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Effective grading refinement for locally linearly independent LR B-splines

Francesco Patrizi

Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching bei München, Germany

Abstract

We present a new refinement strategy for locally refined B-splines which ensures the local linear independence
of the basis functions. The strategy also guarantees the spanning of the full spline space on the underlying
locally refined mesh. The resulting mesh has nice grading properties which grant the preservation of shape
regularity and local quasi uniformity of the elements in the refining process.

Keywords: LR B-splines, local linear independence, graded meshes, adaptive methods.

1. Introduction

Locally Refined (LR) B-splines have been introduced in [10] as generalization of the tensor product B-
splines to achieve adaptivity in the discretization process. By allowing local insertions in the underlying
mesh, the approximation efficiency is dramatically improved as one avoids the wasting of degrees of freedom
by increasing the number of basis functions only where rapid and large variations occur in the analyzed
object. Nevertheless, the adoption of LR B-splines for simulation purposes in the Isogeometric Analysis (IgA)
framework [15] is complicated by the risk of linear dependence relations [21]. Several refinement strategies
proposed in the literature, such as the minimum span, full span and structured refinement [16, 24], do not
ensure linear independence of the LR B-splines. As a consequence, the so-called peeling algorithm [10, 21]
has to be adopted in order to remove redundant basis functions, if any, and restore linear independence, after
any refinement iteration. The peeling algorithm may, however, fail in detecting all the linear dependence
relations and further, more computationally expensive, checks, such as the tensor expansion [16], are required
to sort out such remaining cases.

Although a complete characterization of linear independence is still not available, the local linear indepen-
dence of the basis functions is guaranteed when the underlying Locally Refined (LR) mesh has the so-called
Non-Nested-Support (N2S) property [2, 3]. The local linear independence not only is sufficient to avoid the
hurdles of dealing with singular linear systems, but it also improves the sparsity of the matrices when assem-
bling the numerical solution. Furthermore, it allows the construction of efficient quasi-interpolation schemes
[22]. Such a strong property of the basis functions is a rarity, or at least it is quite cumbersome to gain,
among the technologies used for adaptive IgA. For instance, it is not available for (truncated) hierarchical
B-splines [11, 13] while it can be achieved for PHT-splines [9] and Analysis-suitable (and dual-compatible)
T-splines [6], respectively, by imposing reduced regularity and by endorsing a considerable propagation in
the refinement [1].

In this work we present a new refinement strategy to produce LR meshes with the N2S property. In
addition to the local linear independence of the associated LR B-splines, the strategy proposed has two
further features: the space spanned coincides with the full space of spline functions and it guarantees
smooth grading in the transitions between coarser and finer regions on the LR meshes produced. The
former property boosts the approximation power with respect to the degrees of freedom as the spaces used
for the discretization in the IgA context are in general just subsets of the spline space. Such a spanning
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completeness is more demanding to achieve in terms of meshing constraints and regularity, respectively,
for (truncated) hierarchical B-splines and splines over T-meshes [19, 12, 3, 8]. The grading properties are
instead required to theoretically ensure optimal algebraic rates of convergence in adaptive IgA methods
[5, 4], even in presence of singularities in the PDE data or solution, similarly to what happens in Finite
Element Methods (FEM) [20]. More specifically, the LR meshes generated by the proposed strategy satisfy
the requirements listed in the axioms of adaptivity [5] in terms of grading and overall appearance. Such
axioms constitute a set of sufficient conditions to guarantee convergence at optimal algebraic rate in adaptive
methods. Furthermore, mesh grading has been assumed to prove robust convergence of solvers for linear
systems arising in the adaptive IgA framework with respect to mesh size and number of iterations [14]. For
these reasons, we have called the strategy Effective Grading (EG) refinement strategy.

The next sections are organized as follows. In Section 2 we recall the definitions of tensor product meshes
and B-splines from a perspective that ease the introduction of LR meshes and LR B-splines. In the second
part, we define the N2S property for the LR meshes and provide the characterization for the local linear
independence of the LR B-splines. In Section 3 we first define the EG strategy and then we prove that it has
the N2S property. The completeness of the space spanned and the grading of the LR meshes are discussed
at the end of the section. Finally, in Section 4 we draw the conclusions and present the future research.

2. Preliminaries

In this section we recall the definition of Locally Refined (LR) meshes and B-splines and the conditions
ensuring the local linear independence of the latter. We stick to the 2D setting for the sake of simplicity,
however, many of the following definitions have a direct generalization to any dimension, see [10] for details.
We assume the reader to be familiar with the definition and main properties of B-splines, in particular with
the knot insertion procedure. An introduction to this topic can be found, e.g., in the review papers [17, 18]
or in the classical books [7] and [23].

