imputation step is challenging: we have to impute many categorical
variables since about 50% of teachers did not respond to the whole questionnaire,
thus producing missing values on 10 binary items (teacher practices) and 20 ordinal
items (teacher attitudes on a seven-point scale). The JM approach, implemented
in the R package jomo (Quartagno et al., 2019), is computationally demanding,
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especially in our case with many categorical items. Therefore, we rely on the MICE
approach, performing imputations using the mi chained command of Stata (Stata
Corp., 2017). The imputation model is composed of binary logit models for the
10 binary items (teacher practices) and cumulative logit models for the 20 ordinal
items (teacher attitudes). The imputation model includes the following types of
fully observed covariates: teacher characteristics, course characteristics (including
the number of ratings) and the cluster means of the ratings for all questions of the
course evaluation questionnaire, including the response variable. The inclusion of
mean ratings increases the plausibility of the MAR assumption (Grund et al., 2018).

4 Selecting ordinal predictors with regularization techniques

The PRODID questionnaire measures teacher practices using 10 binary items and
teacher attitudes using 20 ordinal items on a seven-point Likert scale. Such items bring
information on a few dimensions of teaching that in principle could be summarized
using latent variable models for ordinal items (Bartholomew et al., 2011). However,
about 50% of teachers did not respond to the questionnaire, thus applying latent
variable methods to the complete cases can lead to biased results. On the other hand,
fitting latent variable models using imputed datasets raises two main problems: (a)
how to combine the results in order to identify the latent dimensions and assign the
corresponding scores to teachers; and (b) how to take into account the variability of
predicted scores in the main model. The literature on factor analysis in the presence of
missing responses is growing (Lorenzo-Seva et al., 2016; Nassiri et al., 2018), but the
issue is still controversial; thus we prefer to directly use the imputed PRODID items
as covariates in the main model and select them applying model selection techniques.
The imputation method outlined in Section 3 preserves the seven-point scale of
the ordinal items. A simpler way of specifying the effect of an ordinal predictor
on the outcome of interest is that of treating category codes as continuous and
including a single regression coefficient in the model. However, such a specification
relies on a linearity assumption. Furthermore, as highlighted by Gertheiss and Tutz
(2009), the interpretation of estimated coefficients is strongly related to the assigned
scores which, to some extent, may be arbitrary. To overcome these issues, a dummy
coding approach is adopted: each of the K categories of the ordinal predictor is
represented by an indicator variable and K − 1 coefficients are included in the model.
As a result, we obtain a more flexible specification which includes linearity as special
case. Clearly, this comes at the cost of an increased number of model parameters and,
consequently, a reduction in terms of interpretability. In this respect, we propose using
regularization methods that allow us to retain the flexibility of the dummy coding
specification, while ensuring model parsimony.

Regularization methods for ordinal predictors (Gertheiss and Tutz, 2010; Tutz
and Gertheiss, 2016) have a twofold aim: (a) investigating which variables should
be included in the model; and (b) investigating which categories of an ordinal
predictor can be collapsed. For k = 1, . . . ,K ordinal predictors, each having Ck
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categories, Gertheiss and Tutz (2010) suggest to implement the lasso with the
following L1-penalty term:

J(γ) =
K

∑
k=1

Ck

∑
c=2

wkc∣γkc − γk,c−1∣, (4.1)

where γkc is the coefficient of the dummy variable identifying the cth category of the
kth predictor (with γk1 = 0 for the baseline category) and wkc are weights allowing
for adaptive lasso. This approach can be applied to select all items of the PRODID
questionnaire, including both ordinal and binary items, since a binary predictor is
just an ordinal predictor with Ck = 2.

In order to exploit existing software for regularization, we use the backward
difference coding, also known as split coding (Walter et al., 1987; Gertheiss and
Tutz, 2010). Specifically, we define a reparameterization of model (2.1) using new
parameters for the ordinal predictors

γ̃kc = γkc − γk,c−1, (4.2)

which allows us to estimate model parameters by means of a standard lasso-type
optimization. Then the original parameters are obtained as γkc = ∑c

r=1 γ̃kr. Note that
split coding does not affect binary items, so that for such items γ̃ = γ.