2.1. LR meshes and LR B-splines

LR meshes and related sets of LR B-splines are constituted simultaneously and iteratively from tensor
meshes and sets of tensor B-splines. We therefore start by recalling the latter using a terminology which is
proper of the LR B-spline theory. Thereby, we can easily introduce the new concepts by generalizing the
tensor case. A tensor (product) mesh on an axes-aligned rectangular domain Ω ⊆ R2 can be represented
as a triplet N = (M, ppp, µ) where M is a collection (with repetitions) of meshlines, which are the segments
connecting two (and only two) vertices of a rectangular grid on Ω. ppp = (p1, p2) is a bidegree, that is, a pair
of integers in N, and µ : M → N∗ is a map that counts the number of times any meshline γ appears in M.
µ(γ) is called multiplicity of the meshline γ. Furthermore, the following constraints are imposed on M:

C1. µ(γ1) = µ(γ2) if γ1, γ2 ∈M are contiguous and aligned,

C2. µ(γ) ≤ p1 +1 if γ ∈M is vertical and µ(γ) ≤ p2 +1 if γ is horizontal. In particular, we say that γ has
full multiplicity if the equality holds.

A tensor mesh N is open if the meshlines on ∂Ω have full multiplicities.
Given an open tensor mesh N = (M, ppp, µ), consider another tensor mesh NB := (MB , ppp, µB) where MB is

a sub-collection of meshlines MB ⊆M forming a rectangular grid in a sub-domain ΩB ⊆ Ω of p1+2 vertical
lines and p2 + 2 horizontal lines, where a line is counted m times if the meshlines in it have multiplicity m
with respect to µB . The multiplicity µB : MB → N∗ is such that µB(γ) ≤ µ(γ) for all γ ∈MB . Such vertical
and horizontal lines can be parametrized as {xi} × [y1, yp2+2] and [x1, xp1+2]× {yj} with xxx := (xi)

p1+2
i=1 and

yyy = (yj)
p2+2
j=1 such that xi ≤ xi+1 and yj ≤ yj+1 and with xi, yj appearing p1 + 1 and p2 + 1 times at most

in xxx and yyy, respectively, because of the constraint C2 on M. On xxx and yyy we can define a tensor (product)
B-spline, B = B[xxx,yyy]. Then, we have that the support of B is ΩB and hence NB is a tensor mesh in suppB.
We say that B has minimal support on N if no line in M\MB traverses int(suppB) entirely and µB ≡ µ
on the meshlines of MB in the interior of suppB. The collection of all the minimal support B-splines on N
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Figure 1: Example of B-spline with no minimal support on a tensor mesh. Let us consider the tensor mesh N = (M, (2, 2), 1)
as in figure (a). Let also B = B[xxx,yyy] be the B-spline of bidegree (2, 2) whose knot vectors are xxx = (xi)

4
i=1, yyy = (yj)

4
j=1 and

whose support and tensor mesh NB = (MB , (2, 2), 1) are highlighted in figure (a). B has not minimal support on N as the
vertical line placed at value x̂ is traversing suppB entirely while its meshlines in suppB are not contained in MB . However,
by knot insertion of x̂ in xxx we can express B in terms of two minimal support B-splines on N, B[xxx1, yyy] and B[xxx2, yyy], with
xxx1 = (x1

i )
4
i=1,xxx

2 = (x2
i )

4
i=1. The supports of the latter partially overlap horizontally and are represented in figure (b).

constitutes the B-spline set on N. If instead B has not minimal support on N, then there exists a line in
M entirely traversing int(suppB) which either is not in MB or it is in MB but its meshlines have a higher
multiplicity with respect to µ than µB . In both cases, such exceeding line corresponds to extra knots either
in the x- or y-direction. One could then express B with B-splines of minimal support on N by performing
knot insertions. An example of B-spline with no minimal support on a tensor mesh is reported in Figure 1.

We will now extend the above notions and terminology to locally refined meshes, in order to introduce
the LR B-splines. Given an open tensor mesh N = (M, ppp, µ) and the corresponding B-spline set B, assume
that we either

R1. raise by one the multiplicity of a set of contiguous and colinear meshlines in M, which, however, still
has to satisfy the constraints C1–C2,

R2. insert a new axis-aligned line γ with endpoints on M, traversing the support of at least one B-spline
B ∈ B, and extend µ to include the segments connecting the intersection points of γ and M, by setting
it equal to 1 for such new meshlines.

Let M′ be the new collection of meshlines and µ′ be the multiplicity for M′. By construction, there exists
at least one B-spline B ∈ B that does not have minimal support on N′ = (M′, ppp, µ′). By performing knot
insertions we can, however, replace B in the collection B with B-splines of minimal support on N′. This
creates a new set B′ of B-splines of minimal support defined on N′. We are now ready to define (recursively)
LR meshes and LR B-splines.

An LR mesh on Ω is a triplet N′ = (M′, ppp, µ′) which either is a tensor mesh or it is obtained by applying
the procedure R1 or R2 to N = (M, ppp, µ) which, in turn, is an LR mesh. The LR B-spline set B′ on N′

is the B-spline set on N′ if the latter is a tensor mesh or, in case N′ is not a tensor mesh, it is obtained via
knot insertions from the LR B-spline set B defined on N.

In other words, we refine a coarse tensor mesh by inserting new lines (which possibly can have an endpoint
in the interior of Ω), one at a time, or by raising the multiplicity of a line already on the mesh. On the
initial tensor mesh we consider the tensor B-splines and whenever a B-spline in our collection has no longer
minimal support during the mesh refinement process, we replace it by using the knot insertion procedure.
The LR B-splines will be the final set of B-splines produced by this algorithm. In Figure 2 we illustrate the
evolution of an LR B-spline throughout such process.