The weights wkc in equation (4.1) are chosen adaptively as suggested by Zou
(2006), yielding an adaptive lasso procedure for parameter estimation with the
following penalty term:

J(γ̃) =
K

∑
k=1

Ck

∑
c=2

∣γ̃kc∣
∣ ˆ̃γkc∣

, (4.3)

with ˆ̃γkc denoting the ordinary least squares estimate of γ̃kc. As highlighted by Zou
(2006), by using adaptive weights we obtain an adaptive lasso procedure that enjoys
the oracle properties. In detail, it performs as well as if the true underlying model
was given in advance; as for the standard lasso approach, the corresponding adaptive
version is near-minimax optimal. Lastly, the minimization problem can be solved by
the same efficient algorithm for solving the lasso.

In the application, we used the command lasso2 included in the lassopack
module of Stata (Ahrens et al., 2020). In the following, we outline the regularization
algorithm as implemented in this procedure, which relies on Belloni et al. (2012).
In particular, with reference to model (2.1), the regularization procedure of lasso2
minimizes the penalized criterion

Q(γ̃) = 1
n

RSS(α, δ, γ̃) + λ

n
J(γ̃), (4.4)

where α, δ and γ̃ are the model parameters (after split-coding the qj variables), n is the
sample size, RSS(α, δ, γ̃) is the residual sum of squares of model (2.1), λ is the overall
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penalty parameter and J(γ̃) is the penalty term of equation (4.3). To minimize the
objective function (4.4), lasso2 exploits a coordinate descent algorithm (Fu, 1998).

The penalty parameter λ in equation (4.4) is chosen over a grid of pre-specified
values to minimize the extended BIC index (EBIC) proposed by Chen and Chen
(2008) and implemented in the lasso2 procedure as follows:

EBIC = n log(RSS/n) + s log(n) + 2s log(p), (4.5)

where s and p are the number of parameters of the fitted model and the full model,
respectively. Note that EBIC is equal to the standard BIC plus the term 2s log(p).
Information criteria such as BIC and EBIC may be preferable to cross-validation in
large datasets when the aim is to select the predictors (e.g., Ahrens et al., 2020).
Both BIC and EBIC are model-selection consistent if the true model is among the
candidate models, but the simulation study of Chen and Chen (2008) shows that
EBIC outperforms BIC.

It is worth to note that the lasso2 procedure relies on a standard linear model,
while the model of interest of equation (2.1) is a linear random intercept model. We
tried a specific procedure for linear mixed models, namely the lmmlasso package of
R (Schelldorfer et al., 2011; Groll and Tutz, 2014), but we encountered computational
difficulties due to the large size of the dataset. However, the random effects are
expected to have a little role in the regularization process for the predictors. Moreover,
in order to reduce the bias induced by penalization, it is in general advisable to
refit the model using only the selected predictors (Gertheiss and Tutz, 2010; Belloni
and Chernozhukov, 2013). Thus, we use the computationally efficient algorithm of
lasso2 to perform variable selection, then we fit the random intercept model (2.1)
using the selected predictors.

5 Combining variable selection and multiple imputation

Our case study raises the additional issue of combining variable selection with
MI. While variable selection with fully observed data has been widely investigated,
research on this issue for MI datasets is still limited, as underlined by Zhao and Long
(2017) and van Buuren (2018). In principle, one could perform variable selection
by fitting each candidate model in all imputed datasets and combining the results
with Rubin’s rules. Variable selection may be performed according to standard
techniques such as forward, backward or stepwise search. However, this solution
requires intensive computation and it raises issues of overfitting and collinearity
(Wood et al., 2008). To overcome these limitations, several alternative solutions have
been proposed, which can be divided into three types.

In the first type, variable selection is performed separately on each imputed dataset.
With this approach it is likely to obtain different selected variables across imputed
datasets. Wood et al. (2008) suggest to retain the covariates according to the so-called
majority rule, that is, the covariates selected in the majority of imputed datasets. This
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approach is applied by Shen and Chen (2013) on longitudinal data and by Yang et
al. (2005) in a Bayesian framework.

In the second type of solutions, variable selection is performed on a single dataset
obtained by stacking all imputed datasets. Weighted regression can be performed on
the stacked dataset, applying standard backward selection procedures (Wood et al.,
2008) or penalized likelihood using the elastic net penalty (Wan et al., 2015). Chen
and Wang (2013) and Marino et al. (2017) use an approach based on a group lasso
penalty to guarantee model consistency across different imputations. This approach
is extended to longitudinal data by Geronimi and Saporta (2017).

The third type includes solutions that combine variable selection with resampling
techniques. Heymans et al. (2007) combine bootstrapping and MI, applying a
classical backward selection to each bootstrapped dataset. Musoro et al. (2014)
extend this approach adopting a lasso penalization to select variables in each dataset.
Long and Johnson (2015) and Liu et al. (2016) combine resampling techniques and
MI by using randomized lasso.