We conclude this section with a short list of remarks:

3
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Figure 2: Evolution of an LR B-spline throughout the refinement process of a tensor mesh. Consider the tensor mesh N =
(M, (2, 2), 1) reported in figure (a). Let B[xxx,yyy] be the minimal support B-spline whose support and tensor mesh are highlighted
in figure (a). Let us insert a first vertical line in N (dashed in figure (a)). This line does not traverses suppB, hence B is
preserved in the B-spline set on the new LR mesh, as shown in figure (b). We then insert an horizontal line (dashed in figure
(b)). This time the line is traversing suppB and B[xxx,yyy] is replaced by the B-splines B[xxx,yyy1] and B[xxx,yyy2] involved in the knot
insertion. In figure (c) we see the supports and tensor meshes of the latter on the new LR mesh. In particular we see that
B[xxx,yyy1] (the bottom B-spline in figure (c)) has not minimal support on the LR mesh as there is a vertical line traversing its
support without being part of its tensor mesh. Thus B[xxx,yyy1] is replaced as well, via knot insertion, by two other B-splines
B[xxx1, yyy1], B[xxx2, yyy1]. Therefore, in the end, we move from B[xxx,yyy], on the tensor mesh, to B[xxx1, yyy1], B[xxx2, yyy1], B[xxx,yyy2] on the
final LR mesh. The supports and tensor meshes of the latter are represented in figure (d).

� In general the mesh refinement process producing a given LR mesh is not unique, as the insertion
ordering can often be changed. However, the final LR B-spline set is well defined because independent
of such insertion ordering, as proved in [10, Theorem 3.4].

� The LR B-spline set is in general only a subset of the set of minimal support B-spline defined on the
LR mesh, although the two sets coincide on the initial tensor mesh. When inserting new lines the
LR B-splines are the result of the knot insertion procedure, applied to LR B-splines defined on the
previous LR mesh, while some minimal support B-splines could be created from scratch on the new
LR mesh. Further details and examples can found in [21, Section 5].

� We have introduced LR meshes and LR B-splines starting from open tensor meshes and related sets
of tensor B-splines. For the sake of completeness, we mention that it is actually not necessary that
the initial tensor mesh is open, as long as it is possible to define at least one tensor B-spline on it.
However, we always assume the openness of the initial tensor meshes in this paper.

� In the next sections, we always consider tensor and LR meshes with boundary meshlines of full mul-
tiplicity and internal meshlines of multiplicity 1, if not specified otherwise. In particular, this means
that we update the LR meshes and LR B-spline sets only by performing the procedure R2.

2.2. Local linear independence and N2S-property

The LR B-splines coincide with the tensor B-splines when the underlying LR mesh is a tensor mesh and
in general the formulation of LR B-splines remains broadly similar to that of tensor B-splines even though
the former address local refinements. As a consequence, in addition to making them one of the most elegant
extensions to achieve adaptivity, this similarity implies that many of the B-spline properties are preserved
by the LR B-splines. For example, they are non-negative, have minimal support, are piecewise polynomials
and can be expressed by the LR B-splines on finer LR meshes using non-negative coefficients (provided by
the knot insertion procedure). Furthermore, it is possible to scale them by means of positive weights so that
they also form a partition of unity, see [10, Section 7].

However, as opposed to tensor B-splines, they could be not locally linearly independent. Actually, the
set of LR B-splines can even be linearly dependent (examples can be found in [10, 21, 22]).
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Figure 3: Example of nested LR B-splines on the LR mesh N = (M, (2, 2), µ) shown in (a). All the meshlines of M have
multiplicity 1 except those in the left edge, highlighted with a double line, which have multiplicity 2. In (b)–(d) three LR
B-splines B1, B2, B3 defined on N, represented by means of their supports and tensor meshes. All the meshlines in MB1

,MB2

and MB3 have multiplicity 1 except those on the left edge in MB3 which have multiplicity 2. Therefore, B2 is nested in B1

while B3 is not nested neither in B2 nor B3, despite that suppB3 ⊆ suppB2 and suppB3 ⊆ suppB1, because the shared
meshlines in the left edge of suppB3, suppB2 and suppB1 have multiplicity 2 in MB3 and multiplicity 1 in MB2 and MB1 .

Nevertheless, in [2, 3] a characterization of the local linear independence of the LR B-splines has been
provided in terms of meshing constraints leading to particular arrangements of the LR B-spline supports on
the LR mesh. In this section we recall such characterization.

First of all, we introduce the concept of nestedness. Given an LR mesh N = (M, ppp, µ), let B1, B2 be two
different LR B-splines defined on N. We say that B2 is nested in B1 if

� suppB2 ⊆ suppB1,

� µB2(γ) ≤ µB1(γ) for all the meshlines γ of M in ∂suppB1 ∩ ∂suppB2.

An LR mesh where no LR B-spline is nested is said to have the Non-Nested-Support property, or in
short the N2S property. Figure 3 shows an example of an LR B-spline nested in another.