In their review, Zhao and Long (2017) support approaches based on lasso, without
reaching a clear conclusion about the relative merits of the three types of solutions
mentioned earlier.

Using both simulated and real data, Thao and Geskus (2019) propose a
comparison between several solutions of variable selection (bootstrap resampling,
lasso on original MI datasets and lasso on the stacked dataset) and two different
data generating mechanisms under MAR. Their results show that all solutions
behave similarly in terms of relative predictive performance and number of retained
variables. Therefore, a best approach cannot be identified. Vergouwe et al. (2010)
reach the same conclusion comparing the performance of different models with
variable selection based on Wald statistics, both on separate and stacked datasets,
and the majority rule on imputed data.

As the literature does not reach a consensus on the optimal solution, in the light
of the complexity of our application, we propose a mixed solution easy to implement
and computationally convenient. First, we perform variable selection on each imputed
dataset using lasso, and we specify a provisional model using the majority rule. Then,
we fit the provisional model on each imputed dataset and we combine the results using
Rubin’s rules in order to refine variable selection with statistical tests. Specifically, we
propose the following strategy:

1. Generate M imputed datasets using MICE, as described in Section 3;
2. For each imputed dataset, perform variable selection using adaptive lasso for

ordinal predictors, as outlined in Section 4;
3. Retain the predictors selected in at least k% of M imputed datasets; specifically,

we apply the majority rule (k = 50%) as suggested by Wood et al. (2008);
4. For each imputed dataset, fit the linear random intercept model (2.1) including

the retained predictors;
5. Combine the M vectors of estimated coefficients and the corresponding standard

errors exploiting Rubin’s rules (Little and Rubin, 2002);
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6. Perform statistical tests on the regression parameters, in particular, we perform
Wald tests using the combined standard errors, retaining the predictors
significant at level α = 0.10;

7. Repeat steps (4)–(6) until only statistically significant predictors remain.

This strategy allows us to select the ordinal predictors while giving proper standard
errors, namely accounting for both the hierarchical structure of the data and the
uncertainty due to MI. Step (6) is advisable since it allows us to exploit proper
standard errors to refine variable selection.

6 Results

The strategy outlined in Section 5 is applied to the case study on student ratings
presented in Section 2, which raises problems of missing data and selection of ordinal
predictors.

The model of interest is the random intercept model (2.1). At level 1, the model
includes student predictors xij (see Table 1), which are centred around their cluster
average in order to interpret the associated parameters as within effects (Snijders and
Bosker, 2012). At level 2, the model includes teacher and course predictors from
administrative archives zj (fully observed, see Table 1), and teacher practices and
attitudes qj (subject to missing). The vector qj contains dummy variables for 10 binary
items and for 20 ordinal items (see Tables 2 and 3). Adopting the backward-difference
coding of Section 4, the total number of parameters for the 20 ordinal items is
6 × 20 = 120.

The imputation step is carried out with MICE as described at the end of Section 3.
We generate M = 10 imputed datasets. In most applications, M = 10 is large enough
to obtain efficient estimators. We establish that M = 10 is adequate in our application
on the basis of the Relative Efficiency (RE) index (see later Table 4).

The variable selection procedure begins by applying the regularization method
described in Section 4 to each imputed dataset, in order to select binary and ordinal
items from the PRODID questionnaire, while the other predictors are included in
the model without penalization. We retain the predictors selected in at least 50% of
imputed datasets, namely 5 binary items and 13 ordinal items. For each ordinal item
k, the procedure selects only a subset of the γ̃kc parameters defined in equation (4.2),
implying collapsing of categories. Overall, the regularization procedure reduces the
number of parameters γ̃kc from 120 to 26.

The analysis proceeds by fitting model (2.1) with the retained predictors on M = 10
imputed datasets and combining the results with the Rubin’s rules. The model is fitted
by maximum likelihood using the mixed and mi commands of Stata (Stata Corp.,
2017). The variable selection procedure is refined using statistical tests based on the
standard errors obtained by Rubin’s rules, as suggested in step (6) of Section 5. After
this step, the final model includes the binary item Q02 and the ordinal items Q12,
Q15, Q17 and Q27. Table 4 reports the results of the final model.
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Indeed the selection procedure on ordinal predictors yielded predictor-specific
collapsing of categories. For example, for item Q12, Table 4 reports two coefficients
corresponding to the following collapsed categories: {1,2,3,4} (baseline), {5,6}
and {7}. This means that the effect of item Q12 on the response variable is constant
within the collapsed categories. This result is due to the selection procedure, which
retained for predictor Q12 two out of six parameters in equation (4.2), specifically
γ̃12,5 and γ̃12,7. Due to backward-difference coding, the parameters of the ordinal
items represent contrasts between adjacent categories, thus ˆ̃γ12,5 = 0.3204 is the
effect of passing from category {1,2,3,4} to category {5,6}, while ˆ̃γ12,7 = 0.2688
is the effect of passing from category {5,6} to category {7}. The sum of the
two parameters, 0.3204 + 0.2688 = 0.5892, is the effect of passing from category
{1,2,3,4} to category {7}.