The next result, from [3, Theorem 4], relates the local linear independence of the LR B-splines to the
N2S property of the LR mesh. In order to present it, we recall that given an LR mesh N = (M, ppp, µ), M
induces a box-partition of Ω, that is, a collection of axes-aligned rectangles, called boxes, with disjoint
interiors covering Ω. Hereafter, we will just call them boxes of M, with an abuse of notation, instead of
boxes in the box-partition induced by M.

Theorem 2.1. Let N = (M, ppp, µ) be an LR mesh and let L be the related LR B-spline set. The following
statements are equivalent.

1. The elements of L are locally linearly independent.

2. N has the N2S property.

3. Any box β of M is contained in exactly (p1 + 1)(p2 + 1) LR B-spline supports, that is,

#{B ∈ L : suppB ⊇ β} = (p1 + 1)(p2 + 1).

4. The LR B-splines in L form a partition of unity, without the use of scaling weights.

In the next section we present an algorithm to construct LR meshes with the N2S property. The resulting
LR meshes will furthermore show a nice gradual grading from coarser regions to finer regions, which avoids
the thinning in some direction of the box sizes and the placing of small boxes side by side with large boxes.

3. The Effective grading refinement strategy

In this section we present a refinement strategy to generate LR meshes with the N2S property. We call
it Effective Grading (EG) refinement strategy as the finer regions smoothly fade towards the coarser
regions in the resulting LR meshes.
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To the best of our knowledge, two other strategies have been proposed to build LR meshes with the
N2S property so far: the Non-Nested-Support-Structured (N2S2) mesh refinement [22] and the
Hierarchical Locally Refined (HLR) mesh refinement [3]. The N2S2 mesh refinement is a function-
based refinement strategy, which means that at each iteration we refine those LR B-splines contributing
more to the approximation error, in some norm. The N2S2 mesh strategy does not require any condition
on the LR B-splines selected for refinement to ensure the N2S property of the resulting LR meshes. On the
other hand, no grading has been proved on the final LR meshes and skinny elements may be present on
them. The HLR refinement is instead a box-based strategy, which means that at each iteration the region
to refine is identified by those boxes, in the box-partition induced by the LR mesh, in which a larger error
is committed, in some norm. The HLR strategy produces nicely graded LR meshes but it requires that the
regions to be refined and the maximal resolution have to be chosen a priori to ensure the N2S property.
Usually one does not know in advance where the error will be large and how fine the mesh has to be to
reduce the error under a certain tolerance. Therefore, the conditions for the N2S property constitute a
drawback for the adoption of the HLR strategy in many practical purposes.

The EG refinement is a box-based strategy providing LR meshes very similar to those that one gets with
the HLR strategy, when fixing the refinement regions and the number of iterations. As we shall show, the
LR meshes generated will always have the N2S property, with no requirements or assumptions.

3.1. Preliminary observations and generalized shadow map

In order to introduce the strategy, we need some preliminary considerations on the LR meshes produced
by the algorithm. For the sake of simplicity, we assume our domain Ω to be a square Ω = [a, b]2 ⊆ R2.
Given an LR mesh N = (M, ppp, µ) in Ω, generated by several applications of EG strategy, and a box β in M,
we define the diameter of β, denoted by diam(β), as the length of the diagonal of β. As we shall show in
Section 3.2, the boxes in M are either squares or rectangles with one side twice the other. Furthermore, such
boxes are obtained by halving boxes in the previous mesh in one of the two directions, i.e., square boxes are
refined in rectangles and rectangular boxes are refined in square boxes. In particular, the width L of the
longest side of any given box of M has expression

L =
b− a

2q
for some q ∈ N.

This means that β is a square box in M if and only if

diam(β)

L
=
√
2, that is, if and only if

(b− a)2

diam(β)2
= 22q−1.

Whereas, β is a rectangular box in M if and only if

diam(β)

L
=

√
3

2
, that is, if and only if

3(b− a)2

diam(β)2
= 22q+1.

Hence, given diam(β) we can understand if β is a square or a rectangular box by looking at 3(b−a)2

diam(β)2 mod 3:

β is a


square box ⇐⇒ 3(b−a)2

diam(β)2 ≡ 0 mod 3,

rectangular box ⇐⇒ 3(b−a)2

diam(β)2 ̸≡ 0 mod 3,

with the only exception of the square box β = Ω, for which q = 0 and 3(b−a)2

diam(β)2 = 3
2 .

There are two variants of the EG strategy, the “Horizontal-major” and the “Vertical-major”. In the
Horizontal-major version, the boxes of the mesh, at any iteration, are squares or rectangles of width twice
the height. Hence, square boxes are refined by halving them horizontally, while rectangular boxes are refined
by halving them vertically. In the Vertical-major case it is the opposite: squares are refined in rectangles
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(a) 8001 LR B-splines (b) 7821 LR B-splines

Figure 4: Comparison of the Horizontal-major and Vertical-major versions of the EG strategy. We consider bidegree (2, 2) and
refine along a “bean curve” with 8 levels of resolution in each direction. In (a) the Horizontal-major variant of the strategy and
in (b) the Vertical-major variant of the strategy. In the former the rectangular boxes have width twice the height. In the latter
the rectangular boxes have height twice the width. We also show the number of LR B-splines defined in the meshes. Obviously
the two cardinalities are different because the two meshes are not equal after flipping the axes, due to the asymmetry of the
curve.

of height twice the width, by halving them vertically, and rectangular boxes are refined in square boxes,
by halving them horizontally. In Figure 4 we compare the two variants by refining along the same “bean
curve”, using bidegree (2, 2) and 8 levels of refinement in each direction.