Student and course characteristics are inserted in the model as control variables,
thus we do not comment their effects. As for teacher characteristics, we note that
older teachers and female teachers obtain on average lower ratings on the ability
to motivate students, controlling for the remaining covariates. As for practices, the
contribution of external experts (Q02) has a positive effect; this is the only item
retained by the selection process out of the 10 items about practices. As for attitudes,
only 4 out of 20 items are significantly related to the ratings. In particular, ratings tend
to be higher for teachers who feel that teaching is an exciting experience (Q12) and
teachers who believe that student opinions are a key indicator of course quality (Q17).
On the contrary, ratings tend to be lower for teachers who think that cooperation
among students helps learning (Q15) and teachers interested in discussing didactic
methods with colleagues (Q27).

In order to assess the overall contribution of teacher practices and attitudes
in explaining differences in the ratings among courses, we compare the residual
level 2 variance under different model specifications. In particular, fitting model
(2.1) without any predictor yields an estimated level 2 variance σ̂2

u = 1.3320, which
reduces to 1.2306 (−8%) after introducing all predictors except teacher practices and
attitudes. The final model gives σ̂2

u = 1.0012, corresponding to a further reduction
of about 19%. Thus, teacher practices and attitudes are the most relevant observed
factors in explaining differences in the ratings among courses.

To evaluate the performance of the imputation procedure, the last two columns
of Table 4 report the diagnostic measures FMI and RE, which are derived from the
decomposition of the total sampling variance VT of an estimator (e.g., Enders, 2010):

VT = VW +VB +VB/M, (6.1)

where VB = 1
M−1 ∑

M
m=1 (β̂m − β̂)

2
is the between-imputation variance, while VW =

1
m ∑

M
m=1 SE(β̂m)2 is the within-imputation variance, with SE(β̂m) denoting the

standard error obtained from the mth imputed dataset. The index Fraction of Missing
Information (FMI) is used to quantify the influence of MI on the sampling variance
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Table 4 Multiple imputation estimates: Random intercept model for student satisfaction on teacher ability
to motivate students

Covariates Coeff SE P-value FMI† RE†

Student Female −0.0515 0.0188 0.006 0.0000 1.0000
characteristics (lev 1) Age 0.0479 0.0029 0.000 0.0000 1.0000

High school grade 0.0072 0.0008 0.000 0.0000 1.0000
Enrolment year −0.0918 0.0295 0.002 0.0002 1.0000
Regular enrolment −0.1697 0.0485 0.000 0.0000 1.0000
Passed exams 0.1874 0.0385 0.000 0.0001 1.0000

Course Compulsory course −0.2169 0.0431 0.000 .01332 0.9987
characteristics (lev 2) School

Agronomy and veterinary - - - - -
Social sciences 0.0516 0.1505 0.732 0.1084 0.9893
Engineering −0.3209 0.1279 0.012 0.0785 0.9922
Psychology 0.2142 0.1619 0.186 0.0526 0.9948
Sciences 0.0444 0.1340 0.741 0.1662 0.9837
Humanities 0.2290 0.1393 0.101 0.1544 0.9848

Teacher Female −0.1377 0.0793 0.083 0.0987 0.9902
characteristics (lev 2) Age (years) −0.0157 0.0039 0.000 0.1266 0.9875

Teacher practices (lev 2) Q02 External contributors 0.2645 0.0991 0.010 0.4287 0.9589

Teacher attitudes (lev 2) Q12 Teaching exciting experience
{1,2,3,4} - - - - -
{5,6} 0.3204 0.1236 0.012 0.4194 0.9598
{7} 0.2689 0.0948 0.006 0.3140 0.9696

Q15 Student cooperation useful
{1,2,3,4,5} - - - - -
{6,7} −0.2338 0.0931 0.015 0.4455 0.9574

Q17 Student opinions relevant
{1,2,3,4} - - - - -
{5} 0.3891 0.1227 0.002 0.4209 0.9596
{6} 0.3190 0.1308 0.019 0.4890 0.9534
{7} 0.2340 0.1182 0.050 0.2705 0.9737