In the description of the EG strategy in Section 3.2, we will just use the verb “to halve”, without
specifying the direction, to treat the two variants at the same time.

Let β be a square box in the mesh of diameter diam(β) = d. β has been obtained by halving a box of
diameter

d′ =

√
5

2
d.

Instead, if β is a rectangular box, it has been obtained by halving a box of diameter

d′ = 2

√
2

5
d.

In the description of the EG strategy in Section 3.2 we will denote by s the scaling factor to express d′ in
terms of d, i.e., d′ = sd, independently of the shape of the box at hand, that is,

s :=


√

5
2 if β is a square box,

2
√

2
5 if β is a rectangular box.

(1)

Finally, we introduce the generalized shadow map of a set A in Ω. As opposed to the shadow map
[3, Definition 10] which is defined for tensor meshes, the generalized shadow map can be applied in locally
refined meshes. The latter is consistent with the former, that is, the two maps are equivalent, when the
underlying LR mesh is a tensor mesh and A consists of a bunch of boxes of the mesh, as we shall show in
the appendix of this paper. Given an LR mesh N = (M, ppp, µ) and a set A in Ω, the generalized shadow
map of A in N defines a superset of A which is larger only along one of the two directions, as follows. We
present only the horizontal shadow map for briefness, the procedure for the vertical is analogous. For the
sake of simplicity, let us assume first that A has only one connected component. For any point qqq ∈ ∂A we
consider the two horizontal half-lines from qqq, r1 and r2. Let qqqi1, . . . , qqq

i
Ni

be the intersection points of ri with

7



(a) (b) (c) (d)

Figure 5: Examples of a horizontal generalized shadow map of different sets. All the meshlines in all the meshes have multiplicity
one and p1 = 2. The red regions are the sets considered and the unions of the red regions and the blue regions are the shadow of
them (we refer to the online version of the paper for the colors). In (a)–(b) the underlying mesh is a tensor mesh. In (c)–(d) we
consider LR meshes built using the minimum span strategy, proposed in [16], with bidegree (2, 2) to emphasize the difference
of the generalized shadow map on meshes with local insertions with respect to the tensor case.

the vertical meshlines of M (counting their multiplicites), where qqqi1 is the closest to qqq and qqqiNi
the farthest.

In particular, note that if qqq lies on a vertical line of M, then qqqi1 = qqq. We define

qqqi∗ := qqqip1+1. (2)

The (horizontal) generalized shadow of A with respect to N, denoted by SA, are the boxes of M intersecting
the points in the segments qqq1∗qqq

2
∗ for qqq ∈ ∂A or the points in A, that is,

SA :=

β box of M : β ∩

A ∪

 ⋃
qqq∈∂A

qqq1∗qqq
2
∗

 ̸= ∅
 .

If A has more connected components, A1, . . . , AM , then the generalized shadow SA will be the union of the
generalized shadows of the connected components:

SA :=

M⋃
j=1

SAj .

In Figure 5 we show four examples of horizontal generalized shadow maps for three different sets and degree
p1 = 2. In particular the sets considered are unions of boxes of the underlying mesh. We made this choice
because these are the kind of sets considered for refinement in practice.

In the EG strategy we will apply the generalized shadow map to sets composed of boxes of the same
size and shape in the mesh. The direction of the shadow will be established by such shape: if the boxes are
rectangles then the shadow is in the same direction of the long edges, if they are squares then it is in the
other direction.

3.2. Definition of the strategy and proof of the N2S property

Given a region ω ⊆ Ω composed of a set of boxes to be refined, the EG strategy can be divided in two
macro steps. In the first step new lines are inserted in order to refine ω. As we shall show, these lines
halve boxes of the same shape and size and therefore they are all in the same direction, as we explained in
Section 3.1. The new line insertions will in general spoil the N2S property of the mesh. In the second step
of the EG strategy we reinstate the N2S property by suitably extending lines that were already on the mesh
before such new insertions. This approach, of dividing the strategy into “refining step” and “N2S property
recovering step”, was already adopted in [22] for the N2S2 mesh refinement. As it will be clear, restoring
the N2S property will also provide nice grading properties in the final mesh.

The refining step works as follows. Let N = (M, ppp, µ) be the LR mesh at hand, provided by several
iterations of EG strategy, and let L be the corresponding set of LR B-splines. We define the subset Lω ⊆ L

8



as the set of those LR B-splines whose support is intersecting region ω. Then we compute the maximum of
diam(β) over all the LR B-splines B ∈ Lω and all the boxes β in the tensor meshes MB associated to the
knot vectors of B. We halve such maximal boxes. As all of them have same diameter, the new lines have all
same direction. This concludes the refining step. The new lines inserted and the new extensions, provided
by the re-establishing of the N2S property, trigger a refinement in the LR B-spline set L. We finally update
ω by removing those boxes of it that have been refined (if any). We repeat the procedure until all the boxes
in ω have been halved. The scheme of the EG refinement strategy is given in Algorithm 1.

Algorithm 1: EG strategy iteration, (L,N)← EGstrategy(L,N,ω)

do

Set Lω =
⋃
{B ∈ L : int(suppB) ∩ ω ̸= ∅};

Set D = maxB∈Lω maxβ∈MB
diam(β);

Update M by halving the boxes β ∈MB with diam(β) = D and B ∈ Lω;

Reinstate the N2S property and grading after the refinement, N← EGgrader(N);

Update L;

Update ω by removing the boxes of it that have been refined;

while ω ̸= ∅;

When we recover the N2S and grading properties we make sure that the shadow of each box of diameter
d in the mesh contains only boxes of diameter sd or smaller, with the scaling value s defined as in Equation
(1). We proceed from the boxes with the smallest diameter to those with the largest diameter. The input
is the LR mesh N = (M, ppp, µ) obtained after the refining step. Let E be the set of boxes of M. At first,
we set d as the diameter of the smallest boxes in M and Ed ⊆ E as the set of boxes with diameter d. For
each of such boxes β ∈ Ed we check if there is a β′ ∈ Sβ (the shadow map of β) with diam(β′) > sd. If this
is the case, we halve the closest to β of such larger boxes and we update the shadow of β. We iterate this
procedure until all the boxes in Sβ have diameter at most sd. After that, the next extensions will involve
only boxes of diameter sd or larger. Hence, we remove Ed from E, we update d as the smallest diameter of
the boxes in such new collection. We iterate the procedure until E becomes empty.

The N2S property restoring step is schematized in Algorithm 2. In Figure 6 we visually represent the

Algorithm 2: Restoring N2S and grading properties, N← EGgrader(N)

Set E as the set of boxes in M;

while E ̸= ∅ do
Set d = minβ∈E diam(β) and Ed = {β ∈ E : diam(β) = d};
for all β ∈ Ed

while ∃β′ ∈ Sβ with diam(β′) > sd do

Update M by halving the closest of such β′ to β;

Update E;

Update Sβ;

Update E by removing Ed, E← E \ Ed;

steps of an iteration of the EG refinement on a given LR mesh. We remark that the LR meshes produced
by the EG strategy have boundary meshlines of full multiplicity and internal meshlines of multiplicity 1.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Example of EG strategy iteration. The input is the LR mesh pictured in figure (a) and a set of boxes marked for
refinement, highlighted with red dots. We collect all the LR B-splines on the mesh whose support intersects the marked boxes.
The region given by the union of their supports is colored blue in figure (a). We halve the boxes of largest diameter in their
support, in this case all the boxes in the colored region, and we get the LR mesh shown in figure (b). Such LR mesh may
have not the N2S property. We reinstate it as follows. We consider the smallest boxes on the mesh and we compute the
generalized shadow of such region. We consider the Horizontal-major variant of the strategy for this example, therefore such
shadow is horizontal, as shown in figure (c). We mark for refinement those boxes in the shadow that are too large as explained
in Algorithm 2. These boxes are highlighted with red dots in figure (c). We halve those of them that are closer to the region
and we update the shadow. At the end of the process we have the mesh in figure (d). We iterate the procedure over all the
boxes from the smaller to the larger. The next boxes considered are those reported in red in figure (e) together with their
(vertical) generalized shadow in blue. The boxes marked with a red dot are those that need to be halved. The final LR mesh
is reported in figure (f). We refer to the online version of the paper for the colors.
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In order to prove that such LR meshes have the N2S property, we rely on the following result [3, Theorem
11]. Let {NT

ℓ = (Mℓ, ppp, µ)}ℓ∈N be a sequence of tensor meshes with MT
0 the boundary of Ω and MT

ℓ obtained
by halving the boxes in MT

ℓ−1, alternating the directions of such splits. Let Ωℓ ⊆ Ω be a union of boxes in

MT
ℓ . Then [3, Theorem 11] states that if an LR mesh N = (M, ppp, µ) can be written as M = ∪ℓ≤LM

T
ℓ |Ωℓ

and
the sequence {Ωℓ}ℓ≤L is such that Ωℓ−1 ⊇ SΩℓ, then N has the N2S property. We now show that the LR
meshes produced by the EG strategy satisfy the hypotheses of [3, Theorem 11].

Theorem 3.1. Let N = (M, ppp, µ) be an LR mesh obtained via several iterations of the EG strategy. Then
N has the N2S property.

Proof. Let d be the minimal diameter over all the boxes of M. Let Ωd ⊆ Ω be the region composed of all
the boxes in N of diameter d. Let d′ = sd and Ωd′ ⊆ Ω be the region made of boxes of diameter d′ or
smaller. In the N2S property restoring step of the EG strategy (Algorithm 2) we make sure that only boxes
of diameter sd or smaller are in SΩd. Therefore, Ωd′ ⊇ SΩd. By iterating this procedure, replacing d with
d′ until Ωd′

= SΩd = Ω, we get a sequence {Ωd}d for which Ωd′ ⊇ SΩd. Furthermore, by recalling that
the boxes of diameter d are obtained by halving boxes of diamter d′, it is clear that the sequence {Ωd}d
corresponds to a sequence {Ωℓ}ℓ≤L as that considered in [3, Theorem 11] and M = ∪ℓ≤LM

T
ℓ |Ωℓ

. This proves
that N has the N2S property thanks to [3, Theorem 11].