Q27 Discuss teaching methods
{1,2} - - - - -
{3,4,5,6,7} −0.2974 0.1055 0.006 0.3781 0.9636

Intercept 7.7446 0.2628 0.000 0.1817 0.9822

Residual variances σ2
e (level 1) 3.3971

σ2
u (level 2) 1.0012

Note: † FMI defined in (6.2), RE defined in (6.3) .

of a parameter estimate:

FMI = VB +VB/M
VT

. (6.2)

On the other hand, the index RE is the RE for using a finite number of imputations
(M = 10 in our case) versus the theoretically optimal infinite number of imputations:
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RE = (1 + FMI
M
)
−1

. (6.3)

As for level 1 predictors, Table 4 shows values of FMI near zero and values of RE near
one. Indeed, level 1 predictors are fully observed and cluster-mean centred, so they
are not affected by imputations of level 2 predictors. Fully observed level 2 predictors
(i.e., teacher and course characteristics) are little affected by imputations, showing
FMI between 0.01 and 0.17, and RE close to 1. For imputed level 2 predictors (i.e.,
teacher practices and attitudes), FMI ranges from 0.27 to 0.49, with a mean value
of 0.40, indicating that on average 40% of the sampling variance is attributable to
missing data, which is lower than the fraction of missing values in the dataset (about
50%). This points out a favourable trade-off between the increase of sampling error
due to imputations and its reduction due to data augmentation. Moreover, the RE for
imputed predictors ranges from 0.953 to 0.973, suggesting that M = 10 imputations
ensure a satisfactory level of efficiency.

7 Concluding remarks

In this article, we considered a complex analysis involving a multilevel model with
many level 2 ordinal and binary predictors affected by a high rate of missing values.
We proposed a strategy to jointly handle missing values and selecting categorical
predictors. The proposed solution combines existing methods in an original way
to solve the specific problem at hand, but it is generally applicable to settings
requiring to select categorical predictors affected by missing values. Since missing
data are only at level 2, the imputation model is based on level 2 units, while
exploiting level 1 information through cluster means of level 1 variables. Specifically,
we handled missing data using MICE. This allowed us to retain all observations, thus
obtaining more efficient estimates with respect to a complete case analysis. The MAR
assumption underlying MI seems plausible given the wealth of information in levels
1 and 2 observed values exploited by the imputation model. The ordinal and binary
predictors were selected using an ad hoc regularization method, namely the lasso for
ordinal predictors. The regularization procedure induces a data-driven specification
of the relationship between the response and the ordinal predictors by collapsing the
categories. This method can be easily extended to handle also nominal predictors
(Tutz and Gertheiss, 2016). Our solution is a novelty in the limited literature on
variable selection under MI, where the focus is mainly on continuous and binary
covariates (Thao and Geskus, 2019). Like in Wood et al. (2008), regularization was
then applied separately on each imputed dataset and results were combined retaining
the parameters selected in at least half of imputed datasets. Finally, the random
effect model of interest was fitted including the chosen predictors. The uncertainty
due to imputation is accounted by Rubin’s rules. The proposed procedure allowed
us to specify the model in a flexible, though parsimonious way, which is especially
important in a multilevel framework.
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The results obtained with the final model pointed out that some teacher practices
and attitudes are significantly related to ratings about teacher ability to motivate
students.

The complexity of the case study, especially in terms of number of observations
and number of categorical variables affected by missing values, suggested to carry out
imputations using MICE, which is computationally low demanding. The solution of
computational issues would allow us to explore the performance of other approaches
for the imputation step, such as JM (Goldstein et al., 2014; Quartagno and Carpenter,
2016) or the latent class approach (Vidotto et al., 2018). Such methods implement
more general imputation models, thus allowing a wider set of specifications of the
analysis model, including non-linear effects, interactions and/or random slopes. This
greater flexibility is especially important to achieve congeniality (van Buuren, 2018)
when the imputation step is performed without taking into account the specification
of the analysis model.

Combining model selection with MI is an open issue (Zhao and Long, 2017). We
devised a simple strategy to face a computationally demanding setting, following the
approach of selecting the variables in each imputed dataset and pooling the results.
It would be interesting to explore other approaches, also through simulation studies,
such as variable selection on a stacked imputed dataset and solutions that combine
variable selection with resampling techniques.

Supplementary materials

The Stata code for reproducing the analysis is available from the journal’s repository
http://www.statmod.org/smij/archive.html.
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