In Figures 7–8 we show iterations of the EG strategy and the adaptivity of it. From LR meshes obtained
by performing 14 iterations (7 vertical and 7 horizontal insertions) of the EG strategy localized on some
regions, we change completely the curve along which we perform further refinements. All the meshes shown
(and many more) have been tested for the N2S property to confirm the theoretical result of Theorem 3.1.

Remark 3.2. We highlight the importance of refining only the closest to β of the boxes in Sβ of diameter
larger than sd in Algorithm 2 and updating the shadow. Halving only one box and updating the shadow
avoids the presence of extra spurious lines in the mesh at the end of the process, as explained in Figure 9.

3.3. Grading and spanning properties

In this section we present the further properties of the EG strategy. We first analyze the grading of the
mesh and then we identify the space spanned by the related set of LR B-splines. More specifically, we show

� bounds on the thinning of the boxes throughout the refinement,

� bounds on the size ratio of adjacent boxes,

� that the space spanned fills up the ambient space of the spline functions on the LR mesh.

Assume that N = (M, ppp, µ) is an LR mesh built using the EG strategy schematized in Algorithm 1. Then the
aspect ratio of a box of M is either 1 : 1 or 2 : 1 as rectangular boxes, of aspect ratio 2 : 1, are obtained from
square boxes and vice-versa throughout the making of the mesh. Furthermore, we note that, because of the
constraints imposed in the N2S property restoring step of the strategy, reported in Algorithm 2, a box of size
c1× c2 in M can be side by side only with boxes of same size or size double/half in one or both dimensions,
i.e., boxes of sizes c1 × c2, (2

±1c1)× c2, c1 × (2±1c2) and 2±1(c1 × c2). More precisely, along the direction of
the generalized shadow map, which is established by the shape of the box, there will only be boxes of the
same size or with a scaling factor 2 in one of the two dimension. In the direction orthogonal to the shadow,
we may find boxes of same size or of size double/half in both dimensions. These bounds on the box sizes and
neighboring boxes avoid the thinning throughout the refinement process and guarantee smoothly grading
transitions between finer and coarser regions of the LR meshes produced by the EG strategy. In particular,
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Figure 7: Example showing the adaptivity of the EG strategy. From a refinement localized along a diagonal, we perform
iterations on the other diagonal to form an “X”, switching the region of refinement. The figure has to be read following the
arrows which represent the iterations. The EG strategy guarantees local linear independence of the LR B-splines on each of
the LR meshes in the process. The bidegree considered is ppp = (2, 2).
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Figure 8: Example showing the adaptivity of the EG strategy. From a refinement localized along a triangle, we perform
iterations on the the circumscribed circle and then on the square in which the circle is inscribed, switching the regions of
refinement. The figure has to be read following the arrows which represent the iterations. For a matter of space, we do not
show the intermediate steps when moving from the circle to the square to get the final mesh. The EG strategy guarantees local
linear independence of the LR B-splines in all the iterations. The bidegree considered is ppp = (2, 2).
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(a)

(b)

(c) (d) (e)

Figure 9: Supporting figure to Remark 3.2. Let p1 = 2. In figure (a) we represent the horizontal generalized shadow of the
two right-most boxes. The two boxes on the left in such shadow are too large for the EG strategy. If we proceed as described
in Algorithm 2, we halve only the closest to the boxes considered and we update the shadow before performing a further
refinement. The result is represented in figure (b). If instead we halve both the large boxes in the shadow shown in figure (a)
we have the mesh in figure (c) at the end of the process. As one can see, in figure (c) there is an extra vertical line. This
vertical line may make the mesh be not an LR mesh anymore as it happens in figures (d)–(e). Figure (d) is an intermediate
step while performing Algorithm 2 in the refining process shown in Figure 8. In particular, in this stage we are checking that
the shadow highlighted is composed of boxes of the right size. The two boxes on the left are too large for the EG strategy.
If we halve both of them before updating the shadow we obtain the mesh in figure (e) at the end of Algorithm 2. The small
vertical line has not traversed any LR B-spline on the mesh in figure (d). Hence, the mesh in figure (e) is not an LR mesh
anymore. Instead, if each time we refine only the closest box, we obtain the LR mesh at the center of Figure 8, which is an LR
mesh with the N2S property.

given two adjacent boxes β, β′ of M, called hβ the square root of the area of β, it holds

diam(β)
hβ

=


√
2 for square boxes,√
5
2 for rectangular boxes,

⇒ diam(β)
hβ

≤
√

5
2 , (A1)

hβ

hβ′
=


1 if β, β′ have same width in both directions,

2 if β has width double that of β′ in both directions,

√
2 if β has width double that of β′ in only one direction,

⇒ hβ

hβ′
≤ 2. (A2)

Inequalities (A1)–(A2) show that the box-partition associated toM satisfies the shape regularity and local
quasi uniformity conditions, which are two of the so-called axioms of adaptivity: a set of requirements
which theoretically ensure optimal algebraic convergence rate in adaptive FEM and IgA, see [5] and [4,
Sections 5–6] for details. In particular, conditions (A1)–(A2) is what is demanded in terms of grading and
overall appearance of the mesh used for the discretization.

We now prove another important feature of the EG strategy: the space spanned is the entire spline
space. The spline space on a given LR mesh N = (M, ppp, µ), denoted by S(N), is defined as

S(N) :=


f : R2 → R : supp f ⊆ Ω,

f |β is a polynomial of bidegree ppp in any β box of M,

f ∈ Cp3−k−µ(γ)-continuous across any meshline γ of M along the kth direction.

 .

In general, all the spaces spanned by generalizations of the B-splines addressing adaptivity, such as LR
spline spaces, are just subspaces of the spline space on the underlying mesh. The next result ensures that
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when we are using LR meshes generated by the EG strategy, the span of the LR B-splines actually fills up
the entire spline space.

Theorem 3.3. Let N = (M, ppp, µ) be an LR-mesh provided by several iterations of EG strategy and let L be
the associated LR B-spline set. Then spanL = S(N).

Proof. If N is a tensor mesh, the LR B-spline set coincides with the tensor B-spline set and the statement
is true by the Curry-Schoenberg Theorem. If instead there are local insertions in M, we recall that during
the refining steps of the EG strategy that yielded M, we have always inserted new lines traversing the
support of at least one LR B-spline. This means that each new line along the kth direction traversed at
least pk+2 orthogonal meshlines when has been inserted. In the N2S property recovering steps we then have
further prolonged some of such lines. By [3, Theorem 12], this “length” of the lines in terms of intersections
guarantees that spanL = S(N).

This spanning property is achieved also by using the HLR strategy [3].

4. Conclusion

We have presented a simple refinement strategy ensuring the local linear independence of the associated
LR B-splines. Furthermore, the width of the regions refined at each iteration of the strategy guarantees
that the span of the LR B-splines fills up the whole spline space on the LR mesh.

We have called it Effective Grading (EG) strategy as the transition between coarser and finer regions
is rather gradual and smooth in the LR meshes produced, with strict bounds on the aspect ratio of the
boxes and on the sizes of the neighboring boxes. Such a grading ensures that the requirements on the mesh
appearance listed in the axioms of adaptivity [5, 4] are verified. The latter are a set of sufficient conditions on
mesh grading, refinement strategy, error estimates and approximant spaces in adaptive numerical methods
to theoretically guarantee optimal algebraic convergence rate of the numerical solution to the real solution.
The verification of the remaining axioms will be the topic of future research.
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A. Equivalence with the shadow map

In this appendix we show that the generalized shadow map is equivalent to the definition of shadow map,
given in [3, Definition 10], when the underlying mesh is a tensor mesh and the set considered is constituted of
a collection of boxes. In order to recall the latter, we introduce the separation distance. Given a direction
k ∈ {1, 2}, let N = (M, ppp, µ) be a tensor mesh and M3−k be the subcollection in M of all the meshlines in
the (3− k)th direction. Given two points ppp,qqq ∈ Ω the separation distance of ppp and qqq along direction k with
respect to the tensor mesh N is defined as

sepNk (ppp,qqq) :=

{
#{ttt ∈ Ω | ttt ∈ γ ∩M3−k} if ppp,qqq are axis-aligned in the kth direction,
+∞ otherwise,

with γ the segment along direction k between ppp and qqq. Given a set A ⊆ Ω composed of boxes of M, we
define

sepNk (ppp,A) = inf
qqq∈A

sepNk (ppp,qqq).

The definition of shadow map along direction k with respect to the tensor mesh N given in [3] is then

SA = {ppp ∈ Ω | sepNk (ppp,A) ≤ pk}.
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We use the gothic symbol S to distinguish it from the generalized shadow map, defined in Section 3.1.
We now show that the two are equivalent. Let β be a box in A. Then, sepNk (ppp,A) = 0 for all ppp ∈ β and
β ⊆ S(A). Let instead β ⊆ SA \ A. Then sepNk (ppp,A) ≤ pk + 1 for all ppp ∈ β and so β ⊆ SA. Note that the
“for all ppp ∈ β” is true because A is composed of boxes of M. Otherwise, there could be points ppp in β that
are not part of the shadow SA, see, e.g., [3, Figure 5]. We have proved that SA ⊆ SA. We now show the
opposite, that is, SA ⊇ SA. Let ppp ∈ SA. Then pk + 1 ≥ infqqq∈A sepNk (ppp,qqq). If ppp /∈ A then such infimum is

reached for some qqq ∈ ∂A and so ppp ∈ qqq1∗qqq
2
∗, with qqq1∗ as defined in Equation (2). Therefore ppp is contained in a

box β of M intersecting qqq1∗qqq
2
∗ and β ⊆ SA. If instead ppp ∈ A, there is nothing to prove as A is in SA.
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